RAL-TR-1999-075

The design of a parallel frontal solver

by

Jennifer A. Scott

Abstract

In a previous report (Rutherford Technical Report RAL-94-040), Duff and
Scott looked at extending the frontal method for finite-element problems to
the multiple front method. This generalization of the frontal method permits
coarse-grained parallelism to be exploited in the solution process. In this
report, we discuss the design and development of a general purpose software
package HSL MP42 that implements the multiple front algorithm. HSL_MP42
solves unsymmetric systems of finite-element equations on distributed or shared
memory parallel computers. The code is written in Fortran 90 and uses MPI for
message passing. A key design feature is a user interface that is straightforward
to use while offering flexibility through a number of options. Numerical results
for both a model problem and a practical problem arising from groundwater
flow calculations illustrate the efficiency of the code and the advantages of the
multiple front approach.

Keywords: finite-elements, unsymmetric linear systems, frontal method,
parallel processing, Fortran 90, MPI.

Computational Science and Engineering Department,
Atlas Centre, Rutherford Appleton Laboratory,
Chilton, Didcot,

Oxon OX11 0QX, England.

December 21, 1999.

CONTENTS

Contents
1 Introduction
2 Multiple front method

2.1 The frontal method L.
2.2 Multiplefronts
Design of a parallel frontal solver

3.1 Initialize
3.2 Analyse e e e e e
3.3 Factorize. e
34 Solve
3.5 Finalize

Basic building blocks

4.1 The frontal solver MA42 oL
4.2 The MAB2 package e
4.2.1 MAB2A . . .o e
4.2.2 MAS2Band MAB2F
4.2.3 MAB2Co
4.3 Element ordering o oL

User interface

5.1 Initialize: data%JOB = 1 e
5.2 Analyse: datajJOB = 2
5.3 Factorize: data)tJOB = 3 e
54 Solve: data%JOB = 4 e e e e
5.5 Example of the use of MP42

Numerical results

6.1 Model problem L
6.2 MP42versusMA42 e
6.3 Groundwater flow computations.

6.3.1 The effect of the minimum pivot block size

Conclusions and future work

Acknowledgements

11
12
13
15
17
18

18
18
21
23
23

24

25

1 INTRODUCTION 1

1 Introduction

Finite-element simulations involve the solution of large sparse linear systems
of equations. Solving these systems is generally the most computationally
expensive step in the simulation, often requiring in excess of 90 per cent of
the total run time. As time-dependent three-dimensional simulations are now
commonplace, there is a need to develop algorithms and software that can be
used to efficiently solve such problems on parallel supercomputers.

The frontal solver MA42 of Duff and Scott (1993, 1996) (and its predecessor
MA32 of Duff, 1981) was developed for solving unsymmetric linear systems. The
code can be used to solve general sparse systems but was primarily designed
for finite-element problems. The code is included in the Harwell Subroutine
Library (1995) and has been used in recent years to solve problems from a
range of application areas. A key feature of the frontal method is that, in
the innermost loop of the computation, dense linear algebra kernels can be
used. In particular, these are able to exploit high-level BLAS kernels (Dongarra,
DuCroz, Duff and Hammarling, 1990). This makes the method efficient on a
wide range of modern computer architectures, including RISC based processors
and vector machines. Although MA42 uses level-3 BLAS, it does not exploit
the multiprocessing architecture of parallel supercomputers. In this paper, we
report on the design and development of a new general-purpose parallel frontal
code for unsymmetric finite-element problems. The code, which may be run on
distributed or shared memory parallel computers, exploits both multiprocessing
and vector processing by using a multiple front approach (Duff and Scott, 1994 q,
1994b).

This paper is organised as follows. In Section 2, we provide some background
information on the multiple front method. The design of our parallel frontal
solver is discussed in Section 3. The new code is called HSL_MP42. We describe
the separate phases of the code and in Section 4 we look at how the code has
been developed using our existing frontal solver MA42 as the basic computational
tool together with MPI for message passing. In Section 5, the user interface is
explained and the use of HSL_MP42 is illustrated by a simple example code.
Numerical results are presented in Section 6. Finally, in Section 7, we make
some concluding remarks.

2 Multiple front method

In this section, we describe the multiple front method. Since the method is
based on partitioning the finite-element domain into subdomains and applying
the frontal method to each subdomain, we first recall the key features of the
frontal method.

2.1 The frontal method

Consider the linear system

AX =B (2.1)

2 MULTIPLE FRONT METHOD 2

where the n X n matrix A is large and sparse. B is an n X nrhs (nrhs > 1)
matrix of right-hand sides and X is the n X nrhs solution matrix. In this paper,
we are only interested in the case where the matrix A is an elemental matrix,
that is, A is a sum of finite-element matrices

A=3%" A0, (2.2)

where each element matrix A%Y has nonzeros only in a few rows and columns
and corresponds to the matrix from element [. In practice, each A? is held
in packed form as a small dense matrix together with a list of the variables
that are associated with element [, which identifies where the entries belong in
A. Bach AD is symmetrically structured (the list of variables is both a list of
column indices and a list of row indices) but, in the general case, is numerically
unsymmetric. Frontal schemes have their origins in the work of Irons (1970) and
the basis for our experience with them is discussed by Duff (1984). The method
is a variant of Gaussian elimination and involves the matrix factorization

A= PLUQ, (2.3)

where P and @ are permutation matrices, and L and U are lower and
upper triangular matrices, respectively. The solution process is completed by
performing the forward elimination

PLY =B, (2.4)
followed by the back-substitution
ux =Y. (2.5)

The main feature of the frontal method is that the contributions A® from
the finite elements are assembled one at a time and the storage of the
entire assembled coeflicient matrix A is avoided by interleaving assembly and
elimination operations. This allows the computation to be performed using a
relatively small frontal matriz that can be written as

Fii Fio

(Fao1 Fa) ’ (2.6)
where the rows and columns of Fi; are fully summed, that is, there are no other
entries in these rows and columns in the overall matrix. Provided stable pivots
can be chosen from Fjyy, Fi; is factorized, multipliers are stored over Fis and
the Schur complement Foo — F21F1_11F12 is formed. At the next stage, another
element matrix is assembled with this Schur complement to form another frontal
matrix.

The most expensive part of the computation is the formation of the Schur
complement . Since the frontal matrix is held as a dense matrix, dense linear
algebra kernels can be used, and it is this that allows the frontal method to
perform at high Megaflop rates (see, for example, Duff and Scott, 1994q).

2 MULTIPLE FRONT METHOD 3

By holding the matrix factors on disk (for example, in direct-access files), the
frontal method may be implemented using only a small amount of main memory.
The amount of memory required is dependent on the size of the largest frontal
matrix. The number of floating-point operations and the storage requirements
for the matrix factors are also dependent on the size of the frontal matrix at
each stage of the computation. Since the size of the frontal matrix increases
when a variable enters the frontal matrix for the first time and decreases
whenever a variable is eliminated, the order in which the element matrices
are assembled is crucial for efficiency. A number of element ordering algorithms
have been proposed, many of which are similar to those for bandwidth reduction
of assembled matrices (see, for example, Duff, Reid and Scott, 1989, and the
references therein).

2.2 Multiple fronts

A major deficiency of the frontal solution scheme is the lack of scope for
parallelism other than that which can be obtained within the high-level BLAS.
To circumvent this shortcoming, Duff and Scott (1994a) proposed allowing
a (small) number of independent fronts in a somewhat similar fashion to
Benner, Montry and Weigand (1987) and Zang and Liu (1991) (see also Zone
and Keunings, 1991 and, for non-element problems, Medeiros, Pimenta and
Goldenberg, 1997).

In the multiple front approach, the underlying finite-element domain € is
first partitioned into non-overlapping subdomains ;. This is equivalent to
ordering the matrix A to doubly-bordered block diagonal form

An C1
Ao Co
. , (2.7)
)) Any Oy
¢, G ... Cn TNE

where the diagonal blocks A;; are n; X n; and the border blocks C; and C~’Z are
n; X k and k X n;, respectively, with k <€ n;. A partial frontal decomposition is
performed on each of the matrices

Aii C;
(4 ¢). oo
This can be done in parallel. At the end of the assembly and elimination
processes for each subdomain €0;, there will remain 1 < k; < k interface
variables. These variables cannot be eliminated since they are shared by
more than one subdomain. In practice, there will also remain variables that
were not eliminated within the subdomain because of efficiency or stability
considerations. These variables are added to the border and k is increased. If

F; is the local Schur complement for subdomain ; (that is, F; holds the frontal
matrix that remains when all possible eliminations on subdomain 2; have been

3 DESIGN OF A PARALLEL FRONTAL SOLVER 4

performed), once each of the subdomains has been dealt with formally we have

Ly Us U
L2 U2 02
A=P . . Q, (2.9)
5 5 {/N UN UN
L1 Lo ... Ly 1 F

where the & X k matrix
N
F = ZE (2.10)
=1

is termed the interface matriz. The interface matrix F' may also be factorized
using the frontal method. Once the interface variables have been computed,
the rest of the block back-substitution can be performed in parallel.

In general, as the number of subdomains increases, so does the number
of interface variables and, as a result, the cost of solving the interface problem
rises and becomes a more significant part of the total computational cost. If the
interface problem is solved using a single processor, this can constitute a serious
computational bottleneck. Thus it is crucial to keep the size of the interface
problem small to achieve good speedups for the overall solution process. It may
be possible to alleviate the problem by nesting the multiple front approach,
so that only small groups of subdomains are combined at each level. For
example, if the domain is partitioned into 2" subdomains, the subdomains may
be combined 2 at a time. In this case, the multiple front algorithm would be
nested to r levels. The success of the nested multiple front approach depends on
being able to combine subdomains that have a large number of their interface
variables in common. The logical conclusion of this approach is the so-called
multifrontal algorithm (see, Duff and Reid, 1983), whereby a multitude of fronts
is started simultaneously, each front eliminating its variables as soon as possible.
Alternatively, depending on the size and sparsity of the interface matrix F), a
solver other than a frontal solver might be more attractive for performing its
factorization.

In this paper, we do not consider nesting the multiple front algorithm and
currently we use the frontal method for the interface problem. However, our
multiple front code is written using basic building blocks (see Section 4) and
the intention is that this will allow us to investigate using other interface solvers
at a later date.

3 Design of a parallel frontal solver

In this section, we consider the overall design of our multiple front solver
HSLMP42. The code is written in Fortran 90. MPI is used for message
passing. MPI was chosen since the MPI Standard is internationally recognised
and today MPI is widely available and accepted by users of parallel computers.
The code requires a designated host process. The host performs the initial
analysis of the data, distributes data to the remaining processes, collects the

3 DESIGN OF A PARALLEL FRONTAL SOLVER 5

Schur complements, solves the interface problem, and generally overseas the

computation. With the other processes, the host also participates in subdomain

calculations. For portability, it is not assumed that there is a single file system

that can be accessed by all the process. This allows the code to be used on

distributed memory parallel computers as well as on shared memory machines.
The module HSL_MP42 is designed with five separate phases as follows:

1. Initialize
2. Analyse
3. Factorize
4. Solve

5. Finalize

The user must first initialize MPI by calling MPI_INIT on each process. The user
must also define an MPI communicator for the package. The communicator
defines the set of processes to be used by HSL_MP42. Each phase must then be
called in order by each process (although the solve phase is optional). Before
calling the next phase, the user must have completed all tasks with the defined
communicator (and with any other communicator that overlaps the current
HSL_MP42 communicator). During the factorize phase, the matrix factors are
generated. The user may optionally hold the matrix factors in direct-access files.
This allows large problems to be solved in environments were each process has
only a limited amount of main memory available. If element right-hand side
matrices are supplied (that is, right-hand sides of the form B = Y B(l)), the
solution X is returned to the user at the end of the factorize phase. If the right-
hand sides are only available in assembled form, or if the user wishes to use the
matrix factors generated by the factorize phase to solve for further right-hand
sides, the solve phase should be called. The user may factorize more than one
matrix at the same time by running more than one instance of the package; an
instance of the package is terminated by calling the finalize phase. After the
finalize phase and once the user has completed any other calls to MPI routines
he or she wishes to make, the user should call MPT_FINALIZE to terminate the
use of MPI. This is illustrated in the simple example code given in Figure 5.1 in
Section 5.5. We now discuss each phase in further detail.

3.1 Initialize

This phase initializes an instance of the package. The code first calls
MPI_INITIALIZED to check that MPI has been initialized by the user.
MPI_COMM_SIZE is then called to determine the number of processes being used
and MPI_COMM_RANK determines the rank of each process. The host is the process
with rank zero. The control parameters are then initialized. These parameters
control the action, including how the user wishes to supply the element data
and whether or not direct-access files are to be used to minimise main memory
requirements. If the user wishes to use values other than the defaults, the

3 DESIGN OF A PARALLEL FRONTAL SOLVER 6

appropriate parameters should be reset on the host after the initialize phase
and prior to calling the analyse phase. Full details of the control parameters
are given in the user documentation for HSL_MP42 (see Appendix).

3.2 Analyse

The host first broadcasts the control parameters to the other processes. On
the host, the user must supply, for each subdomain €2;, a list of its elements
and, for each element, a list of its variables. The host checks this data and
uses it to generate a list of the interface variables for each subdomain. If
requested, the host also orders the elements within ;. This is the order in
which the elements will be assembled when the frontal solver is applied to ;.
An estimate of the floating-point operation (flop) count for each subdomain is
made (assuming no stability restrictions on the pivot choice) and broadcast to
the other processes. Unless the user wishes to choose which process factorizes
which of the subdomain matrices, this estimate is used to assign the subdomains
to processes. The subdomains are divided up between the processes so that, as
far as possible, the loads (in terms of flops) are balanced.

3.3 Factorize

It is convenient to subdivide this phase.

e Distribution of data. The host uses the results of the analyse phase to
send data to the other processes. For each process, the host only sends
data for the subdomains that have been assigned to that process. The
amount of data movement depends upon how the user has chosen to
input the element data. By default, the element matrices AY) (and the
element right-hand side matrices B (l)) required by a process are read by
that process from a direct-access file one at a time as they are required.
This minimises storage requirements and data movement. Alternatively,
the user may supply the element data (and element right-hand sides)
in unformatted sequential files so that the data required by a process
is again be read by that process. If this option is used, the data for
all the elements in a subdomain is read in at once, so more memory is
required but, again, movement of data between processes is minimised.
Options also exist for the host to read the element data for each of the
subdomains from unformatted sequential files or, alternatively, the user
may supply the element matrices as input arrays on the host. The later
form of input is useful if the host has sufficient memory and the overhead
for using direct-access or sequential files is high. If the data is input onto
the host, there is an added overhead of sending the appropriate data from
the host to the other processes. Since the host is also involved in the
subdomain factorizations, this distribution of element data is done before
the factorization commences.

e Subdomain factorization. The processes use MA42 to perform a frontal
decomposition for each of the subdomains assigned to them. Threshold

3 DESIGN OF A PARALLEL FRONTAL SOLVER 7

pivoting is used to maintain stability. The stability threshold is one
of the control parameters (with default value 0.01). Once all possible
eliminations have been performed, the integer data for the local Schur
complement is sent to the host. Because, in general, MA42 uses off-diagonal
pivoting, both the row and column indices of the local Schur complement
need to be stored and sent to the host. We will refer to these indices as
the row and column Schur indices. If the user wants to minimise main
memory requirements, the processes write the reals for the local Schur
complements (and corresponding right-hands sides) to sequential files.

o Interface factorization and solve. Treating the local Schur complements as
element matrices, the host orders the subdomains and performs a frontal
solution of the interface problem. When the local Schur complement for a
subdomain is required, it is (optionally) read from its direct-access file by
the process to which it was assigned and sent to the host. If element right-
hand sides were not supplied, the factorize phase is complete. Otherwise,
the element right-hand sides are also read and sent as required to the host.
Once the host has completed the frontal elimination, the solution for the
interface variables is broadcast to the processes. We observe that data
must be read by the individual processes and sent to the host because we
do not assume there is a single file system accessible by the host.

When using MA42 to solve the interface problem, the column Schur indices
are entered as the variable indices. Because off-diagonal pivoting is used
by MA42 in the subdomains, row permutations are needed to restore the
interface variables to the diagonal of the local Schur complement. These
permutations (together with corresponding permutations to the right-
hand side matrices) are performed by the host prior to calling the frontal
factorization routine MA42B.

e Back-substitution. The processes perform back-substitution on their
assigned subdomains. The solution is then assembled on the host.
Information on the frontal eliminations (including the numbers of entries
in the factors, the integer storage required by the factors, and the numbers
of static condensations performed) is also sent to the host (see Section 5.3
for details).

3.4 Solve

The solve phase is optional and should be called if the right-hand sides were not
available to the factorize phase in element form or if the user wants to use the
factors to solve for further right-hand sides. The right-hand side vectors, which
must be input to the host in assembled form, are broadcast from the host to the
other processes. Forward elimination on the subdomains is performed by the
processes. Once complete, the processes send their contributions to the Schur
rows of the modified right-hand side matrices to the host. The host assembles
these contributions and uses the factors for the interface problem to solve for
the interface variables. The solution for the interface variables is broadcast to

4 BASIC BUILDING BLOCKS 8

the processes, which then perform back-substitution on the subdomains. The
final solution is assembled on the host. Note that any number of solves may
follow the factorize phase but it is more efficient to solve for several right-hand
sides at once because this allows better advantage to be taken of high-level

BLAS.

3.5 Finalize

All arrays that have been allocated by the package for the current instance are
deallocated and, optionally, all direct-access files used to hold the matrix factors
for the current instance are deleted. This phase should be called after all other
calls for the current instance of the package are complete.

4 Basic building blocks

Significant effort has been invested in making the frontal solver MA42 both
efficient and robust. We would like to use MA42 as the frontal solver, both on
the subdomains and for the interface problem. In our earlier report (Duff and
Scott, 1994b), we described the design and development of a separate package
MA52 that can be used with MA42 to implement the multiple front algorithm.
Together with element ordering routines, MA42 and MA52 provide us with the
basic building blocks needed to develop our parallel multiple front code. In the
following sections, we briefly discuss these building blocks, highlighting the key
features used by the multiple front code.

4.1 The frontal solver MA42

As with most sparse direct solvers, MA42 has three distinct phases.

e A prepass phase (MA42A) that uses the integer data to determine at which
assembly step each variable is fully summed. MA42A must be called once
for each element; on each call, the integer data for the next element in
the assembly order must be supplied.

e A factorization phase (MA42B) that factorizes the matrix into its upper and
lower triangular factors using Gaussian elimination. Again, MA42B must
be called once for each element, specifying the integer and element data
for the next element in the assembly order. If right-hand side vectors B
are included in the calls to MA42B, forward elimination on these right-hand
sides is performed at the same time as the matrix factorization and, once
the factorization is complete, MA42B calls a private subroutine (MA42D) to
perform the back-substitution.

e A solution phase (MA42C) that solves for further right-hand sides. This
phase is optional. MA42C calls a private subroutine MA42E to perform the
forward elimination on the right-hand sides and then a private subroutine
MA42D to perform the back-substitution and complete the solution.

4 BASIC BUILDING BLOCKS 9

A key feature of MA42 is that, by accepting the element one at a time, large
problems can be solved using a relatively small amount of main memory. During
the factorization, data is put into explicitly-held buffers and, whenever these
buffers are full, they are optionally written to direct-access files. For further
details of the MA42 package, including user documentation, the reader is referred
to Duff and Scott (1993). The current Fortran 77 version of MA42 requires the
user to choose stream numbers for the direct-access files but does not allow the
user to name them (the Fortran 90 version allows named files). For a multiple
front code, we decided the user needed the option of naming the files. This
makes it straightforward for the user to retain the files for further computation
and, for a distributed memory machine, enables the files to be written to a local
disk. Our experience has been that this can be vital for efficiency (see Duff and
Scott, 1994a). In MA42, the use of direct-access files is controlled by a separate
user-called routine MA42P. In our multiple front code, this can be replaced by
a similar subroutine that includes the direct-access file names in its argument
list.

4.2 The MA52 package

The MA52 package comprises three simple routines that were primarily designed
to allow MA42 to be run on subdomains.

4.2.1 MA52A

When applying a frontal solver to a subdomain €2;, the elimination of interface
variables during the factorization phase has to be avoided. This can be achieved
quite simply by making a final call to the prepass routine MA42A with an extra
element containing all the interface variables. The extra element is termed
the guard element; one guard element is associated with each subdomain. The
guard elements are generated by MA52A.

4.2.2 MA52B and MA52F

When the last finite element is passed to the factorization routine MA42B, it is
assembled into the frontal matrix and any fully summed variables that satisfy
the stability criteria are eliminated. For a single domain problem, all the
variables are fully summed at this stage and can be eliminated. If direct-access
files are being used, MA42B writes the remaining contents of the buffers to the
files being used to hold the matrix factors. If right-hand sides have been entered,
forward elimination is performed at the same time as the factors are computed
and only the private subroutine MA42D is needed for the back-substitution that
completes the solution.

If the domain is partitioned into subdomains, after the assembly and
eliminations for the final element in a subdomain, the interface variables remain
in the front. In addition, there remain any variables not eliminated because of
stability considerations plus any not chosen because the number of potential
pivots was less than the minimum required by MA42 (see Cliffe, Duff and Scott,

4 BASIC BUILDING BLOCKS 10

1998 and Section 6.3). The frontal matrix and corresponding frontal right-
hand side vectors are held within the work arrays used by MA42B. Subroutine
MA52F is designed to preserve the partial factorization by extracting the frontal
matrix and right-hand sides from these arrays and returning them in the form
of an element matrix and element right-hand side, together with the row and
column Schur indices. If direct-access files are being used by MA42, MAE2F also
writes any data left in the buffers to these files. If diagonal pivoting is used by
MA42, the row and column Schur indices are identical. In this case, MA52B may
be used to preserve the partial factorization. MA52B has the same interface as
MAS2F except that it returns only one set of indices.

4.2.3 MA52C

When designing the frontal MA42 code, we decided that the routines to
perform forward elimination and back-substitution, namely MA42E and MA42D,
should be private subroutines. This simplified the user interface because
it reduced the number of subroutine calls the user was required to make.
However, in the multiple front algorithm, the forward elimination and back-
substitution need to be performed separately. Subroutine MA52C was written to
provide an interface to MA42D and MA42E. The input parameter IND determines
whether forward elimination or back-substitution is performed and, for back-
substitution, whether the call follows a call to the factorization routine MA42B or
to the solve routine MA42C for the interface problem (this distinction is needed
because, during the factorization phase, the partial solution vectors are stored
with the U factor). In the multiple front code, MA52C needs to be called for each
subdomain but the calls with the same value of IND may be made in parallel.

4.3 Element ordering

As mentioned in Section 2.1, the efficiency of the frontal method is highly
dependent on the order in which the elements are assembled into the frontal
matrix. The ordering of elements within a subdomain was discussed by Scott
(1999). This problem is more complicated than the problem of resequencing
elements for a frontal solver on a single domain since it is necessary to
distinguish between variables that are fully summed within the subdomain
and the interface variables that are not. Once interface variables enter the
front, they remain there, increasing both the amount of work required at each
elimination and the storage for the frontal matrix and for the factors. The
approach to element ordering in a subdomain adopted by Scott has its origins in
the profile reduction algorithm of Sloan (1986). It uses the element connectivity
graph representation of the subdomain. Using the graph and the guard element,
an element lying as far from the interface boundary as possible is found. This
element is used as the first element in the reordering and the guard element g is
numbered last. The remaining elements are ordered using a priority function.
The basic idea is to select the next element in the ordering by choosing, from a
set of eligible elements, an element with maximum priority. The set of eligible
elements comprises the neighbours of elements that have already been reordered

5 USER INTERFACE 11

and their neighbours. The priority P; of element ¢ given by
P, = —W1 % ngain(i) + Wa % d(g,1) — W3 * nadj(i), (4.1)

where Wj, j = 1,2,3 are integer weights. The quantity ngain(i) is the number
of variables element ¢ will introduce into the frontal matrix less the number of
variables that may then be eliminated if it is assembled next. Since interface
variables cannot be eliminated within a subdomain, ngain will be large for
elements containing a large number of new interface variables, giving such
elements a low priority. d(g,i) is the distance in the graph of element ¢ from
the guard element, and nadj(i) is the number of elements adjacent to element 7
that have not yet been reordered. The aim of (4.1) is to give a high priority to
elements that are a long way from the interface boundary, that keep the number
of variables in the frontal matrix small, and keep the number of unordered
adjacent elements small. A code MC53 implementing this approach is available
in the Harwell Subroutine Library.

When using the frontal solver on the interface problem, it can be worthwhile
to order the subdomains. In this case, an algorithm for element ordering for
a single domain problem is needed. A number of algorithms for automatically
ordering finite elements have been proposed in the literature (see Scott, 1999
for references). We have recently developed a new element ordering code
MC63 for inclusion in the Harwell Subroutine Library (Scott, 1999). Numerical
experiments reported by Scott have shown that this algorithm produces good
orderings on a wide range of practical applications and as a result we will use
the code MC63 for the interface problem in our parallel frontal solver.

5 TUser interface

A key design aim for our parallel frontal solver HSL_MP42 was to develop a user
interface that is straightforward and, at the same time, offers flexibility through
a variety of options. In the following, we discuss how the user interface has been
written to allow the code to be used by those who have only a basic knowledge
of MPI together with some experience of Fortran 90 programming. If a user was
to write his or her own implementation of the multiple front algorithm using
the basic building blocks discussed in the previous section, then he or she would
need to possess quite an advanced knowledge of both Fortran and MPI.

An important early decision was not to include software to partition the
domain 2 into subdomains within the package. Instead, the user must perform
some preprocessing and must make lists of the elements belonging to each
of the subdomains Q; available on the host (see below). This decision was
made because the choice of a good partitioning is very problem dependent.
Moreover, in many practical applications, a natural partitioning depending on
the underlying geometry or physical properties of the problem is often available
(for example, for a finite element model of an aircraft, it may be appropriate to
consider the fuselage as one or more subdomains and the wings as two further
subdomains). When no such partitioning is available, the user is advised to
use a graph partitioning code, a number of which are now available in the

5 USER INTERFACE 12

public domain, including Chaco (Hendrickson and Leland, 1995) or METIS
(http://winter.cs.umn.edu/~karypis/metis/).

HSL_MP42 has a single user-callable subroutine MP42A with a single parameter
data of Fortran 90 derived datatype MP42 DATA, viz

TYPE (MP42 DATA) :: data

CALL MP42A (data)

The derived datatype has many components, only some of which are of
interest to the user. The other components are private. Full descriptions of the
parameters of interest to the user are given in the HSL_MP42 user documentation
(see Appendix). The user may factorize more than one matrix by running more
than one instance of the package at once. In this case, a separate parameter of
type MP42 DATA is needed for each instance. We remark that many components
of the derived datatype are pointers but we use these pointers as if they were
allocatable arrays. The current Fortran Standard does not permit components
of derived datatypes to be allocatable arrays; when it does, we will replace all
the pointers used by HSL_MP42 by allocatable arrays.

Workspace is allocated by the code as required. The amount of workspace
needed is dependent upon how the element matrices are stored, on the length
of the buffers used by MA42, and on whether the variables are numbered
contiguously. More workspace is needed if variables are not numbered
contiguously.

Prior to the first call to MP42A, the user must initialize MPI by calling
MPI_INIT on each process. The user must also define an MPI communicator
dataCOMM for the package. data),COMM defines the set of processes to be used
by HSL_MP42. Before each phase of the package is called, the user must have
completed all tasks involving data)%COMM (or involving any other communicator
that overlaps data%COMM). Note that the code may be run using a single process;
results illustrating this are given in Section 6.2.

The “job” parameter dataJOB determines which phase of the package is to
be performed. It must be initialized to the same value on each process before
each call to MP42A (a check for this is made within the code). The values 1 to 5
correspond to the five phases discussed in Section 3. A call with data%JOB = 3
must be preceded by a call with data’JOB = 2, which in turn must be preceded
by a call with data%JOB = 1. Likewise, a call with data,JOB = 4 must be
preceded by a call with data’JOB = 3, but several calls with data}JOB = 4
may follow a single call with data)%JOB = 3. A call with data’JOB = 5 should
be made after all other calls for the current instance are complete. The user
may combine a call with data’JOB = 2 followed by a call with data)JOB = 3
by setting data’%JOB = 23.

We now discuss the parameters that must be set by the user for each phase
of the computation and the output returned to the user.

5.1 Initialize: data%JOB = 1

On a call to the initialize phase (data%JOB = 1), the user is not required
to supply any components of data apart from the job parameter and the

5 USER INTERFACE 13

communicator. On exit, the arrays data’,ICNTL and data%CNTL that control the
action contain default values (see Appendix). If the user wishes to use values
other than the defaults, the corresponding components of data should be reset
before calling the analyse phase. In addition, on each process the following
components of data are set by calls to the MPI routines MPI_COMM_RANK and
MPI_COMM_SIZE during the initialize phase:

datalRANK holds the rank of the process in the communicator data%COMM. The
host is defined to the process with rank 0.

datalNPROC holds the number of processes associated with the communicator
data¥COMM.

5.2 Analyse: data),JOB = 2

On a call to the analyse phase (data%JOB = 2), the user must specify the
following integer data on the host process:

datal,NDOM, the number of subdomains. This must be at least 2 (since if there is
a single subdomain the user should use the frontal code MA42). In addition,
the number of subdomains must be at least as large as data%NPROC (so
that each process is responsible for at least one subdomain).

data)NELT, the total number of finite elements in the problem. Since we
require that each subdomain has at least one element, data’NELT must
be at least as large as data%NDOM.

data),NELTSB is a rank 1 pointer that must be allocated with size data}NDOM.
On entry, data)NELTSB(JDOM) must be set by the user to hold the number
of elements in subdomain Qjpoy (JDOM = 1, 2,..., data¥%NDOM).

datal,ELTVAR is a rank 1 pointer that must be allocated by the user and set to
contain lists of the variable indices belonging to each of the finite elements.
The lists of the variables in each of the elements belonging to 2; must
precede those for the elements belonging to s, and so on. Duplicate
indices and variable indices less than 1 are not permitted. The code
checks for such entries and, if found, terminates the computation with an
error message. Note that, unless the user does not want the elements to
be automatically ordered by MC53, the order of the elements within each
subdomain is unimportant.

data),ELTPTR is a rank 1 pointer that must be allocated with size data)/NELT+1.
data),ELTPTR(IELT) must contain the position in data}4ELTVAR of the first
variable in the IELT-th element in the element variable lists (IELT = 1,
2,..., data%NELT), and dataELTPTR (data%NELT+1) must be set to the
position after the last variable in the last element.

Each of the above parameters must be unaltered by the user after the
analyse phase. By default, the code performs a symbolic factorization to

5 USER INTERFACE 14

determine an estimate of the number of flops required by each subdomain and
uses these to decide which subdomains should be assigned to which process.
However, an option exists for the user to provide this information on the host in
data¥%4INV_LIST. In this case, data4INV_LIST is unchanged on exit. Otherwise,
on exit from a call with data%JOB = 2, data%INV_LIST(JDOM) holds the rank of
the process subdomain Qjpoy is assigned to (JDOM = 1, 2,..., data,NDOM).
The remaining output from the analyse phase is the following information (on
the host process only):

datal,LARGEST_INDEX holds the largest integer used to index a variable. The
size of arrays used by MP42 is dependent upon data%LARGEST_INDEX so it
is advisable (but not necessary) to number the variables consecutively so
that the largest integer is equal to the order of the system.

data)MAX _NDF holds the maximum number of variables per element.

data’NGUARD (JDOM) holds the number of interface variables for subdomain
JDOM.

datal,FLAG_52(JDOM) holds the MA52A error flag for subdomain 3pgy.
data’NDF (JDOM) holds the number of variables in subdomain Qjpgn.

data¥%NFRONT (JDOM) holds the maximum frontsize for the frontal elimination
on subdomain 2jpou-

data)RMS(JDOM) holds the root mean squared frontsize for the frontal
elimination on subdomain Qjpgy.

datal,0PS(JDOM) holds the number of floating-point operations in the
innermost loops of the frontal elimination on subdomain JDOM.

data),FLSIZE(J, JDOM), J = 1, 2 hold, respectively, the real and integer
storage needed for the matrix factors on subdomain Qjpgy. Note
that the storage for the U and L factors is equal but during the
factorization, the modified right-hand sides are stored with the U factor
and so the total storage for the U factor and the right-hand sides on
subdomain ;pgy is data%FLSIZE(1, JDOM)/2+nrhs « (data%NDF(JDOM)—
data%NGUARD(JDOM)), where nrhs is the number of right-hand sides.

dataNORDER holds the order in which the elements will be assembled
during the factorization phase. Within subdomain Qjpon, the elements
are locally labelled 1, 2,..., data)NELTSB(JDOM), according to the
order in which the user inputs the variable lists in data%ELTVAR. On
subdomain Qjpgy, the elements will be assembled during the factorize
phase in the order data),NORDER(1, JDOM), data’NORDER(2, JDOM),...,
data’%NORDER (data%NELTSB(JDOM), JDOM).

Note that the statistics computed during the analyse phase are based solely
on integer data. During the factorization, pivots may be delayed because of

5 USER INTERFACE 15

stability considerations and the actual frontsizes may, therefore, be larger than
those computed with data%JOB = 2. This will also increase the flop count and
factor storage. However, the analyse phase does not allow for the possible
exploitation of zeros within the frontal matrix, which can reduce the flops
and factor storage. Thus the analyse phase actually returns a lower bound
on the frontsizes for the factorize phase and an estimate of the flop count and
factor storage. These estimates enable the user to determine approximately
the cost of the multiple front method. In addition, the user can assess how
well balanced the computation is. Since the analyse phase is much cheaper to
perform than the subsequent factorization phase, the user may decide to make
modifications to the subdomains and rerun with the parameter data)JOB = 2
before proceeding to the factorization. For this reason, the analyse and factorize
phases are separate (but may be combined in a single call by setting data,JOB
= 23.

5.3 Factorize: data%JOB = 3

On a call to the factorize phase (data%JOB = 3), the user must specify on the
host:

datal,NRHS, the number of right-hand sides to be solved. If the user wishes
to perform the factorization but not do any solves (for example, if the
right-hand sides are only available in assembled form), data%NRHS should
be set to zero.

The remaining components of the derived dataype data that must be set
by the user for the factorization phase depend upon how the user wishes to
input the element data. There are currently four options available. In each
case, for each subdomain the element matrices A% (and, if data%NRHS > 0,
the element right-hand side matrices B%") corresponding to the elements within
that subdomain must be held as full matrices, ordered by columns. We now
discuss how the element data may be input.

Option 1 (default)

The default is for the data required by a process to be read by that process
from a direct-access file element-by-element as it is required by MA42. This
minimises memory requirements and data movement between processes. For
each subdomain assigned to a process, the user must set up an unformatted
direct-access file, each record of which holds the values of the entries of an
element matrix and, if data%NRHS > 0, another file holding the values of the
entries in the element right-hand side matrices. These files must be able to be
read by the process responsible for the subdomain. The element matrices and
element right-hand side matrices must be in the same order as in data),;ELTVAR.
The user must set the parameter data)MFRELT to be at least as large as
data¥%MAX NDF, the maximum number of variables per element, and the lengths
of the records in the direct-access files holding the element matrices and element
right-hand sides must be that required for real arrays of size data%MFRELT x 2,

5 USER INTERFACE 16

and data%MFRELT % data%NRHS, respectively. The names of the files must be
supplied on the host in the arrays data%VALNAM and data),RHSNAM.

Option 2

The second option is for the matrix data for each subdomain to be in an
unformatted sequential file that can be read by the process to which it is
assigned. The file length will be less than for option 1, but additional memory
is required because all the elements for a subdomain are read in at once. Data
movement is again minimised. If data%NRHS > 0, a corresponding unformatted
sequential file holding the element right-hand side matrices must be set up.

Option 3

The third option is for the data for each subdomain to be read by the host
process in turn and then sent to the other processes as required. In this case, for
each subdomain, the user must set up on the host an unformatted sequential file
holding the values of the entries in the element matrices and, if data%NRHS > 0,
another holding the element right-hand side matrices. This option is useful if
the user finds it convenient to generate the element data on the host and the
host has a sufficiently large file system to hold all the data.

Option 4

The last option requires the user to supply the element and element right-
hand side matrices in memory on the host using pointers data%VALUES and
data%RHSVAL. Data for each subdomain is sent to the other processes as
required before the factorization commences. This option is suitable for smaller
problems. It may also be useful for larger problems in a shared memory
environment, particularly if the overhead of reading data from direct-access
or sequential files is high.

In addition to choosing how to supply the element data, the user must
decide whether or not to hold the matrix factors in direct-access files. The
default is not to use direct-access files. In this case, each process must have
sufficient memory to hold the factors for all the subdomains assigned to it.
If files are used, the amount of memory each process needs in order to run
MP42 successfully is essentially only that required to hold the frontal matrix on
the subdomain (together with right-hand side vectors), allowing much larger
problems to be solved. The penalty is the additional I/O cost for reading and
writing data to the files.

When used, names for the direct-access files may be supplied on the host in
data%FILES1. This is a rank-2 pointer of type default CHARACTER%128 that must
be allocated by the user with size 3 by data)NDOM. On entry, for subdomain
Qipom, data%FILES1(J, JDOM), J = 1, 2, 3, must hold the names (the full
path name) of the direct-access files for the U factor, the L factor, and the
integer data for the factors, respectively. Sequential files may be used to hold
what remains in the front at the end of the subdomain factorization. If used,

5 USER INTERFACE 17

names may be supplied in datal,FILES2. Otherwise, the code automatically
names the files, which are written to the current directory. Note that to avoid
name clashes, if the user wishes to run further instances of the package before
the final call for the current instance (JOB = 5), for each instance files must
be used and unique names must be provided by the user.

If data%NRHS> 0, the main output from the factorize phase is dataX, a
rank-2 pointer of size data4LARGEST_INDEX by data¥%NRHS. If I has been used
to index a variable, on the host process data’X(I, J) holds the solution for
variable I to the J-th system and is set to zero otherwise (J = 1, 2,...,
data,NRHS). In addition, the following information is returned on the host:

datalSTATIC holds the total number of static condensations performed.

data’,SINGULAR is a logical variable that is set to .TRUE. if the matrix is
found to be singular. In this case, the user has the option of continuing
the computation.

data%FLOPS holds the total number of floating-point operations in the
innermost loops of the factorization (this is the total for all the
subdomains and the interface).

data¥%NZL holds the total number of entries in the L factors.

data¥%NZU holds the total number of entries in the U factors, plus the right-
hand sides (if data),NRHS = 0, data%NZU = data%NZL).

datal,STORINT holds the total storage for the row and column indices in integer
words.

data¥%NLEFT (JDOM) holds the number of variables left in the front at
the end of the elimination process for subdomain Qjpoy (JDOM = 1,
2,..., dataNDOM). This is equal to the number of interface variables
data),NGUARD (JDOM) plus the number of variables not eliminated either
for stability reasons or because the number of fully summed variables was
less than the minimum pivot block size (given by the control parameter
data)ICNTL(16)).

data),INF0_42(:, JDOM) and data,RINFO_42(:, JDOM) hold the MA42B
integer and real information arrays for subdomain jpoy (JDOM =
1, 2,...,data%NDOM) and, for JDOM = data%NDOM+1, they hold the
corresponding information for the interface problem.

datal,INF0_63 and data)RINF0_63 hold the MC63 integer and real information
arrays for the interface problem.

5.4 Solve: data),JOB = 4

For the solve phase, on the host the user must supply the number of right-hand
sides data%NRHS and the rank-2 pointer data’B of size data’%LARGEST_INDEX
by data)%NRHS must be allocated and set so that if I is used to index a variable,

6 NUMERICAL RESULTS 18

data%B(I, J) is the corresponding component of the right-hand side for the
J-th system (J = 1, 2,..., data¥%NRHS). On exit, the solution is returned on
the host in data%X.

5.5 Example of the use of MP42

In Figure 5.1, an example of the use of HSL_MP42 is given. Access to the package
requires a USE statement and the MPI file mpif.h must be included. The user
must perform the initialization and termination of MPI via calls on each process
to MPI_INIT and MPI _FINALIZE.

All the calls to MP42A are made on each process. The package is initialized by
calling MP42A with data%JOB = 1, the element data is read in by the host, and
the solution is computed by a call with data),JOB = 23 (analyse and factorize
phases are performed in turn). A call with data%JOB = 4 is made to solve for
further right-hand sides. Finally, a call with data%J0B = 5 deallocates the data
structures used by the instance of the package. Default settings are used for all
control parameters,

6 Numerical results

In this section, we illustrate the performance of MP42, first on a model problem
and then on three problems arising from groundwater flow calculations. The
experiments in Sections 6.1 and 6.2 were performed on the SGI Origin 2000 and
Cray T3E at Manchester, and those in Section 6.3 were carried out on the SGI
Origin 2000 located at Parallab (Bergen).

6.1 Model problem

We first present results for a model problem designed to simulate those actually
occurring in some CFD calculations. The elements are 9-noded rectangular
elements with nodes at the corners, mid-points of the sides, and centre of the
element. A parameter to the element generation routine determines the number
of variables per node. This parameter has been set to 5 for the numerical
experiments reported in this section. In Tables 6.1 to 6.3, we present results
for a square domain subdivided into 4 and 8 subdomains. MP42 is run using
1, 2, 4 and, in the case of the 8 subdomain problem, 8 processes. For the
4 subdomain problem, the subdomains are all square and of equal size. For
the 8 subdomain problem, we use a grid of 4 X 2 subdomains and, in this
case, to achieve good load balancing, we use subdomains of unequal size (see
Duff and Scott, 1994b). The “corner” subdomains with 2 interface boundaries
are of size 15 x 24 elements and 30 x 48 elements for the problems of order
48 x 48 and 96 x 96, respectively, and the remaining subdomains, which have
3 interface boundaries, are of size 9 x 24 and 18 x 48 elements, respectively. In
each test, we solve for 2 right-hand sides. The element data is held in memory
on the host (Option 4 in Section 5.3). On the Origin (a shared memory
machine), the default values are used for all other control parameters (so that
files are not used for the matrix factors); on the T3E, the matrix factors are

6 NUMERICAL RESULTS

PROGRAMM MP42_TEST
USE HSL_MP42_DOUBLE
INCLUDE ’mpif.h’
TYPE (MP42_DATA) data
INTEGER ERCODE

! Start MPI
CALL MPI_INIT(ERCODE)

! Define a communicator for the package

data%COMM = MPI_COMM_WORLD

! Initialize instance (default settings used)

data%JOB = 1
CALL MP42A (data)
! Read data on host
IF (data’RANK .EQ. 0) THEN
READ (5,*) data),NDOM, data%NRHS, dataNELT

! Read number of elements in each subdomain
ALLOCATE (dataNELTSB(1:data%NDOM))
READ (5,*) datalNELTSB(1:data%NDOM)

! Read element variable lists
ALLOCATE (data%ELTPTR(1:data’NELT+1))
READ (5,FMT=*) datalELTPTR(1:datalNELT+1)
NE = data}ELTPTR(data)NELT+1) - 1
ALLOCATE (data%ELTVAR(1:NE))

READ (5,FMT=%) datal,ELTVAR(1:NE)

! Read in names of files holding real element data
ALLOCATE (data’VALNAM(1:data%NDOM))
ALLOCATE (data’RHSNAM(1:data%NDOM))
READ (5,FMT=%) data)VALNAM(1:datajNDOM)
READ (5,FMT=%) data),RHSNAM(1:dataNDOM)

END IF

! Call analyse phase followed by factorize phase
data%JOB = 23
CALL MP42A (data)
IF (dataRANK.EQ.0) WRITE (*,%*)
& ’ The solution is:’, data%X(1l:data)LARGEST_INDEX,1:data’%NRHS)
! Solve for further right-hand sides.
IF (data);RANK.EQ.O0) THEN
READ (5,*) dataj,NRHS
ALLOCATE (data’B(1:data%LARGEST_INDEX,1:data’NRHS))
READ (5,*) data%B(1:dataj),LARGEST_INDEX,1:datajNRHS)
END IF
datal,JOB = 4
CALL MP42A (data)
IF (datalRANK.EQ.0) WRITE (*,%*)
& ’ The solution is:’, data%X(1l:data)LARGEST_INDEX,1:data’%NRHS)
! Finalize
data%JOB = 5
CALL MP42A (data)
CALL MPI_FINALIZE(ERCODE)
STOP
END PROGRAMM MP42_TEST

Figure 5.1: Example program using HSL_MP42,

19

6 NUMERICAL RESULTS 20

Table 6.1: Wall clock timings (in seconds) for MP42 on the Origin 2000 for the
model problem with 4 subdomains. The numbers in parentheses are the times
taken to factor and solve the interface problem.

Dimension No. of No. of Factor+ Speedup || Solve Speedup
variables processes Solve

32 x 32 21,125 1 10.5 (1.0) - 0.50 -
2 6.2 1.7 0.35 1.4

4 4.0 2.6 0.25 2.0

48 x 48 47,045 1 41 (3.2) - 1.5 -
2 23 1.8 1.0 1.5

4 14 2.9 0.7 2.1

64 x 64 83,205 1 118 (7.2) - 4.0 ;
2 67 1.8 2.8 1.4

4 41 2.9 1.7 2.3

96 x 96 186,245 1 546 (27) - 17.7 -
2 304 1.8 10.2 1.7

4 168 3.2 5.8 3.0

Table 6.2: Wall clock timings (in seconds) for MP42 on the T3E for the model

problem with 4 subdomains. The numbers in parentheses are the times taken
to factor and solve the interface problem.

Dimension No. of No. of Factor+ Speedup || Solve Speedup
variables processes Solve

32 x 32 21,125 1 32.8 (2.3) - 10.8 -
2 18.0 1.8 5.7 1.9

4 10.5 3.1 3.3 .3

48 x 48 47,045 1 116 (6) - 34 -
2 59 2.0 18 1.9

4 33 3.5 9 3.8

64 x 64 83,205 1 269 (12) - T -
2 144 1.9 40 1.9

4 78 3.4 20 3.8

80 x 80 129,605 1 531 (22) - 152 -
2 275 1.9 76 2.0

4 150 3.5 39 3.9

6 NUMERICAL RESULTS 21

written to direct-access files. We see that for sufficiently large 4 subdomain
problems, for “Factor+Solve” we achieve speedups of around 1.8 and 3 using
2 and 4 processors of the Origin. Slightly better speedups are achieved on
the T3E. The time taken for the interface factor and solve is independent of
the number of processes. Observe that, as the problem size increases, the
percentage of time required to solve the interface problem decreases. This
emphasizes the suitability of our parallel code for solving very large problems.
For the 8 subdomain problem, the speedups when using 8 processes in place of

Table 6.3: Wall clock timings (in seconds) for MP42 on the Origin 2000 for the
model problem with 8 subdomains. The numbers in parentheses are the times
taken to factor and solve the interface problem.

Dimension No. of No. of Factor+ Speedup || Solve Speedup
variables processes Solve

48 x 48 47,045 1 46 9) - 2.5 -
2 28 1.6 1.3 1.9

4 20 2.3 1.0 2.5

8 14 3.3 0.8 3.1

96 x 96 186,245 1 539 (77) - 19.5 -
2 316 1.7 10.5 1.9

4 218 2.5 6.8 2.9

8 164 3.4 9 3.3

4 processes are modest. This is because the interface problem, which is solved
on a single processor, is becoming a more significant part of the computation.
For the 96 x 96 problem, for 8 subdomains the interface problem involves 3920
variables and requires 10 % 10° flops out of a total of 126 % 10% flops, while for 4
subdomains the corresponding statistics are 1925 variables and 3 * 10° out of a
total of 143 % 109 flops.

6.2 MP42 versus MA42

We now compare the performance of the frontal code MA42 with that of MP42 on
a single process. In Table 6.4, we present factor storage requirements and flop
counts for the two codes for the model problem. MA42 treats the problem as
a single domain while for MP42 the domain is divided into 4 equal subdomains
and the flop count is the total for the 4 subdomains plus the interface problem.

We see that the amount of work and storage can be significantly reduced by
partitioning the domain and using a multiple front approach. The savings in the
storage and flop counts increase with the problem size and, for large problems,
the flop count is reduced by a factor of more than 2. In Table 6.5, we compare
CPU timings (in seconds) for MA42 and MP42 run on a single process of the
Origin 2000 and Cray T3E. We observe that the savings in flops translate to
significant savings in the CPU times for the factorize phase and the reduction
in the number of entries in the factors leads to savings in the solve phase.

6 NUMERICAL RESULTS 22

Table 6.4: A comparison of the factor storage requirements and flop counts for
MA42 and MP42 on model problem.

Dimension | Code | Factor Storage Flops
(Kwords) (x10%)
Real Integer
32 x 32 MA42 | 14233 995 36

MP42 11065 752 23
48 x 48 MA42 | 46390 3259 179
MP42 | 34725 2350 102
64 x 64 MA42 | 111686 7844 596
MP42 78625 5306 301
80 x 80 MA42 | 223070 15709 1547
MP42 | 149654 10077 707

Table 6.5: A comparison of the CPU times (in seconds) for MA42 and MP42 on
model problem (single process).

Dimension | Code Origin 2000 Cray T3E

Factor+ Solve | Factor+ Solve
Solve Solve

32 x 32 MA42 15.2 0.75 18.6 1.8
MP42 9.9 0.53 13.3 1.2
48 x 48 MA42 66 2.0 73 5.6
MP42 39 1.5 49 3.8
64 x 64 MA42 215 6.7 206 13.2
MP42 114 3.8 133 8.5
80 x 80 MA42 630 17.8 502 25.9
MP42 269 12.3 262 16.3

6 NUMERICAL RESULTS 23

6.3 Groundwater flow computations

We now report results for a set of three test problems supplied by Steve Joyce
of AEA Technology. These problems are from the finite-element modelling of
groundwater flow through a porous medium. The problems are all defined on
regular grids and were subdivided into 4 equal subdomains that have a small
interface by Steve Joyce. The first problem is a 2 dimensional problem with
40000 square elements; problems 2 and 3 are 3 dimensional with 27000 and
125000 8-noded cubic elements, respectively. There is a single variable at each
node, representing pressure. The number of variables and interface variables
are included in Table 6.7. In Table 6.6, we present results for the groundwater
flow problems run on 1, 2, and 4 processes. Again, we achieve good speedups,
although because the number of interface variables is proportionally higher for
the 3 dimensional problems, the speedups for the factor times for these problems
is not quite as good as for the 2 dimensional problem.

Table 6.6: Wall clock timings (in seconds) for MP42 on 1, 2, and 4 processors of
the Origin 2000 for the groundwater flow problems (4 subdomains).

Problem No. of Factor+ Speedup || Solve Speedup
processes Solve

1 1 138 - 11.3 -
2 7 1.8 6.2 1.8

4 42 3.3 3.6 3.1

2 1 204 - 3.2 -
2 125 1.6 2.0 1.6

4 85 2.4 1.2 2.6

4 1 5823 - 48 -
2 3560 1.6 28 1.7

4 2050 2.8 15 3.2

6.3.1 The effect of the minimum pivot block size

In a recent paper, Cliffe et al. (1998) performed experiments using the frontal
solver MA42 and found that it can be advantageous to delay pivoting until a
minimum number of pivots are available. The advantage comes from using the
level-3 BLAS routine GEMM with a larger internal dimension than would occur
if elimination operations are performed whenever possible after an assembly
step. In Tables 6.7 and 6.8, we present results for different pivot block sizes for
the groundwater flow test examples. These results were obtained on a single
process of the Origin 2000 at Parallab. Problem 3 required too much CPU
time for us to test each of the block sizes but it is clear from our results that
using a block size greater than 1 can lead to significant savings in both time
and storage. Using a minimum pivot block size greater than 1 is particularly
important when there is a single variable at each node because, in this case,
the number of pivots that become fully summed following an element assembly
is often 1 and as a result, for each real stored in the L and U factors, one

7 CONCLUSIONS AND FUTURE WORK 24

Table 6.7: The effect of varying the minimum pivot block size on the wall clock
time (in seconds) for the factorization (single process of Origin 2000).

Problem Number of Interface Number of Minimum pivot block size
variables variables elements 1 16 32 64
1 159999 859 40000 165 142 138 157
2 29785 1978 27000 559 234 204 210
3 132651 5159 125000 25328 - 5823 -

Table 6.8: The effect of varying the minimum pivot block size on the real and
integer factor storage (in Kwords) (NT indicates not tested).

Problem Minimum pivot block size
1 16 32 64
Real Integer Real Integer Real Integer Real Integer
1 86692 43791 | 89083 26373 | 91508 25325 | 96676 25658
2 40164 35951 | 40649 2384 41184 1231 | 42252 650
3 474732 443181 NT NT 479002 14410 | NT NT

integer is stored. We can see this by comparing the real and integer storage
for a minimum pivot block size of 1. For the groundwater flow problems, the
integer storage is approximately equal to half the real storage, which is equal
to the storage for the L factor plus the storage for the U factor (which are both
the same). Increasing the minimum pivot block size does not add greatly to
the real storage but leads to substantial savings in the integer storage. Based
on our results and those of Cliffe et al. (1998), we have chosen the default
minimum pivot block size in MP42 to be 32, but this is a control parameter that
the user may choose to reset. Note that the experiments using MP42 and MA42
reported on in the previous sections all used the default pivot block size.

7 Conclusions and future work

We have designed and developed a multiple front code for solving systems of
unsymmetric unassembled finite-element equations in parallel. The code is
written in Fortran 90 with MPI for message passing. An important design
feature is the straightforward but flexible user interface, which offers the user
a number of important options, including how the element data is to be input
and allowing the possibility of holding the matrix factors in direct-access files.
This enables the code to be used to solve large problems efficiently on a range of
modern parallel machines. We have tested the code on a model problem and on
a practical application and, in both cases, we have achieved good speedups using
a small number of processes. Numerical results have also shown that the new
code can perform significantly better than our established frontal solver MA42

8§ ACKNOWLEDGEMENTS 25

on a single process. The results are particularly encouraging for 2 dimensional
problems.

A limitation of our new code is that the interface problem is currently solved
by a frontal scheme on a single process. In the future, we plan to look at solving
the interface problem using other sparse direct solvers (such as the multifrontal
code MA41 of Amestoy and Duff, 1989 from the Harwell Subroutine Library).
An alternative approach is to assemble the local Schur complements and treat
the resulting system as a dense system that can be solved using (for example)
ScaLAPACK routines (see http://www.netlib.org/scalapack/). The design of
HSL _MP42 using library subroutines as building blocks should allow us to try
different solvers for the interface problem within the existing code.

A version of the code for symmetric positive-definite systems is currently
being developed.

The code MP42 is available for wuse under licence and will be
included in the next release of the Harwell Subroutine Library. Anyone
interested in using the code should contact the author for details (or see
http://www.cse.clrc.ac.uk/Activity /HSL).

8 Acknowledgements

I would like to thank Jacko Koster who, while holding a postdoctoral position at
the Rutherford Appleton Laboratory, helped with the testing of HSL_MP42 and
performed the experiments reported in Section 6.3. I also had many invaluable
discussions with Jacko while I was learning MPI. I am also grateful to Andrew
Cliffe and Steve Joyce of AEA Technology for the groundwater flow test data,
and to my colleagues lain Duff and John Reid at the Rutherford Appleton
Laboratory for reading and providing many useful comments on a draft of this
report.

References

P.R. Amestoy and 1.S. Duff. Vectorization of a multiprocessor multifrontal code.
Inter. Journal of Supercomputer Applics, 3, 41-59, 1989.

R.E. Benner, G.R. Montry, and G.G. Weigand. Concurrent multifrontal
methods: shared memory, cache, and frontwidth issues. Inter. Journal
of Supercomputer Applics, 1, 26-44, 1987.

K.A. Cliffe, I.S. Duff, and J.A. Scott. Performance issues for frontal schemes on
a cache-based high performance computer. Inter. Journal on Numerical
Methods in Engineering, 42, 127-143, 1998.

J.J. Dongarra, J. DuCroz, I.S. Duff, and S. Hammarling. A set of Level 3
Basic Linear Algebra Subprograms. ACM Trans. Mathematical Software,
16(1), 1-17, 1990.

REFERENCES 26

I.S. Duff. MA32 - a package for solving sparse unsymmetric systems using the
frontal method. Report AERE R10079, Her Majesty’s Stationery Office,
London, 1981.

I.S. Duff. Design features of a frontal code for solving sparse unsymmetric
linear systems out-of-core. SIAM J. Scientific and Statistical Computing,
5, 270-280, 1984.

I.S. Duff and J.K. Reid. The multifrontal solution of unsymmetric sets of linear
equations. ACM Transactions on Mathematical Software, 9, 302-325, 1983.

I.S. Duff and J.A. Scott. MA42 - a new frontal code for solving
sparse unsymmetric systems. Technical Report RAL-93-064, Rutherford
Appleton Laboratory, 1993.

I.S. Duff and J.A. Scott. The use of multiple fronts in Gaussian elimination.
Technical Report RAL-94-040, Rutherford Appleton Laboratory, 1994 a.

I.S. Duff and J.A. Scott. The use of multiple fronts in Gaussian elimination. in
J. Lewis, ed., ‘Proceedings of the Fifth SIAM Conference Applied Linear
Algebra’, pp. 567-571. SIAM, 19945b.

I.S. Duff and J.A. Scott. The design of a new frontal code for solving sparse
unsymmetric systems. ACM Trans. Mathematical Software, 22(1), 3045,
1996.

I.S. Duff, J.K. Reid, and J.A. Scott. The use of profile reduction algorithms
with a frontal code. Inter. Journal on Numerical Methods in Engineering,

28, 25552568, 1989.

Harwell Subroutine Library. A Catalogue of Subroutines (Release 12).
Advanced Computing Department, AEA Technology, Harwell Laboratory,
Oxfordshire, England, 1995.

B. Hendrickson and R. Leland. The Chaco user’s guide: Version 2.0. Technical
Report SAND94-2692, Sandia National Laboratories, Albuquerque, NM,
1995.

B.M. Irons. A frontal solution program for finite-element analysis. Inter.
Journal on Numerical Methods in Engineering, 2, 5-32, 1970.

S.R.P. Medeiros, P.M. Pimenta, and P. Goldenberg. A parallel block frontal
solver for large scale process simulation: reordering effects. Computers in
Chemical Engineering, 21, 439-444, 1997.

J.A. Scott. On ordering elements for a frontal solver. Communications in
Numerical Methods in Engineering, 15, 309-323, 1999.

S.W. Sloan. An algorithm for profile and wavefront reduction of sparse matrices.
Inter. Journal on Numerical Methods in Engineering, 23, 1315-1324, 1986.

REFERENCES 27

W.P. Zang and E.M. Liu. A parallel frontal solver on the Alliant. Computers
and Structures, 38, 202-215, 1991.

O. Zone and R. Keunings. Direct solution of two-dimensional finite element
equations on distributed memory parallel computers. in M. Durand
and F. E. Dabaghi, eds, ‘High Performance Computing’. Elsevier Science
Publications, 1991.

