
RAL-93-097

An Arnoldi code for computing selected eigenvalues
of sparse real unsymmetric matrices

by

J. A. Scott

ABSTRACT

Arnoldi methods can be more effective than subspace iteration methods for computing the dominant
eigenvalues of a large sparse real unsymmetric matrix. A code, EB12, for the sparse unsymmetric
eigenvalue problem based on a subspace iteration algorithm, optionally combined with Chebychev
acceleration, has recently been described by Duff and Scott (1993) and is included in the Harwell
Subroutine Library (Anon 1993). In this paper we consider variants of the method of Arnoldi and
discuss the design and development of a code to implement these methods. The new code, which is
called EB13, offers the user the choice of a basic Arnoldi algorithm, an Arnoldi algorithm with
Chebychev acceleration, and a Chebychev preconditioned Arnoldi algorithm. Each method is
available in blocked and unblocked form. The code may be used to compute either the right-most
eigenvalues, the eigenvalues of largest absolute value, or the eigenvalues of largest imaginary part.
The performance of each option in the EB13 package is compared with that of subspace iteration on a
range of test problems and, on the basis of the results, advice is offered to the user on the appropriate
choice of method.
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1 Introduction

We are interested in computing a few eigenvalues and the corresponding eigenvectors of a large sparse

real unsymmetric matrix. Of particular interest are the eigenvalues with the largest (or smallest) real

parts, the eigenvalues of largest absolute value, and the eigenvalues with the largest imaginary parts.

This problem is of considerable practical importance since it has a significant number of applications

in scientific and engineering computing, including mathematical models in economics, Markov chain

modelling of queueing networks, and bifurcation problems (for references, see Saad 1984, the survey

of Kerner 1989, and the collection of test matrices of Bai 1993). In the past few years there has been a

considerable increase in interest in solving large unsymmetric eigenvalue problems. Foremost in the

discussions have been methods based on the original method of Arnoldi (1959). Papers have appeared

by, amongst others, Saad (1989), Ho (1990), Ho, Chatelin, and Bennani (1990), Garratt, Moore, and

Spence (1991), Garratt (1991), Sadkane (1991a, 1991b), and Sorensen (1992). In conjunction with the

published papers, several codes have been developed which implement variations of Arnoldi’s

method. These include codes by Sadkane (1991a, 1991b) and Braconnier (1993). These codes may be

regarded as experimental codes since their use requires details of Arnoldi’s method to be understood

before appropriate values can be given to the input parameters. At present there is no code which

implements an Arnoldi based method for the unsymmetric eigenvalue problem available in the NAG

Library (NAG 1993) or the Harwell Subroutine Library (Anon 1993), although a new package

ARPACK (Lehoucq, Sorensen, and Vu 1994), which uses the implicit restarted Arnoldi method of

Sorensen (1992) has recently been included under the directory scalapack in netlib (Dongarra and

Grosse 1987).

The current Release 11 of the Harwell Subroutine Library includes a code EB12 by Duff and Scott

(Duff and Scott 1993) which uses a subspace iteration algorithm, optionally combined with

Chebychev acceleration, to find either the eigenvalues of largest absolute value or the right-most (or

left-most) eigenvalues of a sparse unsymmetric matrix. Since numerical experiments described in Saad

(1980, 1984) and Garratt (1991) indicate that Arnoldi methods can be more effective than subspace

iteration methods in computing the outermost part of the eigenspectrum, we are interested in designing

a new code for the Harwell Subroutine Library which offers Arnoldi based methods. This is the

primary goal of this paper.

The paper is organized as follows. In Section 2 we briefly review Arnoldi’s method and describe

some of its variants within a common framework. In Section 3 we discuss the design and development

of our new code which implements these Arnoldi based methods. This code is called EB13. In Section

4 the performance of EB13 on a vector supercomputer and on a high-performance workstation is

tested and compared with that of the subspace iteration code EB12. Concluding comments are made in

Section 5.
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2 Arnoldi’s method and its variants

2.1 The basic Arnoldi method

Several variants of Arnoldi’s method have been proposed in the literature. In this section we will

briefly summarize some of these. For completeness, we first outline the basic Arnoldi algorithm. Here

and elsewhere A will denote a real sparse unsymmetric n × n matrix with eigenvalues λ , λ ,..., λ .1 2 n

Arnoldi’s method for finding a few eigenvalues of A proceeds as follows: given an initial vector x1

with unit norm, at each step m (m > 1) construct an orthonormal basis X = [x ,x ,...,x ] for them 1 2 m
m−1Krylov subspace K spanned by [x , Ax ,..., A x ] by computing w = Ax and orthonormalisingm 1 1 1 m−1

Tw with respect to x , x ,..., x to obtain x . The matrix H = X AX is upper Hessenberg and its1 2 m−1 m

eigenvalues provide approximations to m eigenvalues of A. It is not possible to state in general which

eigenvalue approximations will converge first but the method favours convergence to eigenvalues that

lie in the outermost part of the spectrum of A, with rapid convergence of approximations to well

separated eigenvalues. If clustered eigenvalues are sought, a large number of steps is generally

required. Saad (1980) showed that as the number of steps m increases, the growth in the computational

time and the storage required by Arnoldi’s method becomes prohibitive. Saad proposed overcoming

this difficulty by using the method iteratively so that m is fixed (in general, m < < n) and the process is

restarted every m steps.

It is convenient for introducing variants of Arnoldi’s method to split the method into a number of

separate steps. Suppose the eigenvalues of A are ordered with |λ | > |λ | ≥ ... ≥ |λ | and that λ is1 2 n 1

required. The main steps in the basic Arnoldi algorithm for finding λ may be summarized as follows:1

Algorithm A1: Basic Arnoldi

1. Initialization: Choose the number of steps m and an initial vector x with unit norm.1

2. Arnoldi steps:

For j = 1, 2,..., m do

(i) w = Axj j
T(ii) h = x w , i = 1, 2,..., j.ij i j

j

(iii) s = w − x h∑j j i ij
i=1

(iv) h = ||s || , x = s /h .j+1, j j 2 j+1 j j+1, j

end do

Set X = [x , x ,..., x ].1 2 m

3. Eigenvalue computation: Reduce the upper Hessenberg matrix H = {h } to real Schur formij
TT = Z HZ , where T is a block triangular matrix and each diagonal block T is either of order 1ii

or is a 2 × 2 matrix having complex conjugate eigenvalues, with the eigenvalues ordered in

descending order of their absolute values along the diagonal blocks. Set X ⇐ XZ.

4. Convergence test and restart: If the first column x of X satisfies the convergence criteria then1

accept λ and stop else go to 2.1

In practice, to overcome the loss of orthogonality of the vectors x , the Gram-Schmidt method in Stepj

2 is combined with iterative refinement (see Daniel, Gragg, Kaufman, and Stewart 1976). We have
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found that one step of iterative refinement is sufficient for the computation of each x (see alsoj

Sorensen 1992). Throughout the remainder of this paper it is assumed that the Gram-Schmidt method

with iterative refinement is employed.

Once the eigenvalue λ has been found, the corresponding (approximate) eigenvector y of A can1 1

be determined. The eigenvector w of the matrix T corresponding to λ is first found using a1 1

back-substitution process (Peters and Wilkinson 1970) and then the eigenvector of A is taken to be

y = Xw (see, for example, Duff and Scott 1993 for further details).1 1

For simplicity, we have described the basic Arnoldi algorithm for the case when only a single

eigenvalue is required but it can also be used if the r dominant eigenvalues are sought. In this case, the

new starting vector may be taken to be a linear combination of the first r columns x , x ,..., x of X,1 2 r

that is, at Step 4 take the restart vector to be of the form

r

β α x , (1.1)∑ i i
i=1

where β is a normalising factor. The α ’s need to be chosen to balance the accuracy of the desiredi

basis vectors. Choosing α to be the norm of the residual Ay − λ y favours the basis vectors whichi i i i

converge slowly. Thus slow convergence is off-set by a starting vector which is richer in the

corresponding basis vector. This choice for the α ’s is used by Braconnier (1993). Further details andi

discussion may be found in Saad (1980,1984).

An alternative approach for computing several eigenvalues is to employ a “locking” technique. The

idea behind locking, which is sometimes termed implicit deflation (see Saad 1989), is to exploit the

fact that the initial columns of X tend to converge before the later ones and to use this to reduce the

order of the problem. Suppose we want to compute r eigenvalues and the first k−1 basis vectors

x , x ,..., x corresponding to λ , λ ,..., λ have already converged (k−1 < r). Choose x to be1 2 k−1 1 2 k−1 k

orthogonal to each of the vectors x , x ,..., x . Next perform m−k steps of the Arnoldi process, with1 2 k−1

x as the starting vector and enforcing the orthogonality of x , j = k, k+1,..., m against all x , includingk j i

x , x ,..., x . This generates an orthogonal basis for the subspace spanned by1 2 k−1
m−k[x ,x ,...,x Ax ,...,A x ]. Apart from the orthogonalization of the x ’s (j ≥ k), no further1 2 k, k k j

computations are performed with the converged basis vectors x , x ,..., x and these basis vectors are1 2 k−1

therefore said to be “locked”. Since these vectors are locked, the leading (k−1) × (k−1) submatrix of the

Schur matrix T will not change on subsequent steps and it is necessary only to reduce a Hessenberg

matrix of order m−k to real Schur form and to compute its eigenvalues. By avoiding unnecessary

recomputations, locking can result in considerable savings in computational time (illustrated by Duff

and Scott 1993). In this study we will employ locking rather than using (1.1) whenever more than one

eigenvalue (or complex conjugate pair of eigenvalues) is needed.

2.2 Block Arnoldi

Block Arnoldi methods have been discussed by Sadkane (1991a). These methods aim to compute

approximations to a block of eigenvalues at once. They can be advantageous when the dominant

eigenvalue of A is a multiple eigenvalue or if the wanted eigenvalues are clustered. The other major

advantage of block methods is that they are able to exploit Level 3 BLAS (see Section 3.7), and this

can make them competitive with unblocked methods even if only one eigenvalue is sought (see Tables

4.3a and 4.3b in Section 4).
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Choosing the blocksize to be n (n > 1), the block Arnoldi method for finding the r eigenvalues ofb b

A of largest moduli proceeds as follows:

Algorithm AB1: Block Arnoldi

1. Initialization: Choose the number of steps m and an initial m × n matrix X with orthonormalb 1

columns.

2. Block Arnoldi steps:

For j = 1, 2,..., m do

(i) W = AXj j
T(ii) H = X W , i = 1, 2,..., j.ij i j

j

(iii) S = W − X H∑j j i ij
i=1

(iv) Q R = S (QR factorization of S ), H = R , X = Q .j j j j j+1, j j j+1 j

end do

Set X = [X , X ,..., X ].1 2 m

3. Eigenvalue computation: Reduce the block upper Hessenberg matrix H = {H } to real Schurij
Tform T = Z HZ , where each diagonal block T is either of order 1 or is a 2 × 2 matrix havingii

complex conjugate eigenvalues, with the eigenvalues ordered in descending order of their

absolute values along the diagonal blocks. Set X ⇐ XZ.

4. Convergence test and restart: If the first r columns of X satisfy the convergence criteria then

accept λ , λ ,..., λ and stop else let X be the first n columns of X and go to 2.1 2 r 1 b

Again, in practice iterative refinement is used in Step 2 to compensate for any loss in orthogonality.

An obvious choice for the block size is n = r, the number of required eigenvalues. However,b

numerical experience has shown it can be advantageous to choose a block size n > r. This can be theb

case if the sought-after eigenvalues are not well separated from the remaining eigenvalues. Some

results which illustrate this are included in Section 4 (Tables 4.5a and 4.5b).

For problems in which the required eigenvalues can be split into groups of clustered eigenvalues

with the groups well separated, the block size should be at least as large as the largest cluster of

eigenvalues sought. In this case, n will be less than r, and, as in the unblocked method (n = 1), someb b

work can be saved by locking a whole block of vectors as soon as all the vectors in the block have

converged. If the first n columns of X have converged then, at the next iteration, m−1 block Arnoldib

steps are performed with X (the matrix whose columns are the second block of n columns of X) as2 b

the starting matrix.

2.3 Arnoldi with Chebychev acceleration

In practice, the basic Arnoldi method (both blocked and unblocked) can perform badly and the number

m of Arnoldi steps and the number of iterations required for convergence can be prohibitively large. To

overcome this difficulty and to improve the overall performance of Arnoldi’s method, Saad (1984)

proposed using the basic Arnoldi method in conjunction with a polynomial filter. In this method, the

restart vector is taken to be p(A)x / ||p(A)x ||, where p is a polynomial chosen to amplify the1 1
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components of x in the direction of the basis vectors corresponding to the required eigenvalues1

λ , λ ,..., λ , while damping those in the directions of the remaining basis vectors. Thus, on each1 2 r

iteration, p is chosen to be small on the set S of unwanted eigenvalues {λ , λ ,..., λ } and to satisfyr+1 r+2 m

the normalization condition

p(λ ) = 1. (2.1)r

A simple procedure is to look for such a polynomial on a continuous domain E containing S but

excluding λ , λ ,..., λ . The problem of determining p becomes the minimax problem1 2 r

min max |p(λ)| , (2.2)
p ε P λ ε El i

where P is the set of all polynomials of degree not exceeding l satisfying (2.1). This problem can bel

solved if E is restricted to an ellipse with its centre on the real line and containing S. Let E = E(d, c, a)
denote an ellipse centre d, foci d±c, major semi-axis a, and which is symmetric with respect to the real

axis. The polynomial solving the minimax problem (2.2) is then

T [(λ − d)/c]lp (λ) = , (2.3)l T [(λ − d)/c]l r

where T (λ) is the Chebychev polynomial of degree l of the first kind. Here λ is termed the referencel r

point. Further details may be found, for example, in Manteuffel (1977) and Saad (1984).

Associated with each λ ε S is a convergence factorj

–122 2(λ − d) + ((λ − d) − c )j jC (d, c) = . (2.4)j –122 2(λ − d) + ((λ − d) − c )r r

The choice of d, c, a which give an ellipse E(d, c, a) enclosing all λ ε S that minimises max C (d, c) isj j
λ ε Sj

the optimal ellipse and is used to define the iteration polynomial (2.3). An algorithm for computing the

optimal ellipse is described by Ho (1990).

Omitting for the present details of how to construct the optimal ellipse and how to choose the degree

of the Chebychev polynomial, the Arnoldi algorithm with Chebychev acceleration for finding the r

right-most eigenvalues of A may then be described as follows:

Algorithm A2: Arnoldi with Chebychev acceleration

1. Initialization: See algorithm A1.

2. Arnoldi steps : See algorithm A1.

3. Eigenvalue computation: Reduce the upper Hessenberg matrix H = {h } to real Schur formij
TT = Z HZ , where T is a block triangular matrix and each diagonal block T is either of order 1ii

or is a 2 × 2 matrix having complex conjugate eigenvalues, with the eigenvalues ordered in

descending order of their real parts along the diagonal blocks. Set X ⇐ XZ.

4. Convergence test and restart: If the first r columns of X satisfy the convergence criteria then

accept λ , λ ,..., λ and stop else choose the degree l of the iteration polynomial p (λ). Construct1 2 r l

the ellipse E(d, c, a) containing the unwanted eigenvalues. Define p (λ) and computel

x̂ = p (A)x , where x is the first column of X. Set x ⇐ x̂ / ||x̂|| and go to 2.l 1 1 1 2
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As in algorithm A1, locking can be incorporated into algorithm A2 when r > 1. In this case, if

x , x ,..., x have converged (k−1 < r), then at Step 4, x̂ = p (A)x is computed and the restart vector1 2 k−1 l k

is taken to be the normalised vector x ⇐ x̂ / ||x̂|| . On the next iteration m−k Arnoldi steps arek 2

performed, enforcing the orthogonality of x , j = k, k+1,..., m against all x , including x , x ,..., x . Anj i 1 2 k−1

(m−k) × (m−k) Hessenberg matrix must be reduced to real Schur form.

By replacing A by –A, algorithm A2 may be used to compute the left-most eigenvalues of A.

Arnoldi’s method converges most quickly to the eigenvalues in the outermost part of the

eigenspectrum and, in Step 3, by ordering the diagonal entries of T in descending order of their

imaginary parts, algorithm A2 can be used to compute the eigenvalues of largest imaginary parts. In

some practical examples it is these eigenvalues which are of practical importance. An example of this

is the TOLOSA matrix which arises from the aerodynamics related to the stability analysis of a model

of a plane in flight (see Bai 1993).

We remark that the matrix polynomial p (λ) need not be formed explicitly since to compute p (λ)xl l

it is necessary only to form l matrix-vector products with the original matrix A and take linear

combinations. If p (λ) is defined by (2.3), the three-term recurrence relation for Chebychevl

polynomials may be used. Since the ellipse E(d, c, a) is symmetric about the real axis, d and c are

either purely real or imaginary so that complex arithmetic can be avoided.

2.4 Block Arnoldi with Chebychev acceleration

Algorithm A2 can be generalized to a block algorithm. Choosing the blocksize to be n , the blockb

Arnoldi method with Chebychev acceleration for finding the r right-most eigenvalues of A proceeds as

follows:

Algorithm AB2: Block Arnoldi with Chebychev acceleration

1. Initialization: See algorithm AB1.

2. Block Arnoldi steps : See algorithm AB1.

3. Eigenvalue computation: Reduce the block upper Hessenberg matrix H = {H } to real Schurij
Tform T = Z HZ , where each diagonal block T is either of order 1 or is a 2 × 2 matrix havingii

complex conjugate eigenvalues, with the eigenvalues ordered in descending order of their real

parts along the diagonal blocks. Set X ⇐ XZ.

4. Convergence test and restart: If the first r columns of X satisfy the convergence criteria then

accept λ , λ ,..., λ and stop else choose the degree l of the iteration polynomial p (λ). Construct1 2 r l

the ellipse E(d, c, a) containing the unwanted eigenvalues. Define p (λ) and computel

X̂ ⇐ p (A)X , where X is the first n columns of X. Orthonormalise the columns of X̂ and letl 1 1 b

X be the resulting set of orthonormal columns. Go to 2.1

Some work can be saved by locking vectors within a block as soon as they have converged. Suppose

the first k−1 vectors have converged where k−1 < n . Then at Step 4, computeb

X̂ ⇐ [x , x ,..., x , p (A)x ,..., p (A)x ], orthonormalise the columns of X̂ (the first k−1 columns aren1 2 k−1 l k l b

already orthonormal) and let the restart matrix X be the resulting set of orthonormal columns. m1

block Arnoldi steps are performed with this restart matrix and, at Step 3, a block upper Hessenberg
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matrix of order mn must again by reduced to real Schur form. The first k−1 columns of the resultingb

matrix X must be rechecked for convergence since they will have been recomputed.

Further computational effort may be saved if n < r by locking a whole block of vectors once all theb

vectors in the block have converged. If all the columns in X have converged then, at Step 4,1

X̂ ⇐ p (A)X is computed, where X is the m × n matrix whose columns are the second block of nl 2 2 b b

columns of X. The columns of X̂ are orthnormalised with respect to the columns of X and the restart1

matrix X is taken to be the resulting set of orthonormal columns. On the next iteration it is necessary2

to perform only m−1 block Arnoldi steps and reduce a block upper Hessenberg matrix of order

(m−1)n to real Schur form. Since the columns of X are not recomputed, they do not need recheckingb 1

for convergence.

2.5 Polynomial preconditioned Arnoldi

The idea behind polynomial preconditioned Arnoldi methods is to replace A by a matrix of the form

C = p(A), where p(λ) is a polynomial, and to perform an Arnoldi method using C in place of A (see

Saad 1989). The polynomial p(λ) is chosen so that a sought-after eigenvalue λ is transformed by p1

into an eigenvalue of C that is very large compared with the remaining eigenvalues. Arnoldi’s method

using the matrix C can be expected to converge rapidly to this eigenvalue. The eigenvalues of C are

related to those of A by λ (C) = p(λ (A)) and the approximate eigenvalues of A can be obtained fromi i

the computed eigenvalues of C by solving a polynomial equation. However, if p(λ) is a polynomial of

degree l, this process is complicated by the fact that, for each eigenvalue λ (C) of C, the polynomiali

equation has l roots that are candidates for approximating one eigenvalue λ (A) of A. This difficultyi

may be avoided by using a Galerkin process whereby, at the end of the Arnoldi steps, the m × m matrix
TB = X AX is explicitly computed. The eigenvalues of B then approximate m eigenvalues of A and the

eigenvectors of the real Schur form for B may be used to obtain the corresponding approximate

eigenvectors of A. This is analogous to the procedure used in the subspace iteration algorithm (see

Stewart 1976 and Duff and Scott 1993).

The scaled and shifted Chebychev polynomial given by equation (2.3) is a suitable choice for the

preconditioning polynomial. Again, the matrix C = p (A) is not formed explicitly but the three-terml

recurrence relation for Chebychev polynomials is used to form matrix-vector products with the matrix

C.

The Chebychev preconditioned Arnoldi method for finding the r right-most eigenvalues of A may

be summarized as follows:
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Algorithm A3: Chebychev preconditioned Arnoldi

1. Initialization: Choose the number of steps m and an initial vector x with unit norm. Set l = 1,1

p (λ) = λ.l

2. Arnoldi steps : See algorithm A1 with A replaced by p (A) in (i).l

T T3. Eigenvalue computation: Compute B = X AX. Reduce B to real Schur form T = Z BZ , where

each diagonal block T is either of order 1 or is a 2 × 2 matrix having complex conjugateii

eigenvalues, with the eigenvalues ordered in descending order of their real parts along the

diagonal blocks. Set X ⇐ XZ.

4. Convergence test and restart: If the first r columns of X satisfy the convergence criteria then

accept λ , λ ,..., λ and stop else choose the degree l of the iteration polynomial p (λ). Construct1 2 r l

the ellipse E(d, c, a) containing the unwanted eigenvalues. Define p (λ). Let x be the firstl 1

column of X and go to 2.

At each iteration the polynomial preconditioned algorithm is significantly more expensive than

algorithm A2 since it requires (m−1) matrix-vector products of the form p (A)x, compared with onlyl

one such product for algorithm A2. In addition, algorithm A3 requires the explicit computation of the
Tmatrix B = X AX and B has first to be reduced to upper Hessenberg form before it can be reduced to

real Schur form. It is probably because of the extra cost per iteration that algorithm A3 has not been

implemented in any of the experimental codes cited in Section 1. However, we have found that for

more difficult problems and for problems for which more than one eigenvalue is required, the extra

work per iteration may not lead to an increase in the overall cost since algorithm A3 frequently

requires only a small number of iterations to achieve convergence. This is illustrated in Section 4 (see

Tables 4.4a and 4.4b).

As in algorithms A1 and A2, some savings in the computational costs can be realised by employing

locking when the number of required eigenvalues is greater than 1.

2.6 Block preconditioned Arnoldi

In the same way that algorithm A2 can be generalized to the block algorithm AB2, the preconditioned

Arnoldi algorithm A3 can be generalized to a block method. This algorithm will be called algorithm

AB3 and is as follows:

Algorithm AB3: Block Chebychev preconditioned Arnoldi

1. Initialization: Choose the number of steps m and an initial m × n matrix X with orthonormalb 1

columns. Set l = 1, p (λ) = 1.l

2. Block Arnoldi steps : See algorithm AB1 with A replaced by p (A) in (i).l

3. Eigenvalue computation: See algorithm A3.

4. Convergence test and restart: If the first r columns of X satisfy the convergence criteria then

accept λ , λ ,..., λ and stop else choose the degree l of the iteration polynomial p (λ). Construct1 2 r l

the ellipse E(d, c, a) containing the unwanted eigenvalues. Define p (λ). Let X be the matrixl 1

whose columns are the first n columns of X and go to 2.b
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Again, as with algorithm AB2, locking can be used to reduce computational costs if some of the

columns of X converge before all the required r columns have converged.

3 The new code EB13

In this section we discuss the design of a new code, EB13, which implements all the variants of

Arnoldi’s method considered in Section 2. We look at the user interface, the use of control parameters,

the user-supplied parameters, the stopping criteria, the ellipse construction, and updating the degree of

the Chebychev polynomial. We also consider the exploitation of BLAS by EB13.

3.1 The user interface

Subroutines in the EB13 package are named according to the naming convention of the Harwell

Subroutine Library. The single-precision version subroutines all have names that commence with

EB13 and have one more letter. The corresponding double-precision versions have the same names

with an additional letter D. For clarity, in the remainder of this paper we will refer only to the

single-precision subroutines. There are three subroutines in the EB13 package that are called directly

by the user. These are as follows:

(a) EB13I: Initialization of control parameters. This subroutine is normally called once prior to

calls to EB13A and EB13B.

(b) EB13A: Computation of the right-most eigenvalues, the eigenvalues of largest absolute value,

or the eigenvalues of largest imaginary parts..

(c) EB13B: Computation of the eigenvectors and scaled eigenvector residuals corresponding to the

computed eigenvalues. Use of this subroutine is optional.

One of the main features of EB13 is the use of reverse communication, so that the user is not

required to supply the matrix A explicitly but whenever the code requires matrix-vector products,

control is returned to the user. This allows full advantage to be taken of the sparsity and structure of A,

and of vectorisation and parallelism. It also gives the user greater freedom in choosing how to store the

matrix A and allows for cases where the matrix is not explicitly available but only the action of A on

vectors is known. Furthermore, it enables the more sophisticated user to employ explicit Wielandt

deflation techniques (see, for example, Saad 1989). In addition, reverse communication allows

flexibility in using the code to implement shift-and-invert strategies (again, see Saad 1989).
−1Shift-and-invert replaces the matrix A by the shifted and inverted matrix C = (A − σ I) , so that the

−1original problem (A − λI)x = 0 is transformed into (A − σ I)x = λ x. The shift σ is chosen so that the

matrix C has a spectrum with much better separation properties than the original matrix A and should

therefore require fewer iterations for convergence. The price which must be paid for this is that, since
−1for large problems it is impractical to compute C , when control is returned to the user, the

−1matrix-vector product w = C u should be computed by solving the linear system of equations

Cw = u (3.1)

for w. This can be done by forming the LU factorization of C and then solving (3.1) reduces to

performing a forward and back-substitution. There are library codes available for doing this, including

the recent Harwell Subroutine Library code MA48 (see Duff and Reid 1993), which requires that C is
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available in standard sparse matrix format. Whenever a new shift σ is chosen, a new LU factorization

of C must be formed.

A more general strategy than shift-and-invert which may also be implemented using EB13 is

preconditioning. Here a matrix φ(A) is used in place of A. Use of the preconditioner φ(λ) = p (λ), thel

Chebychev polynomial given by (2.3), is offered by EB13 as an option and no action is required by the

user other than specifying this option using a control parameter (see Section 3.2). However, other

preconditioners may be used if, on each return to the user before convergence is achieved, w = φ(A)u is

computed. A preconditioner which has received attention recently is the generalized Cayley

transformation used by Garratt (1991).

Use of reverse communication also allows EB13 to be employed for the solution of generalized

eigenvalue problems of the form

Ax = λBx, (3.2)

where A and B are real, sparse, unsymmetric matrices. If B is nonsingular, (3.2) can be treated as a
−1standard unsymmetric eigenvalue problem by working with the matrix B A. Again, when control is

returned to the user, a linear system of equations must be solved. For this problem, the LU

factorization of B need only be formed once at the start of the computation. If B is singular, the

problem of solving (3.2) becomes harder. A shift γ may be introduced so that (A − γ B) is nonsingular

and then

(A − γ Bx) = (λ − γ) Bx (3.3)

may be treated as a standard eigenvalue problem by working with the matrix

−1(A − γ B) B. (3.4)

Parlett and Saad (1985) have considered ways of dealing with the case where A and B are real but the

shift γ is complex. One possibility is to replace the matrix (3.4) by the real matrix

−1Re[(A − γ B) B], (3.5)

which has the same eigenvectors as the original problem and eigenvalues ν which are related to thei

eigenvalues λ of (3.2) byi

1 1 1ν = + . (3.6)i 2 λ + γ̄ λ − γi i i i

If (3.5) is used in place of (3.4), EB13, which uses only real arithmetic, may be employed. An LU

factorization of (A − γ B) must be formed (using, for example, the Harwell Subroutine Library code

ME48 if γ is complex) and each time control is returned for the matrix-vector product
−1w = Re[(A − γ B) B]u, forward and back-substitutions must be done in the usual way before the real

part of the resulting vector taken to yield w.

3.2 Control and information parameters

Another important design feature of EB13 is that no common blocks are used. We feel this is an aid to

portability and it is consistent with the policy employed by other major recent additions to the Harwell

Subroutine Library, including MA42, MA47, and MA48 (see Anon 1993). In EB13 the following arrays

take the place of common blocks.
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(i) An integer array ICNTL and a real array CNTL which control the action of EB13A. The control

variables include the maximum number of matrix-vector products allowed, the maximum

number of Arnoldi iterations, the level of printing, the stream numbers for error and warning

messages, and the convergence tolerance (see Section 3.4). Using the control parameter

ICNTL(10) the user can specify whether an initial estimate for the starting vector (or matrix

for a block method) is to be supplied. This can be useful if, for example, A is a

parameter-dependent matrix A = A(α) and the right-most eigenvalues are required as the

parameter α varies. A converged basis vector for a given value of α can be used as the starting

vector for α + δα. This problem arises in the detection of Hopf bifurcation points (see, for

instance, Garratt 1991). If no estimate is available (the default), the starting vector (or matrix) for

the Arnoldi process is generated using the Harwell Subroutine Library random number generator

FA04. A control variable is also used to determine which of the variants of Arnoldi’s method

discussed in Section 2 is implemented. EB13 allows the user to choose which variant is

employed since there is no loss in efficiency in offering each the variants A1/AB1, A2/AB2,

A3/AB3 (much of the code is common to all the methods) and practical experience has shown

that the method which gives the best performance for one problem may not necessarily give the

best performance for another (see Section 4). The control variables are given default values by

the initialization routine EB13I, which should normally be called once by the user at the start of

the computation. Should the user want the control variables to have values other than the

defaults, the appropriate variables should be reset after the call to EB13I.

(ii) Two arrays INFO and RINFO, which on each return to the user provide integer and real

information regarding the execution of the code. This information includes the current ellipse

parameters, the degree of the current Chebychev polynomial, and the number of eigenvalues

which have converged.

(iii) Two arrays IKEEP and KEEP, which are used to hold variables which must be preserved

between calls to EB13A.

Further details of ICNTL, CNTL, INFO, RINFO, IKEEP, and KEEP are given in the specification

sheets (see Scott 1993).

3.3 Input parameters

The user is required to set the following parameters prior to the first call to EB13A.

(a) N: the order of the matrix A.

(b) NUMEIG: the number of required eigenvalues.

(c) NBLOCK: the size of the block to be used (if NBLOCK = 1 an unblocked method is used).

(d) NSTEPS: the number of Arnoldi steps on each iteration.

(e) LN: the first dimension of the array which on successful exit will hold the converged basis

vectors. LN ≥N is required.

(f) IND: indicates whether the user wants to compute the eigenvalues of largest absolute value, the

right-most eigenvalues, or the eigenvalues of largest imaginary parts.
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Of these parameters, the only ones the user may need advice on choosing are NBLOCK and

NSTEPS. Deciding whether or not to use a block method depends, in part, upon the separation of the

eigenvalues. If the user requires λ and λ where Re(λ ) >> Re(λ ), convergence will generally be1 2 1 2

achieved more quickly and in a smaller number of iterations using an unblocked method. This is

illustrated by tests performed with the matrix IMPCOLA in Section 4 (Tables 4.4a and 4.4b).

Conversely, if the required eigenvalues are multiple eigenvalues or are clustered, there can be

significant advantages in using a block method. Tests using the matrix GRE1107 illustrate this in

Section 4.

Experience has shown us that the last vectors in a block can be slow to converge but that

convergence of the requested NUMEIG eigenvalues can often be achieved more rapidly by choosing

the block size NBLOCK to be greater than NUMEIG. Again, this is demonstrated in Section 4 (see

Tables 4.5a and 4.5b ). However, EB13 does allow the user to choose a block method with NBLOCK

smaller than NUMEIG. This option can be useful if the wanted eigenvalues are clustered in groups

which are themselves well separated. Of course, the user may not have prior knowledge of the

distribution of the eigenvalues. One of our primary aims when designing EB13 was that the code,

while being flexible, should be robust in the event of the user making a poor choice for the input

parameters. We have designed the stopping criteria (which are discussed in Section 3.4 below) so that

the computation will terminate if convergence to the requested accuracy is not being achieved with

acceptable speed. In this event, the user is advised to assign a different value to NBLOCK (and,

optionally, to NSTEPS) and start the computation again. The (inaccurate) approximations to the

eigenvalues already computed should allow the user to choose values which will lead to successful

convergence on a subsequent run.

The parameter NSTEPS is the other important parameter which must be set by the user. The value

of NBLOCK*NSTEPS influences the effectiveness of EB13 since the storage required is proportional
2to (NBLOCK∗NSTEPS) and, at each iteration, the cost of the Arnoldi steps is proportional to

2(NBLOCK∗NSTEPS) ∗N, and computing the eigenvalues of the Hessenberg matrix H is proportional
3to (NBLOCK∗NSTEPS) . This is discussed by Sadkane (1991a). It is clear that if NSTEPS is chosen to

be large, the computational costs per iteration and the storage requirements become prohibitively

large, but if NSTEPS is too small, the Krylov subspace will not contain enough information and

convergence may not be achieved even with a large number of iterations. In practice, if NSTEPS is

chosen too small, the stopping criteria used by EB13 will terminate the computation with a warning to

the user that the requested accuracy was not achieved. Should this happen, we do allow the user to

restart the computation with a revised value for NSTEPS. This restart exploits the approximations to

the basis vectors already computed. Full details of restarting the computation are given in the

specification sheets for EB13 (see Scott 1993). Our numerical experience indicates that, in general,

NSTEPS should be chosen to be at least 6 and for more difficult problems (problems for which there is

a poor separation of the required eigenvalues or problems where the unwanted eigenvalues are not

well represented by a Chebychev ellipse) a larger value is needed. Block methods generally converge

using a smaller value of NSTEPS than unblocked methods (see Section 4).
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3.4 The stopping criteria

At the end of each iteration it is necessary to test the computed basis vectors for convergence (Step 4 of

the algorithm descriptions in Section 2). In many papers on iterative methods for the computation of

eigenvalues, the criteria used for accepting a computed eigenpair (λ, y) is based on demanding that the

norm of the residual Ay − λy should be less than a prescribed tolerance, that is,

||Ay − λy|| ≤ ε (3.7)2

(see, for example, Saad 1980). Recently, Chatelin and Frayssé (1993) have recommended that

stopping criteria should be based on the backward error. The idea of backward error is to measure the

shortest distance between the original problem with computed solution y and a perturbed problem with

exact solution y. The normwise backward error associated with the approximate eigenpair (λ, y) is

defined to be

η = min{δ > 0 : ||∆A|| ≤ δ ||A|| , (A + ∆A)y = λy}.2 2

It can be shown (Deif 1989) that, if ||y|| = 1,2

||Ay − λy||2η = . (3.8)||A||2

Chatelin and Frayssé propose as the stopping criteria η ≤ ε. Note that, since ||A|| ≤ ||A|| , where2 F
–122||A|| = (∑∑a ) denotes the Fobenius norm of A, a lower bound on the backward error can beF ij

i j

obtained by replacing ||A|| in (3.8) by ||A|| .2 F

The smallest backward error is of order the machine precision u. But if there are uncertainties in the

values of the entries a of the matrix A (for example, A may be obtained from experimental readings),ij

there is no advantage in reducing η below the uncertainty in the a ’s. Using the backward error, anij

estimate of the error in the computed solution may be obtained from the first order approximation

Forward Error ≤ Condition Number × Backward Error.

One of the features of Arnoldi’s method (algorithm A1) is that, if z is the eigenvector of the m × m

Hessenberg matrix H = {h } associated with λ, then in exact arithmeticij

T||Ay − λy|| = h |e z|, (3.9)2 m+1,m m

Twhere e = (0, 0,..., 1) (see Saad 1980). The residual r = ||Ay − λy|| is termed the direct residual andm d 2
Tr = h |e z| is termed the Arnoldi residual (see Braconnier 1993). We callA m+1,m m

rdη = (3.10a)d ||A||F

the direct backward error and

rAη = (3.10b)A ||A||F

the Arnoldi backward error. The Arnoldi residual has been preferred in numerical computations to the

direct residual since it is faster and easier to compute. However, there can be problems in using r (orA
T Tη ) if the matrix is highly non-normal. Recall that a matrix A is said to be normal if A A = AA .A

Chatelin and Frayssé (1993) and Godet-Thobie (1992) define the relative departure of A from

normality to be the Henrici number

13



T T||A A − AA ||FHe = . (3.11)2||A ||F

The Henrici number is homogeneous in A (that is, invariant under the scalar transformation A αA).

Assuming A to be diagonalizable, Smith (1967) derives the following bound for the condition number

of the eigenbasis Y of A
–14−1cond (Y) = ||Y|| ||Y || ≥ (1 + 0.5He) .2 2 2

Thus a large departure from normality leads to an ill-conditioned eigenbasis, which can be extremely

difficult to compute. Numerical experiments have shown that, although the direct and Arnoldi

backward errors (η and η , respectively) are mathematically equivalent in exact arithmetic, thed A

difference between the computed η and η in finite precision becomes more and more significant asd A

the departure from normality increases: η can become very small (down to machine zero) while ηA d

remains constant. Consequently, for such matrices using η can lead to incorrect conclusionsA

concerning the precision of the computed eigenpairs. Our aim was to develop a robust code which

would be suitable for a large class of problems so we have decided against using the Arnoldi residual

in the stopping criteria.

To base the stopping criteria on the direct backward error η requires the eigenvalues corresponding tod

the computed eigenvalues to be determined on each iteration. In EB13 we work with the Schur vectors

since this is more stable (see Stewart 1976). Computing the eigenvectors of the Hessenberg matrix H

and then the corresponding eigenvectors of A at each iteration requires additional computational effort

which may be avoided by basing our stopping criteria on demanding that the relation

AX = XT
Tis almost satisfied. The normwise backward error associated with (T, X), where T = X AX is the

projection of A on the invariant subspace with orthonormal basis X, is defined by

η = min{δ > 0 : ||∆A|| ≤ δ ||A|| , (A + ∆A)X = XT}.2 2

It can be shown that

||AX − XT||2η = . (3.12)
||A||2

Again, a lower bound may be obtained by replacing ||A|| with replaced by ||A|| to give2 F

||AX − XT||2η = . (3.13)T ||A||F

Computing the bound on the backward error η or η requires ||A|| . Assuming the action of A ond T F

vectors is known, ||A|| can be computed using at most n matrix-vector products of the form Ax.F

Although this calculation need only be done once before the start of the eigenvalue computation, if n is

large the cost may be unacceptably high and, indeed may be as great as the cost of computing the

sought-after eigenvalues. If the user has an estimate of the norm of A available this could be used. An

estimate of ||A|| or ||A|| can be found using at most 5 matrix-vector products of the form Ax and 5 of1 ∞
Tthe form A x by employing the Harwell Subroutine Library code MC41 (Anon 1993). If |A|x can be

Tcomputed, where |A| is the matrix with entries |a | then, choosing x = (1, 1,..., 1) , ||A|| can beij ∞

computed with just one matrix-vector product.
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The difficulty of requiring the norm of A can be avoided by accepting the i th eigenvalue if the

scaled residual R given byi

||(AX − XT) ||i 2R = . (3.14)i ||(AX) ||i 2

is less than a prescribed tolerance. R was used in the stopping criteria employed by the code EB12i

(see Duff and Scott 1993 for details). Since ||(AX) || ≤ ||A|| (recall ||X || = 1), the backward error ηi 2 2 i 2

given by (3.12) satisfies η ≤ R .i

Another reason for possibly not wishing to use the backward error η is that it can lead toT

misleading conclusions. Well-conditioned matrices with a small departure from normality can have

large norms. For example, the matrix

1 a
k0 10

has Henrici number

2 2 k 22a (a + (10 − 1) )
He = .2k k 2 21 + 10 + (1 + 10 ) a

If a is fixed, as k increases He tends to 2a but ||A|| is unbounded. In such cases, η can be veryF T

small while the computed eigenvalues are totally inaccurate. In some practical situations, eigenvalues

are used to study stability and the interest is in whether the right-most eigenvalue has a nonpositive

real part. Examples of this are our test problems GRT200 and GRT400 in Section 4. Since high

precision in the computed eigenvalues is not required, the user may decide to set the convergence
−4 5tolerance to be, for instance, 10 . But ||A|| is of order 10 for GRT400 (see Table 4.2) and we foundF

that if η ≤ ε is used as the stopping criteria, a computed λ with no precision is accepted and the wrongT

conclusion drawn as to the stability of the system. For this problem, A is a banded matrix and ||(AX) ||i 2

is order 1 so that, if (3.14) is used, this difficulty is not encountered. Clearly, if the backward error is to

be used as a stopping criteria, the user should take into account the size of ||A|| when selecting the

convergence tolerance.

In EB13 we use as the default criteria for the acceptance of the i th eigenvalue

||(AX − XT) ||i 2res = ≤ ε. (3.15)i ||A||
However, because of the potential problems associated with the backward error, we offer the user the

option of using R ≤ ε. With the use of reverse communication, it is straightforward to offer thisi

without incuring any additional overheads. If the user wishes to take advantage of this option the

control parameter ICNTL(7) must be set to 2 (the default is 0). If (3.15) is used the user is asked to

provide ||A|| (or an estimate of ||A||) on the first call to EB13A. If an estimate is not available, the user

must ICNTL(7) to 1 and EB13 will then compute ||A|| using n matrix-vector products.F

The convergence tolerance used in EB13 is ε =CNTL(1), where CNTL(1) is a control parameter.
3The default value for CNTL(1) is u∗10 , where u is the machine precision. This value is assigned to

CNTL(1) by the call to the initialization subroutine EB13I. The code EB13 only accepts the basis

vectors in the order i = 1, 2,..., r so that res (or Res ) is only computed and tested for convergence oncej j

res (or R ), i = 1, 2,..., j−1 have all satisfied the convergence criteria.i i
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We have already remarked that the backward error η is bounded above R and that the η cannot bei

less than u. Therefore, if R is used in the stopping criteria and the user sets CNTL(1) to be veryi

small, the convergence criteria may not be met. Consequently, in EB13 additional stopping criteria are

needed to terminate the computation if this should happen. Additional stopping criteria are also need if

the user has chosen the number of Arnoldi steps to be too small for the problem being solved since, in

this case, the Arnoldi iterations can continue indefinitely without the residuals decreasing

significantly. In our numerical experiments we observed that, as the number of iterations increases, if

convergence has not been achieved, the residuals start to oscillate. As a result of our findings we have

decided to terminate the computation on the k th iteration if

res (k) < res (k−1), andi i

res (k−1) > res (k−2), andi i

res (k−2) < res (k−3), andi i

res (k−3) > res (k−4),i i

where res (k) is res (or R ) on the k th iteration.i i i

In the event of a problem failing to converge, we ensure a finite termination of the computation by

imposing limits on the maximum number of matrix-vector products and the maximum number of

Arnoldi iterations allowed. The limit on the number of matrix-vector products is determined by the

control parameter ICNTL(5), which has a default value of 20000. The maximum number of

matrix-vector products allowed is ICNTL(5)*NUMEIG (NUMEIG is the number of wanted

eigenvalues). If the number of matrix-vector products required exceeds this, the user is offered the

option of increasing ICNTL(5) and continuing the computation from the point at which it was halted.

The limit on the number of Arnoldi iterations is given by ICNTL(11), which has default value 100.

Again, if convergence is not reached in ICNTL(11) iterations, the user can increase ICNTL(11)

and restart the computation at the next iteration. For details, see Scott (1993).

In EB13, once all the requested eigenvalues have converged, we offer the user the option of

computing the eigenvectors y , i = 1, 2,..., r and the scaled eigenvector residualsi

||(Ay − λ y )||i i i 2Res = , 1 ≤ i ≤ r, (3.16a)i ||A||
or, if (3.14) was used,

||(Ay − λ y )||i i i 2Res = , 1 ≤ i ≤ r. (3.16b)i ||(Ay) ||i 2

To obtain these residuals, the user must call EB13B. On the first call, EB13B computes the

approximate eigenvectors of A by first computing the approximate eigenvectors w of the real Schuri

form T and then setting y = Xw . Control is returned to the user for the matrix-matrix product AY toi i

be formed, where Y has columns y , y ,..., y . The user must then recall EB13B for the eigenvector1 2 r

residuals to be computed.

3.5 Ellipse construction

When using algorithm A2 or A3 (or their block generalizations), at each iteration it is necessary to

construct an ellipse E(d, c, a) enclosing the unwanted part of the eigenspectrum. Manteuffel’s
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technique (Manteuffel 1975 and 1977) for constructing the optimal ellipse in the case of the solution of

linear equations was extended by Saad (1984) to the unsymmetric eigenvalue problem. Since

Manteuffel’s algorithm requires the reference eigenvalue λ to be real (see (2.3)), when the referencer

eigenvalue is complex, Saad replaces λ by the point γ on the real line having the same convergencer

ratio as λ with respect to the ellipse found on the previous iteration. In general, γ ≠ λ and so ther r

ellipse found by Saad is only an approximation to the optimal ellipse.

Ho (1990) introduced a new algorithm which avoids the shortcomings of Saad’s method and

computes the optimal ellipse with respect to λ . For full details of this algorithm the reader is referredr

to Ho (1990) and Ho, Chatelin, and Bennani (1990). Recently, Braconnier (1993) proposed an

algorithm which is much simpler than that of either Saad or Ho, but does not necessarily determine the

optimal ellipse. If the unwanted eigenvalues λ ,..., λ are ordered in decreasing order of their realr+1 m

parts, Braconnier’s algorithm proceeds as follows:

Re(λ ) + Re(λ )r+1 m1. Set d = , a = Re(λ ) − d, and ν = 0.0.r+12
| aIm(λ )|i 2 2 22. Set b = max and c = a − b .

2 2i a − (Re(λ ) −d )i

3. If E(d, c, a) is feasible then stop else

|Re(λ ) − νRe(λ )|r+1 rSet ν = ν+1, a = a + .(ν + 1.0)
go to 2.

At each iteration, Ho (1990) and Braconnier (1993) use only the current estimates of the unwanted

eigenvalues to construct the ellipse. Our numerical experience has shown that, at iteration k, it is

necessary to construct the positive complex hull containing the current estimates of the unwanted

eigenvalues and, if the right-most eigenvalues are sought, points on the convex hull from iteration k−1
lying to the left of the current estimate of the right-most wanted eigenvalue (that is, λ ). If ther

eigenvalues of largest imaginary parts are wanted, the points on the convex hull with imaginary parts

which are less than the imaginary part of the current estimate of λ are used in constructing the convexr

hull. The ellipse is determined from the points on the convex hull. This is discussed further by Duff

and Scott (1993). When implementing the algorithms of Saad, Ho, and Braconnier within the code

EB13 we have modified them to use the convex hull.

In his experimental code, Braconnier (1993) offers the user the option of employing either the

ellipse construction algorithm he has developed or that of Ho (1990). However, Braconnier does not

provide numerical results to illustrate the effects of not determining the optimal ellipse. We have

performed some experiments on the test examples described in Section 4. In these tests algorithms A2

and A3 were combined with the different ellipse construction algorithms. The ellipse algorithms

involve only scalar operations. Moreover, since the convex hull is used, the number of points on which

the ellipse is constructed is small and, in each test case, the time for finding the ellipse was negligible

compared with that for the matrix-vector products and for the reduction to Schur form and checking

for convergence. There appeared to be little to choose between the performance of the ellipse

algorithms and none of them displayed a consistent advantage over the others. Since Ho’s algorithm

does compute the optimal ellipse, in EB13 we have decided to use Ho’s algorithm as the default
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ellipse construction algorithm but offer the user the option of using either the algorithm of Braconnier

or the algorithm of Saad. This choice is controlled by the parameter ICNTL(8) (see Scott 1993 for

further details).

3.6 The degree of the Chebychev polynomial

It is well known that a severe limitation of combining Arnoldi’s method with the use of Chebychev

polynomials is the sensitivity of performance with the degree l of the polynomial. If l is chosen to be

too small, convergence will be unnecessarily slow and there may be no convergence. However, if l is

too large, more matrix-vector products than are really necessary will be performed and again

convergence may not be achieved. We would like a code which is efficient on a range of problems but

is also robust. As a result of our numerical experiments, in EB13 the following criteria for determining

the degree of the Chebychev polynomial are used. Here we let l(k) denote the degree of the polynomial

on the kth iteration.

(1) On the first few iterations, we anticipate that we may not have a good ellipse (that is, an ellipse

which contains the unwanted spectrum of A rather than the computed unwanted eigenvalues). In

this case it is sensible to update the ellipse quite quickly. In particular, we require l(k+1) ≤ l1

where

l = l(k) × (1 + log (k+1)) , (3.4)1 10

with l(1) = 40. This bound ensures that l(k+1) varies from l(k) in a controlled manner and that the

degree of the iteration polynomial increases as the ellipses improve. The initial value l(1) = 40
was chosen as a result of numerical experiments. So that l(k) does not grow without limit, we

impose a maximum restriction on the degree l(k) ≤ICNTL(3) for all k, where ICNTL(3) is a

control parameter (see Section 3.2). The default value for ICNTL(3) set by the initialization

subroutine EB13I is 800.

(2) We impose the restriction on the degree of the Chebychev polynomial used by the code EB12,

namely l(k+1) ≤ l where2

−1l = 0.5 × (1 + log (u )/log (ratio)). (3.5)2 10 10

Here ratio is the ratio of the convergence rates of the slowest and fastest converging eigenvalues

(see Duff and Scott 1993).

(3) Near convergence we attempt to limit the number of unnecessary matrix-vector products by
2limiting the degree of the polynomial. If res ≤CNTL(1)∗10 (see (3.1)), we set l(k+1) ≤ lr 3

where

l = t × (1 +|log (res /CNTL(1))|), (3.6)3 10 r

with t = 40. This condition is taken from Duff and Scott (1993). We found that it was necessary

only to impose this condition for algorithms A3 and AB3. In general, for algorithms A2 and AB2

the number of unnecessary matrix-vector products which results from choosing too large a

degree for the Chebychev polynomial is small and we found that imposing the restriction (3.6)

on these algorithms could result in more iterations being required and an increase in the overall

cost of achieving convergence.
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If the user does not wish the code to use the above criteria for determining the degree of the

polynomial, the degree may be chosen at each iteration using the control parameter ICNTL(4). If

ICNTL(4) has the default value 0, the above criteria (1)–(3) are used to select the polynomial degree,

but if ICNTL(4) is greater than 0 then the degree of the Chebychev polynomial is taken to be

ICNTL(4). We have included this option since it allows the user to experiment with choosing

different degrees for the iteration polynomials and it provides additional flexibility if it proves difficult

to obtain convergence with the requested accuracy for a particular problem.

3.7 The use of high level BLAS

Within the code EB13, only dense linear algebra operations are performed. For efficiency we exploit

Levels 2 and 3 BLAS when performing these operations (Dongarra, Du Croz, Hammarling, and

Hanson 1988 and Dongarra, Du Croz, Duff, and Hammarling 1990). There are two main places in

EB13A where we use BLAS. The first is in the Gram-Schmidt orthogonalisation process and the

second is during the test for convergence. For the unblocked algorithms (A1, A2, and A3), the

Gram-Schmidt process requires matrix-vector products of the form

Th X w (5.1)j

and

w w − X h, (5.2)j

n × j n × 1 n × 1where X = [x , x ,..., x ] ∈ R , w ∈ R , and h ∈ R (j = 1, 2,..., m). In EB13, the Level 2 BLAS1 2 j

routine _GEMV is used to perform each of these matrix-vector products. To orthonormalise the vector

x with respect to each of the vectors x , x ,..., x using the Gram-Schmidt process with one step ofj + 1 1 2 j

iterative refinement requires four calls to _GEMV. For the block algorithms (AB1, AB2, and AB3), if
n × jn n × n n × nb b bn is the blocksize, in (5.1) and (5.2) we have X = [X , X ,..., X ] ∈ R , w ∈ R , and h ∈ R .b 1 2 j

In this case the Level 3 routine _GEMM is used in place of _GEMV.

When testing the ith basis vector for convergence it is necessary to compute ||(AX − XT) || . Ini 2

EB13A the Level 2 BLAS kernel _GEMV is used to compute (AX − XT) and then the Level 1 kerneli

_NRM2 is used to compute res (or R ). Only once x (respectively, R ) has been accepted is resi i i i i + 1

(respectively, R ) computed.i + 1

4 Numerical experiments

In this section we report the results of using EB13 to compute selected eigenvalues of some matrices

arising from practical problems. The performance of EB13 is compared with that of the subspace

iteration code EB12. EB12 offers two algorithms: simple subspace iteration for computing the

eigenvalues of largest absolute value (algorithm S1) and subspace iteration combined with Chebychev

acceleration for computing the right-most (or left-most) eigenvalues (algorithm S2). For ease of

reference, all the algorithms implemented in this study are summarised in Table 4.1.

Most of the problems we have used for performance testing were taken from the the Harwell-Boeing

sparse matrix collection (Duff, Grimes, and Lewis 1992). This collection is now widely accepted and

used in testing and evaluating sparse matrix algorithms. The matrices we selected from the collection

are unsymmetric assembled matrices with the values of the nonzeros supplied, although some of them
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Table 4.1. Summary of the algorithms used in this study.

Algorithm Description

S1 Simple subspace iteration

S2 Subspace iteration with Chebychev acceleration

A1 Basic Arnoldi

AB1 Block Arnoldi

A2 Arnoldi with Chebychev acceleration

AB2 Block Arnoldi with Chebychev acceleration

A3 Chebychev preconditioned Arnoldi

AB3 Block Chebychev preconditioned Arnoldi

(namely PORES2 and PORES3) have a symmetric pattern. The problems and some of their

characteristics are listed in Table 4.2. For more details of the origins of these problems the user is

referred to Duff et al. (1992). The only test problems used which are not currently included in the

Harwell-Boeing set are GRT200, GRT400, and TOLSA. GRT200 and GRT400 were supplied by

Garratt (1990, 1991). These matrices arise from the detection of Hopf bifurcation points and the main

concern for these problems is not the exact values of the eigenvalues but whether the right-most

eigenvalue lies in the left or right-hand plane. As already noted, for the TOLOSA matrix, the

eigenvalues of interest are those of largest imaginary parts. The TOLSA matrix is of order n = 90 + 5k

with 1746 + 9k nonzeros, where k is an integer. Bai (1993) illustrates the eigenvalue distribution of the

TOLSA matrix for n = 90, 140, 240, 340, and 2000. We have chosen n = 1000 and 2000 for our tests.

We ran each of the Arnoldi based algorithms described in Section 2 on a subset of the test matrices
+(the entries marked with in Table 4.2) then, based on our findings for this subset, we chose default

values for our control parameters. We then performed further tests using the remaining test matrices

and the algorithms A3, AB2, and AB3 only. The subset we used for the comprehensive testing

comprised HOR131, GRE1107, PORES3, GRT200, and GRT400. The matrices HOR131 and

GRE1107 were chosen since they provide examples of matrices for which the right-most eigenvalues
6are not favourably separated but are clustered. For the matrix PORES3, λ ≅ −0.35, λ ≅ −0.15∗10 ,1 n

and |λ − λ |/|λ | is small for i small (here we are assuming the eigenvalues are ordered in descendingi 1 n

order of their real parts). The matrices GRT200 and GRT400 have similar properties, that is, the

left-most eigenvalues are large and negative while the right-most eigenvalues (which are those of

practical importance) are close to the imaginary axis. The matrix IMPCOLA is rather different since
2 1 1for this matrix λ ≅ 0.58∗10 , λ ≅ 0.12∗10 , and λ ≅ −0.13∗10 . Hence λ is well separated and1 2 n 1

should be easy to compute using any of the algorithms we have discussed, but we anticipate that

computing more than one eigenvalue will be harder.

The numerical experiments were performed on an IBM RISC System/6000 Model 550 using double

precision arithmetic and on a single processor of a Cray Y-MP using single precision arithmetic. The
3convergence tolerance CNTL(1) was taken to be the default u∗10 , where u is the machine precision

−16 −15(u = 2.2204∗10 for the RS/6000 and u = 7.1054∗10 for the Y-MP). In the tables of results (which

are presented together at the end of this section), an entry which is marked with an † indicates the

requested accuracy was not achieved before the stopping criteria terminated the computation and an
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Table 4.2. Characteristics of the matrices used for performance testing.

Number of Henrici ||A||Matrix Order Description/DisciplineFentries number

+GRE1107 1107 5664 7.7E-01 1.8E+01 Simulation of computer systems
+GRT200 200 796 2.3E+00 6.8E+04 Hopf bifurcation problem
+GRT400 400 1596 1.5E+00 3.9E+05 Hopf bifurcation problem
+HOR131 434 4710 2.8E-02 2.1E+00 Flow network problem

+IMPCOLA 207 572 5.3E+00 2.4E+03 Heat exchanger network

IMPCOLB 59 312 1.8E+00 1.4E+01 Cavett’s process

IMPCOLC 137 411 1.5E+01 1.4E+02 Ethylene plant model

IMPCOLD 425 1339 1.7E+00 1.4E+02 Nitric acid plant model

IMPCOLE 225 1308 9.5E+01 1.6E+04 Hydrocarbon separation problem

NNC261 261 1500 1.1E+00 3.9E+03 Nuclear reactor core modelling

NNC666 666 4044 1.0E+00 6.5E+03 Nuclear reactor core modelling

NNC1374 1374 8606 1.0E+00 9.6E+03 Nuclear reactor core modelling

PORES2 1224 9613 4.3E+00 1.5E+08 Reservoir modelling
+PORES3 532 3474 1.4E+00 6.6E+05 Reservoir modelling

TOLSA 1000 3384 3.0E+03 1.0E+07 Aerospace engineering

TOLSA 2000 5184 5.8E+03 5.4E+07 Aerospace engineering

WEST0156 156 371 1.6E+07 1.9E+07 Chemical engineering

WEST0167 167 507 2.0E+02 6.4E+05 Chemical engineering

WEST0381 381 2157 2.1E+02 3.0E+03 Chemical engineering

WEST2021 2021 7353 3.5E+01 1.8E+06 Chemical engineering

entry marked by ** indicates the default number of matrix-vector products or default number of

iterations was insufficient. On each machine, the implementations of the BLAS provided by the

manufacturer were employed.

In order to check the accuracy of the computed eigenvalues, all the eigenvalues of each of the test

matrices were computed using the QR algorithm. To do this, the Harwell Subroutine Library code

EB07 was employed. It is interesting to note that on the Cray Y-MP it took 37.6 CPU seconds to

compute all the eigenvalues of the TOLSA matrix of order 1000 and 606.7 seconds for the TOLSA

matrix of order 2000. If only the eigenvalue of largest imaginary part is required then the CPU times

required using algorithm A3 in EB13 were 3.2 and 12.3 seconds, respectively (see Table 4.6a). In the

tables of results, FE denotes the maximum relative forward error, that is,max

∗|λ − λ |i iFE = max ,max |λ |1 ≤ i ≤ r i

∗where λ and λ are the exact and computed i th eigenvalue of A, respectively.i i

Throughout this section, r denotes the number of eigenpairs sought and n denotes the blocksize.b

For EB13 (algorithms A1, AB1, A2, AB2, A3, AB3), m is the number of Arnoldi steps used on each

iteration (so that the order of the Hessenberg matrix is mn ), and for EB12 (algorithms S1, S2), m isb
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the subspace dimension. In each test, the implicit deflation techniques outlined in Section 2 are used

wherever appropriate. All CPU timings are in seconds. For EB13, Res denotes the maximum of themax

scaled eigenvector residuals given by (3.16a), and for EB12, Res is the maximum of the residualsmax

given by (3.16b). We have this difference since the current version of EB12 does not offer the option

of using (3.16a), although on the basis of our current findings it may be necessary to include this

option in future releases of EB12.

In Tables 4.3a and 4.3b we present a comparison of the subspace iteration and Arnoldi methods for
+computing the right-most eigenvalue of each of the test matrices marked with in Table 4.2. Table 4.3a

gives results for the Cray Y-MP and Table 4.3b for the IBM RS/6000. For the matrices GRT200,

GRT400, and PORES3 the right-most eigenvalues are not those of largest absolute value, so the simple

subspace iteration algorithm S1 and the basic Arnoldi algorithms A1 and AB1 are not appropriate. In

these initial tests we are only interested in computing a single eigenvalue (or one complex conjugate

pair of eigenvalues), but we did perform some runs using the block algorithms (with n > r). From theb

tables we observe that, as expected, each of the algorithms converged to the right-most eigenvalue of

the matrix IMPCOLA in a single iteration. For the other examples, the block methods generally

required more matrix-vector products than the unblocked methods, but a smaller number of iterations.

On the Y-MP, this resulted in the block methods AB2 and AB3 requiring less total CPU time than the

unblocked methods A2 and A3 but, on the RS/6000, the difference was less clear-cut and algorithm A2

generally performed well. However, for the matrix PORES3, A2 did not achieve the requested

accuracy before the stopping criteria for slow convergence stopped the computation. Algorithm S2

failed to achieve the requested accuracy for this problem within the default number of matrix-vector

products. We did try other values of m but for each of the values tried, algorithm S2 did not achieve the

required accuracy within the default limit.

In Tables 4.4a and 4.4b we compare the performances of the subspace iteration and Arnoldi methods

for computing the eight right-most eigenvalues of the test matrices HOR131, GRE1107, IMPCOLA,

and PORES3. For the unblocked algorithms, for HOR131, GRE1107, and IMPCOLA we give results

for m = 24 and m = 40; for PORES3 results for m = 40 and m = 64 are given since m = 24 gave much

poorer results. For the block algorithms, we took the block size to be n = r+2 (for IMPCOLA,b

n = r+3 since λ and λ are a complex conjugate pair of eigenvalues), and with up to 8 Arnoldi stepsb r r+1

on each iteration. These choices were made for m since experience showed that, for the block methods,

the best computational times are achieved by taking a much smaller number of Arnoldi steps on each

iteration than for the unblocked methods. Recall that the storage requirements are proportional to mnb

and the Hessenberg matrix is of order mn , so with the values of m and n we used the storageb b

requirements and work involved in computing the eigenvalues of the Hessenberg matrix were

generally similar for the block and unblocked methods.

For the relatively straightforward test examples HOR131 and GRE1107, the subspace iteration

algorithm S1 performs well (when the computational times for convergence are considered) compared

with the Arnoldi algorithms. As expected, for these problems with clustered eigenvalues, the basic

Arnoldi methods (A1 and AB1) require a large number of iterations and a large number of Arnoldi

steps per iteration and, in general, these methods are seen not to be competitive with either the Arnoldi

methods with Chebychev acceleration or the preconditioned Arnoldi methods. For the matrices

IMPCOLA and PORES3, the subspace iteration algorithm performed poorly, failing to give the
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requested accuracy. For the matrix IMPCOLA (which does not have clustered eigenvalues), the block

methods AB2 and AB3 performed less well than their unblocked counterparts A2 and A3. For

PORES3, algorithm A2 failed to achieve the required accuracy. For most of the problems tried,

algorithm A2 performed less well than algorithm A3 when more than one eigenvalue was required. We

found that, for A2, the eigenvalues converged one at a time so that the number of iterations required

increased with the number of eigenvalues sought. However, for A3, several eigenvalues converged at a

single step so that the number of iterations required was often no more than for the convergence of a

single eigenvalue.

We performed some experiments using different block sizes for algorithms AB2 and AB3. We

summarize our findings in Tables 4.5a and 4.5b. In each of the reported tests the number of Arnoldi

steps per iteration was taken to be 8. For problems IMPCOLA and GRE1107, with n = r, algorithmb

AB2 did not give the requested accuracy but algorithm AB3 appeared to be less sensitive to the choice

of n . On the basis of our experience, we would recommend using a block size which is at least asb

large as the largest cluster of wanted eigenvalues.

We experimented further with algorithms A3, AB2 and AB3 using the test problems given in Table

4.2 which were not used in Tables 4.2 and 4.3. The results are in Tables 4.6a and 4.6b. For the TOLSA

matrices the eigenvalue of largest imaginary part was computed and for the other matrices the

right-most eigenvalues were computed. Results for the TOLSA matrices on the RS/6000 are not

included since it was found to be prohibitively expensive to run several experiments with these

matrices on the RS/6000 because of the time taken for the matrix-vector products. For example, using

algorithm A3 on the RS/6000 to compute one eigenvalue of the TOLSA matrix of order 1000 required

only 4 iterations but a CPU time of 521 seconds, of which 518 seconds was for the matrix-vector

products. The results in Tables 4.6a and 4.6b broadly confirm our previous findings. In general we see

that algorithm AB2 requires a greater number of iterations for convergence than algorithms A3 and

AB3. However, since each iteration for AB3 involves (m−1)ln matrix-vector products while for AB2b

each iteration involves only ln products (l is the degree of the Chebychev polynomial), the totalb

number of products for AB2 (and the time taken to compute them) can be significantly less than for

AB3. Moreover, for a range of values of m and n , AB3 failed to give convergence with the requestedb

accuracy for the TOLOSA matrices. The conflict between a small number of iterations and a small

number of products makes it impossible (without some prior knowledge of the problem) to predict

which of the algorithms A3, AB2, and AB3 is most likely to converge with the required accuracy in

the shortest time. For this reason we allow the user of EB13 to choose which method is employed. The

default offered by EB13 is AB3, which reduces to A3 if the user sets the blocksize to 1.
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Table 4.3a. A comparison of subspace iteration and Arnoldi methods

for computing the right-most eigenvalue (Cray Y-MP).

Matrix- CPU Time Total CPUn Res FEProblem Algorithm m Iterations vector forb max maxTimeproducts products

HOR131 S1 10 6 399 0.14 0.18 4.70E-10 3.98E-13
S2 10 4 289 0.11 0.17 1.54E-08 4.51E-13
A1 10 5 51 0.14 0.16 2.75E-13 3.01E-13

AB1 8 2 6 98 0.13 0.20 9.34E-14 2.68E-13
A2 10 2 61 0.16 0.18 7.24E-15 4.73E-13

AB2 8 2 2 114 0.15 0.18 6.89E-15 4.73E-13
A3 10 2 381 0.99 1.03 7.22E-14 2.36E-13

AB3 8 2 2 594 0.78 0.85 1.17E-13 9.68E-14

GRE1107 S1 8 15 1983 0.93 1.07 4.08E-08 9.15E-10
S2 8 19 3359 1.58 1.92 1.60E-08 5.53E-09
A1 12 13 158 0.53 0.67 1.04E-04† 4.91E-04

AB1 6 4 13 316 0.29 0.82 4.38E-04† 9.84E-04
A2 12 6 597 1.93 2.06 4.89E-13 5.15E-13

AB2 6 4 5 1280 1.13 1.52 7.32E-15 1.03E-13
A3 12 2 465 1.54 1.64 5.68E-14 1.26E-12

AB3 6 4 4 3440 2.99 3.67 4.64E-14 9.27E-13

IMPCOLA S1 10 1 29 0.01 0.02 1.42E-13 5.02E-14
S2 10 1 29 0.01 0.02 1.42E-13 5.02E-14
A1 10 1 11 0.01 0.01 2.26E-12 1.25E-13
A2 10 1 11 0.01 0.01 2.26E-12 1.25E-13
A3 10 1 11 0.01 0.01 2.26E-12 1.25E-13

GRT200 S2 8 13 5079 1.55 1.66 1.51E-08 5.10E-09
A2 8 8 1603 0.78 0.88 1.65E-10 4.71E-09

AB2 6 4 6 2124 0.27 0.45 2.01E-10 4.65E-09
A3 8 5 2069 1.01 1.13 4.90E-10 4.71E-09

AB3 6 4 4 3460 0.44 0.64 2.11E-10 4.66E-09

GRT400 S2 10 19 14239 8.79 9.19 7.03E-08† 3.67E-08
A2 10 11 4029 4.08 4.40 6.08E-14 9.16E-09

AB2 6 4 7 3548 0.92 1.21 7.75E-14 9.15E-09
A3 10 6 3345 3.36 3.64 9.60E-15 9.04E-09

AB3 6 4 6 6028 1.58 2.02 4.84E-15 8.96E-09

PORES3 S2 12 ** ** ** ** **
A2 12 10 3250 6.64 6.66 3.25E-07† 1.08E-02

AB2 6 4 10 12760 6.75 7.78 4.87E-15 1.04E-11
A3 12 7 7279 14.24 15.13 8.71E-13 1.92E-13

AB3 6 4 7 11472 6.01 7.03 3.24E-13 3.63E-10
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Table 4.3b. A comparison of subspace iteration and Arnoldi methods

for computing the right-most eigenvalue (IBM RS/6000).

Matrix- CPU Time Total CPUn Res FEProblem Algorithm m Iterations vector forb max maxTimeproducts products

HOR131 S1 10 6 439 0.26 0.42 2.73E-11 4.71E-13
S2 10 4 429 0.25 0.40 1.87E-12 4.71E-13
A1 10 6 61 0.15 0.25 9.30E-15 4.71E-13

AB1 8 2 7 114 0.09 0.44 6.22E-16 4.72E-13
A2 10 2 61 0.14 0.20 1.43E-16 4.71E-13

AB2 8 2 2 114 0.11 0.26 2.22E-16 4.72E-13
A3 10 2 381 0.76 0.98 9.35E-17 4.70E-13

AB3 8 2 2 594 0.73 1.12 2.55E-16 4.72E-13

GRE1107 S1 8 10 2319 1.96 2.47 22.8E-10 5.19E-11
S2 8 14 3375 2.45 4.29 1.42E-08 3.85E-09
A1 12 13 158 0.48 1.40 1.83E-04† 8.61E-04

AB1 6 4 13 316 0.28 3.04 4.30E-04† 9.34E-04
A2 12 7 943 2.66 4.18 3.35E-17 7.69E-14

AB2 6 4 5 1280 1.51 4.37 3.72E-16 7.50E-14
A3 12 4 1743 4.88 7.67 1.31E-16 7.01E-14

AB3 6 4 4 3460 4.23 10.33 5.01E-17 7.67E-14

IMPCOLA S1 10 1 29 0.01 0.03 1.19E-13 1.57E-15
S2 10 1 29 0.01 0.03 1.19E-13 1.57E-15
A1 10 1 11 0.08 0.02 1.98E-14 0.00E+00
A2 10 1 11 0.08 0.02 1.98E-14 0.00E+00
A3 10 1 11 0.08 0.02 1.98E-14 0.00E+00

GRT200 S2 8 12 6175 1.21 1.79 1.23E-09 5.75E-09
A2 8 8 1603 0.66 1.12 3.66E-16 4.71E-09

AB2 4 4 7 3548 0.59 1.60 5.32E-17 4.71E-09
A3 8 5 2070 0.86 1.55 2.11E-16 4.71E-09

AB3 4 4 5 3552 0.51 1.61 1.90E-16 4.71E-09

GRT400 S2 8 12 7255 2.66 3.81 8.93E-09 9.23E-09
A2 8 11 4029 3.26 5.40 5.94E-14 1.02E-08

AB2 4 4 8 6248 1.83 5.29 2.82E-17 9.04E-09
A3 8 6 3514 2.93 4.92 1.60E-16 9.03E-09

AB3 4 4 6 6028 1.96 5.20 5.50E-16 9.03E-09

PORES3 S2 12 ** ** ** ** ** **
A2 12 10 3250 5.47 7.93 3.25E-07† 1.08E-02

AB2 6 4 9 9536 6.84 14.45 5.93E-08† 1.91E-03
A3 12 7 9523 16.32 23.32 1.42E-17 1.41E-10

AB3 6 4 7 13452 9.50 21.06 8.93E-15 1.07E-10

25



Table 4.4a. A comparison of subspace iteration and Arnoldi methods

for computing the eight right-most eigenvalues (CRAY Y-MP).

Matrix- CPU Time
Total CPUn Res FEProblem Algorithm m Iterations vector forb max maxTime

products products

HOR131 S1 40 5 505 0.39 0.56 3.17E-08 6.76E-12

24 9 910 0.21 0.38 7.28E-08 1.28E-11

S2 40 11 1693 0.31 0.82 5.00E-08 8.68E-12

24 12 1919 0.41 0.65 5.30E-08 8.20E-12

A1 40 5 202 0.50 0.66 6.64E-12 5.64E-13

24 22 497 1.17 1.42 3.78E-12 4.92E-13

AB1 4 10 16 650 0.20 0.99 4.06E-12 4.41E-13

6 10 6 370 0.11 0.78 1.63E-12 4.41E-13

A2 40 9 999 2.56 2.92 1.68E-12 8.17E-13

24 11 439 1.08 1.23 2.35E-13 4.31E-13

AB2 4 10 3 414 0.16 0.34 2.27E-12 4.73E-13

6 10 3 444 0.17 0.53 4.48E-13 5.69E-13

A3 40 2 720 1.80 1.95 3.03E-12 3.36E-13

24 2 477 1.17 1.25 1.79E-12 3.33E-13

AB3 4 10 3 1360 0.39 0.66 2.61E-12 4.80E-13

6 10 2 1080 0.31 0.62 3.11E-12 4.41E-13

GRE1107 S1 40 32 8651 1.44 4.36 5.01E-08 1.14E-07

24 27 6013 1.30 2.32 4.60E-08 1.61E-08

S2 40 40 9712 1.68 5.97 6.12E-08 1.02E-07

24 36 6540 1.43 3.10 5.45E-08 1.66E-07

A1 40 46 1949 5.95 9.06 7.83E-06† 7.06E-03

24 74 2001 5.55 7.50 6.70E-05† 7.46E-03

AB1 4 10 ** ** ** ** ** **

6 10 51 3070 1.21 12.84 1.38E-13 1.20E-12

A2 40 42 8060 27.17 30.73 8.40E-09† 8.00E-08

24 54 7832 26.16 28.20 1.51E-07† 1.09E-06

AB2 4 10 5 2260 1.14 1.99 1.66E-12 2.19E-11

6 10 4 1855 0.73 1.92 7.95E-13 2.28E-11

A3 40 2 1656 5.45 5.92 8.81E-14 3.15E-12

24 2 984 3.20 3.44 9.11E-14 2.94E-12

AB3 4 10 4 4370 1.63 2.78 9.74E-14 3.43E-12

6 10 2 2130 0.80 1.64 7.20E-14 2.64E-12

IMPCOLA S2 40 19 1471 0.04 0.95 6.56E-08† 3.24E-06

24 52 2553 0.07 1.07 1.22E-06† 1.41E-05

A2 40 7 306 0.11 0.36 4.05E-13 9.31E-09

24 21 555 0.19 0.43 2.68E-12 1.04E-08

AB2 6 11 7 679 0.03 1.04 1.25E-13 2.57E-09

8 11 4 468 0.02 1.18 8.06E-14 1.59E-09

A3 40 2 284 0.08 0.20 8.69E-14 2.77E-10

24 4 315 0.09 0.17 1.00E-12 2.15E-09

AB3 6 11 4 935 0.03 0.69 3.47E-14 9.31E-10

8 11 3 891 0.03 0.97 7.67E-15 9.17E-13

PORES3 S2 40 25 84503 7.71 10.99 7.84E-08 1.70E-09

A2 40 48 17026 34.34 37.47 7.98E-07† 1.29E-02

64 36 16895 34.20 39.49 4.67E-07† 0.12E+00

AB2 4 10 10 25308 7.05 9.37 1.84E-12 2.97E-08

6 10 10 23910 7.09 9.96 9.37E-13 2.37E-08

A3 40 7 18508 37.30 39.37 1.51E-12 5.93E-08

64 4 10713 21.47 23.11 2.10E-13 2.67E-09

AB3 4 10 9 23260 5.27 7.58 1.11E-12 2.23E-09

6 10 6 19570 4.44 6.62 2.64E-12 3.22E-09
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Table 4.4b. A comparison of subspace iteration and Arnoldi methods

for computing the eight right-most eigenvalues (IBM RS/6000).

Matrix- CPU Time
Total CPUn Res FEProblem Algorithm m Iterations vector forb max maxTime

products products

HOR131 S1 40 5 611 0.42 1.30 9.48E-10 4.71E-12

24 9 1007 0.54 1.27 1.24E-08 4.58E-13

S2 40 8 2255 1.62 3.45 5.19E-09 3.20E-12

24 12 2476 1.44 2.71 9.78E-10 4.72E-12

A1 40 8 321 0.71 2.06 3.37E-14 4.67E-13

24 28 635 1.25 2.87 4.09E-15 4.71E-13

AB1 4 10 23 930 0.64 5.38 1.24E-14 4.71E-13

6 10 11 670 0.42 5.98 1.33E-14 4.71E-13

A2 40 5 280 0.56 1.37 3.75E-15 4.71E-13

24 12 485 1.04 1.81 1.09E-15 4.71E-13

AB2 4 10 3 456 0.30 1.14 9.77E-15 4.71E-13

6 10 4 640 0.44 2.72 6.79E-16 4.71E-13

A3 40 2 777 1.64 2.60 8.74E-15 4.72E-13

24 3 844 1.10 1.53 5.52E-16 4.73E-13

AB3 4 10 3 1480 1.22 2.81 6.68E-16 4.71E-13

6 10 3 2290 2.01 5.22 1.43E-16 4.71E-13

GRE1107 S1 40 19 9044 9.88 18.81 3.96E-09 2.23E-09

24 23 6651 4.87 9.24 8.28E-09 1.14E-09

S2 40 24 11256 12.02 26.07 1.54E-08† 1.56E-08

24 20 7691 5.60 11.65 2.82E-10 3.85E-10

A1 40 ** ** ** ** ** **

24 ** ** ** ** ** **

AB1 4 10 ** ** ** ** ** **

6 10 63 3790 3.64 76.19 3.04E-15 1.56E-12

A2 40 53 11291 32.14 64.54 2.16E-11† 5.12E-09

24 72 11832 34.42 58.20 1.08E-09† 1.09E-08

AB2 4 10 19 12899 16.06 44.28 1.15E-10† 3.04E-11

6 10 10 6202 7.54 27.30 5.71E-11† 1.01E-09

A3 40 2 1656 5.07 8.51 1.59E-16 1.56E-12

24 2 984 2.66 4.53 1.61E-15 1.56E-11

AB3 4 10 3 4940 5.20 15.58 8.55E-16 1.57E-12

6 10 2 2130 2.27 8.03 6.87E-16 1.56E-12

IMPCOLA S2 40 18 1529 0.14 3.58 3.89E-08† 2.72E-06

24 50 2195 0.22 3.30 1.22E-06† 8.63E-06

A2 40 7 315 0.08 1.22 2.08E-16 8.23E-12

24 22 616 0.13 1.06 3.85E-06† 2.42E-02

AB2 6 11 7 723 0.03 4.39 4.23E-16 4.95E-12

8 11 5 607 0.04 6.05 9.54E-16 1.51E-12

A3 40 2 284 0.09 0.63 4.94E-15 1.60E-11

24 5 482 0.23 0.80 3.81E-14 1.08E-10

AB3 6 11 4 1100 0.21 3.25 4.65E-16 9.35E-12

8 11 3 1045 0.21 4.51 2.81E-16 5.79E-12

PORES3 S2 40 ** ** ** ** **

A2 40 27 9965 17.55 27.61 4.00E-05† 1.86E+00

64 33 17781 29.33 56.05 1.97E-06† 6.01E-02

AB2 4 10 11 30951 15.41 40 30 4.00E-15 2.00E-09

6 10 9 22774 11.84 29.77 2.10E-12 1.98E-09

A3 40 5 11916 20.42 28.54 4.33E-13 1.98E-09

64 4 11245 19.87 27.37 4.32E-13 1.99E-09

AB3 4 10 8 26030 12.82 34.43 2.35E-14 1.99E-09

6 10 6 25070 12.77 35.03 2.57E-15 1.99E-09
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Table 4.5a. The effect of the blocksize n (CRAY Y-MP).b

CPU Time
Matrix-vector Total CPUn Res FEProblem Algorithm m Iterations forb max maxproducts Time

products

HOR131 AB2 4 8 4 416 0.20 0.36 3.75E-12 4.41E-13

6 10 3 444 0.17 0.53 4.48E-13 5.69E-13

AB3 4 8 3 1040 0.36 0.56 2.43E-13 4.62E-13

6 10 2 1080 0.31 0.62 3.11E-12 4.41E-13

GRE1107 AB2 6 8 22 7276 13.13 17.54 7.91E-10 4.49E-09

6 10 4 1855 0.73 1.92 7.95E-13 2.28E-11

AB3 6 8 4 6928 3.17 4.95 1.20E-13 3.37E-12

6 10 2 2130 0.80 1.64 7.20E-14 2.64E-12

IMPCOLA AB2 8 8 15 1270 0.08 2.43 1.85E-06† 0.62E+00

8 11 4 468 0.02 1.18 8.06E-14 1.59E-09

AB3 8 8 3 664 0.03 0.55 2.45E-14 5.46E-10

8 11 3 891 0.03 0.97 7.67E-15 9.17E-13

PORES3 AB2 6 8 11 21589 8.65 11.12 3.65E-12 3.14E-09

6 10 10 23910 7.09 9.96 9.37E-13 2.37E-08

AB3 6 8 7 20744 5.72 8.00 2.02E-12 2.20E-09

6 10 6 19570 4.44 6.62 2.64E-12 3.22E-09

AB2 with block size 8 failed to give any accuracy..we could say failed to converge within default

number of iterations? However, converged with required accuracy by increasing number of steps to

10.

Table 4.5b. The effect of the blocksize n (IBM RS/6000).b

CPU Time
Matrix-vector Total CPUn Res FEProblem Algorithm m Iterations forb max maxproducts Time

products

HOR131 AB2 4 8 6 572 0.48 1.49 9.72E-15 4.72E-13

6 10 4 640 0.44 2.72 6.79E-16 4.71E-13

AB3 4 8 3 1112 0.93 2.05 6.21E-16 4.72E-13

6 10 3 2290 2.01 5.22 1.43E-16 4.71E-13

GRE1107 AB2 6 8 17 7230 11.23 33.39 7.64E-11† 9.87E-11

6 10 10 6202 7.54 27.30 5.71E-11† 1.01E-09

AB3 6 8 4 6888 6.90 21.19 1.27E-15 1.55E-12

6 10 2 2130 2.27 8.03 6.87E-16 1.56E-12

IMPCOLA AB2 8 8 9 996 0.18 5.52 1.36E-06† 6.21E-01

8 11 5 607 0.04 6.05 9.54E-16 1.51E-12

AB3 8 8 4 1128 0.20 3.12 8.87E-17 6.63E-13

8 11 3 1045 0.21 4.51 2.81E-16 5.79E-12

PORES3 AB2 6 8 9 18273 9.04 26.08 3.10E-08† 2.29E-06

6 10 9 22774 11.84 29.77 2.10E-12 1.98E-09

AB3 6 8 7 24268 13.44 34.42 5.19E-14 1.99E-09

6 10 6 25070 12.77 35.03 2.57E-15 1.99E-09
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Table 4.6a. Further results for algorithms A3, AB2, and AB3 (Cray Y-MP).

CPUMatrix-vector Total CPUn Res FEProblem Algorithm r m Iterations Timeb max maxproducts Timefor products

IMPCOLB A3 8 40 2 1656 0.31 0.45 5.60E-14 4.11E-13
AB2 8 5 8 4 1437 0.04 0.22 2.34E-12 1.20E-11
AB3 8 5 8 3 3080 0.08 0.26 3.57E-14 5.81E-13

IMPCOLC A3 14 56 2 1811 0.47 0.71 8.58E-14 7.85E-13
AB2 14 4 14 4 2529 0.06 0.48 4.92E-13 5.87E-13
AB3 14 4 14 3 4074 0.09 0.48 2.60E-14 4.99E-13

IMPCOLD A3 8 40 2 1656 1.38 1.62 1.17E-13 2.05E-12
AB2 8 6 10 6 4290 0.51 1.65 7.10E-14 1.75E-12
AB3 8 6 10 3 4790 0.20 0.66 3.62E-14 2.48E-12

IMPCOLE A3 8 40 2 1655 1.26 1.44 1.02E-14 7.28E-12
AB2 8 6 10 2 530 0.04 0.26 4.87E-15 1.46E-12
AB3 8 6 10 2 2130 0.19 0.47 9.34E-15 1.48E-12

NNC261 A3 8 24 2 523 0.43 0.50 7.53E-14 6.48E-13
AB2 8 4 10 2 490 0.04 0.16 2.00E-13 5.65E-13
AB3 8 4 10 2 1290 0.13 0.28 3.31E-12 6.16E-13

NNC666 A3 8 24 2 615 1.37 1.50 1.20E-13 9.28E-13
AB2 8 4 10 3 795 0.28 0.58 1.06E-12 1.97E-12
AB3 8 4 10 3 2890 0.76 1.27 1.05E-12 1.25E-12

NNC1374 A3 8 24 2 684 3.28 3.49 1.68E-12 1.46E-12
AB2 8 4 10 4 1316 1.00 1.68 1.30E-12 1.35E-12
AB3 8 4 10 3 2890 1.66 2.57 1.01E-12 2.02E-12

PORES2 A3 4 20 2 808 4.47 4.71 5.09E-13 9.43E-09
AB2 4 10 4 4 553 1.17 2.26 1.18E-14 3.81E-13
AB3 4 10 6 3 6729 11.48 15.67 6.68E-13 6.28E-09

WEST0156 A3 8 48 2 1697 0.42 0.63 1.29E-12 1.64E-04
AB2 8 6 10 10 1407 0.07 1.10 4.23E-12 1.72E-04
AB3 8 6 10 7 8630 0.24 1.21 5.91E-13 1.77E-05

WEST0167 A3 8 60 1 68 0.02 0.09 9.44E-16 2.55E-08
AB2 8 8 10 3 545 0.03 0.74 2.06E-13 2.52E-05
AB3 8 8 10 2 1640 0.06 0.60 7.38E-14 5.10E-06

WEST0381 A3 8 24 2 985 1.22 1.33 1.57E-14 1.05E-11
AB2 8 4 10 4 852 0.28 0.54 2.78E-12 5.87E-09
AB3 8 4 10 2 1540 0.50 0.71 1.82E-14 2.52E-11

WEST2021 A3 4 28 2 1145 5.12 5.58 1.32E-16 1.42E-10
AB2 4 11 5 4 939 1.05 2.46 1.13E-14 3.26E-05
AB3 4 11 5 2 2115 2.01 3.26 1.19E-14 2.24E-05

TOLSA1000 A3 1 24 3 2192 3.03 3.49 5.87E-16 1.69E-09
AB2 1 10 4 5 1360 1.94 2.81 2.50E-15 2.11E-10
AB3 1 10 4 5 10608 15.20 17.87 4.67E-05† 0.56E+00

TOLSA2000 A3 1 24 3 2192 11.38 12.26 6.37E-15 9.34E-10
AB2 1 10 4 6 2220 12.94 14.91 1.50E-15 3.57E-10
AB3 1 10 4 5 10608 61.67 66.87 8.99E-05† 0.64E+00
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Table 4.6b. Further results for algorithms A3, AB2, and AB3 (IBM RS/6000).

CPUMatrix-vector Total CPUn Res FEProblem Algorithm r m Iterations Timeb max maxproducts Timefor products

IMPCOLB A3 8 40 2 1656 0.27 0.72 4.41E-16 4.81E-12
AB2 8 5 8 5 2160 0.09 0.92 1.01E-14 4.81E-13
AB3 8 5 8 3 3080 0.07 0.89 3.34E-16 4.79E-13

IMPCOLC A3 14 56 2 1937 0.52 1.51 1.05E-15 1.80E-13
AB2 14 4 14 5 2794 0.25 1.89 2.30E-15 1.76E-13
AB3 14 4 14 3 4074 0.27 2.09 2.02E-14 1.80E-13

IMPCOLD A3 8 40 3 3408 2.81 5.61 2.10E-14 1.61E-12
AB2 8 6 10 6 4698 0.87 7.86 1.91E-14 1.61E-12
AB3 8 6 10 3 4790 1.06 6.27 4.50E-15 1.61E-12

IMPCOLE A3 8 40 2 1655 1.08 2.10 1.95E-16 1.51E-12
AB2 8 6 10 2 530 0.05 1.04 1.95E-16 1.34E-12
AB3 8 6 10 2 2130 0.40 2.13 2.03E-16 1.37E-12

NNC261 A3 8 24 2 592 0.43 0.78 3.50E-16 2.71E-13
AB2 8 4 10 2 490 0.12 0.57 2.41E-14 2.73E-13
AB3 8 4 10 2 1290 0.25 0.97 5.83E-14 2.80E-12

NNC666 A3 8 24 2 684 1.19 1.95 5.61E-16 1.96E-12
AB2 8 4 10 3 795 0.43 1.90 1.81E-13 1.96E-12
AB3 8 4 10 3 2890 1.67 5.20 3.61E-13 1.96E-12

NNC1374 A3 8 24 2 753 2.87 4.63 5.58E-14 1.34E-12
AB2 8 4 10 4 1475 1.71 6.25 9.91E-14 1.34E-12
AB3 8 4 10 4 5210 6.39 18.38 5.11E-14 1.34E-12

PORES2 A3 4 16 3 1657 7.37 11.11 3.93E-13 5.24E-10
AB2 4 10 6 7 1596 3.09 13.71 1.16E-14 9.97E-12
AB3 4 10 6 5 15210 25.58 53.19 1.33E-14 1.69E-12

WEST0156 A3 8 48 4 6941 1.56 4.01 7.26E-15 9.91E-07
AB2 8 6 10 10 1559 0.11 4.29 1.65E-13 8.60E-06
AB3 8 6 10 6 6270 0.13 1.87 4.68E-15 2.95E-07

WEST0167 A3 8 60 1 68 0.02 0.33 1.14E-17 4.64E-10
AB2 8 8 10 4 728 0.06 3.24 3.40E-16 2.55E-08
AB3 8 8 10 2 2620 0.21 2.40 11.1E-14 6.13E-07

WEST0381 A3 8 24 2 984 1.01 1.67 2.34E-16 1.37E-12
AB2 8 4 10 10 5558 2.15 6.92 4.25E-14 7.78E-11
AB3 8 4 10 2 1540 0.65 2.07 2.17E-16 1.26E-12

WEST2021 A3 4 28 2 1145 4.70 9.11 2.28E-18 1.38E-10
AB2 4 11 5 5 1530 2.51 14.41 8.62E-18 2.48E-08
AB3 4 11 5 3 4770 8.93 27.89 2.19E-18 9.80E-10
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5 Conclusion

Although there is considerable interest in solving unsymmetric eigenvalue problems, there has been a

lack of library software implementing Arnoldi methods. The purpose of this study was to efficiently

implement variations of Arnoldi’s method for computing the dominant eigenvalues of large

unsymmetric matrices, to compare their performance on a range of test problems and, on the basis of

the test results, to develop an Arnoldi based library code. The code we have designed and developed is

EB13. This code will be included in the Harwell Subroutine Library. EB13 has been tried and tested

on a set of matrices arising from practical problems. The performance of EB13 has also been

compared with that of the Harwell Subroutine Library code EB12. For the more difficult test

problems, EB13 performed significantly better than EB12.

A key feature of EB13 is that the user has the option of using a basic Arnoldi method, an Arnoldi

method with Chebychev acceleration, or a Chebychev preconditioned Arnoldi method. A block

version of each of these methods, with the blocksize chosen by the user, is also offered. It is not always

possible to advise a user which method will give the best performance for a particular problem on a

given machine hence this need for flexibility. When choosing which method to employ, the user

should consider the following questions.

(1) Are several eigenvalues required?

(2) Are the sought-after eigenvalues known to be clustered?

(3) Can blocks of matrix-vector products be performed efficiently on the machine to be used?

(4) Does the machine to be used offer efficient implementations of the Level 3 BLAS kernel

_GEMM?

If the answer to each of these questions is yes, a block algorithm AB2 or AB3 should be tried.

However, if only one eigenvalue is wanted, algorithm A2 may give a better performance. Furthermore,

for computing one or more eigenvalue, the number of matrix-vector products required by A3 will often

be considerably less than for AB3. Even if the user makes a poor choice of method for the problem of

interest, EB13 has been designed to terminate the computation leaving the user with information

which should be helpful in resetting the input parameters to achieve convergence on a subsequent run.

To limit as much as possible the number of input parameters which must be set by the user, at each

iteration EB13 automatically selects the degree of the Chebychev polynomial. The criteria used by

EB13 to determine the polynomial degree are designed to ensure the code is robust. For some

problems this may mean that other choices of the degree will lead to more rapid convergence.

However, through the use of control parameters, the user is able to overrule the choice of degree made

by EB13 at any stage of the computation. This increases the flexibility of the code and is a feature

which the more experienced user may wish to exploit to enhance the rate of convergence.
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6 Availability of the code EB13

EB13 is written in standard FORTRAN 77. The code will be included in Release 12 of the Harwell

Subroutine Library and anyone interested in using the code should contact the HSL Manager: Ms L

Thick, Harwell Subroutine Library, AEA Technology, Building 8.19, Harwell, Oxfordshire, OX11

0RA, England, tel (44) 235 432688, fax (44) 235 432989, or e-mail libby.thick@aea.orgn.uk, who will

provide details of price and conditions of use.
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