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1 INTRODUCTION 1

1 Introduction

Large-scale simulations in many areas of science and engineering involve the
repeated solution of large sparse linear systems of equations of the form

Az =b. (1.1)

Solving these systems is generally the most computationally expensive step
in the simulation. As time-dependent three-dimensional simulations are now
commonplace, there is a need to develop algorithms and software that can be
used to efficiently solve such problems on parallel supercomputers.

The frontal method is a variant of Gaussian elimination that offers one
approach to solving linear systems in either element or non-element form. It
was first developed in the 1970s by Irons (1970) (see also Hood, 1976) for finite
element problems at a time when there was a need to solve problems for which
the matrix A and its LU factors were too large to be stored in the main memory
of the available computers. For finite element problems, A is a sum of elemental
matrices

A= AW, (1.2)

where each A®) has nonzeros only in a few rows and columns and corresponds
to the matrix from element k. The principal idea is to avoid assembling all the
elements into one large sparse system matrix A but to assemble the A® one
at a time into a small dense frontal matrix. As soon as a variable becomes fully
summed (that is, it is not involved in any of the elemental matrices still to be
assembled), it becomes a candidate for elimination. In this way, it is possible
to interleave the assembly and elimination operations. Provided the elemental
matrices are assembled in a suitable order, the size of the frontal matrix can
be kept to a fraction of the total number of variables and, by writing the rows
and columns of the matrix factors to secondary storage (such as direct access
files) as soon as they are generated, the amount of main memory required is
small. This allows large problems to be solved. Furthermore, since the frontal
matrix is held as a full matrix, dense linear algebra kernels can be used is
the innermost loop of the computation. In particular, high-level BLAS kernels
(Dongarra, DuCroz, Duff and Hammarling, 1990) can be exploited, making the
method efficient on a wide range of computer architectures.

The frontal method is not limited to finite-element applications: the method
was extended to non-element problems by Duff (1984). In this case, the rows
of the matrix are assembled one at a time into the frontal matrix which, in
this case, is rectangular. A variable can be eliminated as soon as the last row
in which it has a nonzero entry has been assembled. The method can also
be generalised to incorporate pivoting for numerical stability. An advantage
of the frontal method over many other direct sparse solvers for non-element
problems is that it does not require the system matrix to have any special
structural or numerical properties such as symmetry, positive definiteness,
diagonal dominance, or bandedness. As chemical process simulation matrices
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possess none of these desirable properties, the choice of suitable solvers is
restricted and the frontal method is an attractive option.

Over the last thirty years, the frontal method has been successfully used to
efficiently solve a wide range of problems from a variety of application areas.
It also lies at the heart of many commercial finite-element packages. However,
a major deficiency of the frontal solution scheme for modern computers is the
lack of scope for parallelism other than that which can be obtained within
the high-level BLAS. In an attempt to circumvent this shortcoming, Duff and
Scott (1994) proposed subdividing the problem into a (small) number of loosely
connected subproblems and allowing an independent front on each subproblem
in a somewhat similar fashion to Benner, Montry and Weigand (1987) and
Zang and Liu (1991) (see also Zone and Keunings, 1991 and, for non-element
problems, Mallya, Zitney, Choudhary and Stadtherr, 1997). It is this so-called
multiple front approach that is implemented in the software reported on in this
paper.

The aim of this paper is to report on the design and development of three
software packages that respectively implement the multiple front method for
unsymmetric finite element problems, for symmetric positive definite finite
element problems, and for highly unsymmetric sparse non-element problems.
These codes have been developed for the software library HSL 2002. The paper
is organised as follows. In Section 2, the multiple front method is reviewed
and its implementation is discussed in Section 3. In Section 4, we look at
software considerations in the design of our parallel codes and then, in Section 5,
we present numerical results for each of the solvers. Finally, in Section 6,
concluding remarks are made.

We end this section by noting that, unless stated otherwise, the numerical
results presented in this paper were computed on a 12 processor SGI Origin2000
using the “cpuset” facility to give exclusive access to processors and their local
memory. The Fortran 90 compiler was used in 64 bit mode with optimization
flags 03 -0OPT:01limite=0. All presented timings are wallclock times given in
seconds.

2 Multiple fronts

2.1 Element problems

We first introduce the multiple front approach for finite-element problems. We
start by partitioning the underlying finite-element domain 2 into a chosen
number N of non-overlapping subdomains €2;. This is equivalent to preordering
the original matrix A to doubly-bordered block diagonal form

A1 Cq
Ao Co

ANN Cn
Ci C .. Cy XYN,E
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where the diagonal blocks Aj; are n; X n; and the border blocks C; and é’l are
n; x k and k x ny, respectively (with C = C’IT in the symmetric case). If k; < k
is the number of columns of C; with at least one nonzero entry, the division into
subdomains should be chosen so that k; < n;. A partial frontal decomposition
is performed on each of the matrices

( Au ), (2.2)
G E

(with any zero columns removed). These decompositions may be performed
in parallel. At the end of the assembly and elimination processes for each
subdomain €2;, there will remain k; interface variables. These variables are
shared by more than one subdomain and so are not fully summed and cannot be
eliminated within the subdomain. In practice, there may also remain variables
that are not eliminated within the subdomain because of efficiency or stability
considerations (see Section 4.2). These variables are added to the border and
k is increased. If Fj is the local Schur complement for subdomain ; (that
is, F; holds the frontal matrix that remains when all possible eliminations on
subdomain €; have been performed), once each of the subdomains has been
partially factorized, we have

Ly Uy U
L2 Us UZ
A=P . . Q, (2.3)
R R {/N UN ﬁN
Li Lo .. Ly I F

where P and () are permutation matrices and the k£ X k matrix F' is the sum
of the Fj matrices and is termed the interface matriz. By treating each of the
subdomain frontal matrices F} as an elemental matrix, the interface matrix F
may also be factorized using the frontal method. Forward eliminations and
back-substitutions can be then be performed (in parallel) on the subdomains
to complete the solution.

2.2 Non-element problems

To extend the multiple front approach to general sparse systems with an
unsymmetric sparsity pattern, we preorder the matrix to singly bordered block
diagonal form
A1 C1
Ao Cy
, (2.4)
Ann Cn

where the diagonal blocks Aj; are now rectangular m; x n; matrices with m; > n;,
and the border blocks Cj are my x k with k < n;. In this case, the frontal method
is used to perform a partial LU decomposition on each of the matrices

( An G ) (2.5)
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(again, any zero columns are assumed to have been removed). Assuming A
is nonsingular, as the rows of (2.5) are assembled, n; variables become fully
summed and may be eliminated. These variables correspond to the columns of
Ay; the k; nonzero columns of Cj do not become fully summed because they
have entries in at least one other border block C; (j # [). At the end of the
assembly and elimination operations, for each block there will remain a frontal
matrix Fj of order (m;—n;) X k; (if A is singular, fewer than n; eliminations may
be possible so that the size of F; will increase). The sum F' of these remaining
frontal matrices may again be factorized using the frontal method, followed by
block forward eliminations and back-substitutions.

In the remainder of this paper, to unify the discussion of element and non-
element problems, we will denote by { A;;, C;} the subproblem which, for element
problems, corresponds to (2.2) and, for non-element problems, to (2.5).

2.3 Finding a good preordering

As already stated, the multiple front method requires the matrix A to be
first preordered to bordered block diagonal form. Each subproblem {A;,C;}
is than partially factorized. As this may be done in parallel, the number
N of blocks should be at least as large as the number p of processes used.
For each subproblem there will remain interface variables that are not fully
summed within the subproblem (plus any variables that cannot be eliminated
for stability reasons). In the software reported on in this paper, the interface
matrix F' corresponding to these variables is factorized by a single process. Thus
to avoid the solution of the interface problem becoming a serious bottleneck, the
size of the interface matrix needs to be as small as possible. In other words, the
preordering to block diagonal form should aim to minimise the interconnection
between the subproblems. As the number of interface variables increases with
the number of subproblems, if good overall speedup is to be achieved, the
multiple front approach is most suited for use with a relatively small number of
processors (typically, 8 or 16). Furthermore, if the subproblems are of a similar
size, with a similar number of interface variables, good load balance can often
be achieved by choosing the number p of processors equal to a multiple of the
number of subproblems V.

An important early decision when designing our software was not to include
within it (at least initially) software for preordering the problem to bordered
block diagonal form. Instead, the user must perform some preprocessing
and make available a list of the elements or rows belonging to each of the
subproblems. Our decision was made partly because the choice of a good
preordering is very problem dependent and also because this is still a very active
research area and no single approach has yet emerged as being ideally suited
for the full range of applications of interest to us. Moreover, in many practical
problems, a natural partitioning depending on the underlying geometry or
physical properties of the problem is often available. For example, for a finite-
element model of an aircraft, it may be appropriate to consider the fuselage as
one or more subproblems and the wings as two further subproblems. Again,
in chemical process engineering applications, the matrix can naturally occur
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in the required form (see Mallya et al., 1997) and this may render reordering
unnecessary.

When no such ordering is available, for finite-element problems the user is
advised to use a graph partitioning code, a number of which are now available
in the public domain, including Chaco (Hendrickson and Leland, 1995) or
METIS (winter.cs.umn.edu/~karypis/metis/). For the highly unsymmetric
problems that arise in chemical process engineering, the MONET algorithm
of Hu, Maguire and Blake (2000) has been shown to perform extremely well,
producing very small interfaces for modest-sized N. An implementation of this
algorithm is available within the mathematical software library HSL as routine
HSL_MC66. Alternatively, if the matrix can be permuted to banded form, the
user could consider partitioning the rows into N blocks each with an equal (or
nearly equal) number of rows. For example, if N = 2, the banded linear system
may be represented as

A1 4 0
( woG0 ) | (2.0
and this can be permuted to the bordered form
An C1
. 2.
< Az O ) @.7)

For the interface problem to be small, the bandwidth must be narrow, ideally
with sparsity within the band. This approach to subdividing the matrix is used
in a recent paper by Golub, Sameh and Sarin (2001). Preordering a matrix with
a symmetric sparsity pattern to banded form may be performed using the HSL
code MC60, which includes an efficient implementation of the Reverse Cuthill
McKee algorithm (Cuthill and McKee, 1969).

We remark that for the very sparse matrices arising from circuit simulation
problems, a possible approach to ordering the matrix to doubly bordered block
diagonal form is suggested by Bomhof and van der Vorst (2000).

Note that in many applications, the user is interested in factorizing a number
of matrices with the same sparsity pattern. For example, in solving a nonlinear
system using Newton’s method, a single Newton step will correspond to solving
(1.1). In such cases, the cost of the preordering the sparsity pattern of A to
bordered form may be amortized over a number of Newton steps.

3 Implementation of the multiple front algorithm

3.1 The frontal method and MA42

Before discussing the design and development of our software for the multiple
front algorithm, we briefly consider how the frontal algorithm for solving (1.1)
is implemented within the HSL frontal solver MA42. MA42 is quite a complicated
code and represents considerable programming effort. It has also proved to be
very robust and reliable. We were therefore keen to exploit MA42 within our
multiple front software, with a minimum number of modifications.
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MA42 was developed in the early 1990s by Duff and Scott (1993, 1996),
superseding the earlier well known code MA32 (Duff, 1981). Although primarily
designed for finite-element problems, by offering the user the option of entering
the matrix data by rows, MA42 can also be used to solve general sparse linear
systems. A later code MA62 (Duff and Scott, 1998), which adopted similar design
principles to those used by MA42, is for symmetric positive definite finite-element
systems.

In common with many sparse direct solvers, the algorithm used by MA42
(and MA62) may be split into three phases as follows:

MA42 Frontal Algorithm:

Symbolic analyse.

A symbolic analysis using the sparsity pattern of A is performed. This
determines when each column of A is fully summed and, optionally, computes
estimates of memory requirements (maximum frontsizes and factor storage) for
the frontal elimination.

Factorize.

The frontal elimination on A, if necessary incorporating pivoting for numerical
stability, is carried out. The columns of L and rows of U are optionally written
to direct access files as they are generated. High level BLAS routines are used
in the innermost loop of the factorization.

Solve.
Forward elimination is followed by back-substitution.

The above algorithm is modified if right-hand side vectors b (in elemental
form) are available at the time of the frontal factorization. In this case, forward
elimination operations are performed as the L and U factors are generated. In
the solve phase, back-substitution is performed to give the final solution. If the
user does not want to solve for further right-hand sides, storage way be reduced
by not retaining the L factor.

More than one right-hand side may be solved for at once. In this case,
MA42 is able to take advantage of Level 3 BLAS in the forward elimination and
back-substitution stages.

A key design feature of MA42 is its use of a reverse communication interface
for the analyse and factorize phases. To avoid the need for the user to have all
the elements or rows of A available at once, control is returned to the user each
time an element (or row) is needed. Each element (or row) has to be passed to
the symbolic analyse and factorize phases just once (integer data only for the
symbolic phase). This use of reverse communication minimises main memory
requirements and allows the user to generate the matrix entries (or read them
from secondary storage) as they are required.

The efficiency of the frontal method depends upon keeping the maximum
frontsize small. MA42 does not preorder the elements for the user: this may
optionally be done using another HSL code, MC63. MC63 (Scott, 1999b) offers
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an efficient implementation of a modified version of Sloan’s algorithm (Sloan,
1989). For non-element problems with an unsymmetric structure, MC62, which
implements the MSRO algorithm of Scott (1999a), may be used. If the problem
has a symmetric (or almost symmetric) sparsity pattern, the HSL code MC60
(Reid and Scott, 1999) for profile reduction is appropriate.

3.2 The multiple front algorithm

We now outline how the multiple front algorithm is implemented within our
software. A key idea is the use of a guard element or row. If we pass the
subproblem {A4;,C;} to a frontal solver, a complete LU factorization of the
subproblem will be performed. However, we do not want this since we cannot
eliminate the interface variables until we have assembled all the contributions
from the other subproblems. To use our existing frontal software, we have to
prevent the interface variables from being eliminated; this is done by flagging
them as not being fully summed within the subproblem. Consider the non-
element case and the submatrix (2.5). Before the start of the symbolic phase,
we add an extra row d; to the submatrix. This row (which we term the guard
row) has a nonzero entry in position j if and only if column j of C; has at least
one nonzero entry. We thus have the (m; + 1) x (n; + k;) matrix A; given by

[ Au C

The matrix Al is passed to the symbolic phase of the frontal code. This flags
all the columns of C; with a nonzero entry as becoming fully summed after
the assembly of row m; + 1, that is, after d; has been assembled. The original
submatrix (Ay Cp) is then passed to the factorize phase. Because the symbolic
analysis was performed on the matrix Al, which has an additional row, the
columns of Cj do not become fully summed, ensuring the eliminations are
restricted to the columns of Aj;.

The element case is handled in a similar way. For each subproblem, an
additional element (the guard element), which comprises a list of the interface
variables in subdomain [, is passed to the symbolic phase. This element is
entered last and, by not passing it to the factorize phase, the interface variables
are prevented from becoming fully summed and remain in the front.

The flexibility of the MA42 reverse communication interface makes it
straightforward for us to pass the extra guard element (or row) to the symbolic
phase and thus, to use MA42 within our multiple front software, it was only
necessary to write an additional routine that could extract from the MA42 data
structures the data remaining in the front after an incomplete factorization.

We emphasise that our multiple front software does not have a reverse
communication interface : it is the “user” of MA42 and handles the MA42 reverse
communication in a way that is shielded from the user of the multiple front
software.

The main steps in the multiple front algorithm are as follows:
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Multiple Front Algorithm:

Initialize: performed by a single process.

e Assign an equal (or nearly equal) number of subproblems to each of the
p processes.

o Generate the guard element (or row) for each subproblem {A4;,C;}.
Reorder (optional) (parallel)

e The elements (or rows) within each subproblem {Aj,C;} are reordered
and estimated flop counts for the frontal solver applied to the subproblem
based on this local ordering are computed. We denote by F; the
permutation matrix that corresponds to the local ordering for subproblem

L.

e The flop counts are used to distribute the subproblems between the
processes in preparation for the factorization. The aim is to achieve a
good load balance in terms of flops.

Frontal factorization (parallel)
For each of its assigned subproblems, process p; performs the following steps:

e A symbolic analysis on the sparsity pattern of the permuted subproblem
{P,Ay;, P,C;} with the addition of the guard element (or row).

e The frontal elimination on {P;Ay, P,C;}, incorporating pivoting as
necessary for numerical stability.

e Storage of the computed rows of U and, optionally, the columns of L. The
rows and columns remaining in the frontal matrix are passed to the host
for assembly.

Interface problem: (single process).

The frontal method is used on a single process to factorize the interface matrix.
Note that other sparse direct solvers could be used but, by using the frontal
method, explicit assembly of the interface matrix is avoided.

Solve (parallel and single process).

Forward elimination in parallel on the submatrices is followed, on a single
process, by forward elimination and back-substitution for the interface problem.
Back-substitution in parallel on the submatrices completes the computation of
the solution.

4 Software considerations

Having outlined the multiple front algorithm, we now discuss some of the
details of our software. The codes for general and symmetric positive definite
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finite-element problems are HSL_MP42 and HSL_MP62, respectively; the code for
unsymmetric assembled systems is HSL_MP43. The prefix HSL is used within
the HSL Library to flag codes that are written in Fortran 90 but, for clarity of
notation, throughout the rest of the paper we will omit this prefix. Fortran 90
was chosen not only for its efficiency for scientific computation but also because
it offers many more features than Fortran 77. In particular, our software makes
extensive use of dynamic memory allocation and this allows a much cleaner user
interface. MPI is used for message passing. This choice was made because the
MPI Standard (MPI, 1994) is internationally recognised and today it is widely
available and accepted by users of parallel computers. Our software does not
assume that there is a single file system that can be accessed by all the processes.
This enables the code to be used on distributed memory parallel computers as
well as on shared memory machines. The use of standard Fortran 90 and MPI,
together with BLAS kernels for the innermost loop of the computation, allows
us to achieve our goal of producing portable software.

Each of our three codes has a similar interface and follows the same design
principles. This has the advantage of making moving from using one code to
another relatively straightforward and at the same time simplifies our software
maintenance. We decided against incorporating all the codes within a single
package since, in our experience of developing HSL codes, offering too many
options within one package adds to the complexity and length of the user
documentation and makes the software both harder to use and to maintain.

Each package requires that one process is designated as the host. The
host performs the initial checking of the user’s data, distributes data to the
remaining processes, collects computed data from the processes, solves the
interface problem, and generally overseas the computation. With the other
processes, the host may also participate in local ordering and in generating the
partial LU decompositions.

4.1 Local ordering

The efficiency of the multiple front method is very dependent on the ordering of
the elements (or rows) within each subproblem (see, for example, Scott, 2001c).
Obtaining a good ordering is of particular importance if a number of matrices
having the same sparsity pattern are to be factorized or if the factors generated
are to be used repeatedly for solving for different right-hand sides b. In such
instances, the effort spent on generating a good local ordering pays dividends
in the resulting reductions in the overall computational times and the factor
storage requirements.

Existing reordering algorithms for frontal solvers were unsuitable because
of their assumption that once a variable has appeared for the last time it can
be eliminated. It was therefore necessary to develop new ordering algorithms
for use with the multiple front method.

For element problems, the local ordering algorithm used is that described
by Scott (1996) and implemented within the HSL code MC53. The basic idea
is that, for each subdomain €;, the algorithm looks for elements which lie as
far away as possible from the interface between §2; and its adjacent subdomains
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(subdomains are said to be adjacent if they have one or more variables in
common). Then, starting with such an element, the reordering moves towards
the interface using a generalisation of Sloan’s algorithm. The aim is to balance
keeping the frontsize small and delaying bringing interface variables into the
front for as long as possible since, having entered the front, these variables
cannot be eliminated.

In the last few years, a number of algorithms for automatically ordering the
rows of a matrix with an unsymmetric sparsity pattern for use with frontal
solvers have been proposed (see Scott, 2000, for an overview). The most
successful currently available are the MSRO methods of Scott (1999a), which
again have their origins in Sloan’s profile reduction algorithm. For the multiple
front method, Scott (2001¢) proposed modifying the MSRO algorithm to take
into account the columns that are not fully summed within the submatrix.
Again, the idea is to delay assembling rows containing interface variables while
keeping local frontsizes small. A Fortran code MC62 implementing the modified
MSRO algorithm has been developed for HSL and is available within our
multiple front software. MC62 may also be optionally used to order the rows of
the interface problem.

Our software allows the user to decide whether or not reordering of the
subproblems is to be performed. Thus, if a matrix with the same (or similar)
sparsity pattern has already been factorized, the user may choose to reuse
the previously computed ordering. Numerical experimentation has shown that

Table 4.1: Timings for the factorize phase of MP43 with and without row
ordering.

Identifier Factorize Factorize Row Ordering
no ordering with ordering ordering plus factorize
4cols 0.67 0.12 0.07 0.19
10cols 3.85 0.31 0.18 0.49
bayer01 1.33 0.93 0.49 1.42
bayer04 0.63 0.39 0.37 0.76
icomp 1.32 0.65 0.54 1.19
lhri4c 0.69 0.56 0.79 1.35
1hr34c 2.30 2.30 1.92 4.22
1hr7ic 4.92 4.61 3.92 8.53
grahaml 9.61 9.79 1.08 10.9
pesa 12.4 0.34 0.10 0.44
poli_large 0.70 0.31 0.06 0.37
Zhao?2 330.1 46.8 0.26 47.1

reusing an ordering can be particularly advantageous for MP43. In Table 4.1,
we compare the time for the factorize phase of MP43 with and without local row
ordering; we also include the time taken for the row ordering. The entries in
column 5 are the sum of the corresponding entries in columns 3 and 4 (that
is, the time for row ordering plus factorizing the matrix). Details of the test
problems are given in Table 5.1 in Section 5. The number of blocks in the
singly bordered block diagonal form is 4 and 4 processors are used. We see
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that, with the exception of the 1hrc problems and grahami, the reductions in
the factorize times achieved by row ordering are substantial. However, we also
observe that for a number of our test cases (including the bayer problems), the
savings in the factor time achieved by reordering are not sufficient to offset the
reordering cost: in such cases more than one factorization is needed to justify
this overhead.

4.2 Numerical pivoting

For assembled systems, we observe that preordering the matrix to the singly
bordered block diagonal form (2.4) allows the multiple front method to
incorporate partial pivoting to ensure numerical stability. For each submatrix

(4 @), (4.1)

when a column of A; becomes fully summed, the largest entry in the column
is selected as the pivot. MP43 does not perform an elimination immediately a
column becomes fully summed but, while unassembled rows remain, it allows
their assembly into the front to continue until the number of fully summed
columns is at least as large as the minimum pivot blocksize. The minimum pivot
blocksize is a parameter under the user’s control and in MP43 it has the default
value of 8. This choice was made on the basis of numerical experimentation
(see Scott, 2001a). Using a minimum pivot blocksize greater than one enhances
the proportion of the computation performed by Level 3 BLAS at the cost of
(possibly) increasing the frontal matrix size and hence the number of flops and
the number of entries in the factors. There is thus a trade-off between the
use of Level 3 BLAS and the computational cost, and the user may wish to
experiment with different blocksizes to obtain optimal performance on his or
her computer and problems.

For unsymmetric element problems, MP42 employs threshold pivoting (see,
for example, Duff, Erisman and Reid, 1986, section 5.4). Consider the

submatrix
All Cl
< C, E ) (4.2)

Once an entry of Ay becomes fully summed it is considered suitable for use as a
pivot if it is of absolute value at least as large as the threshold parameter times
the entry of largest absolute value in its column (the threshold parameter may
be chosen by the user and has default value 0.01). If large entries in C; prevent
a pivot from being chosen, pivoting is delayed, which may lead to an increase
in the size of the interface problem (although, in our experience, this increase
is generally small when compared to the size of the interface problem). The
value of the threshold parameter is under the control of the user; in MP42 it has
a default value of 0.01. MP42 also uses a minimum pivot blocksize; the default
value is 32 (see Scott, 2001b).

The code MP62 is designed for symmetric definite problems and so does not
incorporate pivoting. If a zero pivot is encountered (or a pivot with absolute
value less than a user-defined quantity), the computation terminates with an
error flag. MP62 again has a default minimum pivot blocksize of 32.
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4.3 Use of files for factors and matrix data

The user may choose whether to hold the partial LU factors in main memory
or in direct-access files. Sequential files may also be used to store the data that
remains in the local frontal matrices after the partial LU decompositions. MP42
and MP43 use separate files for the L and U factors plus another for the integer
factor data. MP62 exploits symmetry and so only requires two files, one for the
reals and the other for the integer data. Moreover, since the unsymmetric codes
use off-diagonal pivoting to maintain stability, they must hold both row and
column indices of the variables in the frontal matrix. MP62 requires only one
set of indices and so uses substantially less real and integer storage than the
general code MP42.

The use of files for the factors reduces main memory requirements and allows
larger problems than could otherwise be handled to be solved. It also enables
the user to retain the factors for later use. However, the extra I/O involved can
increase the overall computational time and so we advise holding the factors
and local frontal matrices in main memory unless the factors are to be kept
or the problem is too large to be accommodated. In a distributed memory
environment, for efficiency it is important that the files are held locally.

If the user only wishes to solve for right-hand sides at the same time as the
factorization is performed (that is, the user does not wish to call the solve phase
for additional right-hand sides), MP42 and MP43 save storage by not retaining
the L factor.

The amount of main memory required is also influenced by how the user
chooses to supply the matrix data. A number of options are provided. By
default, at the start of the computation, the real data for each subproblem
{Ay;,C;} is held in a direct-access file and the software requires that the data
needed by a particular process must be readable by that process. For each
subproblem, the data is read element-by-element (or row-by-row) as required by
the process to which it is assigned. This minimises main memory requirements
and data movement between processes. Alternatively, the user may hold the
subproblem data in unformatted sequential files so that each process again reads
the data it requires but, in this case, the data for all the elements (or rows) in a
subproblem is read in at once. This clearly demands more memory but, again,
movement of data between processes is minimised.

Options also exist for the host to read the data for each of the subproblems
from sequential files or, alternatively, the user may supply the matrix data using
input arrays on the host. The latter form is useful if the host has sufficient
memory and the cost of using direct-access or sequential files is high. However,
if the data is input or read onto the host, there is an added overhead of sending
the appropriate data from the host to the other processes and efficiency will
depend on the speed of this communication. Since by default the host is also
involved in the block factorizations, this distribution of subproblem data is
carried out before the factorization commences.

Finally, to minimise data movement while avoiding the cost of reading data
from files, on each process, the user may use input arrays to supply the data
for the whole problem or just for the submatrices assigned to it. The former
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is suitable for shared memory machines while Stadtherr and Yudong (private
communication, 2001) have reported finding the latter useful when using a
network of Sun workstations.

Table 4.2: Timings for MP43 using different input options on a network of Sun
workstations.

Identifier Files on  Arrays on  Arrays on
processes host processes
4cols 0.36 0.33 0.30
10cols 1.32 1.35 1.18
bayer01 1.76 1.53 1.36
bayer04 1.53 1.57 1.33
lhridc 1.59 1.59 0.79
lhr7ic 8.99 9.80 7.10

In Table 4.2, we present MP43 timings using different input options for a
subset of our chemical process engineering test problems (see Table 5.1). These
results are for analyse, factorize and solve and were obtained by Stadtherr
and Lin of the University of Notre Dame using a cluster of Sun Ultra 2/2400
nodes connected using 100 Mbps switched Ethernet. In each case, the singly
bordered block diagonal form has 8 blocks and 8 processes are used. In column
2, timings are for the default option of holding the submatrix data in files on
the individual processes; the column 3 timings are for the matrix data held in
arrays on the host; the final results are for holding the submatrix data in arrays
on the individual processes. By comparing columns 2 and 4 we can see that, in
this environment, the cost of I/O can represent a significant overhead, while a
comparison of columns 3 and 4 illustrates the overhead resulting from sending
data from the host to the processes.

5 Numerical results

Throughout this section, N denotes the number of subproblems and p the
number of processes.

5.1 MP43

We illustrate the performance of MP43 using the problems listed in Table 5.1.
Those in the top half of the table (4cols to lhr7ic) are from chemical
process engineering. The remaining problems are included in the sparse matrix
collection of Tim Davis (see www.cise.ufl.edu/ davis/sparse). Problem grahami
is a Jacobian from a Galerkin finite element discretization of the Navier-Stokes
equations applied to a two-phase fluid flow problem; Zhao2 is an electromagnetic
matrix; pesa is from the subcollection Gaertner and poli_large is from Grund.
The application areas for pesa and poli_large are unknown. The symmetry
index s(A) of a matrix A is the number of matched nonzero off-diagonal entries
(that is, the number of nonzero entries a;;, ¢ # j, for which a;; is also nonzero)
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Table 5.1: The test problems for MP43. The problems in the top half of the
table are from chemical process engineering.

Identifier Order Number of | Symmetry | Interface

entries index variables
4cols 11770 43668 0.0159 287
10cols 29496 109588 0.0167 313
bayer01 57735 277774 0.0002 299
bayer04 20545 159082 0.0016 490
icomp 75724 338711 0.0010 314
lhridc 14270 307858 0.0066 716
1lhr34c 35152 764014 0.0015 870
lhr71c 70304 1528092 0.0016 1213
grahaml 9035 335504 0.7182 2253
pesa 11738 79566 1.0000 423
poli_large 15575 33074 0.0035 628
Zhao?2 33861 166453 0.9225 2784

divided by the total number of off-diagonal nonzero entries. Small values of s(A)
indicate a matrix is far from symmetric while values close to 1 indicate an almost
symmetric sparsity pattern. We see that the chemical process engineering test
problems are all highly unsymmetric and very sparse, while problem pesa has
a symmetric symmetric structure. For each problem, we have also included in
Table 5.1 the number of interface variables when the problem is partitioned
into 8 subdomains using the MONET algorithm of Hu et al. (2000). MONET
applied to the chemical process engineering problems produces partitionings
with a small interface variables. The interface is also small (less than 10 per
cent of the total number of variables) for each of the other test problems except
grahaml. We anticipate that the relatively large interface for this problem will
lead to the solution of the interface problem causing a bottleneck within MP43.

The performance of MP43 is compared with that of the serial frontal code
MA42 together with the well-known HSL general sparse direct solver MA48
(Duff and Reid, 1996). We remark that MA48 (and its predecessor MA28) is
a benchmark standard in the solution of sparse unsymmetric systems and is
frequently used for chemical process engineering problems because it is ideally
suited to solving problems that are highly unsymmetric and very sparse. Default
values are used for all MA48 control parameters, with diagonal pivoting for
problems grahaml, pesa, and Zhao2. MA42 and MA48 do not use the bordered
block diagonal form (2.4). For MA42, with the exception of problems pesa and
Zhao?2, the rows of A are preordered using MC62. Since these two problems have
a (nearly) symmetric structure, MC60 applied to A+ AT is used. For each solver,
wallclock timings (in seconds) are presented for three execution paths, namely:

1. Analyse + Factorize + Solve (AFS) : This is the time required to perform
the analyse phase, to determine a pivot sequence, to compute the L and U
factors of A, and to perform the forward elimination and back-substitution
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operations to solve Az = b for a single right-hand side b.

2. Fast Factorize (FF) : This is the time taken to factorize a matrix having
the same sparsity pattern as one that has already been factorized.

3. Solve (S): This is the time to solve Az = b by performing forward
elimination and back-substitution operations using previously computed
L and U factors of A.

In our tests, the factors are held in main memory. A version of MA42 that does
not use BLAS during the solve phase is employed because this has been found
to be more efficient for our non-element problems when solving for a single
right-hand side.

We first present timings for MP43 run on p = 1, 2, 4 and 8 processors,
and compare it with MA42 and MA48 run on a single processor. For MP43, the
number of blocks in the singly bordered block diagonal form is N = 8. The
times required for AFS are given in Table 5.2. The time taken to preorder the
rows of A for MA42 using MC62 is included in the analyse time. In Tables 5.3 and
5.4, timings are presented for the fast factorize FF and the solve S, respectively.

Table 5.2: Timings for Analyse + Factorize + Solve (AFS). Numbers in
parentheses are times for factorizing the interface problem. The numbers in
italics are the speedups for MP43 compared with using a single process.

Identifier MA42 MA48 MP43 (N = 8)
p=1 2 4 8
4cols 1.26 2.34 0.77 (0.02) 0.42 1.83 0.23 3.35 0.18 4.28
10cols 3.64 16.54 1.92 (0.03) 1.05 1.83 0.62 3.10 0.43 4.47
bayer01 8.70 6.52 4.78 (0.03) 2.67 1.79 1.74 2.75 1.05 4.42
bayer04 3.52 2.96 2.77 (0.09) 1.61 1.72 0.97 2.86 0.61 4.54
icomp 7.61 0.88 4.51 (0.02) 2.45 1.84 1.66 2.72 0.96 4.70
lhri4c 4.90 7.38 5.29 (0.14) 2.91 1.82 1.71 5.09 1.18 4.48
1hr34c 13.56 24.20 15.82 (0.54) 8.52 1.86 5.00 3.16 3.69 4.29
1hr71c 32.86 51.26 35.01 (1.10) 18.92 1.85 10.26 3.41 7.10 4.93
grahaml 18.10 184.0 17.29 (9.02) 13.54 1.28 11.43 1.51 10.51 1.65
pesa 2.47 1.90 1.22 (0.05) 0.69 1.77 0.44 2.77 0.32 3.81
poli_large 1.87 0.06 0.90 (0.04) 0.53 1.70 0.36 2.50 0.21 4.28
Zhao2 67.54 656.5 45.35 (11.2) 28.89 1.57 20.56 2.21 18.12 2.50

In Table 5.2, the numbers in parentheses in column 4 are the times taken
to solve the interface problem and the numbers in italics are the speedups for
MP43 on 2, 4, 8 processes compared with the time on a single process. As
noted earlier, the interface problem is solved by a single process. The chemical
process engineering problems and problems pesa and poli_large have very
small interfaces (see Table 5.1) and thus solving the interface problem represents
a tiny fraction of the overall factorization time and does not cause a bottleneck.
However, for problem grahaml, which has a much larger interface, the time
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taken taken for the interface problem dominates the total time and limits the
speed up obtained on increasing the number of processes.

Table 5.3: Timings for Fast Factorize (FF).

Identifier MA42 MA48 MP43 (N = 8)
p=1 2 4 8
4cols 0.66 0.32 0.45 0.26 0.19 0.12
10cols 1.94 2.08 1.13 0.64 0.38 0.28
bayer01 5.25 0.65 2.69 1.54 1.05 0.63
bayer04 1.60 0.31 1.17 0.71 0.45 0.36
icomp 3.53 0.13 2.04 1.16 0.92 0.51
lhri4c 1.58 1.10 1.80 1.08 0.75 0.63
1hr34c 4.99 3.66 6.58 3.82 2.45 2.19
lhr7ic 14.45 7.61 14.82 8.77 5.28 4.39
grahamil 13.12 35.06 13.57 11.58 10.40 9.84
pesa 1.97 0.31 0.81 0.47 0.32 0.26
poli_large 1.33 0.01 0.64 0.39 0.27 0.16
Zhao2 63.83 171.7 43.67 28.01 19.94 17.72

We see that, on a single processor the AFS time for MP43 is competitive
with that for MA42: for mnay problems MP43 is faster but for the 1hr problems
the converse is true. MP43 is, of course, designed to be run on more than one
processor and, for each problem, using only two processors, MP43 significantly
outperforms MA42. For the problems with a small interface, the performance of
MP43 improves as the number of processors increases to 4 and to 8, although
for the smallest problems the speedups achieved are less than for the larger
problems.

Table 5.4: Timings for Solve (S).

Identifier MA42 MA48 MP43 (N = 8)
p=1 2 4 8
4cols 0.043 0.017 0.039 0.024 0.019 0.016
10cols 0.134 0.082 0.103 0.072 0.050 0.038
bayer01 0.284 0.111 0.245 0.171 0.126 0.108
bayer04 0.092 0.038 0.092 0.064 0.045 0.036
icomp 0.182 0.065 0.198 0.144 0.121 0.100
lhri4c 0.082 0.070 0.105 0.069 0.048 0.042
1hr34c 0.246 0.195 0.307 0.203 0.139 0.130
lhr7ic 0.651 0.404 0.654 0.436 0.267 0.260
grahamil 0.333 0.294 0.228 0.186 0.142 0.155
pesa 0.100 0.034 0.061 0.046 0.025 0.020
poli_large || 0.039 0.007 0.045 0.034 0.026 0.021
Zhao2 1.317 0.950 0.919 0.606 0.384 0.351

The analyse phase of MA48 can be relatively slow so that, for most of our
test problems, the AFS time for MP43 on a single processor is faster than for
MA48. We remark that, although on a single processor the FF time for MA48 is
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generally faster than for MP43, the MA48 fast factorization is more restrictive.
This is because MP43 only reuses the row assembly order and employs partial
pivoting for stability both for the initial and for all subsequent factorizations.
By contrast, the FF phase of MA48 uses exactly the same pivot sequence as was
computed on the initial factorization. It should, therefore, only be used if the
user is confident that the changes to the numerical values of the matrix have
not made this sequence unsuitable. To check the computed solution, the user
may decide to use the iterative refinement option offered by the solve phase of
MA48. This can add a significant overhead to the execution time, but is not
included in our results (see Duff and Reid, 1996). We remark that MA48 does
offer an additional factorization option for the case where some columns are
unchanged since a previous factorization but we do not present results for this
“semi-fast” option.

In each test case, the solve time for MA48 is less than for MA42 and, on one
or two processes, is usually less than for MP43. By increasing the number of
processes to 4 or 8, the MP43 solve is generally able to outperform MP48.

5.2 MP42

We now illustrate the performance of MP42 using the finite element problems
listed in Table 5.5. These problems were supplied by Christian Damhaug of Det
Norske Veritas, Norway. In each case, the problem is divided into 4 subproblems
using Chaco (Hendrickson and Leland, 1995). We list the number of elements
and interface variables for each subproblem, together with the total number
of interface variables. We observe that, in general, Chaco is able to produce

Table 5.5: Test problems for MP42 (N = 4).

Identifier Order Elements Total Subdomain Elements/
Interface Interface
optl 15449 977 1338 1 294/ 584
2 252/ 588
3 190 / 838
4 241/ 678
trdheim 22098 813 348 1 206 / 150
2 212/ 120
3 196 / 240
4 199 / 108
thread 29736 2176 3809 1 586 / 1266
2 597 / 1275
3 497 / 2532
4 496 / 2541
mt1 97578 5328 2748 1 586 / 1266
2 597 / 1275
3 497 / 2532
4 496 / 2541

a partitioning with a (nearly) equal number of subdomains but some of the
subdomains have a significantly larger number of interface variables.
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In Table 5.6 wallclock timings (in seconds) are given for analyzing,
factorizing and solving (AFS) for a single right-hand side using MP42 run on 1
to 4 processes; for comparison, results are included for MA42. For each problem
except trdheim, MP43 outperforms MA42 on a single process. This is because,
for these examples, the flop count is significantly reduced by partitioning the
domain and using the multiple front algorithm. For example, for opt1 the flop
counts for MA42 and MP42 are, respectively, 1.15 % 10'° and 6.57 % 10°. Similar
findings were reported by Duff and Scott (1994).

Table 5.6: AFS timings for MA42 and MP42 (N = 4). Numbers in parentheses
are times for factorizing the interface problem. The numbers in italics are the
speedups for MP42 compared with using a single process.

Identifier MA42 MP42

p=1 2 3 4

optl 60.6 37.7 (10.4) 25.8 1.46 22.0 1.71 20.5 1.84

trdheim 5.8 7.2 (0.18) 4.6 1.56 2.9 2.48 29 2.48

thread 1621 846  (241) 558 1.52 452 1.86 450 1.86
(

mtl 2444 1130 (97) 663 1.70 618 1.83 447 2.58

Good speedups for MP42 are achieved by using 2 processes but the gains are
smaller when the number of processes is increased further. In particular, we
observe that, for the first three test cases, there is essentially no speedup when
4 processes are used rather than 3. We recall that we are using 4 subdomains
and so, if MP42 is run on 3 processes, one process must factorize two subdomains
and we might anticipate this producing a load imbalance. However, if we look
for example in greater detail at problem thread, we see from Table 5.6 that,
although subdomains 3 and 4 have fewer elements than subdomains 1 and 2,
subdomains 3 and 4 each have approximately twice the number of interface
variables. As already noted, once an interface variable enters the front, it
remains there, increasing the flop count and storage requirements. This is what
happens in the case of thread: the MP42 flop counts for subdomains 3 and 4
are almost double those for subdomains 1 and 2. Thus good load balance is
achieved by using 3 processes and factorizing both subdomains 1 and 2 on a
single process.

For our finite-element test examples, the solution of the interface problem
is generally a much more significant proportion of the total factorization time
than we found for most of the problems reported on in the previous section.
For problem optl, on a single process, the interface factorization represents
approximately 27 per cent of the total factorization time; as the number of
processes increases, this proportion increases to 50 per cent on 4 processes and
represents a bottleneck in the computation. If the number of blocks is increased,
so will the number of interface variables and solving the interface problem will
quickly come to dominate the overall computational cost. This demonstrates
the importance of obtaining a good initial partitioning. For some problems on
irregular domains, it is not clear how this can best be achieved.
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5.3 MP62

Finally, we present some results to demonstrate the efficiency of the symmetric
positive definite finite element parallel solver MP62. These were provided by Dr
Milan Mihajlovic of The University of Manchester. In these tests, MP62 is used

Table 5.7: Factorization times for MP62. IN denotes the number of subdomains
and n the number of variables.

Subdomains

n= 20449 36481 82369 146689 330625
N=2x2 p=1 9.9 29.2 141 447 2219
2 5.0 14.8 71.3 222 1114
4 2.6 7.5 36.1 112 560
N=4x4 p=1 3.5 10.3 46.6 137.9 670
2 2.0 5.4 24.1 70.8 342
4 1.1 3.0 12.9 37.3 177
8 0.7 1.8 7.2 20.5 95
N=8x8 p=1 1.8 4.3 17.1 47.3 190
2 1.1 2.6 9.9 26.4 101
4 0.8 1.7 6.3 15.8 54
8 0.6 1.3 4.5 10.6 33

to factorize a discrete Dirichlet Laplacian on a unit square domain {2 using a
uniform mesh and piecewise linear elements. Q is split into N =2 x 2,4 x4 and
8 x 8 equal subdomains. In Tables 5.7 and 5.8 factorization and solve times are
presented for a number of different mesh sizes, using up to p = 8 processes (n
is the total number of variables). For this two dimensional model problem with

Table 5.8: Solve times for MP62. N denotes the number of subdomains and n
the number of variables.

Subdomains n= 20449 36481 82369 146689 330625
N=2x2 p=11]0.17 0.39 1.25 2.88 12.68
21011 0.25 0.78 1.78 7.30
4 | 0.06 0.14 0.43 0.98 3.97
N=4x4 p=11| 0.16 1.07 2.40 9.40 9.40
21 0.11 0.68 1.51 5.80 5.80
4 | 0.06 0.41 0.89 3.35 3.35
8 | 0.05 0.27 0.58 1.78 1.78
N=8x8 p=11{0.20 0.40 1.11 2.12 7.11
21013 0.26 0.68 1.36 4.49
4 | 0.08 0.16 0.42 0.83 2.54
8 | 0.06 0.12 0.30 0.58 1.49

equal subdomains, good speedups are obtained for the factorize and solve phases
as the number of processes increases. In particular, for the factorization phase
for the largest problems, speedups close to 2 are achieved using 2 processes and
exceed 3.5 using 4 processes. We deduce that load balancing is good and that
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the solution of the interface problem is not significantly effecting the overall
performance.

6 Concluding remarks

We have designed and developed general-purpose multiple front codes for
solving large sparse systems of linear equations in parallel. The performance
of the codes has been illustrated on an Origin2000 using a range of practical
problems. The software is fully portable and may be used on any computer on
which a Fortran 90 compiler and MPI are available. Results on a Cray T3E
and a 2-processor Compaq DS20 have been presented in Scott (20016, 2001 a);
Stadtherr and Lin (private communication, 2001) have also reported using MP43
successsfully on a network of Sun workstations.

A potential limitation of the current software is the requirement for the
user to carry out the partitioning into subproblems before the start of the
computation. Furthermore, the sequential solution of the interface problem
can cause a bottleneck as the number of processes increases. This effectively
restricts the use of the multiple front approach to a relatively small number
of subproblems and processes. Nevertheless, our results demonstrate that
significant improvements over serial direct solvers can be achieved.

The parallel frontal solvers HSL_MP42, HSL MP43, and HSL_MP62, together
with the implementation HSL MC686 of the MONET algorithm used in this
paper, and the ordering routines MC60, MC62, and MC63, are all available for
use under licence through HSL. Anyone interested in using these codes (or
the serial sparse direct solvers MA42 and MA48) should refer to the website
www.cse.clrc.ac.uk/Activity /HSL for further details.
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