RAL-TR-1999-037

Reversing the row order for the row-by-row frontal
method

by

J. K. Reid and J. A. Scott

Abstract

The efficiency of the row-by-row frontal method is dependent on the row
ordering used. Numerical experience has shown us that it can be advantageous
to reverse a given row ordering. We present two results on invariances under
the reversal of the ordering and use real applications to illustrate the variations
that can take place.

Keywords: ordering rows, frontal method.

Computational Science and Engineering Department,
Atlas Centre, Rutherford Appleton Laboratory,
Oxon OX11 0QX, England.

May 28, 1999.

1 INTRODUCTION 1

1 Introduction

The row-by-row frontal method (see, for example, Duff, Erisman and Reid,
1986, Section 10.6) solves a large sparse unsymmetric set of n linear equations
by Gaussian elimination with the help of a full rectangular matrix held in
memory and known as the frontal matriz. The size of the frontal matrix varies
during the elimination. Rows are assembled (added) into the frontal matrix
one by one. Whenever a column becomes fully summed, that is, the last row
in which it has an entry is assembled, a pivot is chosen in the column and is
used to eliminate the column and the row containing the pivot. The eliminated
row and column are stored for use in the back-substitution or in the solution of
further systems of equations.

Since an elimination can only take place after a column becomes fully
summed, the order in which the rows are assembled will determine both how
long a variable remains in the front and the order in which the variables
are eliminated (apart from the order among columns that become fully
summed at the same assembly step, which has no effect on the computational
requirements). For efficiency, in terms of both storage and arithmetic
operations, the rows need to be assembled in an order that keeps the size of
the frontal matrix as small as possible. Scott (1998) has considered a number
of strategies for determining such an ordering and has found that the results of
using the different orderings on practical problems can vary enormously. While
developing row ordering software for the Harwell Subroutine Library (1995),
Scott tried experimenting with reversing any given row order. She found that
this makes no difference to some of the usual measures of the quality of the
ordering while it can make enormous changes to others.

These numerical results motivated us to prove the results on invariances
under the reversal of the ordering that we present in Section 2. In Section 3,
we illustrate the variations that can take place in real applications.

2 Two theorems on invariance

We follow Scott (1998) and use the terms row frontsize and column frontsize for
the number of rows and columns in the front. Our invariance results pertain to
the column frontsizes.

The row and column frontsizes after assembly refer to the frontsizes after a
row has been added to the front. When a row is added, more than one column
may become fully summed; for each such column, a pivot is chosen and an
elimination is performed. The row and column frontsizes before elimination
refer to the frontsizes immediately prior to an elimination. The frontal matriz
size refers to the product of the row and column frontsizes.

We use the term forward row order to refer to the row ordering 1,2,...,n
(that is, to the given ordering), while the reverse ordering is n,n —1,...,1. We
assume that the matrix (in the forward order) is A = {a;;} and that a reference
to ‘row 1’ refers to the row a;,.

2 TWO THEOREMS ON INVARIANCE 2

Before presenting our results, we introduce the small illustrative example

£

r X €

r T T T
T T
€ £

With the forward order we have:

Assembly 1: Frontal matrix increases to 1 X 1. No eliminations.
Assembly 2: Frontal matrix increases to 2 x 3. No eliminations.

Assembly 3: Frontal matrix increases to 3 x 4. Columns 1 and 3 eliminated.
Frontal matrix reduces to 1 x 2.

Assembly 4: Frontal matrix increases to 2 x 2. Column 4 eliminated.
Frontal matrix reduces to 1 x 1.

Assembly 5: Frontal matrix increases to 2 x 2. Columns 2 and 5 eliminated.

Thus the row frontsize, column frontsize, and the frontal matrix size before each
of the five eliminations and their mean values are

row frontsize 3 2 2 2 1 20
column frontsize 4 3 2 2 1 24
frontal matrix size 12 6 4 4 1 5.4

When the order is reversed, the corresponding statistics are

row frontsize 1 2 2 1 1 14
column frontsize 2 4 3 2 1 24
frontal matrix size 2 8 6 2 1 3.8

The first result is about the column frontsize after each assembly. This is
important since the size of the frontal matrix after assembly determines how
much memory is needed by the frontal solver.

Theorem 1 If a giwwen row order is reversed, the sequence of n column
frontsizes after the assemblies is reversed.

Proof After assembly of row ¢, in the forward or reverse row order, the
column frontsize is the number of columns with first entry at row ¢ or earlier
and last entry at row ¢ or later, that is, the number of columns 7 for which
min{k : ap; # 0} < ¢ and max{k : az; # 0} > 1.

Corollary 1 The mazimum column frontsize is invariant.

Corollary 2 The mean column frontsize after assembly is tnvariant.

3 NUMERICAL EXPERIENCE 3

Corollary 3 The sum of the column frontsizes after assembly is tnvariant.

Note that the sum of the column frontsizes after assembly is equal to the
sum of the lifetimes, where the lifetime of a variable is defined to be the number
of assembly steps for which the variable is in the front. The lifetime of variable
J is also the length of column j, that is, max{k : ay; # 0} — min{k : a; # 0}.
The sum of the lifetimes is used by Camarda (1997) to compare the quality of
different row orderings.

Our second result concerns the column frontsize before each elimination.
This is important since the row and column frontsizes before an elimination
determine how much work is associated with the elimination and how much
storage is required for the pivotal column and row.

Theorem 2 If a given row order is reversed, the sequence of n column
frontsizes before the eliminations is permuted.

Proof At assembly step ¢ in the forward order, the column frontsize
increases by one for each column with its first entry in row 2, that is, each j such
that min{k : ay; # 0} = ¢. Following this, it decreases by one for each column
with its last entry in row i, that is, each j such that max{k : ay; # 0} =1,
as that column is eliminated. There are n occasions when it increases by one
and n occasions when it decreases by one. These 2n events begin and end
with the column frontsize of zero. For each increase from f — 1 to f there
is a corresponding later decrease from f to f — 1, and to establish a one-
one correspondence, we take the first such decrease if there is more than one.
Each decrease corresponds to an elimination with column frontsize f using the
forward row order. Each increase corresponds to an elimination with column
frontsize f using the reverse row order. The result follows.

For our small example, the sequence of column frontsizes for the forward
order is 0, 1, 2, 3, 4, 3, 2, 1, 2, 1, 0. Note that there are two increases from
1 to 2 and two decreases from 2 to 1; the first increase is taken to correspond
with the first decrease and the second increase to correspond with the second
decrease.

Corollary 4 The mean column frontsize before elimination is invariant.

Note that the mean values in Corollaries 2 and 4 usually differ, while there
is only one maximum value.

3 Numerical experience

We now present some numerical results that illustrate our theoretical results.
All the frontsizes quoted in this section are frontsizes before elimination. The
test problems are those used by Scott (1998). Each problem arises from a real
engineering or industrial application. Our results are presented in Tables 3.1

3 NUMERICAL EXPERIENCE 4

Table 3.1: The maximum (max.) and mean row and column frontsizes before
elimination for the forward and reverse row ordering.

Identifier Forward Reverse

max. maxX. Imean mean | maxXx. maX. mean mean

row col. row col. row col. row col
bayer04 349 501 174 275 263 501 105 275
bayer09 83 153 38 62 78 153 26 62
bp1600 242 324 91 142 143 324 32 142
extri 32 46 15 27 21 46 13 27
grel107 95 208 55 125 123 208 72 125
hydri 45 86 22 43 42 86 22 43
1hr07c 169 225 51 111 127 225 66 111
lhridc 164 366 69 188 255 366 125 188
megl 700 1150 368 639 517 1150 235 639
onetone2 297 658 198 405 365 658 209 405
orani678 | 1333 1576 604 771 320 1576 70 771
rdisti 40 81 28 60 49 81 32 60
west2021 38 52 18 29 22 52 12 29

Table 3.2: The maximum and mean frontal matrix size and the sum of lifetimes
(¥10%) for the forward and reverse row ordering.

Identifier Forward Reverse
Max. Mean Sum Max. Mean Sum
frontal frontal of frontal frontal of

matrix matrix lifetimes | matrix matrix lifetimes

size size size size
bayer04 17365 5341 5708 12387 3340 5708
bayer09 1237 283 194 1193 197 194
bp1600 6607 1833 100 4633 659 100
extril 147 43 76 84 37 76
grel107 1925 814 140 2489 1055 140
hydri 387 104 226 361 104 226
1hr07c 3489 622 858 2331 791 858
lhri4c 5953 1530 2755 8992 2849 2755
megl 77970 28129 1750 54395 18375 1750

onetone?2 19483 8646 14637 23980 9264 14637
orani678 || 210080 64517 1704 48247 8679 1704
rdistil 275 169 242 397 202 242
west2021 198 57 58 86 36 58

REFERENCES 5

and 3.2. In each case, the problem is reordered using our new code MC62 (Scott,
1999), with default values for all control variables.

From the tables, we see that for some problems, including bp1600 and
orani678, it can be extremely advantageous to reverse the row order. For
other problems, such as hydr1, reversal has little effect. Note also that reversing
the order can reduce the maximum row frontsize while increasing the mean row
frontsize or the mean frontal matrix size. This is illustrated by problem 1hr07c.
In this case, which is the better ordering depends upon whether the prime
concern is to reduce main memory requirements (choose the smaller maximum
frontal matrix size), to minimise factor storage (choose the smaller mean row
frontsize), or to minimise the operation count (choose the smaller mean frontal
matrix size). Since the cost of computing the frontsizes for the forward and
reverse orders is negligible compared with the cost of using a frontal solver,
MC62 computes a new row ordering and then automatically reverses it and
selects the better of the two orderings. By default, MC62 chooses the ordering
for which the mean frontal matrix size is smaller.

References

K.V. Camarda. Ordering strategies for sparse matrices tn chemical process
stmulation. PhD thesis, University of Illinois at Urbana-Champaign, 1997.

I.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, 1986.

Harwell Subroutine Library. A Catalogue of Subroutines (Release 12).
Advanced Computing Department, AEA Technology, Harwell Laboratory,
Oxfordshire, England, 1995.

J.A. Scott. A new row ordering strategy for frontal solvers. Technical Report
RAL-TR-1998-056, Rutherford Appleton Laboratory, 1998. To appear in
Numerical Linear Algebra and Applications.

J.A. Scott. Row ordering for frontal solvers in chemical process engineering.
Technical Report RAL-TR-1999-035, Rutherford Appleton Laboratory,
1999.

