
RAL-TR-2002-030

The New Features of Fortran 2000
1John Reid

ABSTRACT

The aim of this paper is to summarize the new features in the draft Fortran 2000 standard (J3 2002). We
take as our starting point Fortran 95 plus the two official extensions (Cohen 2001, Reid 2001) that have
been published as Type 2 Technical Reports. These provide features for

1. Allocatable dummy arguments and type components, and

2. Support for the five exceptions of the IEEE Floating Point Standard (IEEE 1989) and for other
features of this Standard.

There is a firm commitment to include the features of these TRs in Fortran 2000, apart from changes that
follow from errors and omissions found during implementation. Therefore, these features are not open to
comment and are not described here. For an informal description, see chapters 12 and 13 of Metcalf and
Reid (1999).

Fortran 2000 is a major extension of Fortran 95. This contrasts with Fortran 95, which was a minor
extension of Fortran 90. Beside the two TR items, the major changes concern object orientation and
interfacing with C. Allocatable arrays are very important for optimization – after all, good execution speed
is Fortran’s forte. Exception handling is needed to write robust code. Object orientation provides an
effective way to separate programming into independent tasks and to build upon existing codes; we
describe these features in Section 2. Interfacing with C is needed for access to all the hardware features and
to allow C programmers to call efficient Fortran codes; we describe these features in Section 5. There are
also many less major enhancements, described in Sections 3 and 4.

This is not an official document and has not been approved by either of the Fortran committees WG5 or J3.
The official draft is available via the web at

ftp://ftp.j3-fortran.org/j3/doc/standing/2002/02-007r3/

1WG5 Convener, JKR Associates, 24 Oxford Road, Benson, Oxon OX10 6LX, UK jkr@rl.ac.uk

Computational Science and Engineering Department
Atlas Centre
Rutherford Apleton Laboratory
Oxon OX11 0QX

19th December 2002

1

Contents

1 Introduction and overview of the new features …………………………………… 3
2 Data enhancements and object orientation ………………………………………… 4

2.1 Parameterized derived types ……………………………………………… 4
2.2 Procedure pointers ………………………………………………………… 5
2.3 Finalization ………………………………………………………………… 6
2.4 Procedures bound by name to a type ……………………………………… 7
2.5 The PASS attribute ………………………………………………………… 7
2.6 Procedures bound to a type as operators ………………………………… 8
2.7 Type extension …………………………………………………………… 9
2.8 Type aliases………………………………………………………………… 10
2.9 ASSOCIATE construct …………………………………………………… 11
2.10 Polymorphic entities ……………………………………………………… 11
2.11 SELECT TYPE construct ………………………………………………… 12

3 Miscellaneous enhancements ……………………………………………………… 13
3.1 Structure constructors ……………………………………………………… 13
3.2 The allocate statement …………………………………………………… 14
3.3 More control of access from a module …………………………………… 15
3.4 Renaming operators on the USE statement ……………………………… 15
3.5 Pointer assignment ………………………………………………………… 16
3.6 Pointer INTENT …………………………………………………………… 16
3.7 The VOLATILE attribute ………………………………………………… 16
3.8 The IMPORT statement …………………………………………………… 17
3.9 Access to the computing environment …………………………………… 17
3.10 Support for international character sets …………………………………… 18
3.11 Lengths of names and statements ………………………………………… 19
3.12 Binary, octal and hex constants …………………………………………… 19
3.13 Array constructor syntax…………………………………………………… 19
3.14 Specification and initialization expressions ……………………………… 19

4 Input/output enhancements ………………………………………………………… 20
4.1 Derived type input/output ………………………………………………… 20
4.2 Asynchronous input/output………………………………………………… 21
4.3 FLUSH statement ………………………………………………………… 23
4.4 IOMSG specifier…………………………………………………………… 23
4.5 Stream access input/output ………………………………………………… 23
4.6 ROUND= specifier ………………………………………………………… 23
4.7 DECIMAL= specifier ……………………………………………………… 24
4.8 SIGN= specifier …………………………………………………………… 24

5 Interoperability with C……………………………………………………………… 24
5.1 Introduction………………………………………………………………… 24
5.2 Interoperability of intrinsic types ………………………………………… 25
5.3 Interoperability with C pointers …………………………………………… 26
5.4 Interoperability of derived types ………………………………………… 27
5.5 Interoperability of variables ……………………………………………… 27
5.6 Interoperability of procedures …………………………………………… 28
5.7 Interoperability of global data …………………………………………… 28
5.8 Example of Fortran calling C ……………………………………………… 29
5.9 Example of C calling Fortran ……………………………………………… 30

6 References ………………………………………………………………………… 31

2

1 Introduction and overview of the new features
Fortran is a computer language for scientific and technical programming that is tailored for
efficient run-time execution on a wide variety of processors. It was first standardized in 1966 and
the standard has since been revised three times (1978, 1991, 1997). The revision of 1991 was
major and those of 1978 and 1997 were relatively minor. This proposed fourth revision is major
and has been made following a meeting of ISO/IEC JTC1/SC22/WG5 in 1997 that considered all
the requirements of users, as expressed through their national bodies.

The significant enhancements in the 1991 revision were dynamic storage, structures, derived
types, pointers, type parameterization, modules, and array language. The main thrust of the 1997
revision was in connection with alignment with HPF (High Performance Fortran).

The major enhancements for this revision are

1. Derived type enhancements: parameterized derived types, improved control of accessibility,
improved structure constructors, and finalizers.

2. Object oriented programming support: type extension and inheritance, polymorphism,
dynamic type allocation, and type-bound procedures.

3. Data manipulation enhancements: allocatable components, deferred type parameters,
VOLATILE attribute, explicit type specification in array constructors, pointer
enhancements, extended initialization expressions, and enhanced intrinsic procedures.

4. Input/output enhancements: asynchronous transfer, stream access, user specified transfer
operations for derived types, user specified control of rounding during format conversions,
named constants for preconnected units, the flush statement, regularization of keywords,
and access to error messages.

5. Procedure pointers.

6. Support for IEC 60559 (IEEE 754) exceptions.

7. Interoperability with the C programming language.

8. Support for international usage: access to ISO 10646 4-byte characters and choice of
decimal or comma in numeric formatted input/output.

9. Enhanced integration with the host operating system: access to command line arguments,
environment variables, and processor error messages.

In addition, there are numerous minor enhancements.

Except in extremely minor ways, this revision is upwards compatible with the current standard,
that is, a program that conforms to the present standard will conform to the revised standard.

The enhancements are in response to demands from users and will keep Fortran appropriate for
the needs of present-day programmers without losing the vast investment in existing programs.

3

2 Data enhancements and object orientation

2.1 Parameterized derived types

An obvious deficiency of Fortran 95 is that whereas each of the intrinsic types has a kind
parameter and character type has a length parameter, it is not possible to define a derived type that
is similarly parameterized. This deficiency is remedied with a very flexible facility that allows any
number of ‘kind’ and ‘nonkind’ parameters. A kind parameter is a constant (fixed at compile
time) and may be used for a kind parameter of a component of intrinsic (or derived) type. A
nonkind parameter is modelled on the length parameter for type character and may be used for
declaring character lengths of character components and bounds of array components. The names
of the type parameters are declared on the TYPE statement of the type definition, like the dummy
arguments of a function or subroutine, and they must be declared as KIND or NONKIND. Here is an
example for a matrix type

TYPE matrix(kind,m,n)
INTEGER, KIND :: kind
INTEGER, NONKIND :: m,n
REAL(kind) :: element(m,n)

END TYPE

Explicit values for the type parameters are normally specified when an object of the type is
declared. For example,

TYPE(matrix(KIND(0.0D0),10,20)) :: a

declares a double-precision matrix of size 10 by 20. However, for a pointer or allocatable object, a
colon may be used for a nonkind parameter to indicate a deferred value:

TYPE(matrix(KIND(0.0),:,:)),ALLOCATABLE :: a

The actual value is determined when the object is allocated or pointer assigned. For a dummy
argument, an asterisk may be used to indicate an assumed value; the actual value is taken from the
actual argument. For a kind parameter, the value must be an initialization expression (known at
compile time).

The keyword syntax of procedure calls may be used:

TYPE(matrix(KIND(0.0),m=10,n=20)) :: a

and the same syntax is used for declaring components of another derived type:

TYPE double_matrix(kind,m,n)
INTEGER, KIND :: kind
INTEGER, NONKIND :: m,n
TYPE(matrix(kind,m,n)) :: a,b

END TYPE

4

For enquiries about the values of type parameters, the syntax of component selection is provided:

a%kind, a%m

Of course, this syntax may not be used to alter the value of a type parameter, say by appearing on
the left of an assignment statement. This syntax is also available for enquiring about a type
parameter of an object of intrinsic type:

LOGICAL :: L

WRITE (*,*) L%KIND ! Same value as KIND(L)

2.2 Procedure pointers

A pointer or pointer component may be a procedure pointer. It may have an explicit or implicit
interface and its association with a target is as for a dummy procedure, so its interface is not
permitted to be generic or elemental. The statement

PROCEDURE (proc), POINTER :: p => NULL()

declares p to be a procedure pointer that is initially null and has the same interface as the
procedure proc.

If no suitable procedure is to hand to act as a template, an ‘abstract interface’ may be declared thus

ABSTRACT INTERFACE

REAL FUNCTION f(a,b,c)

REAL, INTENT(IN) :: a,b,c

END FUNCTION

END INTERFACE

without there being any actual procedure f.

As for data pointers, procedure pointers are either uninitialized or initialized to null. The
statement

PROCEDURE (), POINTER :: p

declares p to be an uninitialized pointer with an implicit interface. It may be associated with a
subroutine or a function. The statement

PROCEDURE (TYPE(matrix(KIND(0.0D0),m=10,n=20))), POINTER :: p

is similar but specifies that the pointer may be associated only with a function whose result is of
the given type and type parameters.

A function may have a procedure pointer result.

Pointer assignment takes the same form as for data pointers:

p => proc

5

The interfaces must agree in the same way as for procedure calls. The right-hand side may be a
procedure, a procedure pointer, or a reference to a function whose result is a procedure pointer.

Having procedure pointers fills a big hole in the Fortran 95 language. It permits ‘methods’ to be
carried along with objects (dynamic binding):

TYPE matrix(kind,m,n)
INTEGER, KIND :: kind
INTEGER, NONKIND :: m,n
REAL(kind) :: element(m,n)
PROCEDURE (lu), POINTER :: solve

END TYPE
:

TYPE(matrix(KIND(0.0D0),m=10,n=20))) :: a
:

CALL a%solve(....
:

If the method is always the same, a better way to carry it along with an object is through binding
it to the type (Section 2.4).

2.3 Finalization

A derived type may have ‘final’ subroutines bound to it. Their purpose is to perform clean-up
operations such as the deallocation of the targets of pointer components when an object of the type
ceases to exist. Each final subroutine is a module procedure with a single argument of the derived
type to which will be passed an object that is about to cease to exist. The usual rules of argument
association apply, so the object has the type and kind type parameters of the dummy argument and
has the same rank unless the subroutine is elemental. The dummy argument is required not to have
INTENT(OUT) and its array shape and nonkind type parameters must be assumed.

An example of the syntax for declaring module subroutines to be final is

TYPE T

: ! Component declarations

CONTAINS

FINAL :: finish1, finish2

END TYPE T

A derived type is finalizable if it has any final subroutines or if it has a component that is of a type
that is finalizable but is neither a pointer nor allocatable. A nonpointer data object is finalizable if
its type is finalizable. When such an object ceases to exist, a finalization subroutine is called for it
if there is one with the right kind type parameters and rank; failing this, an elemental one with the
right kind type parameters is called. Next, each finalizable component is finalized; if any is an
array, each finalizable component of each element is finalized separately. For a nested type,

6

working top-down like this means that the final subroutine has only to concern itself with
components that are not finalizable.

2.4 Procedures bound by name to a type

A procedure may be bound to a type and accessed by component selection syntax from a scalar
object of the type rather as if it were a procedure component with a fixed target.

An example of the syntax is

TYPE T

: ! Component declarations

CONTAINS

PROCEDURE :: proc => my_proc

PROCEDURE :: proc2

END TYPE T

which binds my_proc with the name proc and proc2 with its own name. Each procedure must be
a module procedure or an external procedure with an explicit interface. If a is a scalar variable of
type T, an example of a type-bound call is

CALL a%proc(x,y)

Several such procedures may be accessed by a single generic name. The PROCEDURE statement is
replaced by a GENERIC statement such as

GENERIC :: gen => proc1, proc2, proc3

The usual rules about disambiguating procedure calls apply to all the procedures accessible
through a single generic binding name.

2.5 The PASS attribute

A procedure that is accessed as a component or by being bound by name usually needs to access
the scalar object through which it was invoked. By default, it is assumed that it is passed to the
first argument. For example, the call

CALL a%proc(x,y)

would pass a to the first argument of the procedure, x to the second, and y to the third. This
requires that the first argument is a scalar of the given type and the procedure is said to have the
PASS attribute. If this behaviour is not wanted, the NOPASS attribute must be specified explicitly:

PROCEDURE, NOPASS, POINTER :: p

The usual PASS attribute may be explicitly confirmed:

PROCEDURE, PASS :: proc2

7

or may be attached to a another argument:

PROCEDURE, PASS(arg) :: proc3

The passed-object dummy argument must not be a pointer, must not be allocatable, and all its
nonkind type parameters must be assumed.

The specific procedures of a generic binding may be declared within the generic statement to be
with or without the pass attribute and the position in the argument list of the passed-on argument
can vary, for example

GENERIC, PASS :: gen => proc1, proc2

GENERIC, PASS(arg) :: gen => proc3

This significantly complicates the rules (Section 16.2.3 of the draft standard) on the required
difference between two procedures with the same generic name. I will not explain the rules here.

2.6 Procedures bound to a type as operators

A procedure may be bound to a type as an operator or a defined assignment. In this case, the
procedure is accessible wherever an object of the type is accessible. The syntax is through
GENERIC statements in the contained part of a type declaration:

TYPE matrix(kind,m,n)

INTEGER, KIND :: kind

INTEGER, NONKIND :: m,n

REAL(kind) :: element(m,n)

CONTAINS

GENERIC :: OPERATOR(+) => plus1, plus2, plus3

GENERIC :: ASSIGNMENT(=) => assign1, assign2

! plus1 and assign1 are for matrices alone.

! The others are for mixtures with other types.

END TYPE

:

TYPE(matrix(KIND(0.0D0),m=10,n=20))) :: a,b,c

:

a = b + c ! Invokes plus1, then assign1.

:

One or both of the arguments must be of the type to which the procedure is bound. The usual rules
about disambiguating procedure calls apply to all the procedures accessible in a scoping unit
through a single operator.

8

2.7 Type extension

A derived type may be defined as extensible:

TYPE, EXTENSIBLE :: matrix(kind,n)

INTEGER, KIND :: kind

INTEGER, NONKIND :: n

REAL(kind) :: element(n,n)

END TYPE

and then extended:

TYPE, EXTENDS(matrix) :: factored_matrix

LOGICAL :: factored=.FALSE.

REAL(matrix%kind) :: factors(matrix%n,matrix%n)

END TYPE

An extended type is extensible, too, so the term ‘parent type’ is used for the type from which an
extension is made. All the type parameters, components, and bound procedures of the parent type
are inherited by the extended type and they are known by the same names. For example,

TYPE(factored_matrix(kind(0.0),10)) :: f

declares a real factored matrix of order 10. The values of its type parameters are given by f%kind

and f%n. The inherited component may be referenced as f%element.

In addition, the extended type has the parameters, components, and bound procedures that are
declared in its own definition. Here, we have the additional components f%factored and
f%factors.

The extended type also has a component, called the parent component, whose type and type
parameters are those of its parent type and whose name is the name of the parent type. We actually
made use of this in the definition of the type factored_matrix. The inherited parameters,
components, and bound procedures may be accessed as a whole, f%matrix, as well as directly,
f%n and f%element. They may also be accessed individually through the parent as f%matrix%n
and f%matrix%element.

The parent component may be given a default initial value in the TYPE statement using a structure
constructor (Section 3.1):

TYPE, EXTENDS(matrix=matrix(kind(0.0),10)(0.0)) :: factored_matrix

This overrides any default initialization defined for the parent type’s components.

There is an ordering of the nonparent components that is needed in structure constructors and for
input/output. It consists of the inherited components in the component order of the parent type,
followed by the new components. In our example, it is element, factored, factors.

In a structure constructor, values may be given for a parent component or for the inherited

9

components. No component may be explicitly specified more than once and any component that
does not have a default value must be specified exactly once.

A specific procedure bound by name is permitted to have the name and attributes of a procedure
bound to the parent, apart from the type of the PASS argument (Section 2.5), if any. It must not be
PRIVATE if the parent’s binding is PUBLIC. In this case, it overrides the procedure bound to the
parent type.

Similarly, a procedure bound as a generic may be overridden if it is given the same generic name
or operator and fulfills the condition that it would have been overridden had it been bound as a
specific.

Such overriding may be prohibited in the parent type:

PROCEDURE, NON_OVERRIDABLE :: proc2

GENERIC, PASS, NON_OVERRIDABLE :: gen => proc1, proc2

2.8 Type aliases

An alias may be set up for a type and an explicit set of type parameter values, for example,

TYPEALIAS :: DOUBLE_COMPLEX => COMPLEX(KIND(1.0D0)), &

Matrix10 => TYPE(matrix(kind(0.0),10))

TYPE(DOUBLE_COMPLEX) :: C

TYPE(Matrix10) :: T

The syntax TYPE(alias-name) may be used wherever the aliased type and type parameters can
appear. It is useful in allowing a program to be altered in only one place when a change in type or
type parameter values is desired for many entities.

An enumeration is an alias for INTEGER of a particular KIND, together with a set of constants (its
enumerators). For example,

ENUM (SELECTED_INT_KIND(1)) :: PRIMARY_COLORS

ENUMERATOR :: RED = 4, BLUE = 9

ENUMERATOR YELLOW

END ENUM

is equivalent to the declarations

TYPEALIAS :: PRIMARY_COLORS => INTEGER (SELECTED_INT_KIND(1))

TYPE(PRIMARY_COLORS), PARAMETER :: RED=4, BLUE=9, YELLOW=10

If a value is not specified for an enumerator, it is taken as one greater than the previous
enumerator or zero if it is the first. If the kind is not specified on the ENUM statement:

ENUM :: PRIMARY_COLORS

default INTEGER is taken.

10

Another possibility is to specify BIND(C) on the ENUM statement:

ENUM, BIND(C) :: PRIMARY_COLORS

which is appropriate when interoperating with C (Section 4). In this case, the kind chosen
corresponds to the integer type that C would chose for the same set of constants.

2.9 ASSOCIATE construct

The ASSOCIATE construct associates named entities with expressions or variables during the
execution of its block. Here are some simple examples:

ASSOCIATE (Z => EXP(-(X**2+Y**2)) * COS(THETA))

PRINT *, A+Z, A-Z

END ASSOCIATE

ASSOCIATE (XC => AX%B(I,J)%C, ARRAY => AX%B(I,:)%C)

XC%DV = XC%DV + PRODUCT(XC%EV(1:N))

ARRAY = ARRAY + 1.0

END ASSOCIATE

Each name is known as an ‘associate name’. The association is as for argument association with a
dummy argument that does not have the POINTER or ALLOCATABLE attribute but has the TARGET

attribute if the variable does. Any expressions in the ASSOCIATE statement are evaluated when it
is executed and their values are used thereafter. An associated object must not be used in a
situation that might lead to its value changing unless it is associated with a variable.

The construct may be nested with other constructs in the usual way.

2.10 Polymorphic entities

A polymorphic entity is declared to be of a certain type by using the CLASS keyword in place of
the TYPE keyword and is able to take this type or any of its extensions during execution. The type
at a particular point of the execution is called the ‘dynamic type’. The entity must have the pointer
or allocatable attribute or be a dummy argument and it gets its dynamic type from allocation,
pointer assignment, or argument association. The feature allows code to be written for objects of a
given type and used later for objects of an extended type. An entity is said to be ‘type compatible’
with entities of the same declared type or of any declared type that is an extension of its declared
type.

Derived-type intrinsic assignment is extended to allow the right-hand side (but not the left-hand
side) to be polymorphic. The declared types must conform is the usual way, but the right-hand
side may have a dynamic type that is an extension of the type of the left-hand side, in which case
the components of the left-hand side are copied from the corresponding components of the

11

right-hand side.

Access is permitted directly to type parameters, components, and bound procedures for the
declared type only. However, further access is available through the SELECT TYPE construct:

CLASS (matrix(kind(0.0),10)) :: f

:

SELECT TYPE (ff => f)

TYPE IS (matrix)

: ! Block of statements

TYPE IS (factored_matrix)

: ! Block of statements

END SELECT

The first block is executed if the dynamic type of f is matrix and the second block is executed if
it is factored_matrix. The association with the associated name ff is exactly as in an
ASSOCIATE construct (Section 2.9). In the second block, we may use ff to access the extensions
thus: ff%factored, ff%factor. The SELECT TYPE construct is described in detail in Section
2.11.

An object may be declared with the CLASS(*) specifier and is then ‘unlimited polymorphic’. It is
not considered to have the same declared type as any other entity, but is type compatible with all
entities of extensible type.

The inquiry functions SAME_TYPE_AS(A,B) and EXTENDS_TYPE_OF(A,MOLD) are available to
determine whether A and B have the same dynamic type and whether the dynamic type of A is an
extension of that of MOLD.

2.11 SELECT TYPE construct

The SELECT TYPE construct selects for execution at most one of its constituent blocks, depending
on the dynamic type of a variable or an expression. A name is associated with the expression, as
for the ASSOCIATE construct (Section 2.9). Here is an example:

TYPE, EXTENSIBLE :: POINT

REAL :: X, Y

END TYPE POINT

TYPE, EXTENDS(POINT) :: POINT_3D

REAL :: Z

END TYPE POINT_3D

TYPE, EXTENDS(POINT) :: COLOR_POINT

INTEGER :: COLOR

END TYPE COLOR_POINT

12

TYPE(POINT), TARGET :: P

TYPE(POINT_3D), TARGET :: P3

TYPE(COLOR_POINT), TARGET :: C

CLASS(POINT), POINTER :: P_OR_C

P_OR_C => C

SELECT TYPE (A => P_OR_C)

TYPE IS (POINT_3D)

PRINT *, A%X, A%Y, A%Z

CLASS IS (POINT)

PRINT *, A%X, A%Y ! This block gets executed

END SELECT

Within each block, the associate name has the declared type or class given on the TYPE IS or
CLASS IS statement. The block is chosen as follows:

(i) If a TYPE IS block matches, it is taken;

(ii) otherwise, if a single CLASS IS block matches, it is taken;

(iii) otherwise, if several CLASS IS blocks match, one must be an extension of all the
others and it is taken.

There may also be a CLASS DEFAULT block. This is selected if no other block is selected; the
associate name then has the same declared and dynamic types as the selector.

3 Miscellaneous enhancements

3.1 Structure constructors

The value list of a structure constructor may use the syntax of an actual argument list with
keywords that are component names. Components that were given default values in the type
definition may be omitted. This implies that structure constructors can be used for types that have
private components, so long as the private components have default values. Of course, no
component may be given an explicit value more than once and explicit values override default
values. If the type has type parameters, these must be specified:

a = matrix(KIND(0.0),m=10,n=20) (element = 0.0)

A generic name may be the same as a derived type name, provided it references a function. This
has the effect of overriding or overloading the constructor for the type.

13

3.2 The allocate statement

The allocatable attribute is no longer restricted to arrays and a source variable may be specified to
provide values for deferred nonkind type parameters and an initial value for the object itself. For
example,

TYPE(matrix(KIND(0.0D0),m=10,n=20)) :: a

TYPE(matrix(KIND(0.0D0),m=:,n=:)),ALLOCATABLE :: b, c

:

ALLOCATE(b,SOURCE=a)

ALLOCATE(c,SOURCE=a)

allocates the scalar objects b and c to be 10 × 20 matrices with the value of a. With SOURCE

present, the allocate statement allocates just one object. The value is assigned by the rules for
intrinsic assignment; in particular, the rules of array conformability apply so that the source
variable is limited to being a scalar or an array of the same shape as the array being allocated.

Alternatively, the nonkind type parameters may be specified by a type declaration within the
allocate statement:

ALLOCATE (TYPE(matrix(KIND(0.0D0),m=10,n=20)) :: b,c)

If this feature is used in an allocate statement, initialization from a source variable is not available.
One or the other must be used if the type has any deferred type parameters. If either is used, each
allocatable object in the list must have the same non-deferred type parameters as the source
variable or the type declaration.

The allocate statement may also specify the dynamic type of a polymorphic object:

CLASS (matrix(kind(0.0),10)) :: a,b,c,d

:

ALLOCATE(TYPE(factored_matrix(kind(0.0),10)) :: b,c)

ALLOCATE(d,SOURCE=a) ! d takes its dynamic type from a

An ALLOCATE or DEALLOCATE statement may optionally contain an ERRMSG= specifier that
identifies a default character scalar variable. If an error occurs during execution of the statement,
the processor assigns an explanatory message to the variable. If no such condition occurs, the
value of the variable is not changed.

14

3.3 More control of access from a module

More detailed control of access from a module is possible. The individual components of a
derived type may be declared PUBLIC or PRIVATE:

TYPE, EXTENDS(PRIVATE::person) :: s_person ! Parent component

! is private

CHARACTER(:), ALLOCATABLE, PUBLIC :: name

INTEGER, PRIVATE :: age

END TYPE

The bindings to a type may be declared PUBLIC or PRIVATE:

PROCEDURE, PUBLIC, PASS, POINTER :: p

GENERIC, PUBLIC, PASS :: gen => proc1, proc2

GENERIC, PRIVATE :: OPERATOR(+) => plus1, plus2, plus3

Note, however, that a final subroutine may not be declared PUBLIC or PRIVATE. It is always
available for the finalization of any variable of the type.

The PROTECTED attribute may be applied to a variable or a pointer declared in a module, and
specifies that its value or pointer status may be altered only within the module itself. The
PROTECTED statement has the syntax

PROTECTED [::] entity-name-list

and it may be specified in a type declaration statement such as

REAL, PROTECTED :: a(10)

If any object has the PROTECTED attribute, all of its subobjects have the attribute.

If a pointer has the PROTECTED attribute, its pointer association status is protected, but not the
value of its target.

This feature is very useful for constructing reliable software. It parallels INTENT(IN) for a
dummy argument. The value is made available, but changing it is not permitted. The protection is
only in the module of original declaration; if a module uses an unprotected variable from another
module, it cannot apply the PROTECTED attribute to it.

3.4 Renaming operators on the USE statement

In Fortran 2000, it is permissible to rename operators that are not intrinsic operators:

USE MY_MODULE, OPERATOR(.MY_ADD.) => OPERATOR(.ADD.)

15

3.5 Pointer assignment

Pointer assignment for arrays has been extended to allow lower bounds to be specified:

p(0:,0:) => a

As for dummy arrays, the lower bounds may be specification expressions.

Remapping of the elements of a rank-one array is permitted:

p(1:m,1:2*m) => a(1:2*m*m)

The mapping is in array-element order and the target array must be large enough. The bounds may
be specification expressions.

The limitation to rank-one arrays is because pointer arrays need not occupy contiguous storage:

a => b(1:10:2)

but all the gaps have the same length in the rank-one case.

If the target of a pointer assignment is polymorphic (Section 2.10), the pointer must be
polymorphic and type compatible with it. It takes the dynamic type of the target.

Nonkind type parameters of the pointer may be deferred (declared with a colon). Pointer
assignment gives these the values of the corresponding parameters of the target. All the pointer’s
other type parameters must have the same values as the corresponding type parameters of the
target.

3.6 Pointer INTENT

INTENT was not permitted to be specified in Fortran 95 for pointer dummy arguments because of
the ambiguity of whether it should refer to the pointer association status, the value of the target, or
both. INTENT is permitted in Fortran 2000; it refers to the pointer association status and has no
bearing on the value of the target.

3.7 The VOLATILE attribute

The VOLATILE attribute has been introduced for a data object to indicate that its value might
change by means not specified in the standard, for example, by another program that is executing
in parallel. For a pointer, the attribute refers only to the association status and not to the target. For
an allocatable object, it refers to everyting about it. Whether an object has the VOLATILE attribute
may vary between scoping units. If an object has the VOLATILE attribute, all of its subobjects also
have the attribute.

The effect is that the compiler is required to reference and define the memory that can change by
other means rather than rely on values in cache or other temporary memory.

16

3.8 The IMPORT statement

In Fortran 95, interface bodies ignore their environment, that is, nothing from the host is
accessible. For example, a type that is defined in a module is not accessible in an interface block
within the module. The IMPORT statement has therefore been introduced. It has the syntax

IMPORT [[::] import-name-list]

and is allowed only in an interface body. Without an import-name list, it specifies that all entities
in the host scoping unit are accessible by host association. With a list, those named are accessible.

3.9 Access to the computing environment

The concept of a module being intrinsic was introduced as part of the exception handling
technical report (Reid 2001). A new intrinsic module is ISO_FORTRAN_ENV. It contains the
following constants

INPUT_UNIT, OUTPUT_UNIT, and ERROR_UNIT are default integer scalars holding the unit
identified by an asterisk in a READ statement, an asterisk in a WRITE statement, and used for
the purpose of error reporting, respectively.

IOSTAT_END and IOSTAT_EOR are default integer scalars holding the values that are assigned to
the IOSTAT= variable if an end-of-file or end-of-record condition occurs, respectively.

In addition, the following intrinsic procedures have been added. Note that they are ordinary
intrinsics and are not part of the module ISO_FORTRAN_ENV.

COMMAND_ARGUMENT_COUNT () is an inquiry function that returns the number of command
arguments as a default integer scalar.

CALL GET_COMMAND ([COMMAND,LENGTH,STATUS]) returns the entire command by which the
program was invoked in the following INTENT(OUT) arguments:

COMMAND (optional) is a default character scalar that is assigned the entire command.

LENGTH (optional) is a default integer scalar that is assigned the significant length (number
of characters) of the command.

STATUS (optional) is a default integer scalar that indicates success or failure.

CALL GET_COMMAND_ARGUMENT (NUMBER[,VALUE,LENGTH,STATUS]) returns a command
argument.

NUMBER is a default integer INTENT(IN) scalar that identifies the required command
argument. Useful values are those between 0 and COMMAND_ARGUMENT_COUNT().

VALUE (optional) is a default character INTENT(OUT) scalar that is assigned the value of the
command argument.

LENGTH (optional) is a default integer INTENT(OUT) scalar. It is assigned the significant

17

length (number of characters) of the command argument.

STATUS (optional) is a default integer scalar that indicates success or failure.

CALL GET_ENVIRONMENT_VARIABLE (NAME[,VALUE,LENGTH,STATUS,TRIM_NAME]) obtains
the value of an environment variable.

NAME is a default character INTENT(IN) scalar that identifies the required environment
variable. The interpretation of case is processor dependent.

VALUE (optional) is a default character INTENT(OUT) scalar that is assigned the value of the
environment variable.

LENGTH (optional) is a default integer INTENT(OUT) scalar. If the specified environment
variable exists and has a value, LENGTH is set to the length (number of characters) of
that value. Otherwise, LENGTH is set to 0.

STATUS (optional) is a default integer scalar that indicates success or failure.

TRIM_NAME (optional) is a logical INTENT(IN) scalar that indicates whether trailing blanks
in NAME are considered significant.

3.10 Support for international character sets

Fortran 90 introduced the possibility of multi-byte character sets, which provides a foundation for
supporting ISO 10646 (2000). This is a standard for 4-byte characters, which is wide enough to
support all the world’s languages. A new intrinsic function has been introduced to provide the
kind value for a specified character set:

SELECTED_CHAR_KIND(NAME) returns the kind value as a default INTEGER.

NAME is a scalar of type default character. If it has one of the values DEFAULT, ASCII, and
ISO_10646 and specifies the required character set.

Further printable ASCII characters have been added to the Fortran character set as special
characters:

˜ Tilde \ Backslash
[Left square bracket] Right square bracket
‘ Grave accent ˆ Circumflex accent
{ Left curly bracket } Right curly bracket
| Vertical bar # Number sign
@ Commercial at

Only square brackets are actually used in the syntax (for array constructors, Section 3.13).

18

3.11 Lengths of names and statements

Names of length up to 63 characters and statements of up to 256 lines are allowed. The main
reason for the longer names and statements is to support the requirements of codes generated
automatically.

3.12 Binary, octal and hex constants

A binary, octal or hex constant is permitted as a principal argument in a call of the intrinsic
function INT, REAL, CMPLX, or DBLE (not for an optional argument that specifies the kind).
Examples are

INT(O’345’), REAL(Z’1234ABCD’)

For INT, the ‘boz’ constant is treated as if it were an integer constant of the kind with the largest
range supported by the processor.

For the others, it is treated as having the value that a variable of the same type and kind type
parameters as the result would have if its value was the bit pattern specified. The interpretation of
the value of the bit pattern is processor dependent. If the kind is not specified, it is the default
kind.

The advantage of limiting boz constants in this way is that there is no ambiguity in the way they
are interpreted. There are vendor extensions that allow them directly in expressions, but the ways
that values are interpreted differ.

3.13 Array constructor syntax

Square brackets are permitted as an alternative to (/ and /) for delimiters for array constructors.

An array constructor may include a type specification such as

[CHARACTER(LEN=7) :: 'Takata', 'Tanaka', 'Hayashi']

which allows values of nonkind type parameters to be specified. The element values are obtained
by the rules of intrinsic assignment, which means that this example is valid despite the varying
character lengths.

3.14 Specification and initialization expressions

The rules on what may appear in an initialization expression have been relaxed. Any standard
intrinsic procedure is permitted. For details of the new rules, see 7.1.6 and 7.1.7 of the draft
standard (J3 2002). The rules on what may appear in a specification expression have been relaxed,
too. For details, see 7.1.6 and 7.1.7 of the draft standard.

19

4 Input/output enhancements

4.1 Derived type input/output

It may be arranged that when a derived-type object is encountered in an input/output list, a Fortran
subroutine is called. This reads some data from the file and constructs a value of the derived type
or accepts a value of the derived type and writes some data to the file.

For formatted input/output, the DT edit descriptor passes a character string and an integer array to
control the action. An example is

DT 'linked-list' (10, -4, 2)

The character string may be omitted, in which case a string of length zero is passed. The bracketed
list of integers may be omitted, in which case an array of length zero is passed.

Such subroutines may be bound to the type as generic bindings (see Sections 2.4 and 2.6) of the
forms

GENERIC :: READ(FORMATTED) => r1, r2

GENERIC :: READ(UNFORMATTED) => r3, r4, r5

GENERIC :: WRITE(FORMATTED) => w1

GENERIC :: WRITE(UNFORMATTED) => w2, w3

which makes them accessible wherever an object of the type is accessible. An alternative is an
interface block such as

INTERFACE READ(FORMATTED)

MODULE PROCEDURE r1, r2

END INTERFACE

The form of such a subroutine depends on whether it is for formatted or unformatted input or
output:

SUBROUTINE formatted_io (dtv,unit,iotype,v_list,iostat,iomsg)

SUBROUTINE unformatted_io(dtv,unit, iostat,iomsg)

dtv is a scalar of the derived type. It must be polymorphic if and only if the object in the
input/output list is polymorphic. Any nonkind type parameters must be assumed. For output,
it is of intent(in) and holds the value to be written. For input, it is of intent(inout)
and must be altered in accord with the values read.

unit is a scalar of intent(in) and type default integer. Its value is the unit on which
input/output is taking place or negative if on an internal file.

iotype is a scalar of intent(in) and type character(*). Its value is ’LISTDIRECTED’,
’NAMELIST’, or ’DT’//string where string is the character string from the DT edit
descriptor.

20

v_list is a rank-one assumed-shape array of intent(in) and type default integer. Its value
comes from the parenthetical list of the edit descriptor.

iostat is a scalar of intent(out) and type default integer. If an error condition occurs, it
must be given a positive value. Otherwise, if an end-of-file or end-of-record condition
occurs it must be given the value IOSTAT_END or IOSTAT_EOR (see Section 3.9),
respectively. Otherwise, it must be given the value zero.

iomsg is a scalar of intent(inout) and type character(*). If iostat is given a nonzero value,
iomsg must be set to an explanatory message. Otherwise, it must not be altered.

Input/output within the subroutine to external files is limited to the specified unit and in the
specified direction. However, input/output to an internal file is permitted. An input/output list may
include a DT edit descriptor for a component of the dtv argument, with the obvious meaning.

The file position on entry is treated as a left tab limit and there is no record termination on return.

This feature is not available in combination with asynchronous input/output (next section).

4.2 Asynchronous input/output

Input/output may be asynchronous, that is, other statements may execute while an input/output
statement is in execution. It is permitted only for external files opened with
ASYNCHRONOUS=’YES’ in the OPEN statement and is indicated by ASYNCHRONOUS=’YES’ in the
READ or WRITE statement. Execution of an asynchronous input/output statement initiates a
‘pending’ input/output operation, which is terminated by a wait operation for the file. This may be
performed by an explicit wait statement

WAIT(10)

or implicitly by an INQUIRE, a CLOSE, or a file positioning statement for the file. The compiler is
permitted to treat each asynchronous input/output statement as an ordinary input/output
statement; this, after all, is just the limiting case of the input/output being fast. The compiler is, of
course, required to recognize all the new syntax.

Further asynchronous input/output statements may be executed for the file before the wait
statement is reached. The input/output statements are performed in the same order as if they were
synchronous.

An execution of an asynchronous input/output statement may be identified by a scalar integer
variable in an ID= specifier. Successful execution of the statement causes the variable to be given
a processor-dependent value which can be passed to a subsequent WAIT or INQUIRE statement as
a scalar integer variable in an ID= specifier.

A wait statement may have END=, EOR=, ERR= and IOSTAT= specifiers. These have the same
meanings as for an input/output statement and refer to situations that occur while the input/output
operation is pending. If there is an ID= specifier, too, only the identified pending operation is

21

terminated and the other specifiers refer to this; otherwise, all pending operations for the file are
terminated in turn.

An INQUIRE statement is permitted to have a PENDING= specifier for a scalar default logical
variable. If an ID= specifier is present, the variable is given the value true if the particular
input/output operation is still pending and false otherwise. If no ID= specifier is present, the
variable is given the value true if all input/output operations for the unit are still pending and false
otherwise. In the ‘false’ case, wait operations are performed for the file or files. Wait operations
are not performed in the ‘true’ case, even if some of the input/output operations are complete.

A file positioning statement (BACKSPACE, ENDFILE, REWIND) performs wait operations for all
pending input/output operations for the file.

Asynchronous input/output is not permitted in conjunction with user-defined derived type
input/output (Section 4.1) because it is anticipated that the number of characters actually written is
likely to depend on the values of the variables.

A variable in a scoping unit is said to be an ‘affector’ of a pending input/output operation if any
part of it is associated with any part of an item in the input/output list, namelist, or SIZE=

specifier. While an input/output operation is pending, an affector is not permitted to be redefined,
become undefined, or have its pointer association status changed. While an input operation is
pending, an affector is also not permitted to be referenced or associated with a dummy argument
with the VALUE attribute (Section 5.6).

The ASYNCHRONOUS attribute has been introduced to warn the compiler that some code motions
across wait statements might lead to incorrect results. If a variable appears in an executable
statement or a specification expression in a scoping unit and any statement of the scoping unit is
executed while the variable is an affector, it must have the ASYNCHRONOUS attribute in the scoping
unit.

A variable is automatically given this attribute if it or a subobject of it is an item in the
input/output list, namelist, or SIZE= specifier of an asynchronous input/output statement. A
named variable may be declared with this attribute:

INTEGER, ASYNCHRONOUS :: int_array(10)

or given it by the ASYNCHRONOUS statement

ASYNCHRONOUS :: int_array, another

This statement may be used to give the attribute to a variable that is accessed by use or host
association.

Like the VOLATILE (Section 3.7) attribute, whether an object has the ASYNCHRONOUS attribute
may vary between scoping units. All subobjects of a variable with the ASYNCHRONOUS attribute
have the attribute.

There are restrictions that avoid any copying of an actual argument when the corresponding

22

dummy argument has the ASYNCHRONOUS attribute.

4.3 FLUSH statement

Execution of a FLUSH statement for an external file causes data written to it to be available to
other processes, or causes data placed in it by means other than Fortran to be available to a READ
statement. The syntax is just like that of the file positioning statements.

In combination with ADVANCE=’NO’ or stream access (Section 4.5), it permits the program to
access keyboard input character by character.

4.4 IOMSG specifier

Any input/output statement is permitted to have an IOMSG= specifier. This identifies a scalar
variable of type default character into which the processor places a message if an error,
end-of-file, or end-of-record condition occurs during execution of the statement. If no such
condition occurs, the value of the variable is not changed.

4.5 Stream access input/output

Stream access is a new method of accessing an external file. It is established by specifying
ACCESS=’STREAM’ on the OPEN statement and may be formatted or unformatted.

The file is positioned by ‘file storage units’, normally bytes, starting at position 1. The current
position may be determined from a scalar integer variable in a POS= specifier of an INQUIRE

statement for the unit. A required position may be indicated in a READ or WRITE statement by the
POS= specifier which accepts a scalar integer expression. For formatted input/output, the value
must be 1 or a value previously returned in an INQUIRE statement for the file. In the absence of a
POS= specifier, the file position is left unchanged.

The standard permits a processor to prohibit the use of POS= for particular files that do not have
the properties necessary to support random positioning or the use of POS= for forward positioning.

4.6 ROUND= specifier

Rounding during formatted input/output may be controlled by the ROUND= specifier on the OPEN

statement, which takes one of the values UP, DOWN, ZERO, NEAREST, COMPATIBLE, or
PROCESSOR_DEFINED. It may be overridden by a ROUND= specifier in a READ or WRITE statement
with one of these values. The meanings are obvious except for the difference between NEAREST

and COMPATIBLE. Both refer to a closest representable value. If two are equidistant, which is
taken is processor dependent for NEAREST and the value away from zero for COMPATIBLE.

The rounding mode may also be temporarily changed within a READ or WRITE statement by the

23

RU, RD, RZ, RN, RC, and RP edit descriptors.

4.7 DECIMAL= specifier

The character that separates the parts of a decimal number in formatted input/output may be
controlled by the DECIMAL= specifier on the OPEN statement, which takes one of the values COMMA
or POINT. It may be overridden by a DECIMAL= specifier in a READ or WRITE statement with one of
these values. If the mode is COMMA in list-directed input/output, values are separated by
semicolons instead of commas.

The mode may also be temporarily changed within a READ or WRITE statement by the DC and DP

edit descriptors.

This feature is intended for use in those countries in which decimal numbers are usually written
with a comma rather than a decimal point: 469,23.

4.8 SIGN= specifier

The SIGN= specifier has been added to the OPEN statement. It can take the value SUPPRESS,

PLUS, or PROCESSOR_DEFINED and controls the optional plus characters in formatted numeric
output. It may be overridden by a SIGN= specifier in a WRITE statement with one of these values.
The mode may also be temporarily changed within a WRITE statement by the SS, SP, and S edit
descriptors, which are part of Fortran 95.

5 Interoperability with C

5.1 Introduction

Fortran 2000 provides a standardized mechanism for interoperating with C. Clearly, any entity

involved must be such that equivalent declarations of it may be made in the two languages. This is

enforced within the Fortran program by requiring all such entities to be ‘interoperable’. We will

explain in turn what this requires for types, variables, and procedures. They are all requirements

on the syntax so that the compiler knows at compile time whether an entity is interoperable. We

finish with two examples.

24

5.2 Interoperability of intrinsic types

There is an intrinsic module called ISO_C_BINDING that contains named constants holding kind
type parameter values for intrinsic types. Their names are shown in Table 1, together with the
corresponding C types. The processor is not required to support all of them. Lack of support is
indicated with a negative value.

Table 1. Interoperability between Fortran and C types

Type Named constant C type or types

INTEGER C_INT int
C_SHORT short int
C_LONG long int
C_LONG_LONG long long int
C_SIGNED_CHAR signed char, unsigned char
C_SIZE_T size_t
C_INT_LEAST8_T int_least8_t
C_INT_LEAST16_T int_least16_t
C_INT_LEAST32_T int_least32_t
C_INT_LEAST64_T int_least64_t
C_INT_FAST8_T int_fast8_t
C_INT_FAST16_T int_fast16_t
C_INT_FAST32_T int_fast32_t
C_INT_FAST64_T int_fast64_t
C_INTMAX_T c intmax_t

REAL C_FLOAT float
C_DOUBLE double
C_LONG_DOUBLE long double

COMPLEX C_FLOAT_COMPLEX float _Complex
C_DOUBLE_COMPLEX double _Complex
C_LONG_DOUBLE_COMPLEX long double _Complex

LOGICAL C_BOOL _Bool

CHARACTER C_CHAR char

For character type, interoperability also requires that the length type parameter be omitted or be
specified by an initialization expression whose value is one. The following named constants (with
the obvious meanings) are provided: C_NULL_CHAR, C_ALERT, C_BACKSPACE, C_FORM_FEED,
C_NEW_LINE, C_CARRIAGE_RETURN, C_HORIZONTAL_TAB, C_VERTICAL_TAB.

25

5.3 Interoperability with C pointers

For interoperating with C pointers (which are just addresses), the module contains a derived type
C_PTR that is interoperable with any C pointer type and a named constant C_NULL_PTR with the
value NULL of C.

The module also contains the following procedures:

C_LOC(X) is an inquiry function that returns the C address of X.

X is permitted to be

(a) a procedure that is interoperable (see Section 5.6) or a pointer associated with
such a procedure;

(b) a variable with interoperable type and type parameters that has the TARGET

attribute and is either interoperable, an allocated allocatable variable, or a scalar
pointer with a target; or

(c) a nonpolymorpic scalar without nonkind parameters that has the TARGET

attribute and is either an allocated allocatable variable, or a scalar pointer with a
target.

C_ASSOCIATED (C_PTR1[, C_PTR2]) is an inquiry function that returns a default logical scalar.
It has the value false if C_PTR1 is a C null pointer or if C_PTR2 is present with a different
value; otherwise, it has the value true.

C_F_POINTER (CPTR, FPTR [, SHAPE])) is a subroutine with arguments

CPTR is a scalar of type C_PTR with intent IN. Its value is the C address of an entity that is
interoperable with variables of the type and type parameters of FPTR or was returned
by a call of C_LOC for a variable of the type and type parameters of FPTR. It must not
be the C address of a Fortran variable that does not have the TARGET attribute.

FPTR is a pointer that becomes pointer associated with the target of CPTR. If it is an array, its
shape is specified by SHAPE.

SHAPE (optional) is a rank-one array of type integer with intent IN. If present, its size is
equal to the rank of FPTR. If FPTR is an array, it must be present.

This is the mechanism for passing dynamic arrays between the languages. A Fortran pointer target
or assumed-shape array cannot be passed to C since its elements need not be contiguous in
memory. However, an allocated allocatable array may be passed to C and an array allocated in C
may be associated with a Fortran pointer.

Case (c) of C_LOC allows the C program to receive a pointer to a Fortran scalar that is not
interoperable. It is not intended that any use of it be made within C except to pass it back to
Fortran, where C_F_POINTER is available to reconstruct the Fortran pointer.

26

5.4 Interoperability of derived types

For a derived type to be interoperable, it must be given the BIND attribute explicitly:

TYPE, BIND(C) :: MYTYPE

:

END TYPE MYTYPE

Each component must have interoperable type and type parameters, must not be a pointer, and
must not be allocatable. This allows Fortran and C types to correspond, for example

typedef struct {

int m, n;

float r;

} myctype

is interoperable with

USE ISO_C_BINDING

TYPE, BIND(C) :: MYFTYPE

INTEGER(C_INT) :: I, J

REAL(C_FLOAT) :: S

END TYPE MYFTYPE

The name of the type and the names of the components are not significant for interoperability.

No Fortran type is interoperable with a C union type, struct type that contains a bit field, or struct
type that contains a flexible array member.

5.5 Interoperability of variables

A scalar Fortran variable is interoperable if it is of interoperable type and type parameters, and is
neither a pointer nor allocatable.

An array Fortran variable is interoperable if it is of interoperable type and type parameters, and is
of explicit shape or assumed size. It interoperates with a C array of the same type, type parameters
and shape, but with reversal of subscripts. For example, a Fortran array declared as

INTEGER :: A(18, 3:7, *)

is interoperable with a C array declared as

int b[][5][18]

27

5.6 Interoperability of procedures

For the sake of interoperability, a new attribute, VALUE, has been introduced for scalar dummy
arguments. When the procedure is called, a copy of the actual argument is made. The dummy
argument is a variable that may be altered during execution of the procedure, but on return no
copy back takes place. If the type is character, the character length must be one.

A Fortran procedure is interoperable if it has an explicit interface and is declared with the BIND

attribute:

FUNCTION FUNC(I, J, K, L, M), BIND(C)

All the dummy arguments must be interoperable. For a function, the result must be scalar and
interoperable. The procedure has a ‘binding label’, which has global scope and is the name by
which it is known to the C processor. By default, it is the lower-case version of the Fortran name.
For example, the above function has the binding label func. An alternative binding label may be
specified:

FUNCTION FUNC(I, J, K, L, M), BIND(C, NAME='C_Func')

Such a procedure corresponds to a C function prototype with the same binding label. For a
function, the result must be interoperable with the prototype result. For a subroutine, the prototype
must have a void result. A dummy argument with the VALUE attribute and of type other than
C_PTR must correspond to a formal parameter of the prototype that is not of a pointer type. A
dummy argument without the VALUE attribute or with the VALUE attribute and of type C_PTR must
correspond to a formal parameter of the prototype that is of a pointer type.

5.7 Interoperability of global data

An interoperable module variable or a common block with interoperable members may be given
the BIND attribute:

USE ISO_C_BINDING

INTEGER(C_INT), BIND(C) :: C_EXTERN

INTEGER(C_LONG) :: C2

BIND(C, NAME='myVariable') :: C2

COMMON /COM/ R, S

REAL(C_FLOAT) :: R, S

BIND(C) :: /COM/

It has a binding label defined by the same rules as for procedures and interoperates with a C
variable of a corresponding type.

28

5.8 Example of Fortran calling C

C Function Prototype:

int C_Library_Function(void* sendbuf, int sendcount, int *recvcounts)

Fortran Module:

MODULE FTN_C

INTERFACE

INTEGER (C_INT) FUNCTION C_LIBRARY_FUNCTION &

(SENDBUF, SENDCOUNT, RECVCOUNTS), &

BIND(C, NAME='C_Library_Function')

USE ISO_C_BINDING

IMPLICIT NONE

TYPE (C_PTR), VALUE :: SENDBUF

INTEGER (C_INT), VALUE :: SENDCOUNT

TYPE (C_PTR), VALUE :: RECVCOUNTS

END FUNCTION C_LIBRARY_FUNCTION

END INTERFACE

END MODULE FTN_C

Fortran Calling Sequence:

USE ISO_C_BINDING, ONLY: C_INT, C_FLOAT, C_LOC

USE FTN_C

...

REAL (C_FLOAT), TARGET :: SEND(100)

INTEGER (C_INT) :: SENDCOUNT

INTEGER (C_INT), ALLOCATABLE, TARGET :: RECVCOUNTS(:)

...

ALLOCATE(RECVCOUNTS(100))

...

CALL C_LIBRARY_FUNCTION(C_LOC(SEND), SENDCOUNT, &

C_LOC(RECVCOUNTS))

...

29

5.9 Example of C calling Fortran

Fortran Code:

SUBROUTINE SIMULATION(ALPHA, BETA, GAMMA, DELTA, ARRAYS), BIND(C)

USE ISO_C_BINDING

IMPLICIT NONE

INTEGER (C_LONG), VALUE :: ALPHA

REAL (C_DOUBLE), INTENT(INOUT) :: BETA

INTEGER (C_LONG), INTENT(OUT) :: GAMMA

REAL (C_DOUBLE),DIMENSION(*),INTENT(IN) :: DELTA

TYPE, BIND(C) :: PASS

INTEGER (C_INT) :: LENC, LENF

TYPE (C_PTR) :: C, F

END TYPE PASS

TYPE (PASS), INTENT(INOUT) :: ARRAYS

REAL (C_FLOAT), ALLOCATABLE, TARGET, SAVE :: ETA(:)

REAL (C_FLOAT), POINTER :: C_ARRAY(:)

...

! Associate C_ARRAY with an array allocated in C

CALL C_F_POINTER (ARRAYS%C, C_ARRAY, (/ARRAYS%LENC/))

...

! Allocate an array and make it available in C

ARRAYS%LENF = 100

ALLOCATE (ETA(ARRAYS%LENF))

ARRAYS%F = C_LOC(ETA)

...

END SUBROUTINE SIMULATION

C Struct Declaration:

struct pass {int lenc, lenf; float* f, *c}

C Function Prototype:

void simulation(long alpha, double *beta, long *gamma,

double delta[], struct pass *arrays)

C Calling Sequence:

simulation(alpha, &beta, &gamma, delta, &arrays);

30

6 References
ASCII (1991) ISO/IEC 646:1991, Information technology – ISO 7-bit coded character set for

information interchange. ISO, Geneva.

Cohen, Malcolm (ed.) (2001) ISO/IEC TR 15581(E) Technical Report: Information technology –
Programming languages – Fortran – Enhanced data type facilities (second edition). ISO,
Geneva.

IEEE (1989) IEC 60559: 1989, Binary floating-point arithmetic for microprocessor Systems.
Originally IEEE 754-1985.

ISO 10646 (2000) ISO/IEC 10646-1:2000, Information technology – Universal multiple-octet
coded character set (UCS) – Part 1: Architecture and basic multilingual plane. ISO, Geneva.

J3 (2002) J3/02-007R3 – Draft Fortran standard. Also known as ISO/IEC JTC1/SC22/WG5
N1497. Available as PS, PDF, or text from
ftp://ftp.j3-fortran.org/j3/doc/standing/2002/02-007r3/

Metcalf, Michael and Reid, John (1999) Fortran 90/95 explained (second edition). Oxford
University Press.

Reid, John (ed.) (2001) ISO/IEC TR 15580(E) Technical Report: Information technology –
Programming languages – Fortran – Floating-point exception handling (second edition).
ISO, Geneva.

31

