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ABSTRACT

We discuss the design and development of a new Fortran code EA16 for the computation of
selected eigenvalues and eigenvectors of large-scale real symmetric eigenvalue problems. EA16
can be used for either the standard or the generalized eigenvalue problem. The underlying
method used by EA16 is the block Lanczos method with partial reorthogonalization plus
implicit restarting, combined with purging and locking of converged Ritz pairs. A spectral
transformation may optionally be used. The code allows a change of pole via the rational
Lanczos method. Particular attention is paid to the solution of generalized eigenvalue problems

with a singular mass matrix.
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1 Introduction

This paper discusses the design and development of a new Fortran 77 code EA16 from the Harwell
Subroutine Library (HSL 2000) for the computation of a number of selected eigenvalues and
corresponding eigenvectors of either the large scale standard eigenvalue problem

Az =z, (1)
where A is an n X n real symmetric matrix, or the generalized eigenvalue problem
Kz =AMz, (2)

where K and M are n X n real symmetric matrices, and either M or K is positive (semi)
definite. If K is positive (semi) definite the generalized eigenvalue problem (2) is known as the
buckling problem (Grimes, Lewis and Simon 1994). We call A an eigenvalue, z a corresponding
eigenvector and (A, z) an eigenpair. Applications of the form (1) arise in quantum physics and
chemistry while (2) arises in structural analysis (Grimes, Lewis and Simon 1986, Grimes et al.
1994), acoustics (Pierce 1981), and the stability analysis of Stokes problems (Malkus 1981).

The underlying method used by EA16 is the block Lanczos method equipped with implicit
restarting (Sorensen 1992), partial and external selective reorthogonalization (Grimes et al.
1994), a spectral transformation (Ericsson and Ruhe 1980), and rational Krylov (Ruhe 1998,
Meerbergen 1999). Most software packages offer only a few of these features. In this respect,
EA16 is a general purpose state of the art eigensolver.

As we will see in §4, the solution of specialized applications sometimes require a number
options to be specified when using EA16. We will later provide drivers for a range of applications
that will set many of these options, thus providing the user with a more straightforward interface
to EA16.

The software uses reverse communication for the action of the matrices A, K and M, or the
spectral transformations (A — oI)™!, (K —oM)™'M, and (K — o M)~1K, on sets of vectors.
EA16 is particularly effective when the user is able to provide an efficient code for the product
of one or more of these matrices with a number of vectors equal to the blocksize of the Lanczos
method. In particular, the user may be able to take advantage of BLAS 3 kernels (Dongarra,
DuCroz, Duff and Hammarling 1990) to significantly enhance the performance when using a
blocksize greater than 1.

The paper is organized as follows. In §2, we describe the theory behind the Lanczos
algorithm, including locking of converged eigenvectors, purging of unwanted eigenvectors,
implicit restarting, and partial and external selective reorthogonalization. Concepts such as
purification and implicit filtering are introduced in order to improve the robustness of the
Lanczos method for problems with a singular mass matrix. In §3, we compare EA16 with
existing Lanczos codes and discuss the user interface and options offered by EA16. §4 looks at
a number of applications, their properties and how EA16 can be used for their solution.

We complete this section by introducing notation that will be used throughout this paper.
We use lower case symbols to denote scalars and vectors while upper case is reserved for matrices.

n Dimension of the eigenvalue problem.
A, K, M Matrices from the eigenvalue problem.
A Eigenvalue of original problem.
Also used to denote computed Ritz value of original problem.
T Eigenvector. Also used to denote computed Ritz vector



r Residual vector.

v, v(A) The number of negative eigenvalues of A.

S Shift-invert transformation S = (A —oI)~! or (K — o M) M.

S Buckling transformation Sp = (K — o M) K.

0 Eigenvalue or Ritz value of shift-invert transformation or buckling transformation.

o Pole of the shift-invert or buckling transformation.

zTy Standard inner product.

=T My M inner product.

(z,y) Abstract notation for inner product.
Depending on the context (z,y) = 2Ty or 27 My.

(X,Y) Abstract notation for ‘inner’ product of two matrices X € R*** and Y € R"*} ;
(X,Y) € RFX,

Depending on the context (X,Y) = XTY or XTMY.
Note that (XP,YQ) = PT(X,Y)Q

lz]l, |22 2-norm of z : VaTz.
The subscript is omitted when there is no ambiguity.
|z || a2 M-norm of z : VzT M.
| X]| 2-norm of matrix X : largest singular value of X.
1 X || F Frobenius norm of X.
U Machine precision.
b The blocksize used by the Lanczos method.
Ty kb x kb tridiagonal matrix for the block Lanczos method with block size b.
T4 kb4 b x kb tridiagonal matrix with the residual terms included.

B; jth b x b subdiagonal block in the tridiagonal matrix 7}.

Cj jth b x b diagonal block in the tridiagonal matrix T%.

V; n X b block of Lanczos vectors computed at iteration j — 1.

Vi n x jb matrix [V1,...,V}].

+ The superscript . is used after an implicit restart or change of pole.

L Orthogonality : z 1 y & (@,y) =0.

1 Identity matrix. Dimension clear from the context.

I kb—+ b X kb matrix with 1’s on main diagonal and all other entries 0.

Ey, kb x b matrix with zero except ones on the main diagonal in the lower b x b block.

2 Basic theory

In this section, we present the major theory upon which the block Lanczos code EA16 is built.
We introduce the block Lanczos process in §2.1 and in §2.2, we discuss the use of purging to
push unwanted eigenvectors out of the Krylov space and the locking of converged eigenvectors
to prevent sought-after eigenpairs disappearing from the Lanczos basis due to round-off errors.

The Lanczos method converges quickly to well-separated extremal eigenvalues, that is,
to eigenvalues lying at both ends of the spectrum. In many applications, the sought-after
eigenvalues are neither extremal nor well-separated. Working with a large Krylov space is not an
option for large-scale problems because storing all the basis vectors requires too much memory.
An efficient way of dealing with this problem is to use implicit restarting (§2.3). Another option
is to try and improve the speed of convergence by using a spectral transformation (§2.4). EA16
uses implicit restarting optionally combined with a spectral transformation.

Some codes (see §3.1) do not store the Lanczos basis vectors and do not use



reorthogonalization. The advantages of this are that large Krylov subspaces can be built,
avoiding the need for restarting. However, the disadvantages are that spurious eigenvalues may
appear and multiplicities may not be found correctly. Such codes have tests for the detection
of spurious eigenvalues.

In §2.5, we briefly discuss the need to use harmonic Ritz values. The numerically stable
orthogonalization of the Lanczos basis vectors is vital for obtaining orthogonal eigenvector
estimates and for finding multiple eigenvalues; this is considered in §2.6. In §2.7, we look at
how EA16 attempts to avoid breakdown when the mass matrix is singular.

2.1 The block Lanczos process

In this section, we present a block Lanczos method for the standard eigenvalue problem (1)
and show how to compute eigenvalues and eigenvectors. The Lanczos method was originally
proposed by Lanczos (1950). The block Lanczos method was developed for computing clustered
eigenvalues (Cullum and Donath 1974, Golub and Underwood 1977, Scott 1979, Cullum and
Willoughby 1985a, Cullum and Willoughby 1985b, Grimes et al. 1986, Grimes et al. 1994).

Starting from an orthonormal set of b initial vectors V; € R"*?, the Lanczos method builds
an orthonormal basis for the Krylov space

]CkJ, = span{Vl, AVl,szl, - ,Ak_lvl} .
We call b the blocksize. The following algorithm shows how to compute the basis.

Algorithm 2.1 (Block Lanczos method)
1. Let V4 = [v1,...,vp] be a given set of initial vectors with (V1,V1) = 1.

Formally let By =0 and Vi = 0.
2. Forj=1:k do

2.1. Form W; = AVj.

2.2. Form Wj =W, —V;_1BT_,.

2.3. Form Cj = (V;,Wj).

2.4. Form WJ'/ = W]' - V;C;.

2.5.  Factorize W' = V;11B; so that (Vj11,Vj41) = I and B; is upper triangular.

Here (-,-) denotes the standard inner product. Steps 2.2-2.5 form a block modified Gram-
Schmidt orthogonalization of W; against V;_; and V;. Note that only C; and B; are explicitly
computed, since the coefficient B;_1 is computed in iteration j — 1 using the QR factorization
of W]{’ . In order to improve the numerical stability, reorthogonalization of the Lanczos vectors
is required. This is discussed in §2.6.

Eliminating Wj, WJ' and W;' from Steps 2.1-2.5, we obtain the recurrence relation

AVj =Vj1Bj +V;Cj + Vj1B] ;. 3)

Setting Vj = [V4, ..., V] and collecting all iterations in one matrix gives the recurrence relation
of order k, defined by

AV = Vi Ty, (4)



where (Vit1, Vk+1) = I and T}, is the kb + b x kb block tridiagonal Lanczos matrix

~ Cl B:lp .
By C, BY
I, =
Cr1 B,
Bi_1 Cy
L By ]

Since the Bj, j = 1,...,k are upper triangular, T’} is a band matrix with half bandwidth b+ 1.
An approximate eigenvector * = Vjz is defined by a Galerkin condition so that the residual
satisfies

Az — Az L Range(Vy) ,

which is also called the Rayleigh-Ritz projection for the symmetric eigenvalue problem. This
leads to the small scale eigenvalue problem

Trz = Az,

where T}, is the matrix T, without the final b rows. The pair (A, z) is called a Ritz pair, because
it results from the Rayleigh-Ritz projection on the Krylov space. The value A is called a Ritz
value and z is a corresponding Ritz vector. The residual has the form

r=Ax — dz = Vk+1Bk+1Egz ,

where E}, is a kb x b matrix with zeros everywhere except ones on the main diagonal in the lower
b x b block. Ej may be regarded as a generalization of the kth identity vector. The residual
norm is thus given by ||Bgy1E¥ 2.

2.2 Purging and locking

When eigenpairs have been computed sufficiently accurately, they are removed from the
recurrence relation. They are no longer improved or modified and the Lanczos method continues
with a smaller tridiagonal matrix after their removal. This is called ‘locking’. Unwanted Ritz
pairs on the other hand can be removed from the subspace by purging.

The recurrence relation (4) is the major characteristic of the Lanczos method. It describes
the action of the matrix A on the first kb Lanczos vectors. Another orthogonal basis for the
Krylov space is the basis of Ritz vectors. Recall that the Ritz values and vectors are computed
from T}, Zy = Zp Ay, with Ay = diag(Aq,...,Ar). Multiplying (4) on the right by Zj, we have

T
Z Z
AmmszlkI][kI]gm.

Setting X} = Vi Z),, we obtain

AXy, = [X Vit1lSk (5)
Ay
S, —
‘ l Bi1B{ Z ]

The last b rows of Sy, represent the residuals of the Ritz pairs. Note that [X}, V1] is orthogonal.



2.2.1 Purging

Suppose we want to remove (k — p)b unwanted Ritz vectors from the Krylov subspace. By
ordering the entries of Ay and the columns of X = [z1,...,z] so that the pb wanted Ritz
pairs appear first, we can decompose (5) in the form

A, 0
AlX, Xiopl =[X Xiep Vit 0 Ap—p ,
By1EYZ, BynEfz,

from which we have
Ap
T
Byi1Ey Zp

AX, = [X, Viy1] [ (6)

This is a new recurrence relation of order p expressed in terms of Ritz vectors and Ritz values.
This operation is called purging because (k — p)b Ritz vectors are removed from the Krylov
space. Equation (6) can be expressed in the form

AVP = VP+ 11}1

by making the transformations

v 4,
Vp1 = [5Yp Vipa] and T, = [ || BinErz, Yy,
where Y), is a unitary matrix that is chosen so that 7', is a band matrix with half bandwidth
b+ 1. Hence we arrive at a Lanczos recurrence relation of order p.

2.2.2 Locking

Let the Ritz pairs be ordered so that the first gb residual norms satisfy ||Bgy1Ef 2;]| < TOL
(j = 1,...,9b), where TOL is some user-defined convergence tolerance. Ritz pairs with a
residual norm smaller than TOL are locked. We lock them in the recurrence relation by setting
the elements 1,...,q in the (kb+ 1) st to (kb+ b) th rows of Si, equal to zero (see (5)). If we
assume that the locked Ritz pairs are exact eigenpairs, (5) takes the form

A, 0
AX, X =X, Xi_y Viga] | O Ak—q ,
0 BynEFfZ,,

which can be transformed into
- - A 0
A[Xq Vp—q]_[Xq V})—q+1]l0q Tk ]20 (7)
=k—q

where ik—q is a (kb—gb+b) x (kb— gb) block tridiagonal matrix. The Lanczos method can be
continued from this point.

Locking and purging reduce the dimension of the Krylov subspace and the tridiagonal matrix
which makes the manipulation of the Lanczos vectors and the tridiagonal matrix cheaper.
Because the Ritz pairs are not exact eigenpairs, the right-hand side of (7) is nonzero : the error
in the recurrence relation is of the order of the residual tolerance TOL.



2.3 Implicitly restarted Lanczos

When k is very large, the storage of the basis vectors can become prohibitive and it may be
necessary to restart the Lanczos method. An elegant restarting algorithm is the implicitly
restarted Lanczos (or Arnoldi) method (Sorensen 1992, Calvetti, Reichel and Sorensen 1994).
This method compresses the Lanczos basis into one of smaller dimension by throwing away a
part of the subspace that is unlikely to make a significant contribution to the convergence of the
wanted eigenvalues. After the compression, the Lanczos method can add new Lanczos vectors
to the basis. Note that purging (§2.2) can be used for this purpose, but the approach discussed
here relies on the implicitly shifted QR method.

2.3.1 Implicitly shifted QR

The following theorem shows the major implication of applying an implicit QR step to the block
tridiagonal matrix T',.

Theorem 2.1 (Sorensen 1992) Consider the Lanczos recurrence relation
AV = Vi1 Ly, (8)

and the QR factorization
Q Ri=T;—ol,

where Q, ts a kb+ b x kb unitary matriz and Ry, is a kb X kb upper triangular matriz. Let
Q,_, be the matriz Q, without the final b rows and columns. Define V,:' = Vi@, and
Iz—l = ngk—l +ol. Then

1. V,j' 1s unitary.
2. If T}, — ol is nonsingular, then Range(V;') = Range((A —cl)V;) forj=1,... k.
9. AV, = VITE .
Proof Shifting the recurrence relation and using the QR factorization we have
(A= o)V =Vi1(Ly, —0l) = Q, Ri .

The matrix @, , that is obtained from @, by removing the final b rows and columns is unitary
because @, is block tridiagonal and has dimensions kb x kb — b. Thus

(A—ol)Vy = Vpu1Q, Ry (9)
(A=oDVQ, | = Vin@Q RQy 4
AVQ, | = V""HQk(Rkafl +ol) .

Define V,j' = V]H_le and Z;:—l = Rka_l +ol. Since Iz,'_l arises from a shifted QR step, ZZ—I
is block tridiagonal and has dimensions kb x kb — b. We thus obtain a new recurrence relation

AVI:——I = Vlj—zz——l ’

which proves Statement 3. Statement 1 follows from the fact that Vy4; and Qk are unitary.
Statement 2 follows from (9) after multiplication on the right by R,;l. |



The first major conclusion of this theorem is that applying an implicit QR step to the
tridiagonal matrix leads to a new Lanczos recurrence relation of order £ — 1. Thus implicit
QR steps may be used to reduce the order of the Lanczos recurrence relation, as purging also
does. The second major conclusion is that the Lanczos vectors and matrix may be considered
as having been computed by a Lanczos process restarted with vectors

This is why the process is called an implicit restart. Thirdly, Statement 2 shows that the new
Lanczos vectors result from the application of a polynomial of degree one to the old Lanczos
vectors.

The result can be generalized to more than one implicit QR step as follows. When p
implicit QR steps are performed — we say that p implicit restart steps in the Lanczos method
are performed — we have the following result.

e Range(V;") = Range( ?Zl(A —o;1)V)
. Range(V,:p_i_l) = Range(szj:l(A — 0 1)Vi_pt+1)

It follows that by choosing k — p ‘shifts’ o; (j = 1,...,k — p), we reduce the dimension of the
Krylov subspace from kb + b to pb+ b by applying a polynomial filter with the shifts as zeros.
This enables us to reduce the dimension of the subspace by filtering away unwanted directions.
By an (implicit) restart we mean the set of k — p implicit restart steps to reduce a Lanczos
recurrence relation of order k to one of order p.
In practice, we use the following repeated implicitly restarted Lanczos algorithm.

Algorithm 2.2 (Implicitly restarted Lanczos algorithm)
1. Choose initial vectors V1. Choose p and k (k > p).
2. Perform p steps of the Lanczos method.
8. Forl=1:ny do
3.1. Perform k —p steps of the Lanczos method to expand the Lanczos recurrence
of order p to order k.
3.2. Compute Ritz values, vectors and residual norms.
3.3. Select k — p shifts 0']('1) (G=1,...,k—p).
3.4. Perform an implicit restart with these k — p shifts.

In this way, the Lanczos basis is expanded and compressed until the basis converges to an
invariant subspace. The Lanczos process may be considered to have been applied to the initial
vector

nie [(k—p
11 (H(A— a;’)l)) V. (10)
1=1 \j=1

The shifts should be chosen to ensure rapid convergence of the wanted eigenvalues. In the
literature various shift strategies have been proposed. In Sorensen’s original paper (Sorensen
1992), exact shifts and Chebyshev shifts are suggested. Leja shifts were introduced in order
to improve the convergence speed (Calvetti et al. 1994, Baglama, Calvetti and Reichel 1998a),
and refined shifts based on the refined Arnoldi method are used by Jia (1998). We now briefly
discuss three shift choices offered by EA16.



2.3.2 Exact shifts

Morgan (1996) showed that when a Ritz value is used as a shift, an implicit restart step is
equivalent to the purging of the corresponding Ritz vector from the Krylov space. In the early
days of the implicitly restarted Arnoldi and Lanczos methods (Sorensen 1992) this choice of
‘exact’ shifts was advocated. To reduce the dimension of the subspace, k — p ‘unwanted’ Ritz
values are selected, usually from amongst those that lie away from the desired part of the
spectrum. For example, when the eigenvalues of largest modulus are wanted, the exact shifts
are chosen to be the Ritz values with smallest modulus.

2.3.3 Chebyshev shifts

If computing the eigenvalues that lie outside an interval [a, 3] is of interest, the shifts can be
selected so that this interval is filtered out by the polynomial. The polynomial that is smallest
in the interval [—1,1] and largest outside is the Chebyshev polynomial of the second kind.
Chebyshev shifts are the zeros of the Chebyshev polynomial of degree k — p shifted and scaled
so that its zeros are in [a, 3]

When Chebyshev shifts are used in Algorithm 2.2, (10) is the ny; th power of a Chebyshev
polynomial. This polynomial is not the best polynomial of degree ny(k — p) for filtering the
interval. A better choice would be to select the shifts from amongst the zeros of the Chebyshev
polynomial of degree n;;(k —p). The problem is that ny; is usually not known beforehand. Leja
shifts (see below) are more appropriate since the shifts are chosen with respect to shifts chosen
in previous restarts.

2.3.4 Leja shifts

Exact and Chebyshev shifts may not be optimal when the eigenvalues outside an interval are
required (Calvetti et al. 1994). Leja shifts are chosen from a sequence of Leja points z;, where
21 =, z2 = 3 and z; for j > 2 satisfies

j—1
|zj — 2| = max |z — zg] . (11)
,Bl ! 2€laf]

The Leja points have the same limit distribution as the zeros of the Chebyshev polynomials. The
difference is that when the Leja points z1,..., 2}, are used to restart the Lanczos recurrence
relation, the points zx—p41,.-.,22(k—p) are used as shifts in the next restart. In practice, fast
Leja shifts are used, which differ only from (11) in that the maximum is taken over a set of
candidate Leja points. Further details are given by Baglama et al. (1998a).

2.4 Spectral transformation

As already noted, the Lanczos method is often the method of choice when the wanted eigenvalues
are extremal and well-separated but, for many applications, the Lanczos converges slowly
because other wanted eigenvalues are sought. A particular case is when interior eigenvalues are
required. Furthermore, the Lanczos method cannot be used for solving generalized eigenvalue
problems of the form (2) (although Scott 1981 did develop a method for solving this problem
using the Lanczos process, but because it converges relatively slowly it is not used in practice).

The convergence of the Lanczos method can be substantially improved by using the spectral
transformation

S=(A-oD)7t,



where o is called the pole. In this paper, we refer to the Lanczos method applied to A as the
regular mode and when S is used we call it the shift-invert mode. The matrix S has the same
eigenvectors as A, but the eigenvalues are § = (A — )™}, When o lies close to the wanted
eigenvalue(s), the corresponding 6’s are well-separated and extremal, hence easy to compute by
the Lanczos method. Once 6 has been computed, A is recovered as A = o + 671,

The shift-invert mode requires matrix-vector products of the form W = (A — oI)~!V to be
performed. In practice, (A — oI)~! is never formed explicitly but W is computed by solving
the linear system (A — o)W = V. Usually, a direct method is used as this allows A — oI can
be factorized once and k linear solvers using the factors then needed to form the Lanczos basis
vectors. Iterative methods can be used and may be essential for very large problems, but the
linear systems need to be solved more accurately than the desired accuracy of the eigensolution.
For recent work on the use of iterative linear solvers in eigenvalue solvers, we refer to Morgan
and Scott (1993), Crouzeix, Philippe and Sadkane (1994), Sleijpen and van der Vorst (1996),
Meerbergen and Roose (1997), Morgan and Meerbergen (2000).

2.4.1 The generalized eigenvalue problem

A spectral transformation is particularly useful for solving the generalized eigenvalue problem
(2), since in this case linear solves cannot be avoided. Ericsson and Ruhe (1980) propose the
spectral transformation

LY (K —oM)™L

with M = LLT (L lower triangular). The problem with this transformation is that the
factorization of M is required.
Let the recurrence relation for the spectral transformation be

LT(K —oM) Ly = Qri1Th
with Q;{+1Qk+1 = I. With the change of basis into V41 = L_TQk_H, we can rewrite this as
(K —oM) "MV = Vi1 Ty,

with Q£+1Qk+1 = V,{+1MV;€+1 = I. When the Lanczos basis is M orthogonal, the Lanczos
method can thus be applied to the non-symmetric shift-invert transformation S = (K —
oM)~*M (Ericsson 1986, Nour-Omid, Parlett, Ericsson and Jensen 1987). The factorization
M = LL* is not required. Another way to understand this is by noting 7 M (Sy) = (Sz)T My,
so that S is self-adjoint with respect to the M inner product 7 My. In other words, the Lanczos
method can be used for computing eigenpairs of S when the M inner product is used for the
construction of the tridiagonal matrix. As a result, the Lanczos basis Vi1 is M orthogonal,
ie. V,rf_l_lM Vi+1 = I. The M orthogonal Lanczos method is given by the following algorithm.

Algorithm 2.3 (M orthogonal block Lanczos method)
1. Let V4 = [v1,...,vp] be a given set of initial vectors with (V1,V1) =1
Let By =0 and V; = 0.
2. Forj=1:k do
2.1.a. Form U; = MVj.
2.1.b. Solve (K — oM)W, = U;j for W;.
2.2. Form W] =W, —V; 1B |.
2.3. Form Cj = (V;,Wj).
2.4. Form W] =W/ -V;C;.

2.5.  Factorize W] = V;11B; so that (Vj11,Vj41) = I and Bj is upper triangular.



Note that, apart from Step 2.1, this is the same as Algorithm 2.1 but here (X,Y’) denotes
the M inner product XTMY.

When K is positive (semi) definite and M is indefinite the shift-invert transformation cannot
be used since 27 My cannot serve as an inner product. Instead, we can use the so-called buckling
transformation S = (K — o M)~ 1K with the K inner product because Sp is self-adjoint with
respect to this inner product.

For the generalized problem, we refer to the Lanczos method applied to M 1K as the regular
mode, when S = (K — oM)~'M is used with the M inner product we call it the shift-invert
mode, and when Sp = (K — o M) 'K is used with the K inner product we call it the buckling
mode.

2.4.2 Trust intervals and pole selection

Consider two real symmetric matrices C and D such that C = LT DL with L nonsingular.
Sylvester’s Inertia Theorem states that C' and D have the same number of positive, zero, and
negative eigenvalues. These three numbers are called the inertia (Parlett 1980, Ericsson and
Ruhe 1980, Grimes et al. 1986). We want to use the inertia or, more specifically, the number
v of negative eigenvalues of A — oI (or K — oM for the generalized problem) to help with the
robust selection of poles and with the computation of trust intervals (Grimes et al. 1994).

Let v1 and v9 denote the number of negative eigenvalues of A—o11 and A—o9l, respectively.
Then, provided o1 < o2, the number of eigenvalues in the interval [o1, 03] is v2 — v1. When the
number of locked Ritz values in the interval is equal to vo — vy, the interval [o1, 03] is called
a trust interval. We want our pole selection strategy to establish a trust interval around the
sought-after eigenvalues.

For the generalized problem, it is clear that v(K — o1 M) — v(K — 02M) is the number
of eigenvalues in the interval [o1,02] (01 < 02), and so, for a given o, we need to be able to
compute the number of negative eigenvalues of K — oM. If M is positive (semi) definite there
are a number of sparse direct solvers, including the routines MA27 and MA57 from the Harwell
Subroutine Library (HSL 2000), that compute a factorization of the form K — oM = LDLT (L
unit lower triangular and D diagonal, possibly with 2 x 2 blocks on the diagonal) and return
v(K — oM) to the user.

For the buckling problem, if K is positive definite, we can consider K = LL” and compute
the number of negative eigenvalues of L™ (K —oM)L~T by factorizing (K—oM). The number of
negative eigenvalues of L™1(K —oM)L~T is the number of negative eigenvalues of (K —o M )z =
0Kz, which is equal to the number of eigenvalues of Kz = AMz between 0 and o.

In finite precision arithmetic, the factorization K — oM = LDL” is exact for the matrix
K — oM + E, where E the backward error with norm of the order of magnitude of ||K — oM ]||u
(u is the machine precision). It follows that the inertia is for K —ocM + E, rather than K —o M.
Since the eigenvalues of K — oM + E are perturbations of the order of at most || E||, the inertia
may be wrong if K — oM has an eigenvalue of modulus smaller than ||E||. Therefore, it is
important to ensure poles are selected away from the eigenvalues of K& = AMz. The following
lemma suggests a minimum distance between the poles and the eigenvalues.

Lemma 2.2 Let Apin and Apax be the minimum and mazimum eigenvalues of Ko = AMa

respectively. If
min |O' — )\l > (Amax - Amin) “
MK, M)

|E|| = ||K — oM||lu and M is nonsingular, then K — cM and K — cM + E have the same
number of positive eigenvalues and the same number of negative ergenvalues.

1—u
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Proof Let 7 be an eigenvalue of K — oM. If min, || > ||E| then K —oM and K —ocM + E
have the same number of positive and negative eigenvalues. The proof follows by replacing E
by €E and letting € evolve from 0 to 1.

Let 1 be the eigenvalue of K — o M with smallest modulus, then
7 = min (K - oMal
> min Ao/ MY .
MK, M)
We want n > ||E||, which is satisfied when miny(x ) [A — o|/|| M~ > ||B|| = ||K — o M|[u. It
is also satisfied provided
min A= ol /MY > max [A—ol/|M u.
A(K,M) A(K,M)
Since
max |A — o] < |[Amax — Amin| + min |[A—o],
(K, M) A(K,M)

we have n > ||E|| when

min |>\ — O'l(]. — U) > |)\max - )\min|u s
AK,M)

from which the proof follows. O

Our new Lanczos code EA16 allows the pole o in the spectral transformation to be either
fixed or to vary as the computation proceeds. To illustrate how EA16 selects appropriate poles,
we consider the computation of eigenvalues to the right of a point 7. The idea is to start with
an empty trust interval [r,7] and gradually expand it as Ritz values are locked. The initial
pole is taken to be ¢ = 7, which ensures eigenvalues close to T converge rapidly. When at least
one Ritz value has converged, the pole is moved to ¢ = o9, where o2 is chosen on the right of
o1 = 7. The Lanczos method continues with the new pole until vo — v; Ritz values lying in
[01,02] have converged, where v and vy are the number of negative eigenvalues of K — o1 M
and K — 09 M, respectively. [o1,02] is now a trust interval.

Once a trust interval has been found, a new pole is chosen to the right of the trust interval
since we want to expand the interval in that direction. The new pole is chosen to lie between
a converged (locked) Ritz value and the left-most Ritz value that has not yet converged, as is
shown in Figure 1. The idea is that eigenvalues to the right of the trust interval will converge
in the subsequent iterations of the Lanczos method. The pole is chosen to lie between clusters
of eigenvalues. If the distance between the pole and the left-most unconverged Ritz value is too
small, the pole is chosen between the left-most and the next unconverged Ritz value.

Figure 1: Expansion of the trust interval [o1,04] into [01,0411]. Bullets denote converged
(locked) Ritz values and circles unconverged Ritz values. The new pole is chosen between the
old trust interval and the left-most unconverged Ritz value.

—e—e—eo—9 —9—9o—9o 1o —9 —e e 1 0 —0—0—® © © © @
g1 Og Os41

When the number of eigenvalues vo — vq is larger than the Krylov subspace dimension,
convergence of all the eigenvalues in the interval [0, 02] may be slow. In this situation, EA16
tries to pick a new pole lying between o1 and os.
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Example 2.1 We used EA16 to compute 50 eigenvalues lying to the right of 0 for the structural
problem BCSST13 from the Harwell Boeing Collection (Duff, Grimes and Lewis 1992). This is
a generalized eigenvalue problem of dimension 2004. Figure 2 shows the computed eigenvalues
and the selected poles when 20 Lanczos vectors are used. Each selection of a pole corresponds
to an expansion of the trust interval. The first pole is 0. The last pole is selected to verify the
first 50 eigenvalues to the right of 0 have been found.

Figure 2: Computed Ritz values (dots) and selected poles (ticks) for problem BCSST13.

|olamoloeolmeooleo—o—feoo—ofo e w | —o o | oo oleow 4 ——
0 6.10%

2.4.3 Rational Lanczos

Changing the pole in the spectral transformation Lanczos method requires building an entirely
new Krylov space. This implies that the Lanczos vectors and the tridiagonal matrix built with
the old pole are completely lost. It is possible to change the pole without throwing away the
subspace by the use of the rational Krylov (Ruhe 1984, Ruhe 1998) or rational Lanczos method
(Meerbergen 1999). Suppose we want to change the pole from o to oF. Using (4 — o)~V =
Vi+11L},, we derive

(A=oD)Veily = Wi
(A= o™ IVni Ty = Vern(L+ (0 —0")Ly)
R

0
kb + b x kb orthogonal matrix and @ = [ Q q } is a kb+ b x kb + b orthogonal matrix and R

is kb x kb upper triangular. Final manipulations give

Consider the QR factorization [ Q q } =QR=H; =1+ (oc- oI}, where Qis a

(A= 0" 1) Vi@ = VinQQ LR . (12)
With Ig =QTT,R ! and Vk++1 = Vi+1Q, we derive the following algorithm :

Algorithm 2.4 (Rational Lanczos change of pole)
1. Form Hy, = I}, + (0 — o) T},.
R

2. Factorize H,, = Q 0

o—

—1
8. Compute Iz' = QTIkR_l = 10+ (I - QT [ RO ]

T
4. Apply the orthogonal transformation P such that 103 ? IZ'P is tridiagonal.
P 0
5. Update V,;:l =Vi1Q [ 01 ]

As discussed in §2.4.2, we pick the poles to lie between clusters of eigenvalues. Following
the analysis given in Meerbergen (1999), a change of pole changes the error in the Lanczos
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recurrence relation. Fortunately, this error is small when the poles are chosen away from the
Ritz values. We choose the new pole so that

m;:xx|)\—0'|/|)\—a+|§g” (13)

where § = (A — 0)~! is a Ritz value and ( is a growth factor. In EA16, this is controlled by
the variable CNTL(4) and has default value 50. This condition forces the distance between a
Ritz value and the old pole to be at most { times the distance between the Ritz value and the
new pole. This prevents the new pole from being chosen close to a Ritz value and maintains
stability of the rational Lanczos method.

Changing the pole also changes the residual norm of the locked Ritz vectors. Consider
the standard eigenvalue problem and let (6,z) with § = (A — ¢)~! be a locked Ritz pair for
S = (A — oI)! with residual r = Sz — fz. In addition, let (61,z) with 67 = (A — o1) 71 be
the corresponding Ritz pair for ST = (A — oTI)~1. Then

A—oO

+=S+ _9+ —
T X x A—o"i'

(A—otI)y Y A—0ol)r.

In EA16, we assume that ||(A — oTI)"1(A — ol)r|| ~ ||7|| and we estimate ||| ~ |X — o|/|\ —
ot|||7||. This is a reasonable assumption because most eigenvalues of (A — o 71)"1(A — o) lie
close to 1 and r is often poor in the dominant Ritz vectors of (A —o"1)~1(A— o). In addition,
if (13) holds, ||(A—otI)"Y(A—0I)|| < ¢. This implies that ||r+||/|67| = ||7||/|6], so the relative

residual norm does not change very much. If
SV = Vil =E
with || E|| < T}, then
StV =V T =Et=A-0o")"Y(A-o)ER™".

We want | BJl/IIZell = |BFI/IZE]. Since (A — o 1)~Y(A - o) < ¢ and [|R7Y < ¢, 1B
is bounded from above by || E||¢2.

For the generalized eigenvalue problem with the shift-invert transformation
S = (K — oM)'M, we can again use Algorithm 2.4 to change the pole. For the
buckling transformation Sp = (K — oM) 'K, a change of pole may be carried out using
Algorithm 2.4 with the following modification to Step 3.

-1
3. Compute T} = oQTT R = 2 (I -7 l RO ])

For the standard eigenvalue problem, it can be convenient to start the computation using the
regular mode and then to accelerate convergence by switching to the shift-invert mode. Suppose
we have AVy = Vp11T;, and (Vey1, Vir1) = 1. We can transform this into (4 — ot 1)71V} =
V,;:_lzz with <Vlj_+17 V,;*‘_H) = I using the following algorithm :
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Algorithm 2.5 (Change from regular to shift-invert mode)
1. Form H;, =T, — o"I,.

2. Factorize H;, = Q l ]O% ]

R—l
3. Compute Ik+ =QT E

4. Apply the orthogonal transformation P such that

T
0 (1) ] Iz'P is tridiagonal.

P 0
4. Update V;:,:l = Vi@ [ 01 ]

Algorithm 2.5 may also be used to change from the regular mode to the shift-invert mode
for the generalized eigenvalue problem.

2.5 A note on harmonic Ritz values

The Ritz values computed by the Lanczos algorithm are bound by the smallest and largest
eigenvalues Apin and Apmax. When spectral transformations are used, the Ritz values are similarly
bounded by 6y, and Oy,.x, where § = (A — o)~ for the shift-invert mode and 8 = /(X — o) for
the buckling mode. The computed 0’s may give corresponding A’s that lie outside [Ayin, Amax]-
This can lead to poor pole selection when extremal (smallest or largest) eigenvalues are wanted.
To prevent this, harmonic Ritz values may be used. The shift-invert transformation produces
Viy1 and Ty, for which (A — oI )_1Vk = Vi+11L};, where the Ritz values are computed from
Ty = (Vk, (A — 0I)7'V;). We can transform this into AV} = V,:'_HIZ' where T} and VI:_+1 are
computed from the QR decomposition

Qlﬂzzk

as Vi1 = V1@ and T = QTIL R~ + 01 Note that T} = (V;7, AV") with (W, Vi) =T so
the spectrum of 7' is bounded by Amin and Amax. Note that Range(V;") = Range((A—ol)~1Vy)
so the extremal eigenvalues of A are filtered away from Vj. This can lead to a loss of efficiency
when ¢ is far away from the desired extreme eigenvalue. EA16 computes harmonic Ritz values
when either the shift-invert or buckling mode is used and left-most or right-most eigenvalues
are sought.

2.6 Block Gram-Schmidt orthogonalization

Steps 2.2-2.5 of Algorithms 2.1 and 2.3 orthonormalize the new Lanczos vectors V; 1 against
the columns of V;. The Lanczos method has the nice property that (Vj;1,V;—2) = 0 and
B;fr = (AV},Vj41) is known from the previous iteration. The only Gram-Schmidt coefficients to
be computed are thus Cj 1 and Bﬁ-l-

Unfortunately, in exact arithmetic, the Lanczos vectors may lose orthogonality. The Lanczos
method may then produce spurious eigenvalues. Consequently, either reorthogonalization or
some mechanism for detecting spurious eigenvalues is required. An alternative to Algorithm 2.1
is Arnoldi’s method, i.e. to force orthogonality against all computed Lanczos vectors by the use
of Gram-Schmidt orthogonalization instead of using the properties of the Lanczos recurrence
relation. However, in exact arithmetic, the Lanczos vectors may still lose orthogonality. Thus,
even if full Gram-Schmidt orthogonalization is used, reorthogonalization is required (Daniel,
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Gragg, Kaufman and Stewart 1976, Sorensen 1992). In addition, for large k, the cost of full
orthogonalization is much larger than for the Lanczos method.

One possible solution to restore orthogonality is so-called partial reorthogonalization. This
is usually cheap, because it is only performed when a significant loss of orthogonality may occur.
Reorthogonalization schemes are discussed by Parlett (1980) for the Lanczos method and by
Grimes et al. (1994) for the block Lanczos method. In our implementation, we follow the partial
reorthogonalization scheme of Grimes et al. (1994).

In this section, we use the notation w;; = ||(V;, V)| and € = u||T|| (v machine precision).
We present the analysis for the standard eigenvalue problem Az = Az, but by replacing A by
MK, (K—oM) M or (K—oM) 1K, the conclusions may also be applied to the generalized

problem.

2.6.1 Partial reorthogonalization

The idea is to explicitly reorthogonalize the Lanczos vectors when they lose orthogonality
without checking this property explicitly. The orthogonality of the Lanczos vectors is modelled
as follows. In finite precision arithmetic, the recurrence relation (3) becomes

AVj = Vi Bj = ViC; = Vi1 Bf = Fj

where Fj represents the rounding error. Premultiplying by VIT (or VITM for the generalized
problem or VITK for the buckling problem),

Vi, AVj) — (Vi, Vj41) Bj — (Vi, V;)Cj — (Wi, V1) By = (i, F)
Similarly, we have
(Vi AVD) = (V, Vi) By = (Vi VOO = (Vi Vi ) BE =V, F)
Eliminating (V;, AV}) = (V;, AV;)T from these equations we obtain for [ =1,...,5 — 2,
wjr1 < 1By NUIBllwjisr + 1Bi-tllwsi—1 + I Bj—illwj—1 + (IC; | + [CilDwja +€),  (14)

where we assume that |[(V;, F}) + (V}, F})|| < € = u|/L}||. Since Vj41 is orthogonalized against
V; using Gram-Schmidt orthogonalization with reorthogonalization (also called iterative Gram-
Schmidt) by computing the coefficient C;, we let wjy1; = win = uby/n.

Given a tolerance wtor, in the Lanczos algorithm we use a recurrence relation for modeling
wj as follows.

Algorithm 2.6 (Block Lanczos method with reorthogonalization)
1. Let Vi = [v1,...,vp] be a given set of initial vectors with (V1,V1) = 1.
Let By = and Vy = 0.
2. Forj=1:k do
2.1. Form W; = AVj.
2.2. Form Wj =W, —V;_1BT_|.
2.3. Compute Cj and W' so that (V;,W') = 0 and C; = (V;, W]) using iterative
Gram-Schmadt. wjyqj = €.
2.4. Form W]'/ = WJ' - V;C;.
2.5. Factorize W] = V;1B; so that (Vjy1,Vj41) = I.
2.6. Update wji1) forl=1,...,5 — 1 using the right hand side of (14).
2.7. If maxjw;i11; > wroL then reorthogonalize V; and Vji1 against V; using
iterative Gram-Schmidt and set wj; = wji 1] = Wmin, 1 <1 <7 —2.
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2.6.2 Partial reorthogonalization against locked Ritz vectors

There are two reasons for orthogonalizing Lanczos vectors against locked Ritz vectors. Firstly,
the Ritz vectors are not exact eigenvectors, and, secondly, the computations are carried out in
finite precision. The propagation of loss of orthogonality is modelled as follows : let (A, z) be a
locked Ritz pair and §;41 = (z,Vj), then

<:E,AV]'> - <"E7Vj+1>Bj - <m7‘/}>cj - <$7Vj—1>B;'ZLI = <$7Fj> :
Using 27 A = rT + Xz®, we find that

i1 < IBHIEIM = Cjll + -1l Bj—1ll + 1/ (r,) + € .
When ¢ is larger than the tolerance wror, Vj—1 and Vj are orthogonalized for z, and {; and
&j+1 are set to wpin. In EA16, we check the orthogonality against all locked Ritz vectors. This
is in contrast to Grimes et al. (1994), who only check the need for reorthogonalization for a
selected number of locked Ritz vectors. In EA16, orthogonality is checked against all locked Ritz
vectors but reorthogonalization is only carried out for the Ritz vectors for which the estimate
of (x, AV}) is larger than wroL.

2.6.3 Reorthogonalization and implicit restarting

When implicit restarting or purging is performed, the loss of orthogonality may grow for
particular Lanczos vectors. In finite precision arithmetic, the Lanczos vectors and the Lanczos
matrix satisfy

AVy = VL = Fy
Vi1, V1) =1 = Q.
where )y, is the matrix of wj;’s for j,/ =1,...,k + 1. Implicit restarting or purging applies an
orthogonal transformation Q € R*¥+¥*PP+b t6 map Vi1 € R**k+b onto V;-I—l € R PbHh with

p < k. Let @ be the matrix that contains the first pb columns of Q. With V11 = V;11Q and
I;' = QTI,CQ, we have
+_pt ot
AV - VI = FiQ
Vrvhn -1 = QTEQ.

The Lanczos vectors retain their orthogonality in a global sense, because | QT ExQ| = || Ex||-
When wyax < wjk, it is possible that || (Vj+, Vi)l = wmax(k+1), since Vj+ is a linear combination
of kb + b columns of Vi1. In EA16, we estimate that ||<V;+1,V;+1)|| ~ Wpax SO that w;'l =
||<Vj+a Vl+>” ~ Wmax-

2.6.4 Reorthogonalization and changing the pole

With the shift-invert transformation we have
(A= oD)7V; = Vi1B; = V;Cj = Vi1 Bf 1 = Fj .
The term Fj leads to the term € in (14). After changing the pole o to o, we have
-yt vt Bt _vtot _ vt (BT T — Bt
(A=om D)7V = Vi B = Vi CF = Vit (BjLy)” = Fj .
Following (12), ||F]-+H < (A= otI)"YA - oD)||||E||||R™Y||, which is bounded from above by
| E||¢? where C is the growth factor of the change of pole and ||E|| ~ |[(A — oI)~!||u. As in the

last section, we can use (14) for estimating the orthogonality of the Lanczos vectors, but we
now use € = ul||T||¢%.
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2.7 Avoiding breakdown for singular mass matrices

The generalized eigenvalue problem Kz = AMz for the Stokes problem has the form

&S] 8]

where K and M are symmetric and M is positive definite. Thus, in this case, M is positive
semi-definite. There are also applications in structural analysis where the mass matrix M is
not only semi-definite but does not have an explicit zero block. In this case, we can (at least
formally), decompose M in the form
M 0 T

w=q [ o ] Q"
Defining K = QTKQ and M = QT MQ, the spectral transformation has the same block
structure as for the Stokes problem, namely

- ORI S1 0

S=(K—-oM) M—[Sz 0].

It follows that the spectral transformation has a zero eigenvalue with the nullspace of M as the
corresponding eigenspace. Ericsson (1986) showed that the zero eigenvalue may be defective
with index 2 i.e. there are = for which Sz # 0 but S22z = 0. We shall see that the presence of
this zero eigenvalue may lead to breakdown or the computation of spurious eigenvalues.

Meerbergen and Spence (1997) showed that the Lanczos method applied to S using the M
inner product is equivalent to solving Sju = fu using the M inner product. The nullspace of M
thus plays no role in the Lanczos method. As a result, the components of the Lanczos vectors in
the nullspace of M may grow in an uncontrolled way. The Lanczos vectors may be dominated
by components in the nullspace of M so that ||z||2 is very large even if ||| = 1. If M does
not have an explicit zero block, the Lanczos vectors may still be seriously affected. It is even
possible that the inner product 7 Mz becomes negative during the M orthogonalization of the
Lanczos vectors. This leads to breakdown of the method.

One way to avoid breakdown is to remove the components in the nullspace of M. Since the
nullspace of M is the nullspace of S, this can be achieved by filtering, i.e. premultiplying the
Lanczos vectors by S. When zero is a defective eigenvalue, SV;, may still have components in
the nullspace of S so a second filter step S(SVy) is required in this case. When S has eigenvalues
that are small in modulus but nonzero, more than two filter steps may be helpful. Meerbergen
(2000) suggests using the following algorithm to avoid breakdown. Note that an implicit restart

with a zero shift has precisely the effect of a filter step. Therefore, we call this implicit filtering
or an implicit filter step.

Algorithm 2.7 (Avoiding breakdown in the Lanczos method)

1. Choose o and Vi € R™*? and the number of filter steps .

2. Perform ~ filter steps V1 = 57 - V1.

3. Perform k steps of the Lanczos method. If ||V;||r > ||Vi||r//u, goto Step 4. If the M
orthogonalization of V; suffers breakdown, let j = j — 1 and goto Step 4.

Perform ~ implicit restarts with zero shifts.

Compute Ritz values and Ritz vectors.

Check convergence.

NS v

Continue the Lanczos method from iteration j + 1.
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By performing an implicit restart on the first j — 1 Lanczos iterations we hope to prevent
breakdown on iteration j. When ||V}||r becomes too large, we also perform 5 implicit restarts
to reduce this norm. Since an implicit restart for j < 2 does not make any sense, a breakdown
for j = 2 is incurable.

Recall from Theorem 2.1 that Vi can be cheaply multiplied by S using an implicit restart.
In Meerbergen and Spence (1997) it was shown that the error in SVkR,;l —V; is relatively small
when the condition number of T'; is small. This is the case when T} has no eigenvalues near
zero. This is ensured by regularly performing an implicit restart which filters away eigenvalues
near zero.

The zero eigenvalue of S corresponds to the infinite eigenvalue of Ko = AMz, which is
usually not wanted. When this eigenvalue is defective, S; also has a zero eigenvalue and so may
Ti. The undesired zero eigenvalue of S may still be computed. When extremal eigenvalues
are wanted, i.e. leftmost or rightmost, this may lead to spurious eigenvalues and a poor
pole selection. The poles may converge to infinity in the rational Lanczos method. This was
illustrated for the rational Krylov method in De Samblanx, Meerbergen and Bultheel (1997).
Premultiplying by 57 and implicit filtering removes the nullspace of S7 and the presence of
spurious eigenvalues (Meerbergen and Spence 1997). Algorithm 2.7 also helps in this situation.

The Ritz vectors © = V},z with T,z = 6z may have a component in the nullspace of S because
the latter is not controlled by the Lanczos method. As already mentioned, the M orthogonal
Lanczos method does not see the nullspace of M and z may have an undesired component in
the nullspace of M. This component may be filtered by replacing = by Sz/6. Computation of
Sz can be achieved by a simple trick, called purification (Ericsson and Ruhe 1980). Let (6, z)
be a Ritz pair of S. Then

Sz/0 = SViz/0 = Vii1Trz/0
= z+ViB,EFz/6.

If the residual norm is p = || BrE{ z||m, then |ly|lsr = (1 + (p/6)%)~'/2, which is close to 1 for a
small relative error on 6. In EA16, we use purification for the locked Ritz vectors in conjunction
with pre-filtered starting vectors and implicit filtering. Note that purification is usually not
necessary because implicit filtering removes components of the Lanczos vectors in the nullspace

of S.

3 Description of EA16

In this section, we briefly look at existing software implementing the Lanczos method. We see
that there are a number of packages available that have been developed over the last 20 years,
but none of these offers all the features discussed in this paper. This leads us to discuss the
design of our new code EA16. In particular, we look at the user interface to EA16 and highlight
some of the many options available to the user.

3.1 Existing Lanczos codes

A number of Lanczos codes are currently available, the most well-known of these probably
being LANCZOS (Cullum and Willoughby 1985a), EA15 (Parlett and Reid 1981), ARPACK
(Lehoucq, Sorensen and Yang 1998), BLZPACK (Marques 1995), and the Boeing code (Boeing
1989). Apart from the Boeing code, each of the other codes is available either in the public
domain (through Netlib) or for use under licence from the Harwell Subroutine Library. In this
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section, we highlight some of the major features of these codes and their differences, which we
summarise in Table 1.

As already discussed, the Lanczos method builds an orthonormal basis for a Krylov space
by a cheap process based on the three term recurrence relation. All the codes listed above apart
from ARPACK use this relation; ARPACK uses the less efficient Arnoldi process (Arnoldi
1951, Saad 1992, Lehoucq et al. 1998).

It is generally advantageous in terms of both efficiency and reliability to use a block Lanczos
method, with a blocksize greater than 1. This is because multiplicities may be missed with a
blocksize of 1 and the operations that are performed with the matrices A, M, and K can often
be more efficiently implemented when working with a block of vectors. The codes LANCZOS
and BLZPACK as well as the Boeing code are block codes.

The major memory cost of the Lanczos method is that required to store the basis vectors.
For large-scale practical applications, it is not possible to build large Krylov subspaces. To
overcome this, after a prescribed number of steps, BLZPACK and the Boeing code stop the
Lanczos process and then build a new Krylov subspace starting with a new basis vector (explicit
restarting). ARPACK adopts the more efficient approach of implicit restarting (Sorensen 1992).
As discussed in §2.3, implicit restarting reduces the Krylov subspace and then builds it out
again, thus avoiding throwing away useful information already computed. Implicit restarting
also helps improve the numerical stability of the Lanczos process when M is a semi-definite
matrix (Meerbergen and Spence 1997, Lehoucq et al. 1998).

BLZPACK and the Boeing code are the only existing codes designed specifically for solving
the generalized problem (2) using the spectral transformation Lanczos method. These two codes
each have an automatic pole selection strategy and change the pole to achieve faster convergence.
When the pole changes, the Lanczos method is restarted by building a new Krylov space.

EA15 is designed for computing all the eigenvalues in a specified interval, without regard
for multiplicities. The code is efficient because, in common with LANCZOS, it does not use
reorthogonalization and store only three basis vectors.

Table 1: Features of other codes

code cheap implicit blocking M inner rational automatic
orthogonalization restart product  Krylov pole selection

LANCZOS X X

EA15 X

ARPACK X X

BLZPACK X X X X

Boeing X X X X

EA16 X X X X X X

We see from Table 1 that there are a number of features that it is desirable for a Lanczos
code to possess but each of the existing codes only offer some of these features. Our aim
when designing EA16 was to develop a state of the art block Lanczos code for solving both the
standard and generalized eigenvalue problems, incorporating cheap orthogonalization, implicit
restarting, and automatic pole selection. In addition, to avoid throwing away the old subspace
when the pole is changed, a key design feature of EA16 is its use of rational Krylov (see §2.4.3).
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3.2 Design and options

The EA16 package is written in standard Fortran 77; a Fortran 90 version is planned. For
maximum flexibility and portability, reverse communication is used for operations with the
matrices A, K, and M, as well as for other tasks that are dependent on the problem being
solved and on whether or not a spectral transformation is being used. The EA16 package is
designed for computing a relatively small number of eigenvalues and eigenvectors; EA16 cannot
be used for computing all the eigenpairs of Az = Az or Kz = AMx.

Subroutines in the EA16 package are named according to the naming convention of HSL
2000. The single-precision version subroutines all have names that commence with EA16 and
have one more letter. The corresponding double-precision versions have the same names with
an additional letter D. For clarity, in the remainder of §3 we refer only to the single-precision
subroutines. There are three subroutines in the EA16 package that are called directly by the
user. These are as follows:

1. EA161 sets default values for the control parameters. It should normally be called once
prior to any calls to EA16A and EA16B. The control parameters allow the user to select
a number of different options, some of which are only intended for the more experienced
user and for difficult problems where the standard approach may not be the best. Full
details of the control parameters are given in the user documentation (see Appendix).

2. EA16A computes the amount of workspace that will be required by the code. The user
is required to specify the order N of the matrices A, K, and M and the number NWANT
of sought-after eigenvalues. In addition, the user must choose the block size BLK for
the Lanczos method and specify NV, the maximum number of Lanczos vectors. EA16A
performs checks on the user’s data and returns to the user the minimum lengths LIWORK
and LWORK of the integer and real work arrays required by the Lanczos method. EA16A
must be called once before any calls to the main subroutine EA16B. We note that the
workspace needed by EA16B is independent of whether the user is solving a standard or
generalized eigenvalue problem and of which eigenvalues are required.

3. EA16B computes selected eigenpairs. This routine must be called repeatedly using the
reverse communication interface. Using the parameters MODE and WHICH, the user must
specify which eigenvalue problem is to be solved and which eigenvalues are required. These
parameters are discussed in detail below.

Examples illustrating the calling sequence and the use of some of the control parameters
are included in §4 and in the user documentation (see Appendix).

3.2.1 Eigenvalue solver modes

EA16 offers five different eigenvalue solver modes. For convenience, we denote by OP the
operator that is applied to the vectors in the Lanczos process. With this notation, the modes
that may be selected using the parameter MODE are :

1: The standard eigenvalue problem Az = Az using the regular mode and the standard inner-
product. Here OP = A.

2: The standard eigenvalue problem Az = Az using shift-invert mode and the standard inner-
product. Here OP = (A — oI)~!, with the pole o not equal to an eigenvalue of A.

3: The generalized eigenvalue problem Kz = AMz with M positive definite using the regular
inverse mode and the M inner-product. Here OP = M~1K.
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4: The generalized eigenvalue problem Kaz = AMa with M positive (semi) definite. using
shift-invert mode and the M inner-product. Here OP = (K — o M)~'M, with the pole o
not equal to an eigenvalue of Kz = AMz.

5: The buckling problem Kz = AMa with K positive (semi) definite using the buckling mode
and the K inner-product. Here OP = (K — o M)~ 1K, with the pole o not equal to zero
or to an eigenvalue of K& = AMxz. Note that the buckling mode should only be used for
the generalized problem in the case when M is not positive semi-definite.

For each mode, EA16 requires the multiplication of sets of vectors by the linear operator OP.
Additionally, EA16 requires the multiplication of vectors by the matrix M (MODE = 2 and 4 only)
and by K (MODE = 5 only). The reverse communication interface prevents the user from having
to pass the matrix A or K and M explicitly to EA16; instead, each time a multiplication by OP,
M, or K is required, control is returned to the user. The parameter IDQ is used to indicate the
action required by the user (see Section 3.2.3). Note that, for the generalized problem and for
the shift-invert mode for the standard problem, multiplication of sets of vectors by OP involves
solving a linear system of equations. In particular, the user must solve systems of the form
BU = W where B= (A — oI) (MODE = 2), or B =M (MODE = 3), or B = (K — oM ) (MODE =
4 or 5). The reverse communication interface allows the user to choose any appropriate solver.

For many applications, unless the number of Lanczos vectors NV is large, the regular modes
1 and 3 converge very slowly. The number of Lanczos vectors is typically limited by the amount
of memory available. We suggest that NV is chosen to be larger than the maximum of 2 x NWANT
and NWANT + 10 % BLK, where NWANT and BLK are the number of required eigenvalues and BLK is
the block size.

It is generally satisfactory to use a blocksize of 1 but EA16 may be more efficient (as
well as more reliable when computing multiple eigenvalues) if a larger value is chosen. The
Lanczos method with blocksize 1 (Lanczos 1950) can have difficulties finding multiplicities of
eigenvalues. Chatelin (1993) even claims that the Lanczos method cannot find multiplicities
in exact arithmetic. It has been suggested (see for example Cullum and Willoughby, 1985a)
that the blocksize should be chosen larger than or equal to the multiplicity of the eigenvalues.
This is only true for methods that use an explicit restart strategy. In EA16, we use purging
and implicit restarting for reducing the dimension of the subspace, which enables us to keep
significant spectral information in the Krylov subspace. In addition, the use of locking reduces
the multiplicity of the locked eigenvalues. If an eigenpair (A, z) is locked, the Lanczos method
computes a Lanczos basis orthogonal to x. Mathematically, the eigenvalues of A|{E}J_ are
computed. If A has multiplicity two, A| {z}+ has an eigenvalue A with multiplicity one. Thus
locking allows EA16 to compute multiplicities even with a blocksize of 1.

Nevertheless, block methods are usually still more reliable, because multiple eigenvalues may
converge at the same iteration, without the need for locking and additional iterations. Moreover,
block methods allow the use of high level BLAS kernels, which are usually implemented very
efficiently on cache machines. This reduces the computational time for the Lanczos method.
We give examples to illustrate this in §4.

For the shift-invert and buckling modes, when extremal eigenvalues are wanted, the initial
value for the pole o must be set by the user. In all other cases, EA16 picks a suitable initial
pole. By default, o is fixed. However, an option exists that allows either EA16 to propose a
change of pole or for the user to select a new pole. The user can control the number of restarts
between two changes of pole. Varying ¢ can speed up convergence significantly, particularly
if the user was unable to select a good initial pole or if several eigenvalues are required. The
disadvantage of changing the pole is that, if a direct solver is being used, the user factorize the
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matrix (A—o*I) (MODE = 2) or (K —ot M) (MODE = 4 or 5) for the new pole o™. If an iterative
solver is used, the user may need to set up a suitable preconditioner.

3.2.2 Specifying the required eigenvalues

The parameter WHICH must be set by the user to specify the eigenvalues of the original problem
that are required. If the user wants eigenvalues to the left or right of a point, the user must
also set the parameter RANGE (1) to specify the point; if eigenvalues lying within an interval are
sought, the user must set RANGE(1) and RANGE(2) to define the interval. Possible values for
WHICH are :

1: Eigenvalues furthest from the point RANGE(1). This option is only available for MODE = 1
and 3. To compute the eigenvalues of largest modulus, the user should set RANGE(1) = 0.

-1: Eigenvalues closest to the point RANGE(1). To compute the eigenvalues of smallest modulus,
the user should set RANGE(1) = 0.

-2/2: The right-most/left-most eigenvalues.

-3/3: Half the number of wanted eigenvalues are computed from each end of the spectrum.
This option is only available for MODE = 1 and 3. If the number of required eigenvalues is
odd, WHICH = 3 computes one more eigenvalue from the upper end than from the lower
end and WHICH = —3 computes one more from the lower end than from the upper end.

-4/4: The eigenvalues to the right/left of the point RANGE(1). If the number of required
eigenvalues is greater than the number of Ritz values to the left of RANGE(1), the code
computes fewer than the number of requested eigenvalues and terminates with a warning.

5: The eigenvalues inside the interval (RANGE(1), RANGE(2)). If the number of required
eigenvalues is greater than the number of Ritz values inside the interval, the code computes
fewer than the number of requested eigenvalues and terminates with a warning.

10: This option allows the user to select the wanted and unwanted Ritz values. It makes
the code very flexible but we advise that it should only be used by experienced users
when none of the other WHICH values is appropriate. If this option is chosen, during the
computation the user will be asked to give each Ritz value a priority. This is achieved
using the reverse communication interface. When asked for priority values, if a Ritz value
is not wanted, the user should give it zero priority, while the most important Ritz values
should be given the highest priority. The simplest case is the one where the user divides
the Ritz values into two classes: the wanted Ritz values (priority 1) and the unwanted
Ritz values (priority 0).

It may be difficult for the user to select a suitable value for the initial pole when extremal
eigenvalues are requested (WHICH = £2). In this case the user may optionally choose to start
the computation using the regular mode (MODE = 1 or 3) and, at an appropriate place in the
computation, to switch to shift-invert mode (MODE = 2 or 4). When switching modes, the user
may take advantage of the latest Ritz values to choose an appropriate pole or may allow EA16
to select o. A change of mode is irreversible.
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3.2.3 Continuing the computation

Once the user has selected the eigensolver mode and which eigenvalues are required (setting
the pole o and RANGE as necessary), the computation can proceed. The user makes repeated
calls to EA16B. On the first call, the user must set the reverse communication parameter IDO to
0. On exit from EA16B, a value of IDO equal to 100 indicates the computation has terminated.
By checking the error flag INFO(1), the user can determine whether or not the requested
eigenvalues have converged. If IDO # 100, convergence has not yet been achieved and to
continue the computation the user must take the action appropriate to the value of IDO and
then recall EA16B. The action required for each value of IDO is explained in detail in the user
documentation (see Appendix), but in outline the action is as follows :

1: The user must multiply a set of vectors by OP. The number of vectors is equal to BLK, the
block size chosen by the user for the Lanczos method.

2: The user must multiply a set of vectors by M (MODE = 3 or 4) or K (MODE = 5). The
number of vectors will be at most BLK.

3: The user may select a new pole ¢ for the Lanczos process.

4: The user must set the parameter NEINEG to the number of negative eigenvalues of the matrix
B where B = A — ol (MODE = 2) or B = K — oM (MODE = 4 or 5). In addition, if the
user is using a direct linear solver for performing the multiplication of vectors by OP, the
user must factorize B. If an iterative solver is being used, the user may set up a suitable
preconditioner. IDO = 4 is returned for the initial matrix factorization and when o has
been changed. The user can communicate a failure of the matrix factorization for the pole
by setting IDO = -4 and recalling EA16B, with no other changes to the parameters.

5: The user may change MODE from 1 to 2 or from 3 to 4, and optionally choose the pole o for
the shift-invert mode. Other changes to MODE raise an error and cause the computation
to terminate.

6: The user must select the wanted and unwanted Ritz values by giving each Ritz value a
priority (WHICH =10 only).

7: The user must supply shifts for implicit restarting.

We remark that if WHICH is not equal to 10 and the default settings are used for all the
control parameters, the only values of IDO # 100 that can be returned to the user are 1, 2
and 4. In particular, for the standard eigenvalue problem with the regular mode, only IDO =
1 is returned and the user needs only to supply a routine to multiply sets of vectors by A.
Similarly, for the generalized eigenvalue problem with the regular mode, only IDO = 1 and 2
can be returned. With the default settings, the mode and pole ¢ are fixed and EA16 selects the
shifts for implicit restarting (see §2.3).

When a spectral transformation is used, the user needs to set the parameter NEINEG, which
may be computed from the (sparse) matrix factorization. As we explained in §2.4.2, this
information allows the code to decide on the appropriate expansion of the trust interval. It
also helps the code in selecting a robust value for the pole 0. The code returns the final trust
interval for the computed Ritz values. If the user is unable to provide NEINEG, EA16 will not
compute a trust interval and, unless supplied by the user, the code picks new poles based solely
on the computed Ritz values.
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3.2.4 The stopping criteria

In EA16, a computed Ritz pair (z,\) is accepted as an approximate eigenpair if

0P + 2 - 6| < ux ||

+ |CNTL(2)| + |CNTL(3)] * |6, (15)

where T is the Lanczos matrix, u is the machine precision and § = X (MODE = 1 or 3),
6 = (A\—0o)~! (MODE = 2 or 4), and § = (A — 0)~'\ (MODE = 5). Here CNTL(2) and CNTL(3)
are control parameters that may be set by the user. Their default values are zero and /u,
respectively. The first term in the right-hand side of (15) is the minimum residual norm that
makes sense in finite precision arithmetic. The second and third terms are a combination of an
absolute and relative backward error tolerance; the user can decide on the importance of and
balance between each of these terms.

4 Applications of symmetric eigenvalue problems and
numerical examples

The Lanczos method can be used for computing eigenvalues and eigenvectors for any type of
symmetric (or Hermitian) eigenvalue problem. In this section, we give a number of applications
and numerical examples for which the method is appropriate. The computations were performed
by EA16 on a DEC Compaq AlphaServer DS20 using vendor-supplied BLAS.

4.1 Computation of singular values

The computation of the truncated singular value decomposition (SVD) (Golub and Van Loan
1996)) arises in many applications. The SVD of an [ x n matrix A is defined as follows:

A=UxvT,

where U € R and V € R ™ are unitary matrices and ¥ € R"*” is a diagonal matrix. The
diagonal entries of ¥ are called the singular values and are positive. The columns of U and V are
called singular vectors. One application is the computation of the best rank-p approximation
of A with p < min(n,l). The matrix A is approximated by UpEprT, where U, € R*? and
Vp € R"*P are both unitary, and ¥, is a p x p diagonal matrix with the largest singular values
on its diagonal. The error in the approximation is

|A = UpS V1|l = opia,

where 0,41 is the (p + 1)st largest singular value. There are two commonly used ways of
computing the singular value decomposition of large matrices.

1. It is easy to see that AT AV = VX2, so the columns of Vp and the singular values can
be computed by computing the eigenpairs of the symmetric matrix AT A. Once Vp has
been computed, provided the p largest singular values are nonzero, U, can be formed from
U, = A%E;l. Similarly, we have AATU = UX?. Thus the singular value problem can
be solved by solving a symmetric eigenvalue problem of dimension min(n,l). Since the
singular values are squared, this approach is not attractive for computing small singular
values, but it improves the separation of large singular values and thus their convergence
in the Lanczos method.
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2. The singular values and singular vectors can be computed from the eigendecomposition

o) )= )8 5

Since the singular values are not squared, this approach can be better for finding the
smaller singular values and corresponding singular vectors. The disadvantage is that the
dimension of the eigenvalue problem is [ + n.

As an example, suppose we have taken output samples from a physical system that satisfies
the relation

k
ys(t) =Y Cjssin(iit)
=1

in the time-interval ¢ € [0,27] for some measurement points s = 1,...,n. As is often the case
with measurements, the errors can be significant. The goal is to use the SVD for noise reduction.
Let B = [sin(t) - - -sin(kt;)], with t; = (i — 1)2x/(l = 1) (i =1,...,1), be a discretization of the
basis functions sin(jt), 7 = 1,...,k. In this test, we use [ = 10,000 and k = 4. We generate
a matrix A with n = 100 measurements as follows : A = BZ + E, where Z is the k x n
matrix whose entries are the coefficients (j, chosen randomly between —1 and 1, and E has
randomly generated entries between —0.1 and 0.1 The term BZ represents the exact behaviour
of the physical system and FE is the measurement error. We compute the approximate SVD
A~ UPEPV}',T with p = 4 and use this to approximate the measurements. An approximation of

rank p = 4 should be sufficient because the exact measurements BZ have rank 4.

We now illustrate, using the following pseudocode, how EA16 can be used to compute the
p dominant singular values and corresponding singular vectors of A. We assume A is stored in
the array A(1:L,1:N) and use the first approach discussed above for computing the singular
values, i.e. the dominant eigenpairs of the n x n dense matrix AT A are computed.

C vt Define variables and arrays
C L : row dimension of the problem
C N : column dimension of the problem
C BLK : blocksize
C NWANT : number of wanted eigenvalues
C NV : number of Lanczos vectors
C MODE : standard eigenvalue problem
C WHICH : eigenvalues furthest from RANGE(1)
C RANGE(1) : compute dominant eigenvalues
L = 10000
N = 100
BLK =1
NWANT =4
NV = 25
MODE =1
WHICH =1
RANGE(1) = 0.DO
C Set the default values of the control parameters for EA16.
CALL EA16ID(ICNTL,CNTL)
C Compute the storage required.

CALL EA16AD(N,BLK,NWANT,NV,LIWORK,LWORK,ICNTL,INFQ)
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C Initialise reverse communication parameter IDO
ID0 = 0

1 CONTINUE
CALL EA16BD(N, BLK, NWANT, NV, MODE, WHICH, IDO, IPOS,

& Vv, LDV, BV, LDBV, RANGE, SIGMA, NEINEG,
& IWORK, LIWORK, WORK, LWORK, ICNTL, CNTL, INFQ)
C Reverse communication action
IF (ID0.ER.100) THEN
C Finished
GO TO 2

ELSE IF (IDO.EQ.1) THEN
C Compute V(:,IP0S(3):IP0S(4)) =A"t * A * V(:,IP0OS(1):IP0S(2))

NVECS = IP0OS(4)-IPOS(3)+1
CALL DGEMM(’N’, ’N’, L, NVECS, N, ONE, A, L,

& V(1,IPOS(1)),LDV, ZERO, AV,L)
CALL DGEMM(’T’, ’N’, N, NVECS, L, ONE, A, L,
& AV,L, ZERO, V(1,IPOS(3)),LDV)
GO TO 1
END IF

2 CONTINUE

Table 2 presents timings for various blocksizes BLK and different numbers of Lanczos vectors
NV. There is a wide variation in performance, with larger block sizes generally giving smaller
computation times. This is because the BLAS 3 routine GEMM is very efficient in this case.
For this example, the timings also indicate smaller computation times for shorter Lanczos
recurrences. Convergence is rapid because the wanted eigenvalues of AT A are 2.410%, 1.810%,
1.410%, and 9.6 10% and these are very well separated from the remaining eigenvalues, which are
clustered around 5.0. On the same machine, we used the LAPACK routine DGESVD, which is a QR
eigensolver for dense matrices. This routine required 0.42 seconds to compute all the singular
values and vectors, which is about five to ten times slower than EA16 for the selected singular
values. This demonstrates that, although primarily intended for sparse problems, EA16 can be
used effectively for computing a small number of eigenpairs of dense matrices.

Table 2: Timings in milliseconds (1073s) for the computation of the four dominant singular
values and singular vectors.

NV =30 NV=25 NV=20

BLK =1 76 64 50
BLK =2 42 34 27
BLK =3 34 27 19
BLK =4 27 22 18
BLK =5 24 21 26

The measurements can be reconstructed as A" = UprVpT. Figure 3 shows the difference

between the first column of A and the first column of A("). The reconstructed measurement is
much smoother.
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Figure 3: Comparison of the measurement and its reconstruction after SVD. The dots show the
first column of A and the solid line is the first column of A").
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4.2 Structural and acoustic analysis

The computation of a number of eigenvalues to the right of a point « or in an interval [a, 3]
frequently occurs in the modal analysis of structures (Grimes et al. 1986) and acoustic cavities
(Pierce 1981). The eigenvalue problem has the form Kz = AMz with K positive (semi) definite
and M positive definite. We used EA16 in shift-invert mode with variable pole to compute 50
eigenvalues lying to the right of O for the problem BCSST35 from the Harwell Boeing Collection.
This problem is of dimension 30237. The linear systems were solved with the sparse direct solver
MA57 (HSL 2000). The following pseudocode illustrates how the various parameters should be
chosen for EA16 and how the reverse communication interface proceeds for the shift-invert mode.

NV = 100
MODE =4
NWANT = 50
BLK =1
C Set the default values of the control parameters for EA16.
CALL EA16ID(ICNTL,CNTL)
C We use 20 Lanczos steps for each restart.
ICNTL(4) = 20
C We want to be able to change the pole at each restart.
ICNTL(B) =1
C Compute the storage required.

CALL EA16AD(N,BLK,NWANT,NV,LIWORK,LWORK,ICNTL,INFO)

C Compute NWANT eigenvalues to the right of 0.
WHICH = -4
RANGE(1) = 0.DO

C Initialise the reverse communication parameter IDO
IDCO =0

1 CONTINUE
CALL EA16BD(N, BLK, NWANT, NV, MODE, WHICH, IDO, IPOS,

& Vv, LDV, BV, LDBV, RANGE, SIGMA, NEINEG,
& IWORK, LIWORK, LWORK, WORK, ICNTL, CNTL, INFQ)
C Reverse communication action
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IF (ID0.ER.100) THEN
C Finished
GO TO 2
ELSE IF (ID0O.EQ.1) THEN

. Compute V(:,IPOS(3):IP0S(4)) = (K - SIGMA*M)"-1 * BV

C
ELSE IF (IDO.EQ.2) THEN
. Compute BV(:,IP0S(3):IP0S(4)) = M * V(:,IP0S(1):IP0S(2))
C
ELSE IF (IDO.EQ.4) THEN
. Assemble the sparse matrix to be factorized
. Factorize the matrix
C Flag a failure of the factorization.

IF (...failure...) IDO = -4

END IF
GO TO 1

2 CONTINUE

We ran EA16 using different blocksizes BLK. The results are reported in Table 3. We see
that the number of linear solves is minimal for blocksize 1 but that larger blocksizes are more
efficient. This is because MA57 exploits BLAS 3 kernels.

Table 3: EA16 timings using different blocksizes.

BLK 1 2 3 4 5
number of factorizations 10 6 4 4 6
number of linear solves 100 120 120 124 135
total time (s) 37 28 22 21 26

We also ran EA16 using a fixed pole 0 = 0 and default settings for all the control parameters.
Table 4 presents timings for NV = 70, NWANT = 50 and different values of BLK. Again, the
number of linear solves is minimal for blocksize 1 but computational times are reduced by using
a large blocksize.

Table 4: EA16 timings for default control parameters.

BLK 1 2 3 4 5
linear solves 101 114 132 156 230
time (s) 28 20 19 20 27

4.3 Computing the rightmost eigenvalues of a real symmetric matrix

As already discussed, when the rightmost (or leftmost) eigenvalues are required, the user may
not know how to choose an appropriate pole 0. The user documentation given in the Appendix.
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includes an example of the use of EA16 for computing the right-most eigenvalues of a matrix A
by starting the computation using the regular mode and then switching to shift-invert mode,
allowing the code to select a suitable pole o.

4.4 The solution of problems with a singular mass matrix

In §2.7, we discussed how EA16 attempts to avoid breakdown in the case of a singular mass
matrix. We now illustrate how EA16 performs in practice on such problems by considering the
200 x 200 matrices K = LTKL and M = LT M L where

K= and M =
150,150 050 0 F

[ diag(1,...,150) 15050 - l Iiso O ]
E a 50 x 50 diagonal matrix with uniformly distributed entries between —1071% and 10'Y, and
L a lower triangular matrix with ones on the main diagonal and with the off-diagonal entries
uniformly distributed between —0.1 and 0.1. The condition number of M is of the order of
2.510'8. Note that if E was the zero matrix, the index of the zero eigenvalue of the spectral
transformation S would be v = 2. The leftmost eigenvalue is required. We ran EA16 using
the shift-invert mode with a zero pole, a blocksize of 1, and 31 Lanczos vectors. The control
parameter ICNTL(15) was set to vy (see Algorithm 2.7). If v > 0, the code automatically
performs an implicit restart with zero shift when the inner product becomes negative or the
ratio of ||V;||r/||Vi||F is larger than u~1/2, as suggested in Algorithm 2.7.
Here we show the iteration number at which breakdown occurs for different values of ~.

vy 0 1 2 3 4 5 6
;19 18 29 28 28 36 40

The iteration number j at which breakdown occurs increases as « increases, since the initial
vector has smaller components in the eigenvectors corresponding to the small eigenvalues of S.
For all values of v > 0 listed in the table above, EA16 successfully completed the computations
and returned the wanted eigenvalue with the desired accuracy.

4.5 Buckling problems

For buckling problems, K is positive semi definite and M is indefinite and we use the buckling
transformation Sp = (K — oM )~1K. Since K is singular, Sp has a zero eigenvalue that we do
not want to compute. Moreover, because K is singular, breakdown of the Lanczos method is
possible (see §2.7). To avoid this, when using EA16 we set the control parameter ICNTL(15) to
v =1 (see Algorithm 2.7 with S replaced by Sp). The following pseudocode illustrates the use
of EA16 for computing the first 50 eigenvalues lying to the right of a point &.

NV = 100
MODE =5
NWANT = 50
BLK =1

C Set the default values of the control parameters for EA16.
CALL EA16ID(ICNTL,CNTL)

C We use 50 Lanczos steps for each restart.
ICNTL(4) = 50

C We allow a change of pole at each restart.
ICNTL(B) =1
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C We set GAMMA=1
ICNTL(15) =1

C Compute the storage required.
CALL EA16AD(N,BLK,NWANT,NV,LIWORK,LWORK,ICNTL,INFO)

C Compute NWANT eigenvalues to the right of XI.
WHICH = -4
RANGE(1) = XI

C Initialise reverse communication parameter IDO
ID0 = 0

1 CONTINUE
CALL EA16BD(N, BLK, NWANT, NV, MODE, WHICH, IDO, IPOS,

& vV, LDV, BV, LDBV, RANGE, SIGMA, NEINEG,
& IWORK, LIWORK, LWORK, WORK, ICNTL, CNTL,
& INFO)
C Reverse communication action
IF (IDO.EQ.100) THEN
C Finished
GO TO 2
ELSE IF (IDO.EQ.1) THEN
C ... Compute V(:,IP0OS(3):IP0S(4)) = (K - SIGMA*M)"-1 * BV
ELSE IF (IDO.EQ.2) THEN
C ... Compute BV(:,IP0S(3):IP0S(4)) = M * V(:,IP0OS(1):IP0S(2))
ELSE IF (IDO.EQ.4) THEN
C . Assemble the sparse matrix to be factorized
C ... Factorize the matrix
C Flag a failure of the factorization.

IF (...failure...) IDO = -4
END IF

GO TO 1
2 CONTINUE

We report results for problem BCSST27 from the Harwell Boeing Collection (Duff et al.
1992). This problem is of dimension 1224. We took & to be the problem scale (Grimes et al.

1994)
1

¢S I M TR
where K;; and M;; are the diagonal entries of K and M, respectively, and [ is the number of
entries included in the summation, which is taken over all i with K;; # 0 and |M;;|/| K| < 10%.
The computed eigenvalues and selected poles are shown in Figure 4. The order in which the
poles are chosen is given by the numbers 1 to 6. Note that the second and third poles are chosen
too far away from the wanted eigenvalues. The 50 eigenvalues to the right of £ lying in the trust
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interval [£,11.5] were computed. 5 factorizations and a total of linear solves 270 were needed.
The total computation time required was 3.2s. If we allow a factorization every two restarts,
the total number of factorizations reduces to 4 with 251 linear solves and a total computation
time of 2.9s.

Figure 4: Computed Ritz values (dots) and selected poles (ticks) for problem BCSST27.
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5 Concluding remarks

We have discussed the design and development of a new state of the art code EA16 for the
computation of selected eigenpairs of large-scale real symmetric eigenvalue problems. The code
is very general, offering the user a large number of options for use in computing eigenpairs
of either the standard or the generalized eigenvalue problem. In particular, EA16 is able to
solve generalized eigenvalue problems with a singular mass matrix. The code is based on the
block Lanczos method and uses partial reorthogonalization plus implicit restarting, combined
with purging and locking of converged Ritz pairs. A spectral transformation may be used to
accelerate convergence. A change of pole is allowed. The user may decide on a suitable change
of pole or may choose to allow the code to select appropriate poles as the computation proceeds.

EA16 uses a reverse communication interface. Because of the large number of options
available, this means that the code can appear cumbersome to use and the user documentation
(see Appendix) is necessarily quite lengthy. To make the code more accessible, we plan to
develop a number of specialised routines that call EA16 but which will themselves have much
simpler interfaces, with a minimum number of parameters that must be set by the user. For
example, we will develop a routine for the standard eigenvalue problem using the regular mode
and another for the shift-invert mode.

We also plan to perform further numerical experiments on a wide range of practical problems
and to compare the performance of EA16 with other publically available Lanczos codes.
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Appendix: Specification document for EA16

In this Appendix, we include a copy of the specification document for EA16. The code
will be included in the next release of the Harwell Subroutine Library (HSL 2000) and
is available for use now under licence. Anyone interested in using the code may contact
the second author (j.scott@rl.ac.uk) author for details of terms and conditions (or see
http://www.numerical.rl.ac.uk/hsl).

Note: the specification document is not available as part of this World Wide Web version
of the report. Please contact j.scott@rl.ac.uk if you could like a copy of the Appendix.
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