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ABSTRACT

Applications such as the modal analysis of structures and acoustic cavities require a
number of eigenvalues and eigenvectors of large scale Hermitian eigenvalue problems.
The most popular method is probably the spectral transformation Lanczos method. An
important disadvantage of this method is that a change of pole requires a complete restart.
In this paper, we investigate the use of the rational Krylov method for this application.
This method does not require a complete restart after a change of pole. The contribution
of this paper is threefold. First, it is shown that the change of pole can be considered
as a change of Lanczos basis. Second, moving the pole near a locked eigenvalue may
prevent other eigenvalues to be computed accurately. Third, we show that a pole chosen
close to an eigenvalue may lead to a loss of numerical stability. Usually, this will not
lead to disaster but reduce the accuracy of the computed eigenvalues away from the pole.
Numerical examples illustrate the theory.
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1 Introduction

The subject of this paper is the computation of a number of eigenvalues and the corre-
sponding eigenvectors of the matrix pencil

Az =ABz , z#0, (1.1)

where A and B are large and sparse Hermitian matrices and B is positive (semi) definite.
We call A an eigenvalue and z a corresponding eigenvector ; (A, z) is called an eigenpair.
Applications of this form arise in structural engineering (Grimes, Lewis and Simon 1986)
and acoustic modal analysis (Pierce 1981). The most commonly used methods are the
spectral transformation Lanczos method (Ericsson and Ruhe 1980, Nour-Omid, Parlett,
Ericsson and Jensen 1987) and its block version (Grimes, Lewis and Simon 1994). The
Lanczos method builds a Krylov space for the spectral transformation (A—uB) !B start-
ing from a nonzero vector v;. The method typically converges quickly for the eigenvalues
of (1.1) near the pole p. Very often, a relatively large number of eigenvalues is wanted,
say 10, a 100 or more, and then it may be advantageous to change the pole to speed-up
the convergence. Unfortunately, this requires restarting the method from the same or
a new v;. The disadvantage is that the Krylov basis is completely thrown away. We
propose using the rational Krylov method, developed by Ruhe (1984), which does not
require a complete restart when p changes.

In the Lanczos method, the approximate eigenpairs, called Ritz pairs, are computed
from a Hermitian tridiagonal matrix and in the rational Krylov method from an upper
Hessenberg matrix pair. In this paper, we use an alternative for the rational Krylov
method, first formulated in (Ruhe 1998), so that the Ritz values are computed from a
Hermitian matrix. For this reason, we call the method rational Lanczos. It differs from
rational Krylov as Lanczos (Hermitian problems) differs from Arnoldi (Arnoldi 1951, Saad
1992) (non-Hermitian problems). The rational Krylov method is not very often used for
solving applications. One reason is that the method is not very well understood. It is
derived in a different way as the Lanczos method and there is a large amount of freedom
in setting the various parameters. In this paper, we look at the rational Krylov method
from a different angle as Axel Ruhe. The only freedom in the method we propose is the
pole. The contribution of this paper is threefold. First, it shows that the change of pole
can be considered as a change of Lanczos basis. Second, moving the pole near a locked
Ritz value may prevent other eigenvalues to be computed accurately. Third, we show
that a pole chosen close to a Ritz value may lead to a loss of numerical stability. Usually,
this will not lead to disaster but reduce the accuracy of the Ritz values a bit away from
the pole. In this situation, we suggest a complete restart of the Lanczos method with the
new pole.

The plan of the paper is as follows. First, we review the spectral transformation
Lanczos method in §2. We introduce the rational Lanczos method in §3 and show some
of its properties. In §4, we explain how converged Ritz pairs can be locked and how we
can purge unwanted Ritz vectors. This is not new work, but we show that changing the
pole after locking Ritz pars may reduce the level of accuracy of the method. In §5, it is
shown that the method may lose backward stability when the pole is chosen close to a
Ritz value. In §6, we present a numerical result for an application coming from acoustics.
We conclude the paper with the main conclusions in §7.



The dimension of the problem (1.1) is denoted by n. By e; we denote the jth column
of the identity matrix I. Throughout the paper, z*y denotes the standard inner product,
and |[|z||2 the induced two-norm, z*By the B inner product and ||z||p = v z*Bz the
induced B norm. The B norm of the matrix C' € C"*", denoted by ||C||p, is defined by
max|g z—1 ||Cz||p. This implies that ||Cz||p < ||C||s||z|/p for any z € C™ and any C €

C™"*". We also define the B Frobenius norm of C € C™** as ||C||pr = (Z?Zl ||Cej||%) 2,
By u, we denote the machine precision defined as the difference between 1 and the next
floating point number (Higham 1996). By A(A, B) we denote the set of eigenvalues of
(1.1). We also use opin(C) and 0y,.x(C) to denote the minimum and maximum singular
value of C respectively. The condition number is defined by k3(C') = omax(C)/Tmin(C).

2 The spectral transformation Lanczos method

In this section, we describe the spectral transformation Lanczos method for Hermitian
eigenvalue problems. For theoretical and implementation details, we shall refer to the
literature.

The aim is to compute, for given v; and p, a basis vy, ..., v,y for the Krylov space

Kis1 = span{vy, (A — pB) ™ *Buy, ..., ((A — uB)"'B)*v,} . (2.1)

The matrix (A — uB) !B is called the spectral transformation and x € R is the pole.
The name spectral transformation comes from the fact that if (A, z) satisfies (1.1) then
(0=(\ — p)"1,z) is an eigenpair of (A — uB) ! B. The spectral transformation Lanczos
method computes eigenpairs (6, ) of the spectral transformation. The relation A =
p+ 67! allows us to compute the corresponding A’s (Ericsson and Ruhe 1980).

The (Hermitian) Lanczos method (Lanczos 1950, Parlett 1980, Ericsson and Ruhe
1980, Nour-Omid et al. 1987) builds a Krylov space for Hermitian matrices, but because
the spectral transformation is non-Hermitian, the method cannot be used for (A—uB)~'B
in its standard form. Since (A — puB)™'B is self-adjoint with respect to the B inner
product, the method can be used when B orthogonalization is employed. (See (Nour-
Omid et al. 1987) for the details.) An algorithm is given below.

Algorithm 2.1 (Spectral transformation Lanczos)
1. Given v, € C" such that ||v||p = 1.

Let By = 0 and vy = 0.
2.For j=1,..,k

2.1. Transformation : w; = (A — uB)~!Buv;.

2.2. Computation of coefficient : o; = v} Bw;.

J
2.3. B orthogonalization : s; = w; — o;v; — Bj_1vj_1.

2.4. Computation of coefficient : §; = ||s,|| 5.
2.5. Normalization : vj11 = s,/0;.
Endfor

From Steps 2.1-2.5 it follows that Vi1 = [v1, ..., vky1] forms a B orthogonal basis of the
Krylov space (2.1). In fact, Step 2.3 is a Gram-Schmidt orthogonalization step, where o
and (3;,_; are Gram-Schmidt coefficients. This orthogonalization step can lose stability
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and therefore one often employs partial and external selective partial reorthogonalization
(Grimes et al. 1994) or even full reorthogonalization (Daniel, Gragg, Kaufman and Stew-
art 1976, Sorensen 1992). Elimination of w; and s; from Algorithm 2.1 leads to the three
term recurrence relation

(A — uB) " Buj = vj11fj + vjoy + v;1fj-1 - (2.2)
Collecting the three term recurrence relations for j = 1,...,k leads to
(A—uB)"'BVy = Vi Ly (2.3)
where
( a1 P |
ﬁl S. ‘.
T, = o B
Br-1  ak
L Br. |

is a k + 1 x k tridiagonal matrix, formed by the coefficients «;, 5;. Note that T’} =
Vi 1B(A — uB)'BVj. Let T} be the k x k leading submatrix of T';. Then another

notation for the recurrence relation is
(A — MB)_IBVk = VT, + 'Uk+lﬁkez .

The B orthogonal projection of (A — uB)™'Bz = fz onto the Krylov subspace pro-
duces approximate eigenpairs, called Ritz pairs, and can be computed as follows. Let
(0, 2) satisfy Trz = 0z, then (6,y) with y = V,z is called a Ritz pair of (A — uB) !B with
residual

r = (A—puB) 'By—0y (2.4)

%
= Brupyi1€,2

and residual norm p = ||r||p = Bi|e;z|.

If 3; = 0 at Step 2.4 of Algorithm 2.1, then span{vy,...,v;} forms an invariant
subspace of (1.1). This means that the corresponding Ritz pairs are eigenpairs. This is
very unlikely to occur in practice and therefore, we assume that 3y,...,06; > 0. In this
case, T';; is called unreduced (Golub and Van Loan 1996, page 346) and is of full rank.

In order to avoid confusion between Ritz pairs for (A — uB) 'B and Az = Bz, we
denote by 0 a Ritz value for (A — uB) 1B and by n a Ritz value for Az = ABx defined
asn = p+ 01, The values n are also called harmonic Ritz values with target u (Paige,
Parlett and van der Vorst 1995, Sleijpen and van der Vorst 1996, Ruhe 1998). By A we
denote eigenvalues of Az = ABzx.

3 The rational Lanczos method

The rational Lanczos method is an extension of the spectral transformation Lanczos
method, that makes a change of pole i1 to v € R possible without restarting the method.
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It is a special case of the rational Krylov method, which is extensively discussed by (Ruhe
1984, Ruhe 1994, Ruhe 1998).
By multiplying (2.3) by A — B and reorganising the terms, we have

AVi Ty = BVisa (L + ply) - (3.1)

This is the rational Krylov recurrence relation of Ruhe (1984). (The columns of T,
follow from the orthogonalization process, while the columns of [;, are the ‘continuation’
vectors.) Suppose we want to change the pole to v # p. Rewrite (3.1) as

(A= vB)Vi1 Ly = BV (L + (0 — v) L) - (3.2)

Let L, = I}, + (1 — v)T};, and consider the QR decomposition

LszﬁzQ[ﬂ

where @) is a k + 1 X k + 1 unitary matrix and R is upper triangular. It is important
to note that L, is unreduced tridiagonal and thus of full rank. This implies that R is
invertible. Let Wiy, = Vi11€Q and Wy denote the first k£ columns of Wy, ;. Then by
multiplying (3.2) on the left by (A — vB)~! and on the right by R, we have

(A—vB)'BW, = WinK,
K, = QTR (3.3)
Wi BWi = I
Wi B(A—vB) 'BW, = K, .

These equations denote a relation similar to the Lanczos recurrence relation. The main
difference is that K, is not a tridiagonal matrix. Note that K} is Hermitian since K} =
Wi B(A — vB) ! BW}. The Krylov subspace can now be expanded by adding

(A —vB) 'Buwi1, (A — vB) ' B) w1, ...

to Range(W},), as for the Lanczos method.

The tridiagonalization of K, is straightforward by the application of orthogonal trans-
formations on both sides of K and on the right of Wy, 1. (See the discussion on the QR
method in (Golub and Van Loan 1996) and Appendix A). In that case, (3.3) can really
be considered as a Lanczos three-term recurrence relation.

We now have a procedure for changing the pole of the spectral transformation Lanczos
method without a complete restart. Note that implicit restarts (Sorensen 1992), deflation
and purging (Lehoucq and Sorensen 1996), developed for the Lanczos method, are now
possible in combination with a change of pole. This approach is mathematically equiva-
lent, but quite different in practice, from the implicitly filtered rational Krylov method
(De Samblanx, Meerbergen and Bultheel 1997) that works immediately on the rational
Krylov recurrence relation (3.1). An algorithm for the change of pole is given below.

Algorithm 3.1 (Change of Pole)
1.Form L = I, + (n — v)T.



2. Factorize L;, = @ l ]g ]

p—v
P
0

~1
3. Compute K} = Q*T, R~ = -1 <I —Q* l RO ])

4. Apply the orthogonal transformations P and P l (1) ] so that K =

P*K, P is tridiagonal.
4. Update Wiy1 = Vi1 QP.

We define the rational Lanczos method by a combination of Algorithms 2.1 and 3.1,
i.e. after Step 2.5 in Algorithm 2.1, a change of pole is possible. An algorithm for a specific
application is given in Algorithm 6.1. The rational Lanczos method is an extension of
the Lanczos method, so it inherits many properties of the latter. The only difference lies
in the change of pole. This has implications on the Krylov subspace :

Theorem 3.1 Let Vi and T be computed by the spectral transformation Lanczos
method with pole p and let W1 and K, be computed by Algorithm 3.1, then

Range(Wyy1) = Range(Viy1) , (3.4)
Range(W)) = Range((A — uB) (A —vB)V;) . (3.5)

Proof Since W41 = VkHQP, (3.4)~follows. Equation (3.5) is shown as follows. Since
Wit = Vil QP and L, = QR = (QP)(P*R), we have Wy11 P*R = Wy P*R = Vi1 L.
Following the definition of L; and (2.3), we have

Vieily = Vi + (p—v)Via Ly,
= Vi+(p—v)(A—puB) 'BV;
= (A—uB) Y (A—vB)V, .

The proof of (3.5) follows from the observation that Range(W)) = Range(Vy11L;). O

The change of pole is very similar to an implicit restart in the Lanczos method (Sorensen
1992). In this case, a Lanczos process is implicitly applied to the new starting vector
wy; = Wyeq, i.e. without explicitly computing ws, ..., w11, and the Krylov subspace is
filtered by a matrix polynomial (Meerbergen and Spence 1997, Lehoucq 1996, Lehoucq
1999). Following (3.5), the eigenvalues near p are enhanced in Range(W}) and those
near v are damped by the function (A — v)/(A — ). (Note that Algorithm 3.1 can be
considered as a transition of harmonic Ritz values with target p to harmonic Ritz values
with target v (Sleijpen and van der Vorst 1996).)

When the pole is chosen equal to a harmonic Ritz value, the effect of a change of pole
is given by the following theorem.

Theorem 3.2 Let Vi1 and T be computed by the spectral transformation Lanczos
method with pole p. Let n; be a harmonic Ritz value. Choose the new pole v = ;.
Let Wiy and K, be computed by Algorithm 3.1, then after the change of pole, the har-
monic Ritz value m; disappears and p becomes a harmonic Ritz value with Ritz vector
Ug+1. The other harmonic Ritz values and Ritz vectors remain unchanged.
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Proof First note that R := Range(W};) = Range((4 — uB)™}(A — vB)X}) where X},
is the matrix of Ritz vectors.

Let (01,71) with 6; = (7, — ) ! and z; = V}.2; be a Ritz pair and 7; = vy 16r€521
the corresponding residual. We shall show that ((uz — v)™!,7;) is a Ritz pair for the
pole v. First, we prove that r; € R. Define y = (A — uB) (A — vB)z; € R. Since
(A — uB) 'Bz; = 0;z1 + 71, we have

y1 = 1+ (p—v)bizy + (p—v)r

h—V
= x4+ (b —v)ry = (p—v)ry .
m—H

We now prove that ((u —v)~!,71) is a Ritz pair of (A — uB) !B after the change of
pole. Therefore we show that

(A — VB)_lB’I'l - 1 J—B R .

This is equivalent to

«A—uBr%A—VwafBOA—Vm4Bn— ! ﬁ>:o.

Elaborating the left-hand side gives

1 _
V*B(A — uB) 'Bry — ——VBr, — “—2V*B(A — uB) ' Bry
w—rv v

which is zero since V;*Bry = 0.
Ley (n # m, ) be another harmonic Ritz pair for pole p. We now prove that (n,z)
is a harmonic Ritz pair for pole v. Let y = (A — uB)™'(A — vB)z € R. Then

_n-v
n—H
Since r = vp115rer2 and y lie in R, also z lies in R. We still have to show that

Yy z+(p—v)r.

(A—vB)'Bz — n_yx 1 R.

This is equivalent to

-1 -V ) —l/*lzr—lzv:
((A—pB) (A _mw)3<m B) 'B n—V> 0.

Recalling that (A — uB) !Bz = 1/(n— w)z +r, elaboration of the terms in the left-hand
side gives

Vi B(A — uB) Bz — ViBz — "2 V*B(A — uB)"' Bz
n—v

n—v
. 1
= 1" Py*B(A - uB) *Be — — V' Bz
n—v n—p
- 1
=1 “C——Wﬁx+wBﬁ— Vi Bz,
n—v \n—p n—v
which is zero since V}' Br = 0. O



harmonic Ritz value

—_— O Q=e®m R

Figure 3.1: Residual norms versus harmonic Ritz values. The squares show the pairs
(n, p) (see (2.4)) for 40 Lanczos steps with pole 4 = —1. The bullets show the pairs (7, p)
after changing the pole into v = 2.

This is now illustrated by a numerical example.

Example 3.1 The matrix A is real symmetric and tridiagonal with 2’s on the main
diagonal and —1’s on the two off-diagonals and B is the identity matrix. Both have
dimension 200 x 200. The results of this example are generated using Matlab on a
DEC Alpha. We performed k£ = 40 steps of the spectral transformation Lanczos method
with © = —1 and an initial vector with equal elements.

The five smallest harmonic Ritz values are 7, ~ 2.449410 %, 7, ~ 2.2460103, 13 ~
6.415910 3, ny ~ 1.294710 2, and 75 ~ 2.1989 10 2. The Ritz value corresponding to 7
is 6; ~ 0.9998 and has residual norm 2.6 10~4.

After altering the pole into v = 7y, the five smallest harmonic Ritz values are 7; ~
—1.0000, 7, ~ 2.246010 3, 73 ~ 6.415910 3, 7, ~ 1.294710 2 and 75 ~ 2.198910 2.
The smallest value 7, = 2.4429 10~* has disappeared. Since v is a Ritz value, the corre-
sponding Ritz vector is filtered out of the Lanczos basis with the filter (A—pB) }(A—vB).
Following Theorem 3.2, the harmonic Ritz value 7; is mapped onto p = —1.

After one additional Lanczos step with pole v, the lost Ritz value is recovered, since
one Lanczos steps adds wy41 to the space in which the Ritz vectors are computed. The
smallest harmonic Ritz value is again 2.4429 10~%, and the other smallest harmonic Ritz
values are now 2.19891073, 6.119310 3, 1.2061 102, and 2.0147 10 2.

We did the same experiment but now changed the pole into v = 2. Figure 3.1 shows
the harmonic Ritz values (n) with their residual norms (p) before (squares) and after
(bullets) the change of pole. Since v is not a harmonic Ritz value, Theorem 3.2 does
not apply. Theorem 3.1 still applies, i.e. the subspace is filtered by the rational function
(A—v)/(XA— p). This suggests that the Ritz values near v are pushed away and that the
corresponding residual norms grow more than the other residuals. Note that it is totally
acceptable that residual norms grow with a factor (n — i)/(n — v), since the Ritz values
also grow with this factor.

In the implicitly restarted Lanczos method (Sorensen 1992, Calvetti, Reichel and
Sorensen 1994) the new tridiagonal matrix can be computed by the action @Q*T;Q where
() is a unitary matrix. This is a symmetric formula. The new tridiagonal matrix is usually



computed with bulge-chasing (Golub and Van Loan 1996). Algorithm 3.1 presents a
nonsymmetric form. A symmetric form can be obtained as follows. Rewrite (3.2) as

with Ly = I + (u — v)T}. Factorize L, = QR, then R™1 = L,;IQ. Also define W, = V;,Q
and K;, = Q*T, R !, then
1 1

_ -y & . %7 —1
Ki= o (1= QR = = (1 - Q"I;"Q),

which is a symmetric formula. Unfortunately, it cannot be computed by a QR step (or
bulge-chasing) on T}. Moreover, we still have not yet computed K. Similarly to the
implicitly restarted Lanczos method (Sorensen 1992), this can be achieved by manipu-
lating (3.6). We do not consider this approach any further, since there is not advantage
compared to Algorithm 3.1.

4 Purging, implicit restarts and locking

When k is very large, the storage of the basis vectors becomes prohibitive and it may be
necessary to restart the Lanczos method. An elegant restarting algorithm is the implicitly
restarted Lanczos (or Arnoldi) method (Sorensen 1992, Calvetti et al. 1994). This method
compresses the Lanczos basis into one of smaller dimension by throwing away a part of
the subspace that is unlikely to have a significant contribution to the convergence of the
wanted eigenvalues. After the compression, the Lanczos method can add new Lanczos
vectors to the basis. A similar restart was developed for the rational Krylov method
(Ruhe 1998, De Samblanx et al. 1997).

We can use an implicit restart with exact shifts (Sorensen 1992) in the Lanczos method
or equivalently, we can purge unwanted Ritz vectors (Lehoucq and Sorensen 1996, Morgan
1996). Let TxZy = Z,0) with ©f = diag(6y,...,0k) be the eigendecomposition of Tj.
Multiplying (2.3) on the right by Zj, we have

(A —uB) "BV Z) = Vi1 Ty 2, -

With
.
Xip1 = [Xi xkﬂ]:vml[ * 1]

Z ) ©

and

we get the relation
(A—puB) 'BX; = X31S) -

Note that S}, is a matrix with k£ + 1 rows and k columns that consists of a k x k diagonal
matrix in the k first rows with the Ritz values 6, ..., 60; on the main diagonal and Sre} Zy
in the £+ 1 st row. The last row contains the residual information for the Ritz pairs. The



columns of X}, are the B orthogonal set of Ritz vectors and the last column zp,11 = vjyq
is the direction of the residual (2.4).

Suppose that the columns of X; and S; are ordered so that the p Ritz values of
interest are in the leading columns of S; and the k — p less interesting Ritz values are at
the end. When we take the first p columns of S, into S,,, we have

01

(A—pB)'BX, = [X, z,1]S, with S, = .| (4.1)

p
ﬂkeZZp

Transforming the p + 1 X p matrix S, to tridiagonal form to Tp by orthogonal transfor-
mations and applying these transformations to X, yields a new recurrence relation

(A—puB) BV, — V1T, =0. (4.2)

We call this truncation plus transformation to tridiagonal form purging. It is also achieved
by k — p implicit restarts with exact shifts (Sorensen 1992, Morgan 1996). From here,
k — p additional Lanczos iterations produce a Lanczos basis of dimension &k + 1.

Ritz pairs with a residual norm fy|e;z;| smaller than a given tolerance are locked.
They are considered as exact eigenpairs. By moving the corresponding residual terms to
the right-hand side, (4.1) becomes

0, 0
(A= uB) 'BX, —[X, zt1]| 0 O,y | =[zt15ke}Z, O]
0 [rerZg—p

with ©, = diag(f4,...,0,) and Z, = [Z, Z,_,|. Transformation to tridiagonal form gives
us
1 ~ ~ ©, 0
(A=uB) 'B[ X, Vou|=[ Xy Vo || o' 7 |=[R 0] (43)
<p—q
with ip_q a p—q+1xp—gqtridiagonal matrix and R, = z},106re},Z,. The Lanczos method
can be continued from this point. Locking Ritz pairs means that they are considered as
exact. We then assume the right-hand side of (4.3) zero. Locking introduces an error in
the recurrence relation of the order |zrt18kerZyllBF = |Brlll€xZyll2-
The new tridiagonal matrix T, , can be considered as been computed by the Lanczos
method applied to
(I - X,X!B)(A—uB) 'B(I - X,X!B) . (4.4)

Note that 0 is an eigenpair with multiplicity ¢ and the columns of X, are eigenvectors. If
(¢ # 0,y) is an eigenpair of (4.4), then X By = 0, so (I — X, X B)(A — uB) 1By = (y
and

(A= puB)'By—(y = X,X;B(A—uB)™'By
X,(0,X; By + R} By) .

As a result,
I(A— uB) By — Colln = 1 X,R;Bylls < | Ryllor -

9



Since the eigenpairs of (A — uB)~'B that still have to be computed are computed as
eigenpairs of (4.4), the residual norm of the locked Ritz pairs limits the achievable accu-
racy.

When (0, z) is a locked Ritz pair for (A—puB) !B, we consider (1, z) with n = p+61
a locked harmonic Ritz pair for Az = ABz. When the pole changes to v, we consider
((n—v)~1,z) alocked Ritz pair for (A —vB) !B. When the pole changes, there is a risk
that the residual norm grows. Locking Ritz pairs with a relatively large residual norm
prevents the accurate computation of other eigenpairs. In order to measure the error on
the recurrence relation after locking of the Ritz vectors we can as well use the Rayleigh
quotient { = 2*B(A — vB) !Bz instead of 1/(n — v), which gives the smallest residual
norm for a given Ritz vector. We do not do this in practice, since this requires additional
computational work.

Theorem 4.2 gives an upper bound on the residual norm after change of pole. The
theorem uses the following lemma.

Lemma 4.1
A—p
A—vV

(A~ vB)"'(A—uB)|p = max

AEN(A,B)

Proof Let M be such that B = M*M. First note that

||(A—VB)_1B||B max ||(A—VB)_1B.'L'||B

llzllz=1

= max [(M(A-vB)"'M")(Mz)|

| Mz]]>=1

1
max
XeX(A,B) | A — v

Second, since (A —vB) (A — uB) = I + (v — u)(A — vB) !B, we have

v—p
A—v

b

— -1 — -
I(4=vB) (A= pB)la =  max |1+

which proves the lemma. |

Theorem 4.2 Let ((n — p)™',z) be a Ritz pair for (A — pB)™'B with residual norm
p=(A~uB)" Bz — (n— ) z[s .

After the change of pole, the new residual norm satisfies

A—p
A—v

77_
n—v

v =(A—vB) "Bz — (n—v) 'z[lp <

<Aer){l(?4},(B) ) p-

Proof By multiplying (A — uB) Bz — 0z = r with = (n — p)~! by (A — uB), we
have
Az(—0) + Bz(1 4 pub) = (A — uB)r .

By reorganising the equation into

(A—vB)z(—0) + Bz(1+ (. —v)0) = (A — uB)r

10



and by multiplying with (A — vB)~!, we have
0 1

(A—vB) 'Bz — mx = m(A —vB) YA — uB)r ,
= Z: 5(/1 —vB) YA — uB)r .

The proof follows from
(A= vB)" (A= pB)rlls < [(A—vB)™ (A - uB)|sllr||s -
O

Locking Ritz pairs generates an error in the recurrence relation of the order of the
residual norms. When the pole changes, this norm changes as well and so does the error on
the new recurrence relation. As long as the residual norm is much smaller than the norm
of the tridiagonal matrix, there is no real problem. When the pole changes, the norm of
the tridiagonal matrix is roughly speaking multiplied by ||(A —vB)™'(A — uB)||s, and so
it is acceptable that the residuals grow with this factor. However, the factor |n—p|/|n—v/|
should not grow too large. This is not the case for the locked Ritz vectors far away from
the new pole. As a conclusion, we better put the new pole away from the locked Ritz
pairs. In practice picking the pole near locked Ritz vectors is not very interesting anyway
since these have already been computed.

Example 4.1 Recall the problem from Example 3.1. The results of this example were
generated using Matlab. We performed £ = 50 steps of the spectral transformation
Lanczos method with 4 = —1 and an initial vector with equal elements. The Ritz value
with smallest residual norm is = 0.9976 or n = u+6~! = 2.4410~*. The corresponding
residual norm is 5.3 10~7. Purging the corresponding Ritz pair in the recurrence relation
creates an error of the order of 51077, Before purging, we have

1E]lr = (A = uB) ' BVi — Vi Tyl = 0 .

The four first rows of Table 4.1 show the error when the pole changes after locking 6.
The first pole v = 4 lies to the right of A(A, B). The second pole is the mean of the two
smallest Ritz values.

In both cases, the relative error remains of the order of 107%. In the second case, the
absolute error is much larger which means that the small eigenvalues of (A — vB)™'B
cannot be found very accurately. Note however that the upper bound of the residual
norm in Theorem 4.2 is rather pessimistic. For this problem the upper bound following
Theorem 4.2 is 1.68, which is much bigger than 1 10~3. The reason is that ||(A—vB) }(A—
pB)7||p is much smaller than ||(A—vB) 1(A— uB)||5||r||s- The residual 7 is poor in the
dominant eigenvectors of (A —vB) (A — uB) which are well represented by the Krylov
space. Also note that, in this case, the Rayleigh quotient ¢ corresponds well to 1/(n—v).
The reason is that the new residual is already fairly orthogonal to the Ritz vector.

Finally, we illustrate the difference between locking before and after the change of
pole. The errors on the recurrence relation are given by Table 4.1. Recall that the locked

11



Table 4.1: Error in the recurrence relation after locking of a Ritz pair.

v 4.0 1.221073
Locking before change of pole:
[|E||F 510> 11073

B/ || Kyll2 1107 1107F

Locking after change of pole:
[ 210 7 5101
|E||p/[| K]l 510  510°*

harmonic Ritz value is n = 2.4410 % When the Ritz values are recomputed after the
change of pole and then the smallest harmonic Ritz value is locked, the errors are smaller
when the pole is far away (v = 4), and larger when the pole is near the locked Ritz
value (v = 1.221073). The reason is that the Krylov subspace is filtered with the matrix
(A—uB)~Y(A—vB) which improves Ritz values near x and far away from v but removes
those close to v.

5 The numerical stability of the rational Lanczos
method

A remaining question is the numerical stability of the rational Lanczos method. The
numerical behaviour of the Lanczos method is well understood. Typically, the method
behaves numerically well when it is carefully implemented : this includes partial reorthog-
onalization (Grimes et al. 1994) or full reorthogonalization (Daniel et al. 1976). An im-
plicit restart may lose stability when the implicit shift is close to a Ritz value. Purging
instead of implicit restarting is preferred in that situation (Lehoucq and Sorensen 1996).
Also see (Meerbergen and Spence 1997) for another numerical stability result. The only
difference between the Lanczos method and the rational Krylov method is the change of
pole, so it is sufficient to study the stability of this step.

We consider three sources of errors in the rational Lanczos method : the evaluation of
the Lanczos recurrence relation ; the change of pole ; and the solution of linear systems
with A — uB or A —vB.

The Lanczos recurrence relation The first source of errors is in the evaluation of the
Lanczos recurrence relation. Suppose that the spectral transformation Lanczos method
produces an accurate recurrence relation, i.e.

(A— HB)_IBVk — Vil =F

where F has a small norm compared to the other terms in the equation. We say that
the method is backward stable. We assume that when Gram-Schmidt orthogonalization
(with reorthogonalization) is used for making (A — uB)~! Bv; orthogonal versus v;_; and

12



v; in Algorithm 2.1, we have

1Ellsr ~ [ Tk[l2u (5.1)
(A — uB) ™' Bl|pu

_ -t
B Aer)l:l(i},(B)P\ ua

IN

See (Bjorck 1996, §2.4.5) and (Higham 1996, Theorem 18.12) for modified Gram-Schmidt
when B = I. The error £ can become large when p is close to an eigenvalue. Obviously,
the relative error, this is || E||pr/||T}||2 is always small, i.e. the large eigenvalues of (A —
puB)™! B can always be computed relatively accurately. When partial reorthogonalization
is used to maintain orthogonality of the Lanczos vectors, an additional error must be
added to the right-hand side corresponding to terms which have been computed during
the reorthogonalization. These are typically of the order of y/ul|T}||2-

Change of pole Suppose that Algorithm 3.1 is executed in exact arithmetic. We do
assume, however, an error on ) and R. Following (Higham 1996, Chapter 18), we may
assume that the backward error [|[A;]|2 in the QR factorization

QR=L;+ A,

is bounded from above by ||L;||2yu where v depends on k.
Then Q*L,R~! = I, — Q*A,R™', so with Wj,; = V3 11Q and K, = Q*T, R}, we
have
(A—vB) 'BW; 1Q*LiyR ' — W, K, = (A—vB) Y(A—uB)ER™
(A—vB)'BW, — W1 K, = (A-vB)"'(A—uB)ER™' (5.2)
+ (A—vB) 'BW 1 Q*ALR .

The norm of the first term in the right-hand side is roughly speaking bounded by
|(A — vB) (A — uB) 5|1 R || Tl . (5.3

where ||R7Y||2 = 1/0wmin(Ly). The norm of the second term is roughly speaking bounded
by

(A — vB) Bl sra(Ly)u (5.4)
where Ko(Ly) = Omax(Ly)/Omin(Ly) is the condition number of L;. The factors (A —

vB)™Y(A — uB) and (A — vB)™! B usually have modest B norms unless v is close to an
eigenvalue. The singular values of L; play a vital role.

Lemma 5.1 Denote the eigenpairs of Ty, by (0;,2;) with ||zj||la =1 for j =1,....k and
0; = (n; — n)~ L. Define the residual norm p; = ||[(A — uB) *BViz; — 0;Vizi||s. Then

2 1/2
Onlill(Lk) S mjn ((u) + (H’ - V)2pf) )

J ny —H
5 1/2
n—v 2 9
maxL > - + - 1 .
(L) > mgx((m_u) (15— ) pj)
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Proof Following their definitions, we have 0., (L;) < [|Lpz|l2 € Omax(Ly,) for any
z € C* with ||z|]; = 1. From the assumptions of the lemma, we derive

2
I + ( - V)Tk)z
L) <||L = I
Aulte) < sl = || V0 ||
2
n—v 2 2
= —— | +(u—v)p;
(2 u) (s,
and we have a similar inequality for the largest singular value. ]

When v is close to 7 and the residual norm p is small, then oy, (L;,) is small. When there
is a harmonic Ritz value near p, oyax(Ly) is large. Roughly speaking, when the residual
norms are small, the norm of the error in the recurrence relation after change of pole is

bounded by
2
( max_|A— p|” 1)( max_|A—v|” 1) :
AEA(A,B) AEA(A,B)

The solution of linear systems The solution of the linear system (A — uB)w; = Bv,
has a residual f; so that f; = Bv; — (A — uB)w,;. The backward error F is defined
by (A — uB + F)w; = Buvj, so Fw; = f; with ||F||.c ~ u||A — pB|| (Golub and
Van Loan 1996). This implies that the Lanczos method is computing the eigenpairs of
(A—uB+ F)~'B instead of (A —puB)~'B. When A — uB is ill-conditioned, the difference
between (A — uB)™'B and (A — uB + F)™'B can be quite high. We have that

(A—pB+F)'B—(A—uB)'B=—(A—uB)'F(A—uB+ F)'B

which is normwise of the order of ko(A — uB)||(A — uB + F)~!||au. The Lanczos method
produces T, and Vjy1 so that

(A—uB+F) BV, — Vi iTp = E

with || E||gr small compared to ||[(4 — uB + F)~'B||5. Assuming that no error is made
with the change of pole, we have

(A— VB)*lBWk — Wi Ky, =
(A—vB) " (A—uB+ F)ER'+(A—vB) 'FV, /T, R™".

The last term is also (A — vB) ' FW}, 1K}, and is of the order of
(A —vB) |2l A — Bl || Eyl2u (5.5)

or roughly speaking,

2
( max |\ —v|” 1) )
AEA(A,B)
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Table 5.1: Illustration of growth of rounding errors for Example 5.1. We show bounds
for the different errors in the previous analysis

Bounds Absolute Relative
v (5.3) (5.4) (5.5) error error
0.0012 9.3107% 751079 1.410°%" 1.810°1% 1.710°%3
2.00 161072 1.0107!2 861071 4.61071® 3.810°

Numerical example The following example illustrates the theory in this section.

Example 5.1 Recall the eigenvalue problem from Example 3.1. The results of this
example are generated using Matlab on a DEC Alpha. We performed k£ = 50 steps of the
spectral transformation Lanczos method with 4 = —1 and an initial vector with equal
elements. The explicitly computed error on the recurrence relation is

|E||r = ||[(A— uB) "BV} — Vi1 Tyl|p ~ 5.71071°

which satifies (5.1). The relative error || E||r/||L4||2 is of the same order since ||T;||2 ~ 1.
Table 5.1 shows the estimates (5.3), (5.4) and (5.5) for the error on the recurrence relation
after the change of pole for two choices of v. First, v = 0.0012 is the mean of the two
smallest harmonic Ritz values, n; = 2.442910~* and 7, = 2.19821073. Second, v = 2
lies in the middle of A(A, B). The relative error does not grow in the same way as the
absolute error, since || K} |2 is usually of the order of maxy4,5)(1/|A—v|). We can see from
Table 5.1 that finding the large eigenvalues of (A—vB)™! B is no problem whatsoever. The
accurate computation of the smaller eigenvalues might be more difficult. It is important
to note, though, that both the absolute and relative errors have grown.

The following experiment is an illustration of the danger of picking the pole near an
eigenvalue.

Step A We ran k = 50 iterations of the Lanczos method with pole p = —1.

Step B We altered the pole into v = 7; where 7 is the smallest harmonic Ritz value. We
performed 5 additional Lanczos iterations. We ended up with a Lanczos recurrence
relation of order k = 55.

Step C We altered the pole again into = —1 and performed 5 additional Lanczos steps
so that £ = 60.

Figure 5.1 shows the norms of the errors of the recurrence relations (2.2) for j =
1,...,k for the three steps. As we can see, we have after £ = 50 Lanczos iterations

(A — uB) ™' BVsy — V51 T'sy = Eisg

with ||Eso||r ~ 5.5 1071%, which satisfies (5.1).
In Step B, the pole is altered into v = n; ~ 2.4410°* We expect a significant
growth of the absolute error in the recurrence relation since ouin(Lsg) =~ 5. 1077 and
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ka(Lsy) ~ 1.610°. After having changed the pole, the recurrence relation has an error
of the order of 210% (see the peak at j = 51). The bound (5.3) is of this order since
maxyexa,p) |A — p|/|A —v| ~ 1.5 10'2 and o3, (Ly) ~ 5107 7. On the 51st iteration, the
error drops to 10~* which is of the order of maxj¢ MA,B) |A—V| ~lu, and drops even further
for 7 > 51.

After the second change of pole, the errors drop but not to the level of maxycx(a,) |A—
p|tu. The 5 additional Lanczos iterations, however, produce recurrence relations of that
order.

The following observation is also interesting. Suppose that we do not do 5 additional
Lanczos iterations in Steps B and C. After Step B, we have (5.2). In Step C, we compute
L,(f) =1+ (v— pK, = ZS with Z unitary and S upper triangular. Since for Step B

-1 -1
K, = ”i,, (I— Q* l RO ]), we find that Z = Q* and S = l RO ] So, after Step C,

we get

(A—uB) 'BW,Z — W1 ZZ* K S = E + (A — uB) ' BW;1Q*A,, .

Note that the two terms in the right-hand side have small norms of the order of u. If Z

and S are computed from L,(f), an error in the recurrence relation is introduced that can

be of the order of ury(L{”) ~ 1.610%u. Note that xs(L\)) = ra(Lso). In fact, in exact
arithmetic Lé%) would be the generalized inverse of Lyy. In practice, however, we do not

at all lose 6 digits but only 2 since
(A — uB) *BWZ — Wi 1 ZZ* K, S |r ~ 251071 .

From this example, we conclude that picking a pole near a Ritz value may be dan-
gerous. But picking a pole when the old pole is near a Ritz value may be dangerous as
well.

We also conclude that in a practical algorithm it is sufficient to monitor oy, (Ly). If
at the first change of pole, O'min(Lél)) is small, we may introduce a large absolute error

in the recurrence relation. In the next change of pole this may lead to a large Umax(Lf))
and again large absolute errors may result.

6 Numerical example

This example is related to the acoustic simulation of a 0.4m x 0.4m x 0.06m sample
made of a poro-elastic material. The material is modelled using a two-phase Biot model
accounting for kinematic and mechanical interactions between the (elastic) skeleton and
the pore (acoustic) fluid (Sandhu and Pister 1970, Simon, Wu, Zienkiewicz and Paul
1986). The following material properties have been selected : for the skeleton, the Young
modulus is 140000N/m? the Poisson ratio 0.35, and the density 1300kg/m3. The pore
fluid has density 1.225kg/m?, the sound speed is 340m/s, the porosity 0.95, the flow re-
sistivity is 0, the Biot factor is 1, the fluid bulk modulus 141600N/m2, and the tortuosity
is 1.2. The discrete finite-element model relies on a u-w formulation (Simon et al. 1986)
where skeleton displacement components (u) and relative fluid displacement components
(weighted by the local porosity) (w) are selected as nodal variables. The finite-element
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Figure 5.1: Norms of the errors of the recurrence relation (2.2). The solid line shows
||Ee;||2 for j =1,...,50 for the Lanczos method with pole = —1 (Step A). The dashed

line shows the errors after the change of pole for 7 = 1,...,50 and for 5 additional Lanczos
iterations j = 51,...,55 (Step B). The dotted line shows the error on the recurrence
relation when the pole is changed back into ;x = —1 and 5 additional Lanczos iterations

are performed (Step C).

mesh has 324 nodes and 192 HEXAS elements. The total number of degrees of freedom
is n = 1944.

We use the Lanczos routine EA16 from the Harwell Subroutine Library (Release
HSL 2000). The implementation is based on the (block) Lanczos method with partial
reorthogonalization (Grimes et al. 1994), purging of the unwanted Ritz pairs and locking
of converged Ritz pairs (see §4), an implicit restart (Sorensen 1992), and change of pole
(see §3). In this experiment, we use the Lanczos method with block size 1 in order
to illustrate the theory in the paper. After purging, the Krylov subspace dimension
is reduced from k to p. We used £ = 50 and p = 25. The method is described in
Algorithm 6.1. The sparse linear systems are solved by the Harwell Subroutine Library
code MA27 (HSL 1996). For efficiency reasons, the matrix is factorized once for each
pole and the Lanczos method uses backtransformations. The residual tolerance used for
the eigenvalues was €y, = /u||Ty||2 with y/u ~ 1.05107%, which is the square root of
the machine precision on a DEC Alpha. The goal is to compute s = 20 eigenpairs on
the right of 100. Ritz pairs are locked before the pole is changed. Recall the results of
Example 4.1 where the accuracy of the recurrence relation after locking and changing the
pole depends on whether the harmonic Ritz values are locked before or after the change
of pole. In this code, no distinction is made between 7,’s away from or close to v : we
always lock before the change of pole. The initial pole is 4 = 100. A new pole is chosen
as the mean of two successive Ritz values, as indicated in Algorithm 6.1. We choose the
new pole so that |n; —v| > |n; — u|/50 for j = 1,...,k, which should avoid large x2(L;,)
and (A —vB)™1B.

Algorithm 6.1 (Rational Lanczos)
0. Given v; € R" such that ||v1||p = 1.
Select an initial pole pu and factorize A — uB = LDL*.
1. Perform p steps of the Lanczos method.
2. do until convergence :
2.1. Expand the Krylov space from dimension p to k by the Lanczos method.
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2.2. Compute the eigenpairs (0;,2;) 7 =1, ...,k of T, and let n; = p + 49]71.
2.3. Sort the 7,;’s in ascending order and reorder the z; accordingly.

2.4. Compute residual norms p; = fBlejz;| for j =1,... k.

2.5. Stop if p; < €o||Th||2 for 7 =1,...,s.

2.6. Lock the converged Ritz pairs and truncate the Lanczos recurrence relation from
order k to p.

2.7. Compute the new pole as v = (n; + n;41)/2 with j > ¢ and such that |7, —v| >
|mi — | /50 for i =1,...,p.
2.8. Change the pole using Algorithm 3.1. Factorize A —vB = LDL*

end do

From (5.2), we can see that ||[(A — vB)™}(A — uB)||s plays an important role in the
error bounds. When |\ — v| > |X — pu|/50 for all eigenvalues A of Az = ABz, then

—p

[(A~vB) (A= uB)|l5 = max | 2=~

AEA(A,B)

<50.

This limits the growth of the error in the recurrence relation after a change of pole.
Lemma 5.1 is used for estimating Jmin(Lp). This was illustrated by Example 5.1 and
is confirmed again by the results for this example. Table 6.1 shows, after each implicit
restart, the number of converged Ritz values and the new pole with the estimate for
Umin(Lp). A picture of the spectrum is shown in Figure 6.1. Using the inertia count
(Grimes et al. 1994), we found that the number of eigenvalues between 100 and the poles
1380 and 1760 matches the number of locked Ritz values in the corresponding intervals.
This shows the reliability of the algorithm for this example.

The error on harmonic Ritz values 7 is bounded as follows.

Lemma 6.1 Let n be a harmonic Ritz value corresponding to pole . and let p be the
residual norm for the Ritz pair of the spectral transformation. Then there is a A € A(A, B)
so that
X =al < |n—ulp .
Proof The proof is given in §3 of Ericsson and Ruhe (1980). O

Figure 6.2 shows the bounds on the errors on the harmonic Ritz values (Lemma 6.1)
when the pole changes. We show the results for the unlocked Ritz values in the interval
[1000,4500] for the first two changes of pole. In both cases, the bounds do not change
very much with a change of pole, nor do the harmonic Ritz values. In addition, the
harmonic Ritz values near 4000 seem to disappear after the change of pole.

After the last iteration, we found that, with full reorthogonalization at each iteration
of the Lanczos process, max; ;; |w;Bw;| ~ 110~** and

(A — uB) ' BW), — Wirr Ky|lpr /|| Ky ll2 = 4.9107%

which is within the residual tolerance. With partial reorthogonalization, we have max; ;; |w} Bw;| ~
3.5107! and

(A — uB) ™' BWy, — Wi Kyl |pr /|| Kyll2 ~ 4.9107%
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Table 6.1: Number of locked Ritz values, the new pole and the estimate of Jmin(Lp)
following Lemma 5.1

restart locked pole estimate owin(L,)

1 5 1381. 8.31072
2 12 1764. 1.810°1
3 17 1953. 1.310°1
4 25

71381 1764 1953

100

Figure 6.1: Ritz values computed via the rational Lanczos method. The vertical lines
denote the positions of the poles.

¢ n U
10° 1000 2000 3000 4000 1000 2000 3000 4000
10° } go °° © i .
105 °° . )

Figure 6.2: The pictures show the harmonic Ritz value 1 and the harmonic residual norms
from Lemma 6.1 before (bullets) and after (circles) the change of pole. The left hand
picture shows the transition for the change of x = 100 into » = 1381 and the right hand
one for the change from p = 1381 into v = 1764.
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We also performed the following experiment. We ran algorithm 6.1 but in Step 2.7,
we select the pole v = n,,; o~ 1264.112. Before the change of pole, we have with partial
reorthogonalization

(A —uB) BV, — Vi1 Lyllpr ~ 1.2107%
(A = uB) "' BVi = Via Ty llpr /| Tyl lp >~ 3.7107.

Note that o, (L) ~ 1.41075, ky(Ly;) ~ 910° and ||[(A — vB) (A — uB)||p > || + (v —
W) Kll2 ~ 7.110°. We expect the Lanczos recurrence relation to lose 12 digits after the
change of pole. Since ||K}||r is of the order of 103, we expect to keep only 1 significant
digit. The computed error, however, is much larger since

(A —vB) 'BW, — Wi Kyllpr =~ 1.210°
(A = vB) ' BWy = Wi Ky llpr /1B llr =~ 2.010°.

We keep no accuracy at all. For computing the term (A — vB)™1BW},, we used iterative
refinement using GMRES in order to reduce the residual norm of the linear systems.
(The reason why we used GMRES and not MINRES is that we had a code available
for the former method. We used GMRES for the verification of the recurrence relation
only, so performance is not an issue here.) The major problem here is that even with a
small residual norm the linear systems are solved fairly inaccurately, since ko(A — vB) =~
2.510%. Before the change of pole, the Ritz value 6,1 has a residual norm of the order
of 1.351078. The Ritz value appears to be much closer to an eigenvalue than the residual
norm suggests and A — v B is almost singular. Continuing the Lanczos method with this
pole is not a good idea since each connection with the original problem is lost.

If we do continue with this pole and use v = (1, + 7,41)/2 ~ 1381 as next pole, so
that owmin(Ly;) =~ 2.0, then we find

(A —vB) 'BW;, — Wi 1 K, llpr ~ 1.3107°
(A =vB)™"' BW), — Wiy 1 Kyl pr /|| Kl r ~ 651071,

12

which is very large. The connection with the original problem Axz = ABz is completely
lost. The only way to save the situation is restart the Lanczos method explicitly with
the new pole v ~ 1381.

7 Conclusions

In this paper, we introduced the rational Lanczos method for the solution of Hermitian
eigenvalue problems. It can be considered as a spectral transformation Lanczos method
with implicit restart and change of pole, or as the rational Krylov method for a Hermitian
problem. The major conclusion from this paper is that it may be dangerous to select a
pole close to a Ritz value for the following reasons. First, the linear systems may be
difficult to solve, since they are nearly singular. Second, it may not only lead to large
absolute and relative errors in the recurrence relation, but also to large residual norms
for locked Ritz pairs. It is therefore advised to pick the pole away from the locked Ritz
pairs.
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Moving the pole near a Ritz value may not only lead to an increase of the error
after the current change of pole, but may propagate to the next one. As Example 4.1
illustrates, the residual norm of a locked Ritz pair may decrease when the harmonic Ritz
value is away from the new pole and may grow may it is close to the new pole. We have
made no distinction between locked harmonic Ritz values near or away from the new
pole. The major reason is to reduce the complexity of the software. In addition, since
the poles are chosen away from the harmonic Ritz values, a significant decrease or growth
of residual norm is rather unlikely.

One can pick poles near harmonic Ritz values, but we then suggest an explicit restart
of the Lanczos method with the new pole after locking the converged Ritz pairs. Note
that picking poles close to a harmonic Ritz value may speed up the convergence of one
or a few Ritz pairs, but a larger number of poles may be required to compute the desired
number of eigenpairs fairly accurately. From an efficiency point of view one should keep
the number of pole changes (i.e. the number of sparse matrix factorizations) small.
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A Reduction of a rectangular matrix to tridiagonal
form

Consider the k + 1 x k matrix T® with the upper k x k submatrix Hermitian. The
following algorithm creates a unitary matrix P such that

T(l):l]‘; ‘1)] T p

is tridiagonal.

Algorithm A.1
1.Let P =1
2.For j = k to 2 step —1 do
2.1. Let H; be a Householder reflection such that e}, ,T UV H; is a row vector with
7 — 1 zeros in the front.

2.2. Form

2.3 Form P = PH;

On iteration j the j4 1 st row of TV is reduced to a row with j— 1 zeros in the front.
The Householder transformation is also applied on the front so that the 7 4+ 1 st column
is reduced to a column vector with 7 — 1 zeros in the front.
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