RAL-TR-1999-011 (Revised December 1999)

Locking and restarting quadratic eigenvalue
solvers

Karl Meerbergen!

ABSTRACT

This paper studies the solution of quadratic eigenvalue problems by the quadratic resid-
ual iteration method. The focus is on applications arising from finite-element simulations
in acoustics. One approach is the shift-invert Arnoldi method applied to the linearized
problem. When more than one eigenvalue is wanted, it is advisable to use locking or de-
flation of converged eigenvectors (or Schur vectors). In order to avoid unlimited growth
of the subspace dimension, one can restart the method by purging unwanted eigenvectors
(or Schur vectors). Both locking and restarting use the partial Schur form. The disad-
vantage of this approach is that the dimension of the linearized problem is twice that
of the quadratic problem. The quadratic residual iteration and Jacobi-Davidson meth-
ods directly solve the quadratic problem. Unfortunately, the Schur form is not defined,
nor are locking and restarting. This paper shows a link between methods for solving
quadratic eigenvalue problems and the linearized problem. It aims to combine the bene-
fits of the quadratic and the linearized approaches by employing a locking and restarting
scheme based on the Schur form of the linearized problem in quadratic residual iteration
and Jacobi-Davidson. Numerical experiments illustrate quadratic residual iteration and
Jacobi-Davidson for computing the linear Schur form. It also makes a comparison with
the shift-invert Arnoldi method.

Keywords: Quadratic eigenvalue problem, linearization, Schur factorization, Davidson,
shift-invert Arnoldi, deflation, purging

AMS (MOS) subject classifications: 65F15,65F50

Computational Science and Engineering Department
Atlas Centre

Rutherford Appleton Laboratory

Oxon OX11 0QX

December 3, 1999

Contents

1 Introduction

2 Quadratic residual iteration
3 The Jacobi-Davidson method

4 The Schur factorization
4.1 Linear problems
4.2 Quadratic problemso Lo Lo

5 Locking
5.1 Linear problemso Lo Lo L
5.2 Quadratic problems00

6 Restarting
6.1 Linear problems
6.2 Quadratic problems Lo

7 Building the Schur factorization
7.1 Linear problems
7.2 Quadratic problems Lo

8 Algorithm and numerical examples
8.1 A ‘linear’ problem
8.2 A simple quadratic problemo o o000
8.3 Acoustic simulation of poro-elastic material

9 Jacobi-Davidson for the quadratic eigenvalue problem
10 Shift-invert Arnoldi for the linearized problem
11 Conclusions

12 Acknowledgements

10
10
11

13
13
15

15
15
16

17
17
18

19
21
21
22

24

25

27

28

1 Introduction
This paper studies the solution of the quadratic eigenvalue problem
Ku + iwCu — w’Mu =0 u#0 (1.1)

where K, C' and M have dimension n xn and M is symmetric positive definite. The scalar
w is called an eigenvalue, u is a corresponding eigenvector, and (w, u) is an eigenpair. This
problem arises from the finite-element simulation of damped acoustic problems, where K
is the stiffness matrix and is symmetric positive (semi) definite, M is the mass matrix
and is symmetric positive definite, and C' is the damping matrix and is symmetric and
sometimes complex. The condition number of M is usually relatively small, since M
is the discretization of the continuous identity operator. Typically, K, C, and M are
large (of the order of 10,000 or more unknowns) and sparse. In engineering applications,
the eigenvalue w is complex. The real part is the resonance frequency, while the imag-
inary part represents the exponential damping of the eigenmode. In applications, all
the eigenvalues in a frequency range are wanted, this is a few tens to a few hundreds of
eigenpairs.
The problem (1.1) can be ‘linearized’ into

o] ()=) 12)

which we also denote as Az = wBz with

A:[IO{]\(H and B:[_Aif A(;I] (1.3)

(See (Saad 1992, Chapter X) for alternatives.) Note that for acoustic finite-element
applications, A is symmetric positive (semi) definite and B is (in general) complex sym-
metric. Since M is nonsingular, this problem has 27 finite eigenvalues. When C'is purely
imaginary, Az = wBx is a Hermitian problem, so all eigenvalues are real. In general,
C has a real component hence complex eigenvalues are present. When C' is real, then
the spectrum is symmetric with respect to the imaginary axis : indeed, if (w,) satisfies
(1.1) and C is real then (—, @) is also an eigenpair. Note that when C' = 0, the spectral
transformation block Lanczos method (Grimes, Lewis and Simon 1994) is a very robust
and efficient solver.

In the literature, methods have been proposed for solving (1.1) and (1.2). The lin-
earized problem can be solved by the shift-invert Arnoldi method (Saad 1992, Natara-
jan 1992). This method computes the eigenpairs of the shift-invert transformation
(A — 0B) !B where ¢ is called the shift. Alternatively, the rational Krylov method
(Ruhe 1998) or the Jacobi-Davidson method (Sleijpen and van der Vorst 1996) may be
used. The advantage of the linearized approach is that existing methods and software
can be used. A disadvantage is that the dimension is doubled.

Methods have been developed for directly tackling (1.1). They solve a sequence of
linear systems

(K +iocC —o*M)y=r, (1.4)

where o may change at each iteration. When a direct method is used for solving (1.4), a
matrix factorization on each iteration is inevitable. Neumaier (1998) and Huitfeldt and
Ruhe (1990) propose methods that use a fixed o. This allows the same factorization to be
used for several iterations. Another approach is the Jacobi-Davidson method (Sleijpen,
Booten, Fokkema and van der Vorst 19964, Sleijpen, van der Vorst and van Gijzen 19965,
van Gijzen and Raeven 1995) for the quadratic problem, which should not be confused
with the Jacobi-Davidson method for the linearized problem. The methods that we
study build a subspace. For reasons of computational cost and memory, the subspace
dimension is limited. When this limit has been reached without convergence of the
sought after eigenvalues, the method needs to be restarted. The concept of restarting
eigenvalue solvers is very well understood for linear problems. See the recent work for the
Arnoldi method (Sorensen 1992, Lehoucq and Sorensen 1996, Morgan 1996), the Jacobi-
Davidson method (Fokkema, Sleijpen and van der Vorst 1999) and the rational Krylov
method (Ruhe 1998, De Samblanx, Meerbergen and Bultheel 1997). When more than
one eigenvalue is wanted, it is usually advisable to lock the converged eigenpairs. This is
proposed for subspace iteration (Stewart 1976), Arnoldi’s method (Lehoucq and Sorensen
1996), Jacobi-Davidson (Fokkema et al. 1999) and rational Krylov (Ruhe 1998). Both
restarting and locking use the partial Schur form.

The purpose of this paper is the development of reliable deflation and restarting in
methods that solve the quadratic problem (1.1). The problem is that the Schur form
is not defined for quadratic problems. We give a definition and show that this Schur
form does not always exist. Therefore, we propose using the Schur form of the linearized
problem (1.2).

We also want to stress that all theory in this paper can be extended to the m degree
polynomial case with m > 2. The polynomial problem

Agu + AMAju+ -+ A"A,u=0

can be solved by linearization into

u u
Ao ; Au _}41 —Ae e A Au
A2y =\ - P

I Am—lu I)\m—lu

The paper is organized as follows. In §2, we present the quadratic residual iteration
method for solving (1.1) and prove a relationship with a modification of the generalized
Davidson method for the solution of the linearized problem (1.2). In §3, we use the
theory developed in §2 to link the Jacobi-Davidson methods for (1.1) and (1.2). In §4,
the notion of partial Schur form is extended to quadratic eigenvalue problems, and the
theory of §2 is used to efficiently compute an approximate partial Schur form of the lin-
earized problem by orthogonal projection of the quadratic problem. In §5 a deflation or
locking technique is proposed for the linearized problem, and in §6, we discuss restarting
by purging of Schur vectors of the linearized problem. In §7 we explain which vectors
we use to expand the subspace when we want to compute a partial Schur form of the

linearized problem. Section 8 presents a practical algorithm that is illustrated by nu-
merical examples including one from applications. In §9, we compare quadratic residual
iteration and Jacobi-Davidson for computing a partial Schur form. In §10, we compare
the shift-invert Arnoldi method with quadratic residual iteration and Jacobi-Davidson.
Finally, we summarize the main conclusions in §11. Throughout the paper, || - || is used
for the 2-norm of matrices and vectors and || - || for the Frobenius norm.

2 Quadratic residual iteration

In this section, we derive a relationship between methods for solving (1.1) and (1.2). All
conclusions assume exact arithmetic. For results on the backward error and condition
of the linearized problem we refer to Tisseur (1998). For the linearized problem, we
consider the generalized Davidson method (Morgan 1992) (which formally covers the
Jacobi-Davidson method (Sleijpen and van der Vorst 1996, Morgan and Meerbergen
1999)) and for the quadratic problem we consider the residual iteration method (Neumaier
1998) with subspace projection. We also discuss the Jacobi-Davidson variant for this
problem. This section is devoted to the development of a relationship between the two
approaches. Therefore, we also define a modified Davidson technique for the linearized
problem (1.2) which is shown to produce the same results as the quadratic residual
iteration on (1.1).

The generalized Davidson method for the linearized problem is described by the fol-
lowing algorithm (Morgan 1992).

Algorithm 2.1 (generalized Davidson method)
1. Given vy € C* with ||v1|| = 1.
2. Fork=1,2,... do
2.1. LetVy = [v1,...,ux].
2.2. Compute the projection matrices Ay = Vi AVy, and By = V; BV.
2.3. Compute the eigenpair (wy, zx) of interest of Ayz = wByz.
2.4. Compute the corresponding Ritz vector xy = Vizy.
2.5. Compute the corresponding residual ry, = Axy, — wiBxy,.
2.6. Solve the linear system (A — 01, B)yy, = 1.
2.7. Orthonormalize y; against vy, ...,V into Vgiq.

This algorithm consists of a sequence of Cayley transformations
Yk = (A — O'kB)_l(A — ka)iL'k y (21)

and a projection step for computing the approximate eigenpair. The Cayley transform
aims to improve the approximation of eigenvalues near oj. For projection methods,
approximate eigenpairs are called Ritz pairs. The approximate eigenvalue is a Ritz value
and the approximate eigenvector a Ritz vector. The small eigenvalue problem in Step 2.3
is usually solved by the QZ method (Golub and Van Loan 1996). We select the eigenpair
of interest, e.g. corresponding to the eigenvalue nearest o;. When the linear system
in Step 2.6 is solved by an iterative method, Algorithm 2.1 is the generalized Davidson
method. In Davidson’s method, one usually employs o, = w; and Step 2.6 is executed

approximately (Crouzeix, Philippe and Sadkane 1994) or one can use the Jacobi-Davidson
method (see §3). This choice of oy leads to quadratic convergence. The generalized
Davidson method does not exploit the special structure of eigenvectors of (1.2). Clearly,
it is sufficient to compute the first n components of the eigenvectors and then construct
the remaining components. The following algorithm is a modification of the generalized
Davidson method that uses the first n components only.

Algorithm 2.2 (modified Davidson method)
1. Given vy € C™ with |jvy|| = 1.

2. Fork=1,2,... do

2.1. Let Vi = [vy,...,v] and Vo, = ‘gﬂ %)
2.2. Compute the projection matrices Asp = Vi AVay, and Bay = Vi, BVoy.
2.3. Compute the eigenpair (wg, 2i) of interest of Aspz = wBayz.

2.4. Compute the corresponding Ritz vector xp = Vorzy.

2.5. Compute the corresponding residual ry, = Axy, — wiBzxy,.

2.6. Solve the linear system (A — oxB)yr, = 7.

2.7. Orthonormalize the first n components of yj against vq, ..., v into Vgiq.

Alternatively, one could select the last » components of y; in Step 2.7. As we shall
see, there is no advantage in exact arithmetic. The basis vectors satisfy the projection
equation

AVoy, — BVsy Hay = Foy,

with projection matrix Hyp = B;klAzk and with residual term Fy satisfying V3, For, = 0.
The projection equation is frequently used in §4.
The quadratic residual iteration is now discussed.

Algorithm 2.3 (quadratic residual iteration)
1. Given vy € C™ with |jvy|| = 1.
2. Fork=1,2,... do
2.1. Let Vi = [v1,..., v
2.2. Compute the projection matrices K, = VKV, C, = ViFCVy, and
My = ViIMVy.
2.8. Compute the eigenpair (wy, z) of interest of Kiz + iwCiz — w*Myz = 0.
2.4. Compute the corresponding Ritz vector uy = Vizy.
2.5. Compute the corresponding residual v, = Kuy + wyCuy, — wi Muy,.
2.6. Solve the linear system (K + i0,C — o2 M)y;, = 7.
2.7. Orthonormalize y;, against vy, ...,V iNto Vgiq.

The algorithm is very similar to Algorithms 2.1 and 2.2, but instead of a regular Cayley
transform, a quadratic Cayley transform

yr = (K +i0,.C — oi M) YK + iw, C — wiM)uy (2.2)

is employed. The small eigenvalue problem at Step 2.3 is solved by a method for solving
quadratic eigenvalue problems, e.g. Newton’s method or by solving the corresponding
linearized problem.

In the following, we derive a relationship between Algorithms 2.2 and 2.3. The main
operations in these algorithms are the Cayley transform and the projection step.

4

Cayley transformation On each iteration, the subspace is expanded by the Cayley
transformation applied to a Ritz vector. Here we establish a relationship between the
Cayley transforms (2.1) and (2.2) applied to a vector with a special structure.

Lemma 2.1 Let A and B be defined by (1.3) and

<w> = (A—oB)‘l(A—wB)< ¢) . (2.3)

Y wu

Then
z=(K+i0C —o*M) YK + iwC — w*M)u and Y=oz . (2.4)

Proof Write (2.3) as

) 6) - [()
_ < (K+iwCO— w2M)u> .

The last row readily produces y = oz. Substituting this in the first row leads to the first
statement in (2.4). This proves the lemma. O

Projection The projection used in Algorithm 2.2 produces the same Ritz pairs as the
projection in Algorithm 2.3 if the V}'’s are the same.

Lemma 2.2 If the projection of (1.1) on Range(V') produces the Ritz pair (w,u) then

the projection of (1.2) on
VY = Range V.o
- lo v

L(2)

Proof The projection of (1.2) on Vis
Vo K 0 vV o
0V 0 M 0V
(VoY —zC M
N 0V 0 ’
This leads to V*KVz = w(—iV*CVz + V*MVt) and t = wz. This implies that V*(K +

iwC — w?M)Vz = 0, which is the projection of (1 1) on Range(V'). This completes the
proof. |

produces the Ritz pair

The theory can now be used for establishing the following relationship.

Theorem 2.3 Suppose that vy is the same for Algorithms 2.2 and 2.53. When k < n,
both algorithms produce the same Ritz pairs.

5

Proof The proof is given by induction. Suppose that we use an initial vector v; for
Algorithms 2.2 and 2.3. Suppose that the theorem is true at the end of iteration k£ — 1,
i.e. Vi is the same for both algorithms. Following Lemma 2.2, Algorithm 2.3 produces

(w,u) and Algorithm 2.2 (w < cfu)) Finally, following Lemma 2.1, z;, is the same

for both algorithms, so both produce the same v; ;. This implies that Vj.; is equal in
both algorithms, from which the proof follows. O

An important question is how much better is the subspace generated by Algorithm 2.2

Y

than Algorithm 2.1. Let (c:u) be a Ritz vector and let < - be the result of the

Cayley transformation. In Algorithm 2.2, we add both (g) and (2) to the subspace.

When o # 0, this is mathematically equivalent to adding (ayy) and (_Zy), since

both vector pairs have the same span. The first vector is the result of the Cayley transform

(fy) :(A—aB)‘l(A—wB)(;u) .

The first vector tries to improve the eigenvector components corresponding to the eigen-
values near ¢. When C' = 0, then the second vector is

(Y):(A+JB)_1(A~|—WB)< “)

—0oy —wu

i.e. tries to improve the eigenvectors corresponding to eigenvalues nearest —o. In general,
y
may help finding eigenvalues near —o.

however, does not have a particular meaning. When C' is small, this vector

Stopping criterion Usually, iterative eigenvalue solvers use a stopping criterion based
on the residual. If Az — ABz = r, then (A, z) is an exact eigenpair of the perturbed
problem (A + E)z = ABz with Ez = —r. So, ||7||/||z|| is a measure of the backward
error. A relationship between the residual and the forward error on the eigenvalues is
given by the Bauer-Fike theorem (Saad 1992, Theorem 3.6).

Theorem 2.4 (Bauer-Fike) Consider ann xn matriz G that has n independent eigen-
vectors. Let A\ be an eigenvalue of G and let (p,x) be an approzimate eigenpair with
residual r = Gz — pz and ||z|| # 0. Then

A = pl < &llrfl/|=]
where Kk is the condition number of the matrixz of eigenvectors.

The residual for the linearized problem with Ritz pair (2.5) becomes

wea() ()= (%)

6

with 7p = Ku + iwCu — w?* Mu. The first component of r;, is the quadratic residual, so
the two-norm of both residuals is equal. So, for quadratic problems, the residual can also
be regarded as a backward error. Note, however, that the Ritz vectors, u and ujjJu ,
have a different norm. In order to use the Bauer-Fike theorem, consider the residual

B! Az — wz, which becomes

~1
_1 u o\ U _ —iC M Ku + iwCu — w?*Mu
B A(wu) w(wu) N [M 0] < 0

0
- (M7 *Ku+ iwM~1Cu — w?u)
So, the error between the exact eigenvalue A and an approximation w can be bounded by
1 |Ku + iwCu — w? Mul|

[[ully/1 4 |w]?

where & is the condition number of the matrix of eigenvectors of B~'A, and the denom-
inator is the norm of the Ritz vector.

|w = Al < &[|M™

Accuracy of the Cayley transform A comment is in order on the solution of the

linear system
(K +i0C —0*M)y = (K + iwC — w*M)u=rp .

When we use a linear system solver, we have a residual s so that
(K +i0C — 0®M)y = (K +iwC —w’M)z — s .

When a direct method is used, ||s|| is usually of the order of machine precision times
||rp|| and the quadratic Cayley transform can be considered as exact. When an iterative
solver is used, ||s|| < 7||rp|| with 7 the relative residual tolerance. The smaller 7, the
more expensive the iterative solver. We therefore want to choose the tolerance not too
small. There is a relationship with the linear problem, since

K+i0C —oM y \ _ | K+iwC —wM u s
—oM M oy | —wM M wu)\ 0/
When iterative solvers are used for computing the linear Cayley transform in eigenvalue
solvers, we talk about the inexact Cayley transform (Meerbergen and Roose 1997, Meer-
bergen and Roose 1996, Lehoucq and Meerbergen 1998, Morgan and Meerbergen 1999).
Two elements play a role in the convergence of an inexact Cayley transform iteration
method. The first one is the convergence for an exact Cayley transformation, and the

second one is the accuracy of the linear system solver, 7. When 7 is not too large, the
convergence is as fast as for 7 = 0. We give an example in §8.3.

Cayley transform and Shift-and-invert A problem arises when ¢ = w in the Cayley
transformation. Since y = (A — wB) (A — wB)z = , no new direction is added to the
subspace. When the Cayley transform is computed exactly, e.g. with a direct linear
solver (in practice, we have a small backward error on the solution of the linear system),
then

y=(A—0B) (A—wB)z =z + (0 —w)(A—0B) 'Bz (2.6)

The matrix (A — cB) !B is called the shift-invert transformation (Saad 1992) or the
spectral transformation (Ericsson and Ruhe 1980). The use of the Cayley transform or
the spectral transformation in a projection method is equivalent since both add the same
direction orthogonal to = to the subspace. The advantage of the shift-invert transform
is that the transformation still works when ¢ = w. When an iterative solver is used it is
usually advantageous to use the Cayley transform instead of shift-invert (Lehoucq and
Meerbergen 1998, Morgan and Meerbergen 1999).

For the quadratic eigenvalue problem, the shift-invert transformation is defined as
follows. The Cayley transform can be rewritten as

y = (K+i0C —o*M) K + iwC — w*M)u
= u+ (w—0)(K+iocC —o*M)(iC — (w+o)M)u

The shift-invert transformation is defined as
(K +icC — M) (iC — (w + o) M) (2.7)

and can also be used when o = w.

3 The Jacobi-Davidson method

The Jacobi-Davidson method is an alternative to the shift-invert transformation when
an iterative linear solver is used and ¢ = w.
The combination of the Newton method applied to the set of nonlinear equations

Az —wBz = 0

z¥r =

in w and z and the generalized Davidson method (Algorithm 2.1) is called the Jacobi-
Davidson method (Sleijpen and van der Vorst 1996, Sleijpen et al. 1996a). It adds the
component of the solution of the Newton iteration to a subspace and computes Ritz pairs
by projection. The algorithm for the linear problem (1.2) is the same as Algorithm 2.1
except for the transformation in Step 2.6. Instead, a ‘correction equation’ is solved. Let
(w, z) be a Ritz pair, then the subspace is expanded with y satisfying

(1- Bm*)(A—wB) (f—m*)y:(A—wB)x. (3.1)

z*Bzx

The solution y is computed by an iterative method, with a suitable preconditioner if
available. For the quadratic problem (1.1), the Jacobi-Davidson method is Algorithm 2.3

where Step 2.6 is replaced by

(—iC + 2wM)uu*) 9 (uu*)
<I W (—iC + 2wM)u (K +iwC —w*M) (I v

= (K + iwC — w*M)u (3.2)

where (w, u) is a Ritz pair (Sleijpen et al. 19964, van Gijzen and Raeven 1995). This can
be derived from one Newton iteration on the equations (1.1) and u*u = 1.

The Jacobi-Davidson method is strongly related to the Davidson method. When we
require that y L x, we can rewrite (3.1) as

(A—wB)y—eBx = (A—wB)z (3.3)
or y = z+¢A—-wB) 'Bz,

where € is so that y 1 z (Sleijpen and van der Vorst 1996). Note the resemblance with
(2.6). When y is added to the subspace, the new direction vy is independent of ¢, since
x is in the subspace. We can write y also as

y=(A—wB) Y (A-(w—¢)B)z .

We immediately see the connection with the generalized Davidson method where the pole
(0) is now w and the zero (w) is now w+ €. It is shown in (Morgan and Meerbergen 1999)
that w + € is the harmonic Ritz value with target w. The value € converges to zero when
w converges to an eigenvalue (Sleijpen and van der Vorst 1996).

Similarly, with v L w, (3.2) can be rewritten as

(K +iwC — w*M)v — n(—iC + 2wM)u = (K + iwC — w*M)u (3.4)
v=u+nK +iwC — w*M) (-iC + 2wM)u ,
where 7 is so that v L u. Note the resemblence with (2.7) for 0 = w.
In §2, we showed the equivalence of the modified Davidson method in Algorithm 2.2
and quadratic residual iteration in Algorithm 2.3. The following lemma shows that, when

Step 2.6 is replaced by the solution of the Newton correction equations (3.1) and (3.2)
respectively, the subspace V' is expanded in the same way for both Algorithms 2.2 and 2.3.

Lemma 3.1 Let (w,u) be a Ritz pair for (1.1) and assume € # 0. Let z = (ajLu) and

lety = (h) be the solution of (3.1). Then (n/e€)yr is a solution of (3.2).

Ya

Proof Assume that y | z and rewrite (3.3) as
K+ iwC —wM Y1) —iC M U
—wM M Yo ‘L' M o wu

| K+iwC —wM U
- —wM M wu

or

(K +iwC)ys — wMys — e(—iC + wM)u = Ku+iwCu— w*Mu
—wMy; + My, —eMu = 0

from which y, = wy; + eu. This gives
(K +iwC — w’M)y; — e(—iC + 2wM)u = Ku + iwCu — w*Mu ,

which looks like (3.4). The only difference is that n # €. Since (/€)y; and v in (3.4)
have the same component orthogonal to u, (n/€)y; satisfies (3.2). This gives the proof of
the lemma. O

Finally it is important to note that the projections used in (3.1) and (3.2) can also be
used for ¢ # w. An example is given in (Meerbergen 1996, §3.3.6). However, when the
linear systems are solved exactly (e.g. using a direct linear solver), there is no advantage
in doing this. The search space V}, will be expanded with the same direction. This is
discussed in more detail in (Lehoucq and Meerbergen 1998, Eq. (6.3) and (6.4)) and
(Morgan and Meerbergen 1999). When an iterative solver is used, the projections may
help speed up the convergence of the iterative solvers, since the projection may remove
a small eigenvalue of the matrix in the linear system. An example is given in §9.

4 The Schur factorization

Methods for solving linear eigenvalue problems use the Schur factorization when more
than one eigenvalue needs to be computed. The reasons are that this factorization always
exists in contrast with the eigendecomposition, Schur bases are orthogonal, and can easily
be used for locking and restarting purposes as we will discuss in the coming sections. This
section is devoted to the Schur factorization for the linear problem and the quadratic
problem. We show some properties of the Schur factorization of the linear problem and
define one for the quadratic problem. We also show that the quadratic Schur form may
not exist. Therefore, we suggest the use of the Schur form of the linearized problem.

4.1 Linear problems

When B is invertible, the Schur form or Schur factorization of Az = ABz is defined by
B'AX =XS & AX = BXS (4.1)

where X is an m X m unitary matrix and S an n X n upper triangular matrix with the
eigenvalues on the main diagonal. The columns of X are the Schur vectors and S is
the Schur matrix. The Schur form (4.1) can be computed by the QR method applied to
B 1A or the QZ method applied to the pair (A, B) (Golub and Van Loan 1996). Using
the QR method assumes a nonsingular B and the formation of B-1A. One could avoid
this computation by using the generalized Schur form computed by the QZ method. This
complicates the notation, but the concept is very similar. In this paper, we use the Schur
form from (4.1) computed by the QR method.

10

A partial Schur form of order p with 1 < p < n is defined by
AX, = BX,S,

where X,, € C"*P is unitary and S, € CP*P is upper triangular with eigenvalues of
Az = ABz on the main diagonal.
When A and B are large and sparse, the QR method is not suitable for computing
a partial Schur form. One usually employs a projection method, i.e. approximate Schur
vectors U}, are computed in the subspace spanned by the columns of the unitary matrix
V) so that
AUy, — BUL Sy, = Fy, (4.2)

where U, = V;, X}, and F, is a residual term. Using the concept of orthogonal projection,
i.e. we force V;Fj = 0, we find that X} and S, satisfy the & x k& Schur problem

which can easily be solved by the QR method on Hy = B;'A;. We call (4.2) the

approximate partial Schur form.

We can describe an orthogonal projection method in terms of U}, instead of Vj, since
both form an orthonormal basis for the same subspace. The use of the Schur basis instead
of V;, makes it easier to lock and restart as we shall see later. After the kth iteration we
thus have (4.2) with U} F;, = 0. In the k + 1 st iteration, a new vector vy is added and
a new projection matrix Hy, is computed so that

A (Uy Uk) — B (U Vrt1) Hyp1 = Fra

with (U Vg1)*fk+1 = 0. Note that the basis (Uy Vg1) has the Schur vectors
in the front which is useful for locking as we shall discuss in §5. In practice, we never
compute U; at each iteration. Instead, we store V; and Xj;. Only X needs to be
computed, which is much cheaper.

4.2 Quadratic problems

The existence of a partial Schur form is guaranteed for the linearized problem (1.2) :

K 0 Uy \ | —iIC M Usy,
b) =L)G) = =
with Usy, Yo, € C™"*2% and Sy, a 2k x 2k upper triangular matrix. Note that Us;, does
not need to be of full rank. For example, when C = 0, and (w, u) is an eigenpair, (—w, u)

is also one. The corresponding U matrix is U = (ou [u) for some constants a and
(which has rank smaller than two.
We define the partial quadratic Schur form as

KWop, + iCWaTor, — MW Tsy = 0 (4.5)

where Wo;, € C"*?F is unitary and Thj, € C?*%* is upper triangular with the eigenvalues
on its main diagonal. The following lemma shows a condition for which a partial quadratic
Schur form exists.

11

Lemma 4.1 If Uy, from (4.4) has full rank, then a partial Schur form (4.5) of (1.1)

exrists.
Proof From (4.4), it follows that Ya; = UspSar and
KUy, + iCUgpSo, — MU, S5, =0 . (4.6)

Consider the QR factorization Way, Zo, = Usy,, with Wy, € C"*?* unitary and Zy, €
C26x2k ypper triangular. Define the upper triangular matrix Ty, = szSQkZicl. Then
(4.5) is satisfied. O

We propose computing (4.4) instead of (4.5), since this Schur form is guaranteed to
exist. Due to the relationship between the quadratic problem and its linearization and the
corresponding solvers, we can use quadratic residual iteration for building the subspace
and computing Ritz pairs.

On the kth iteration, we project the linearized problem (1.2) on the subspace with
basis

Vi O
Vi = [Lo] (47)
for computing the Schur basis, where the Schur vectors have the form
(Ux _ [V 0 X3

()5 2(E) e

With K, = V' KV;, Cp = V;*CV}, and My, = V,* MV, this projection gives

K X1\ _ [-G My] X

() (R)e e

from which X, = X;S55;. Hence, the approximate partial Schur form is
K Usp, | i M Usp, g, — Fyp,
M UskSak M UsSare) 725~ 0

KUy, +1CUy,Sop, — MUsz:?k = Fy . (4.10)

Note that (even with Fy, = 0) (4.10) is not a partial quadratic Schur factorization since
Usg is not unitary and is not guaranteed to have full rank.

As mentioned before, we can use the Schur basis U5}, instead of Vs Instead of adding
one vector at the k + 1 st iteration, we now add two vectors to the basis, so the basis at

iteration k + 1 becomes
<u2k <ka+1 0 >>
Vk+1

Using (4.8), we can rewrite this as

and

X; 00

Vk Vk+1 0 0 0 10
0 0 ‘/k Vk+1 Xg 0 0
0 01

12

It is thus sufficient to store Vj, vp11 and Xj, X5 to represent the basis.
For the computation of the Schur form of the linearized problem, we need Hy, =
B3} Agy,. This is cheaply computed and in a numerically stable way : let

—iC), M, l K

ng:[M, 0] and Ay, =

Then Hyp, = nglAgk can be computed as follows

|

Algorithm 4.1 (Computation of Hy, = By, Ayy)
0 1
MKy iMCy,
Cholesky factorization M}, = LjLj with Lj lower triangular.

Compute Hyp = where the action of M, ! is performed using the

The matrix M), = V;; MV}, is well conditioned since M is positive definite and has a small
condition number.

5 Locking

Locking of converged eigenvalues is widely used in linear eigenvalue calculations (Stewart
1976, Lehoucq and Sorensen 1996, Ruhe 1998, Fokkema et al. 1999). We first explain the
idea of locking for linear problems and then apply this to the quadratic problem (1.2).

5.1 Linear problems

The idea of locking is as follows. Suppose that, at the kth iteration, the Schur factoriza-
tion is reordered so that we have the decomposition

AUy Uy)-B(U, uk_q)[%q %};’:’]:(]—'q Fig) (5.1)

with ||F,|| smaller than the convergence tolerance. We consider the first ¢ Ritz values
and corresponding Schur vectors as converged. In fact, we assume that F, = 0. The
first g Schur vectors U, and the Schur matrix S, are fixed or ‘locked’ in the subsequent
iterations, i.e. when new directions are added to the subspace, and the Schur vectors
are recomputed, the locked vectors are not changed. On the k + 1 st iteration, after the
addition of vjy1, we have a new basis (Uy Vi—g+1) = (U, Ur—q Vri1) and, after
projection, we have the projection equation

A Y)= (0 vew) [05, G]2 (0 G 02

with (Uy Vigt1)* (Gy Gr_gt1) = 0, and with the projection matrix

Hq Hq k—q+1 -1
' = B A d 5.3
[Higi14 Higt1 OEAR (a)
Ar = (Uy Viegn) A(Uy Viegsr) (5.3b)
Bk = (Z/{q Vk_q+1)*B (Z/{q Vk—q-l-l) . (53C)

13

Since ||F,|| is small, we can replace the projection matrix by

Sq Hq,k—q+1
Hk—q+1

without making a big error. This is deflation or locking. The error made is given by the
following theorem.

Theorem 5.1 Let

U AU, — U BU,S, = 0 (5.4
AU, — BU,S, = F, (5.5)

~—

and let (Uy Vi g1) be unitary. Then, with the definition of (5.3),

Hq Hq,k*q+1 _ Sq Hq,k*q+1
Hy g114 Hi g1 0 Hpgn

Proof We drop the subscripts for 4, and V;_,41. From (5.3), it follows that

<IB Vi g1 Follr -
F

U*AU —U*BUH, —U*BVH, 411, = 0
V*AU — V*BUH, — V*BVH)_g11, = 0.

From (5.4) and (5.5), we have that

U*BU(S,— H,) —U*BVH; 11, = 0
V*BU(S,— H,) — V*BVH}, 41, = —V'F,.

This gives the linear system

(wvys(uv) (s ™)=().

which implies that

* —1]|2
18, = Hllp+ 1 H a2 < [(w0 v) B (0 v) [IR
This completes the proof. O
The projection equation can now be decomposed as
Sq Hyp—gt1
A (U; Vig) - B (Uy Vig+1) l 0 Hiyn (5.6)

= (fq fk—q+1) .

The new Schur vectors must have the form

I 0
(Uy Vi—gt1) l 0 Ziyer] .

14

By multiplying (5.6) on the right by (! 0

, it foll that with U,_ =
0 Zk—q+1) it follows that wi h—g+1

vk—q+lzk—q+1

A (U, Up_gs1) - B (Uy, Up—gt1) [S qu’“sq:ljl;qﬂ

= (Fo Fr—q+1Zk—qt1)

where Hy_g1125—g+1 = Zp—g+15k—g+1 1s the Schur form of Hj_,;. This allows us to
compute Z;_,.1 and Sp_g11.

5.2 Quadratic problems

Locking in quadratic residual iteration can be performed via the linearized problem. The
mathematics in the last section remains, but two vectors instead of only one are added
at each iteration. It is also important to note that it is not necessary to store Usy, but
only Vi, X and Ss;. Locking then corresponds to locking the first ¢ columns of X
and Syy.

6 Restarting

The number of basis vectors, k, grows as the algorithms proceed. In practice, this number
is limited by storage and computational costs for the Gram-Schmidt orthogonalization.
It is possible that convergence to the desired eigenpairs has not occurred when this limit
is reached. One way to solve this problem is to reduce the dimension of the subspace by
throwing away the uninteresting part. This is called purging.

6.1 Linear problems

We can keep the locked Schur vectors as well as the Schur vectors of interest in the
subspace and throw away those we are not interested in. This idea was used for restarting
the block Arnoldi method (Scott 1995), the implicitly restarted Arnoldi method (Lehoucq
and Sorensen 1996, Morgan 1996), the Jacobi-Davidson method (Fokkema et al. 1999),
and the rational Krylov method (Ruhe 1998, De Samblanx et al. 1997). The main idea
is to reorder the Schur form so that unwanted Schur vectors are moved towards the end
of the matrix of Schur vectors and to cut the Schur factorization after the pth column.
So,

AU, Uy)= B(U, uk_p)l%p %I;:p]:(fp Fip)

is reduced to
AU, — BU,S, = F,
by purging the last £ — p Schur vectors. This equation can be expanded by adding new
vectors.
In practice, the Schur vectors are computed from the projected Schur form (4.3) as
U, = Vi. X}, by decomposing X, = (Xy Xp—p) and using V, = V. X,, as the new basis.

15

6.2 Quadratic problems

We want to reduce the approximate Schur form
Usi, Usy, Foy,
A — B Sop =
(UskSay,) (UskSay,) 2" < 0)

U, U, b,
A D — B D So. = P
(UzpSap) (UzpSap) i (0)

by chopping off the last 2k — 2p columns of Uy, and S;. This is not possible since the
new basis must have the form

Yy, = W, 0 AVRVAY
L0 W, |\ Zay Zan)
We can, however, keep the first p columns of Us;, denoted by U, as follows. Consider the

QR factorization U, = W,R, with W, unitary and R, upper triangular. Let Z; = R,
and Zy = R,S, with S, the upper left p X p submatrix of Sy,. The remaining blocks Z;5

and Z5; must be chosen so that
Rp Zlg
< RS, Zx) (6.1)

is square and unitary. The last p columns do not represent Schur vectors but are necessary
to keep the basis in the form (4.7).
In practice, we proceed as follows.

to

Algorithm 6.1
1. Let the first p columns of Uy, = V3, X be U, and let U, = V3 X1;.
2. Compute the QR factorization Xi; = QR,.

3. Decompose
X1\ _(Xu Xu
Xo)\ Xar X
with X11, X21 € C*? and X1, Xop € CH¥2kp,
4- Apply Q
Q*Xl — Rp Q*X12
Q*XZ Rpsp Q*X22)
Remove the last 2k — 2p columns of X1 and Xs.

5. Orthogonalize this matriz to get (6.1).

Note that the first p columns of), are the same as those of U/y;,. When the first ¢
columns of Uy, are locked Schur vectors and ¢ < p, then

S, Hyop
vy [e | = (5)

where the lower left block in the Schur matrix is forced to be zero. (See Theorem 5.1.)

16

7 Building the Schur factorization

We have discussed how to compute an approximate partial Schur form by projection
on a subspace, how to use the partial Schur form for restarting purposes and for locking
eigenvectors (or Schur vectors). We still have to discuss which vectors will be added to the
subspace. Instead of building a basis of eigenvectors in the subspace Range(V},), we can
build a partial Schur form. A Schur form always exists, while the eigendecomposition
does not. Moreover, Schur vectors are orthogonal which is in favour of the numerical
stability of the method. In this section, we discuss how we can expand a partial Schur
form.

7.1 Linear problems

The JDQR and JDQZ methods (Fokkema et al. 1999) for solving linear eigenvalue prob-
lems compute the partial Schur form Al = BU;S; column by column. Decompose the
partial Schur form into

A(thy o) =B(Us m)[sﬂ]

w

In order to simplify the notation, we use S to denote Sj 1 and U for U,_1. Define Q
so that Q*BU = 1. As a result, I — BUQ* is a projector that maps BU to zero. Also
note that BUQ*(A — wB)xz = BUs. We will discuss later how to choose Q. Since

(I —UU*)z = z, we can consider (w,z) as an eigenpair of
(I — BUQ*)A(I —UU")z = w(I — BUQ")B(I — UU")z . (7.1)

Note the resemblance with the Jacobi-Davidson correction equation in (3.1). Suppose U
and S are already computed and we wish to compute z, s and w. Suppose an approxi-
mation for (w,) is available that satisfies the approximate Schur factorization

a(ue)-s(u)| 2]=(0r),
with @*r = 0. We want to compute an improvement by using the Cayley transform on
(7.1). The Cayley transform y is solved from the system
(I —-BUQ*)(A—0oB)(I —UU")y = (I — BUQ*)(A —wB)(I —UU)z .
Since U*z = 0 and assuming that U*y = 0 we get
(I - BUQ*)(A—0oB)y= (I —BUQ")r , (7.2)

SO

(A—oB)y =7+ BUz (7.3)

where z = Q*(A — 0B)y is chosen so that U*y = 0. If A — 0B is invertible the solution
can be written as

y=(A—0oB)'BUz+(A—aB)'r.

17

Since (A —oB)™'BU =U(S — o)™},
y=UZ+(A—0oB) 'r (7.4)

where Z is such that y L Y. The second term in the right-hand side can be considered
as the Cayley transform for the Schur vector z.

7.2 Quadratic problems

In quadratic residual iteration, we want to expand the subspace by the first n components
of y without explicitly solving a linear system with A —ocB. With U denoting Uj,_1, recall

_ Uk (U _ U [m
from U}, = (U.S,) that U = (US) and z = (Us + wu) Decompose r = (o),
then from r = (A — wB)z — BUs, we derive

rr = Ku+iwCu—w?Mu+iCUs —wMUs — MUSs

7‘9:0.

Note that 7y is the last column of the approximate partial Schur factorization

K(U u)+iC(U u)ls S]

(v)T] =(0n).

With y = < -), (7.3) becomes

Y2

(K +i0C)yy —oMy, = r4 —iCUz+ MUS=z (7.5a)
—oMy; + My, = MUz. (7.5b)

Decompose Q = (gi), then Q*r =0 = Qjr; and
o Q1 ’ (K 4+1i0C)y1 — cMys
-\ Q2 —oMy + My '
By multiplying (7.5b) by ¢ and adding to (7.5a), we get

(K +i0C —*M)y, = 71+ (—iCU+ MU(S + ol))z (7.6)
—oMy; + My, = MUz

z—< Q1)*<(K—|—iaC—azM)y1)
\ Q2— 0@y —oMyi + My, '

The dependence on y, disappears when Q2 = 0@;. The equation (7.4) becomes

with similarly

vy = UzZ+ (K +ioC —o*M) ry
yo = USZ+o(K +ioC — M)y

18

and shows that y; and y, point in the same direction orthogonal to U. In a projection
method, it is only this direction that matters, so it is sufficient to add y; to the subspace.
By rearranging (7.6) we obtain

(I — (—iCU + MU(S +a))Q1) (K +icC — a* M)y, =,

where we still have the condition that U/*y = 0. Since Z is determined by this condi-
tion, but since U Z does not contribute to the expansion of the subspace, we can as well
use the orthogonality condition U*y; = 0, which produces another z, but produces the
same component of y; orthogonal to U. This also produces y, with the same direction
orthogonal to U.

In practice we solve the equation

(I — PQ*)(K +i0C — o*M)(I — ZZ*)yr =11, (7.7)

by an iterative method with P = iCU — MU(S + ¢l) and ZT = U the QR factorization
of U. We still have to make a choice of (). When U and S are computed by orthogonal
projection within quadratic residual iteration or Jacobi-Davidson, the obvious choice is
Q = ZR, since Z*r; = 0 where R is chosen so that Q*P = I. The problem is that PQ*
is an oblique projector and is not guaranteed to exist. A more robust choice is () = PR,
but then we first must orthogonalize r; against the columns of). In our numerical
experiments we used Q) = ZR.

8 Algorithm and numerical examples

The first two examples are easily generated and are included to allow the reader to repro-
duce the results. The last example is the numerical simulation of poro-elastic material
and is less easily reproduced. This is added to illustrate the method on a more realistic
problem.

The algorithm that we use for the computation of Ritz pairs is the following one.
It uses locking of converged Schur vectors and purging for restarting purposes. On each
iteration, the Schur basis of the projected linearized problem is computed. The basis vec-
tors are obtained by Gram-Schmidt orthogonalization with reorthogonalization (Daniel,
Gragg, Kaufman and Stewart 1976). The major work lies in the solution of the linear
system in Step 2.10 and the Gram-Schmidt orthogonalization in Step 2.11. When the
number of vectors becomes large, the operations on the small scale linearized problem
may also become significant. We allow o to be chosen differently at each iteration. When
a direct linear solver is user, however, we prefer to keep ¢ unchanged for a number of
iterations in order to avoid a factorization on each iteration.

Algorithm 8.1 In this algorithm, k is the actual dimension of the subspace, g is the
number of locked Schur vectors, satisfying ||KU,e; + iCU,S,e; — MU,S;e || < TOL for

7 =1,...,q, where

U,
< Ug’)“ = 1, p is the dimension after a restart, and m is the
g

maximum subspace dimension.
1. Given v; € C" with [|v1|| = 1.

19

Let k=1 and ¢ = 0.
. Until ¢ > number of wanted eigenvalues :

2.1.

2.2.
2.3.

2.4.

2.5.

2.6.

2.7.

2.8.
2.9.

Compute the kth row and column of Kj, = V'KV}, C, = Vi7CV}, and
My, = Vi MVj.

Compute Ho by Algorithm 4.1.

Map Hyj, in the Schur basis :

X, 00 X; 00
0 10 0 10
Ho = X, 0 0 Ho X, 0 0
0 0 1 0 0 1

Compute the Schur form Hyy, < §1) = < §1) Sor, where the first ¢
2 2

Schur vectors are locked.
Order the Schur form so that the main diagonal elements of Sy nearest

o are in the upper left position.
For j =g+ 1tok:

2.6.1 Compute the jth column of R, = KV, X 4+ iCV, X155, —
MV, X15%.
2.6.3. If ||Rie;|| < TOL then ¢ =g+ 1.

Else Go to 2.7.
End for

If £ > m then

2.7.2. Compute the QR factorization X; = Qy Ry.

2.7.3. Compute the basis vectors V, = V;.Q),.

2.7.4. Update the Schur vectors : X; = R, and X, = Q;‘,Xg.

2.7.5. Add columns to X; and X5 so that they have appropriate size
and form an orthonormal basis (see Algorithm 6.1).

2.7.6. Update : K, = Q, K@), Cp = Q,CrQp, My = Q,MpQ,.

Increase the subspace dimension k& = k + 1.

Select a pole o.

2.10. Solve the linear system (K + i0C — 02 M)w = Rye 1.

2.11. Orthogonalize w against vy, ..., v, by Gram-Schmidt into v 1.

For our examples, K, C' and M are real symmetric matrices, so, in Step 2.1 it is
sufficient to compute the kth column. The subspace is expanded by a quadratic Cayley
transform applied to a Schur vector. When an iterative solver is used, we can expand
the subspace by solving the correction equation (3.2) instead of the Cayley linear system
in Step 2.10, and we also take into account the locked Schur vectors by employing (7.7)
where Z also contains the last (unlocked) Schur vector and @) is the corresponding left
hand-side basis. (See §9 and §10 for examples.)

20

8.1 A ‘linear’ problem

For the first example, M is the identity matrix, C' is zero, and K is the diagonal matrix
with 12,22 ..., n? on its main diagonal for n = 1000. The 10 eigenvalues nearest zero are
+j for j = 1,...,5 and the corresponding eigenvectors are e; for the eigenvalue £; where
e; is the jth identity vector. Note that the Schur form, defined by (4.5) does not exist,
but it does exist for the linearized problem. Incidentally, the linearized problem has 2n
eigenvectors. We can solve this problem by the spectral transformation Lanczos method
(Ericsson and Ruhe 1980), since C' = 0, but we want to illustrate that the algorithm is
able to compute linearly dependent eigenvectors of the quadratic eigenvalue problem.

We computed the 10 eigenvalues nearest zero by the use of Algorithm 8.1 with a fixed
pole 0 = 0 and m = 30 iteration vectors. The initial vector v; was 1/+/n everywhere. All
the eigenvalues were computed within 20 iterations to a tolerance (TOL) of 10~7. When
only m = 17 vectors are used and we compress the dimension to p = 15, then before
the first restart, 8 eigenvalues have converged. For the convergence of the remaining
two eigenvalues, two restarts are required. In total, this corresponds to 20 iterations,
which is exactly the same number as for the run with m = 30 vectors. This shows that
the purging of the Ritz values far away from the pole ¢ does not necessarily slow down
the convergence. A similar result was shown for the implicitly restarted Arnoldi method
(Morgan 1996) and for the implicitly filtered rational Krylov method (De Samblanx et
al. 1997).

8.2 A simple quadratic problem

We use the same K and M as for the previous example, but now C' = af with a = 0.1.
We again computed the 10 eigenvalues nearest zero. We used the same parameters as
for the previous example, i.e. m = 17, p = 15, 0 = 0 and a tolerance of 10~". The
eigenvalues of this example and the previous one are related as follows.

Lemma 8.1 Let u # 0 and Ku + iwCu — w>Mu = 0 then there is an eigenvalue \ of
Kv = A2Mw, so that
[Cull

A — o] < |wl[|M 2 :
w*Mu

Proof Let L be so that M = L*L. Define v = Lu so that

Ku—w*Mu = —iwCu
L*KL % —w?v = —iwL™*Cu.
The proof follows from the Bauer-Fike Theorem (Theorem 2.4) with x = 1, since
L™*KL~!is Hermitian. Note that ||[L~*|| = ||[M~!||}/2. O
Since ||C|| = 0.1 the eigenvalues lie close to those of the previous example. Therefore, the

convergence is very similar. It took 20 iterations to compute the ten Ritz values. The
first ten Ritz values are given by Table 8.1.

21

Table 8.1: Ritz values for the example in §8.2

real part imaginary part residual norm
0.99874921 0.0500000 6.941078
—0.99874921 0.0500000 6.941078
1.9993749 0.0500000 9.5810°8
—1.9993749 0.0500000 9.5710°8
—2.9995833 0.0500000 2.8810°8
2.9995833 0.0500000 2.8810°8
3.9996875 0.0500000 9.75107°
—3.9996875 0.0500000 9.87107°
—4.9997500 0.0500000 2.841078
4.9997500 0.0500000 2.851078

8.3 Acoustic simulation of poro-elastic material

This example is related to the acoustic simulation of a 0.4m x 0.4m x 0.06m sample made
of a poro-elastic material. The material is modelled using a two-phase Biot model ac-
counting for kinematic and mechanical interactions between the (elastic) skeleton and the
pore (acoustic) fluid (Sandhu and Pister 1970, Simon, Wu, Zienkiewicz and Paul 1986).
The following material properties have been selected : for the skeleton, the Young mod-
ulus is 140000N/m?2, the Poisson ratio 0.35(—), and the density 1300kg/m3. The pore
fluid has density 1.225kg/m3, the sound speed is 340m /s, the porosity 0.95(—), the flow
resistivity is 5000Ns/m?*, the Biot factor is 1(—), the fluid bulk modulus 141600N /m2,
and the tortuosity is 1.2(—). The discrete finite-element model relies on a u-w formula-
tion (Simon et al. 1986) where skeleton displacement components (u) and relative fluid
displacement components (weighted by the local porosity) (w) are selected as nodal vari-
ables. The finite-element mesh has 324 nodes and 192 HEXAS8 elements. The total
number of degrees of freedom is 1944.

We used Algorithm 8.1 with m = 30, p = 15 and the number of wanted Ritz values

10. The first pole was 300. A new pole o was selected after every 10 iterations, as

o = min {1 = Re((w; + wj+1)/2), lw; — pl 2 10},
where ¢ is the number of converged Ritz values so that the pole is never close to a Ritz
value. This prevents the matrix factorization of almost singular matrices. The tolerance
for the eigenvalue problem was TOL = 10 °. (This tolerance is relatively large, since the
initial residual norm [|rp|| is of the order 1.)

The results are obtained by a direct and an iterative method for solving the linear
system in Step 2.12 of Algorithm 8.1. The direct solver is the package MEA47 from the
Harwell Subroutine Library (HSL 1996). The iterative solver is GMRES (Saad and
Schultz 1986). The linear systems are solved with a relative residual tolerance 7 = 102
and 7= 107% ie. (K +1i0C —o?M)w =rp+ s and ||s|| < 7||rp|| where s is the residual
of the linear system and rp = Rje,y1 is the quadratic residual of the Ritz pair. The real
part K — 0>M was used as preconditioner, where the HSL package MA47 was used for

22

Table 8.2: Number of converged Ritz pairs for some iteration numbers when a direct
and iterative linear solver are used. 7 is the relative residual tolerance of the iterative
method.

iteration number of converged Ritz values

direct iterative iterative
=102 r=10"*%
10 1 1 1
20 3 3 4
30 6 5 6
40 8 7 8
46 10 10
50 9
59 10
57 .
o . .
@®
. 2
@& .
O . * @ "

0 200 400 600 800

Figure 8.1: The eigenvalues of the acoustic simulation of a poro-elastic material between
0 and 800 Hz are shown as dots. The Ritz values computed by Algorithm 8.1 are denoted
as circles. Only 8 circles are shown, since there are two pairs of double eigenvalues. Notice
the different scales for real and imaginary axes.

the solution of the corresponding linear system. The preconditioner is perhaps not very
advisable for practical computations, but this example shows that an iterative method
can be used. Recall from §2 that the quadratic Cayley transform need not be computed
very accurately for fast convergence.

The eigenvalues and computed Ritz values are displayed in Figure 8.1. The iterative
solver for 7 = 1072 required between 21 and 27 iterations to attain the required residual
tolerance. From the numerical results in Table 8.2, it can be seen that about the same
number of Ritz values have converged after 40 iterations, independent of the choice of
linear solver. From the 40th iteration on, there is a significantly different convergence
behaviour. Quadratic residual iteration requires 46 iterations when a direct linear solver
is used and 59 iterations when the iterative solver with 7 = 1072 is used. Note that the
relative residual tolerance 7 = 1072 for GMRES is quite large. Accurate solves are not
necessary. With 7 = 107%, the convergence speed is the same as when a direct linear
system solver is used, but the cost per iteration is higher than when 7 = 1072

23

9 Jacobi-Davidson for the quadratic eigenvalue prob-
lem

In this section, we compare the Jacobi-Davidson method with quadratic residual iteration.
The only difference with Algorithm 8.1 is in Step 2.12, where we solve the correction
equation (3.2) instead of computing a Cayley transformation. Since we compute more
than one eigenpair, we also add the locked Schur vectors to this basis, i.e. we solve a
problem of the form (7.7), where Z spans the ¢ + 1 first columns of V. X; and @ the first
q + 1 columns of ¢C'(V;X1) — M(V;X1)(Sar + o).

We now compare the following methods for the application from §8.3. The purpose
is to compute the ten eigenvalues nearest 300.

QRI-D Quadratic residual iteration with a direct linear solver. The solver used is ME47
from the HSL library. The pole changes every 10 iterations. The first pole is 300.

QRI-G Quadratic residual iteration with GMRES(30) as linear solver, preconditioned
by the direct solver MA47 from the HSL library for K — 0>M. The pole o changes
every 10 iterations. The first pole is 300.

QRI-GP Quadratic residual iteration with GMRES(30) applied to (7.7), with Z and Q
defined as above, preconditioned by MA47. The pole o changes every 10 iterations.
The first pole is 300.

QJD Jacobi-Davidson where the linear systems are solved by GMRES(30) precondi-
tioned by MA47. The first ten iterations, the pole was kept constant to 300. From
the eleventh iteration on, the pole 0 = w and changes each iteration. The precon-
ditioner changes every ten iterations, so we factorize only a few times.

Table 9.1 contains results for the methods listed above for different values of the
tolerance of the linear solver. The bold values give the minimum number of linear solves
for each method. Clearly, QRI-D is far much faster than any other method, but this is
because the linear systems with K + icC' — 0?M are solved exactly. Note, however, that
a direct solver for complex linear systems is used while the other methods use a direct
solver for real matrices. Let us concentrate on the results obtained with GMRES. The
preconditioner is the real part of K 4 icC — 02> M, which is in this case K — c2M. Note
that the factorization cost is about the same for all methods since factorization is only
performed every ten outer iterations. For QRI-G and QRI-GP, the linear systems need not
be solved very accurately to obtain fast convergence. It is remarkable that the number
of outer iterations is much larger for the optimal cases. For 7 = 10°® and 7 = 108
the linear systems are solved more accurately than necessary, since the number of outer
iterations does not change significantly. Using a larger 7 gives roughly the same number
of outer iterations, but less global work. Also note that QRI-GP is more efficient than
QRI-G when 7 is smaller. We also tried QRI-G with 0 = w as for QJD, but then GMRES
stagnates rather quickly. Without the projections in the correction equation (3.2), the
matrix of the linear system has an eigenvalue near zero that hinders the convergence.
The projections filter away this eigenvalue. For small 7, QJD is definitely faster than
any other algorithm. For large 7, QJD stagnates after the locking of the first Ritz value.

24

Table 9.1: The number of linear solves for the different algorithms.

Method Linear solver Direct linear FEigensolver

tolerance T solves iterations
QRI-D 45 46
QRI-G 102 1412 58
QRI-G 1073 1545 48
QRI-G 1074 1976 45
QRI-G 10-6 2998 47
QRI-G 10-8 4130 47
QRI-GP 1072 1432 57
QRI-GP 1073 1499 47
QRI-GP 104 1739 46
QRI-GP 1076 2318 46
QRI-GP 108 3503 45
QJD 102 — —
QJD 1073 — —
QJD 1074 1469 33
QJD 10-6 2208 27
QJD 10-8 2918 25

The first and second eigenvalue form a double one at 303.624 4 0.589: and it seems to be
difficult to find the second of the double eigenvalue when 7 is large. A more important
danger arises in the following situation. When we use 7 = 10~% and change the pole
after the 6th iteration instead of after the 10th, the Ritz value is w ~ 303.624 + 0.589:
and QJD tries to improve the corresponding Ritz vector by solving (7.7). The problem
is that there is an eigenvalue at 303.624 4 0.589: with multiplicity two, while only one
eigenvector is filtered away by the projector I — Z Z*. This means that the linear system
is still nearly singular and GMRES stagnates.

10 Shift-invert Arnoldi for the linearized problem

The most widely used method in applications is probably the shift-invert Arnoldi method
applied to the linearized problem (1.2). This method is criticized because it doubles the
size of the problem, leading to an increase in storage cost for the iteration vectors V; and
in the overall computational cost. The shift-invert transformation, y = (A — 0 B)~'Bz,
however, can be efficiently computed by the solution of the block structured linear system

(A—0oB)y = Bz

K+1i1w0C —oM Y1 _ —1Czy + May
—oM M Y2 - Mz '

25

By multiplying the last row by ¢ and adding to the first row, we get

K+icC—0d*M 0 y1\ [—iCzy+ M(z2+ o)
—oM M ya | Mz, ’

from which

y1 = (K+i0C —o*>M) Y (—iCxy + M(zy + 011))
Yo = T1+0Y1 .

This requires the matrix factorization of K +i0C —02M as in the solution of the quadratic
problem.

The Arnoldi method does not produce Ritz vectors that satisfy (2.5) exactly, so the
relationship between Algorithms 2.2 and 2.3 is lost. On the other hand, there is a link with
Algorithm 2.1, since in exact arithmetic and with the exact linear solves, the Davidson
method produces the same subspace as the shift-invert Arnoldi method when o is fixed.
The major difference between Algorithms 2.1 and Algorithms 2.3 lies in the construction
of the subspaces. In the Algorithms 2.2 and 2.3, the subspace is expanded so that the
two components from the Cayley transform applied to a Ritz vector are added. Both
algorithms are designed to improve one Ritz vector at a time. In the Arnoldi method,
all Ritz vectors converge together.

This is illustrated by the following example. Consider the example from §8.3. We
performed 30 steps of Arnoldi’s method applied to (A — o B) !B starting with a random
initial vector. The left-hand picture in Figure 10.1 shows the residual norms p; = ||Az; —
BX;S;|| of the six Ritz values nearest 0 = 300 as a function of the iteration number.
The Ritz values nearest o converge faster, where X; = [zy,...,x;] denote the first j
Schur vectors and S; the corresponding Schur matrix. Most of the Ritz values have
decreasing residuals from the first to the last iteration. The central picture shows the
results of 30 iterations of quadratic residual iteration. We used Algorithm 8.1 without
a restart. We consider a Ritz value as converged when the residual norm p; = ||rp|| =
|(KU; 4 iCU;S; — MU,S?)e;|| is smaller than the convergence tolerance, 10~7. The
horizontal dashed line indicates the tolerance TOL used by Algorithm 8.1 in Step 2.3.6.
Two different kinds of convergence behaviour can be observed. The residual norm of the
third Ritz value (dotted line) makes a significant decrease during the convergence of the
first and the second. This looks like the convergence behaviour of the Arnoldi method.
The other Ritz values show a completely different behaviour. Each time a Ritz value has
converged it is locked and another Ritz value is targeted and starts converging. This is
very clear from the dashed convergence curves. The residuals decrease at the beginning,
but most of them stagnate until a new eigenpair is targeted. Peaks in the curves indicate
a Ritz value that starts converging to another eigenvalue.

The tolerance TOL plays an important role in the overall convergence speed. In the
example mentioned above, Arnoldi requires 21 iterations for finding six eigenvalues with
the required accuracy when TOL= 107 and quadratic residual iteration 28 iterations.
When TOL= 10~* instead, Arnoldi’s method requires only 18 iterations, but quadratic
residual no more than 14. This illustrates that we cannot make a decision on which
method is the best.

26

105 shift-invert Arnoldi QRI-D QJD

10°_

1079

1071
1 10 20 10 10
iteration 1teration iteration

Figure 10.1: Convergence behaviour of shift-invert Arnoldi, quadratic residual iteration
(QRI-D) and Jacobi-Davidson (QJD) for the problem from §8.3. The lines show the
evolution of p; = ||[(KU; + iCU;S; — MU,S7)e;]| of the six Ritz values nearest o.

The right-hand picture shows the results for the Jacobi-Davidson method precondi-
tioned with K 4 i0C — 02> M with ¢ = 300 and linear solver tolerance 7 = 107°. The
first three iterations used a fixed pole 0 = 300, and then ¢ = w, while the preconditioner
is computed once for ¢ = 300. The picture shows quadratic convergence for the Ritz
values. The algorithm converges in 13 iterations, but requires 118 complex linear solves,
while less than 30 for the other two algorithms. Stagnation is not as pronounced as for
the QRI-D method.

The quadratic residual iteration method has some advantages. First, the modified
Davidson framework (Algorithm 2.2) uses a larger subspace than the Davidson approach
(Algorithm 2.1) constructed by adding two vectors per iteration step to the subspace.
This may lead to some minor gain in convergence speed. The potential gain is in the
storage of the iteration vectors. Often, however, one stores the matrices KV}, MV} and
C'V}, in order to calculate the residuals more efficiently or the projection matrices Kj, M;,
and C} and then the advantage is lost. In our implementation, these additional vectors
are not stored.

11 Conclusions

In this paper, we have shown there is a close connection between solution methods for
the quadratic eigenvalue problem and its linearized form. Solution methods that solve
the quadratic problem without linearization appear to be equivalent to methods that
solve the linearized problem by projection on a larger subspace. The Jacobi-Davidson
correction equation for the linearized problem is connected to the correction equation of
the quadratic problem.

If direct linear system solvers are used for the Cayley transform, the gain of the
residual iteration method is small compared to the shift-invert Arnoldi method. The
Gram-Schmidt orthogonalization cost is significantly lower due to the smaller dimension.
When the vectors KV}, C'V}, and MV}, are not stored, about half of the memory is needed,
but otherwise the memory consumption is higher than for the shift-invert Arnoldi method.
The convergence of the Arnoldi method is not focused on a single eigenvalue, but all
eigenvalues start converging from in the beginning. The quadratic method targets one

27

eigenvalue, which may lead to a fast local convergence, but a slow global convergence.
Therefore, we suggest the use of the shift-invert Arnoldi method when direct linear system
solvers are used. However, as the last example illustrates, when the convergence tolerance
is large, quadratic residual iteration is faster. If iterative linear system solvers are used,
we suggest the use of quadratic residual iteration or the Jacobi-Davidson method for the
quadratic problem in conjunction with a deflation and restarting scheme based on the
linearized case. It is important to note that none of the discussed methods can be flagged
as optimal : there are always situations for which the one method outperforms the other.

Finally, we want to stress that a practical code should use a block version, i.e. a
number of Cayley transforms is applied to more than one Ritz vector at a time. This
allows us to compute multiple or clustered eigenvalues more efficiently and may improve
the reliability of the method since more than one eigenvalue is targeted simultaneously.
When Jacobi-Davidson is used some care with the choice of poles ¢ is in order when
multiple eigenvalues are expected, since this may lead to the solution of nearly singular
linear systems.

12 Acknowledgements

The author thanks Jennifer Scott, Nick Gould and lain Duff from the Rutherford Apple-
ton Laboratory for helpful comments that improved the presentation of the paper. We
are also grateful Jean-Pierre Coyette from Free Field Technologies for the matrices of
the acoustic simulation of a poro-elastic material. The author also thanks the referee for
suggestions that improved the comparisons between the various methods.

References

Crouzeix, M., Philippe, B. and Sadkane, M. (1994), ‘The Davidson method’, SIAM J.
Sci. Comput. 15, 62-76.

Daniel, J., Gragg, W., Kaufman, L. and Stewart, G. (1976), ‘Reorthogonalization and
stable algorithms for updating the Gram-Schmidt QR factorization’, Math. Comp.
30, 772-795.

De Samblanx, G., Meerbergen, K. and Bultheel, A. (1997), ‘The implicit application of
a rational filter in the RKS method’, BIT 37, 925-947.

Ericsson, T. and Ruhe, A. (1980), ‘The spectral transformation Lanczos method for the
numerical solution of large sparse generalized symmetric eigenvalue problems’, Math.
Comp. 35, 1251-1268.

Fokkema, D., Sleijpen, G. and van der Vorst, H. (1999), ‘Jacobi-Davidson style QR
and Q7 algorithms for the reduction of matrix pencils’, SIAM J. Sci. Comput.
20(1), pp.94-125.

Golub, G. and Van Loan, C. (1996), Matriz computations, 3rd edn, The Johns Hopkins
University Press.

28

Grimes, R., Lewis, J. and Simon, H. (1994), ‘A shifted block Lanczos algorithm for
solving sparse symmetric generalized eigenproblems’, SIAM J. Matriz Anal. Applic.
15, 228-272.

HSL (1996), ‘Harwell Subroutine Library. A Catalogue of Subroutines (Release 12)’.
Information: Nick Brealey, AEA Technology, 477 Harwell, Didcot, Oxon, OX11
ORA, UK, E-mail: hsl@aeat.co.uk.

Huitfeldt, J. and Ruhe, A. (1990), ‘A new algorithm for numerical path following ap-
plied to an example from hydrodynamical flow’, SIAM J. Sci. Statist. Comput.
11(6), 1181-1192.

Lehoucq, R. and Meerbergen, K. (1998), ‘Using generalized Cayley transformations
within an inexact rational Krylov sequence method’, STAM J. Matriz Anal. Ap-
plic. 20(1), 131-148.

Lehoucq, R. and Sorensen, D. (1996), ‘Deflation techniques within an implicitly restarted
Arnoldi iteration’, STAM J. Matriz Anal. Applic. 17, 789-821.

Meerbergen, K. (1996), Robust methods for the calculation of rightmost eigenval-
ues of large eigenvalue problems, PhD thesis, Department of Computer Science,
K.U.Leuven, Leuven, Belgium.

Meerbergen, K. and Roose, D. (1996), ‘Matrix transformations for computing rightmost
eigenvalues of real nonsymmetric matrices’, IMA J. Numer. Anal. 16, 297-346.

Meerbergen, K. and Roose, D. (1997), ‘The restarted Arnoldi method applied to iterative
linear system solvers for the computation of rightmost eigenvalues’, SIAM J. Matrix
Anal. Applic. 18, 1-20.

Morgan, R. (1992), ‘Generalisations of Davidson’s method for computing eigenvalues of
large nonsymmetric matrices’, J. Comput. Phys. 101, 287-291.

Morgan, R. (1996), ‘On restarting the Arnoldi method for large nonsymmetric eigenvalue
problems’, Math. Comp. 65, 1213-1230.

Morgan, R. and Meerbergen, K. (1999), §11.2. Inexact methods, in Z. Bai, J. Demmel,
J. Dongarra, A. Ruhe and H. van der Vorst, eds, ‘Templates for the solution of
algebraic eigenvalue problems: a practical guide’, SIAM, Philadelphia, USA. In
press.

Natarajan, R. (1992), ‘An Arnoldi-based iterative scheme for nonsymmetric matrix pen-
cils arising in finite element stability problems’, J. Comput. Phys. 100, 128-142.

Neumaier, A. (1998), ‘Residual inverse iteration for the nonlinear eigenvalue problem’,
SIAM J. Numer. Anal. 22, 914-923.

Ruhe, A. (1998), ‘Rational Krylov: a practical algorithm for large sparse nonsymmetric
matrix pencils’, STAM J. Sci. Comput. 19(5), 1535-1551.

29

Saad, Y. (1992), Numerical methods for large eigenvalue problems, Algorithms and Archi-
tectures for Advanced Scientific Computing, Manchester University Press, Manch-

ester, UK.

Saad, Y. and Schultz, M. (1986), ‘GMRES : a generalized minimal residual algorithm for
solving nonsymmetric linear systems’, SIAM J. Sci. Statist. Comput. 7, 856-869.

Sandhu, R. and Pister, K. (1970), ‘A variational principle for linear coupled field problems
in continuum mechanics’, Int. J. Eng. Sci. 8, pp. 989-999.

Scott, J. (1995), ‘An Arnoldi code for computing selected eigenvalues of sparse unsym-
metric matrices’, ACM Trans. Math. Softw. 21, 432-475.

Simon, B., Wu, J., Zienkiewicz, O. and Paul, D. (1986), ‘Evaluation of u-w and u-p
finite element methods for the dynamic response of saturated porous media using
one-dimensional models’, Int. J. Numer. Anal. Methods Geomech. 10, pp. 461-482.

Sleijpen, G. and van der Vorst, H. (1996), ‘A Jacobi-Davidson iteration method for linear
eigenvalue problems’, SIAM J. Matriz Anal. Applic. 17, 401-425.

Sleijpen, G., Booten, G., Fokkema, D. and van der Vorst, H. (19964), ‘Jacobi Davidson
type methods for generalized eigenproblems and polynomial eigenproblems’, BIT
36, 595-633.

Sleijpen, G., van der Vorst, H. and van Gijzen, M. (1996b), ‘Quadratic eigenproblems are
no problem’, STAM News 29(7), pp.8-9.

Sorensen, D. (1992), ‘Implicit application of polynomial filters in a k-step Arnoldi
method’, SIAM J. Matriz Anal. Applic. 13, 357-385.

Stewart, G. (1976), ‘Simultaneous iteration for computing invariant subspaces of non-
Hermitian matrices’, Numer. Math. 25, 123-136.

Tisseur, F. (1998), Backward error and condition of polynomial eigenvalue problems, NA
Report 332, Revised, 1999, Department of Mathematics, University of Manchester,
M13 9PL, UK. To appear in Linear Algebra and its Applications.

van Gijzen, M. and Raeven, F. (1995), The parallel computation of the smallest eigenpair
of an acoustic problem with damping, Preprint 924, Utrecht University, Department
of Mathematics, P.O.Box 80.010, 3508 TA Utrecht, The Netherlands.

30

