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The Lanczos method with semi-inner
product
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ABSTRACT

The spectral transformation Lanczos method is very popular for solving large scale Her-
mitian generalized eigenvalue problems. The method uses a special inner product so that
the symmetric Lanczos method can be used. Sometimes, a semi-inner product must be
used. This may lead to instabilities and break-down. In this paper, we suggest a cure for
breakdown by use of an implicit restart in the Lanczos method.
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1 Introduction

In structural analysis (Grimes, Lewis and Simon 1986, Grimes, Lewis and Simon 1994)
and the determination of the stability of the Stokes problem (Malkus 1981), we want to
compute a number of selected eigenvalues A and corresponding eigenvectors = of

Az = ABz (1)

with A and B Hermitian and B positive semi-definite or ill-conditioned. Very often, B
has an explicit zero block
M 0

with M Hermitian positive-definite. A popular method for solving this problem is the
spectral transformation Lanczos method (Ericsson and Ruhe 1980, Ericsson 1986, Nour-
Omid, Parlett, Ericsson and Jensen 1987). This is the Lanczos method (Lanczos 1950)
applied to the spectral transformation (A — uB)~'B. Since this transformation is self-
adjoint with respect to the B inner-product, the Lanczos method for Hermitian matrices
can be used when the B inner product is used.

The B inner-product is a semi inner-product but it is mathematically correct to use
it within the Lanczos method (Nour-Omid et al. 1987). The major problem is that this
inner-product does not see components in the nullspace of B. These components may
grow in an uncontrolled way. When B has an explicit zero block, these components do
not disturb the Lanczos method. However, when B does not have an explicit zero block,
large components in the nullspace of B may dominate the Lanczos vectors, which may
have few significant digits. It is even possible that inner products that should be positive
become negative, which leads to breakdown. This paper deals with curing breakdown.
The idea is to use an implicit restart (Sorensen 1992) to limit the growth of components
in the nullspace of B. It was first proposed in (Meerbergen and Spence 1997) for the
determination of the stability of steady-states of the (Navier) Stokes equations, and used
in (Lehoucq and Scott 1997) for the solution of the Navier-Stokes problem where B has
an explicit zero block, and later studied for the rational Krylov method (De Samblanx,
Meerbergen and Bultheel 1997, Meerbergen and Scott 2000). In structural applications,
B may not have an explicit zero block, but a large number of very small eigenvalues. This
paper analyses the application of an implicit restart when B does not have an explicit
zero block.

The paper is organized as follows. In §2, we introduce the eigenvalue problem we
want to solve and give the properties that are of most importance to this paper. In §3,
we explain the Lanczos method and give an example that leads to breakdown. We also
introduce implicit restarting and suggest a cure for breakdown. In §4, we analyse the
Lanczos method, the growth of the two-norm of the Lanczos vectors, and the reliability of
an implicit restart in this context. Section 5 presents a practical algorithm and illustrates
it using a small example. Final conclusions are given in §6. Throughout the paper, we
use R(A) and NV (A) to denote the range and nullspace of A respectively. By u, we denote
the precision for finite precision arithmetic.



2 Analysis of the eigenvalue problem

The Lanczos method is not able to solve (1) directly, but instead solves the problem
Sz = Oz with
S=(A—-uB)'B. (3)

We assume that A—uB is invertible. In order to understand the behaviour of the Lanczos
method, we must understand the spectral transformation. The matrix S has the same
eigenvectors as (1) and the eigenvalues are given by # = (A — u)~! which explains the
term spectral transformation.

When B is singular, (1) has an infinite eigenvalue with the nullspace of B as eigenspace.
The associated eigenvalues of S are zero. When the zero eigenvalues of S are non-
defective, the total space C" is the direct sum of A(S) and R(S). The range is an
invariant subspace of S and SC" = R(S). The Lanczos method, described in the fol-
lowing section, is designed for computing the nonzero eigenvalues and the corresponding
eigenvectors of S, i.e. eigenvectors in R(S). The method is not able to compute the
eigenvectors in the nullspace of S. As is shown in Ericsson (1986) and Malkus (1981),
the zero eigenvalue may be defective. i.e. may have geometric multiplicity p and algebraic
multiplicity 2p where p is the nullity of B. We give a small example as illustration.

Example 2.1 Let

1 0 100
A=|0 -1 1| and B=|0 1 0],
1 1 0 000

then the spectral transformation

ﬁ_l —ﬁ_l 0
S=A"'B=| -p* pt o0
B-1/p p7 0

has eigenvalues #; = 23~! and an eigenvalue 0 with algebraic multiplicity two and ge-
ometric multiplicity one. The eigenvalues of (1) are /2 and co and the corresponding
eigenvectors are

1 0
I = —1 5 I = 0
1—67! 1
1
The vector z3 = | 1 | is a generalized eigenvector or principal vector, since S%z3 = 0,
0

but Sz3 # 0. We now decompose C" into A'(S?) and R(S?). In this example,

) 2,6*22 —2372 0
S* = —2B3~ 262 0
=267 —f1+267% 0



which has nullspace N(S?) = span(zy,z3) and range R(S?) = span(z;). Note that
R(S?) ¥ N(B), so vectors in R(S?) may still have components in A'(B). For z; in this
example, this component is 1 — ;! and is large when 6; is small.

The nullspace of B is span(z;) and is contained by AN (S”). In general, we use the
spaces N'(S”) and R(S”) where v is the index of the zero eigenvalue of S. Note that in
all situations N'(B) C N (S").

3 The spectral transformation Lanczos method

The spectral transformation Lanczos method is the Lanczos method applied to the spec-
tral transformation S = (A — uB)~! B where p is called the pole. We denote by z*By the
B inner-product of z and y and by ||z||p the B norm of z, defined by vz* Bz. The method
can also be used when B is singular (Ericsson and Ruhe 1980, Ericsson 1986, Nour-Omid
et al. 1987).

Algorithm 3.1 (Lanczos method)
1. Given an initial vector vy with ||vi||p = 1.

Let By = 0 and vy = 0.

2. For j=1tok do
2.1. Form w; = Sv,.
2.2. Form wj = wj — v;_1f; 1.
2.3. Form aj = viw}.
2.4. Form wj = w} — v;a;.
2.5. Let B; = ||w}||p and normalize vj11 = w/p;.

The Lanczos method builds a B orthogonal basis {v1,...,vky1} of the Krylov space
spanned by vy, Svy, S%v1, ..., S*v;. A practical implementation requires reorthogonaliza-
tion in order to keep the Lanczos vectors B orthogonal (Grimes et al. 1994). Eliminating
of wj, w; and w from Steps 2.1-2.5, we obtain the relationship

Svj = vj-1fj-1 + vjay + vj1f; -

Collecting the equations for 7 =1,...,k leads to

SVk = Vkﬂzk
with T’ the k£ + 1 X k matrix
[ ]
51 &%) 52
zk _ ‘. ‘. ’

ap—1 Pr-1
Br-1 o

I Br |

and Vi’ BV = I. The matrix T is called the tridiagonal Lanczos matrix and the
columns of Vj,1 are the Lanczos vectors.
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Figure 1: Growth of the two-norm of the Lanczos vectors.

The B orthogonal projection of the eigenvalue problem Sz = 6z on the range of V}
gives the solution (6, z) with © = Vjz and Tjz = 0z, where T}, is the k X k upper submatrix
of T').. The residual is

r = Sz—0z
= VipTyz — i1z
= Uk+1ﬁk6’;:2

and ||7||p = Bkle;z| is cheaply computed.
Consider the following example.

Example 3.1 Let A and B be generated by the following Matlab code :

rand(’seed’,0)

A = diag(-[1:2001);

B = diag([ones(150,1) ;zeros(50,1)]);
Z = orth(randn(200));

A = Z7%A%Z;

B = 7’ #BxZ;

For this example, R(S) L N(S). Also, ||z|lz2 = ||z||p = 1 implies that z € R(S) and
||z]|2 # 0, but ||z||p = 0 implies z € N'(B). We ran 50 iterations of the Lanczos method
with the initial vector v; = [1,...,1]/3 where 3 is so that ||v1||z = 1 and pole u = 0.
We used reorthogonalization on each iteration to ensure B orthogonality (Daniel, Gragg,
Kaufman and Stewart 1976). Figure 1 shows ||v;||2 as a function of the iteration number
j. At iteration j = 39, the inner product ||w;||3 = w} Bw; becomes negative, so [3; is
imaginary. At this point, we must stop the calculations, since an imaginary B norm
does not make any sense. The Lanczos vectors have large components in A/(S), so the
B inner-product may be small but should be positive in theory. Vectors in N'(S) are B
orthogonal to themselves, so cannot serve in a B orthogonal basis. The two-norms of v,
grow but the B norms remain equal to one, so v; has fewer significant digits in R(S).

In order to get rid of large components in the nullspace of B, we suggest regularly per-
forming an implicit restart (Sorensen 1992, Meerbergen and Spence 1997). The following
theorem defines the implicit restart and shows important properties.

4
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Figure 2: Growth of the two-norm of the Lanczos vectors The dashed line shows the
two-norm after implicit restart.

Theorem 3.1 Let Vi1 and T, be computed by the Lanczos method. Consider the QR
factorization T}, = Q, Ry with Q, € CHI¥k ynitary and Ry, € C** upper triangular.
Let Q, | be the k x k — 1 upper left part of Q, and define

Vit = Vit1Q, and T | = RQ, | -
Then V' and T} | have the following properties :
1. VP'BV =1
2. If fi # 0, R(V;H) = R(SWR)
3. T}, is Hermitian tridiagonal and for V;' = [V;' | v/],
S th1 = Vk+IkJ-r—1
with v{ = Sv; /||Svi|| -

The proof is a compilation of results from (Sorensen 1992) and is given in (Meerbergen
and Spence 1997). A similar proof is given in (Lehoucq 1996). The implicit restart is
defined as the transition of the pair V;.y1, T, to the pair V7, T{ ;. The theorem tells us
that an implicit restart applies S implicitly on the Krylov subspace. This operation also
reduces the dimension of the subspace by one.

We performed an implicit restart in the example when ||v;||2 > 10%, i.e. after iteration
22. The Lanczos vectors V5, have two-norms equal to one, see Figure 2. The new Lanczos
vectors added to the subspace retain small two-norm, until the norm starts growing again
from the 45th iteration.

4 Analysis

Roughly speaking, the reason why the implicit restart filters away N'(B) is that the
nullspace of S is filtered away. The components of v; in A/(B) are responsible for large
||vj||2 and potential breakdown, so their removal reduces ||v;||> and makes the method
more reliable with respect to breakdown.



4.1 A bound for the two-norm of the Lanczos vectors
First we prove that limiting v; to the R(B) limits the two-norm of v;.
Lemma 4.1 When ||v,||p =1 then
(Amax(B) ™2 < w2
When in addition v; € R(B), then
(Amax(B)) 2 < [Jvjll2 < Aminaz0(B)) /2 .

Proof Decompose B = L*L. Since ||vj||zg = 1, we have that |[Lv,|[[; = 1. The
first statement and the first inequality of the second statement follow from ||Lv;||; <
IIL||2]|vj]l2. If, in addition, B is nomsingular, |[v;|lz = |[|L7 Lv;|la < ||L7Y|e]|Lvjll2 =
||L=|]2 which proves ||v;]|2 < (Amin(B))"Y/2. When v; € R(B), then ||v;||p = 1Vl Bz »
where Bz (p) is the restriction of B onto R(B). This proves the lemma. a

The idea is to reduce the two-norm of the Lanczos vectors by the application of
implicit restarts, i.e. by removing the nullspace of S” from the basis vectors. The
following theorem shows an upper bound to ||v||; when z is an eigenvector of S lying in
R(S¥). In general, vectors in R(S¥) still have components in the nullspace of B so the
above bound is not valid.

Theorem 4.2 Let Sz =0z, 0 # 0 and ||z||p = 1, then
22 < 10711512 (Auminr0(B)) 2 -

Proof Decompose z = z1 + x2 with 2; € R(B) and z; L R(B). Then we have
llz|lz = [|z1]ls = 1 and [|z1]]2 < (Aminazo(B)) 2. Since Szy = 0, we have z = 6718z =
6=1Szy, so ||z||2 = |67||Sz1]|2, which proves the theorem. O

An illustration was given in Example 2.1. When [ increases, 6; becomes smaller and the
component of x; in the nullspace of B becomes larger. This theorem shows that if the
Krylov subspace has good approximations to eigenvectors corresponding to eigenvalues
of S with small absolute value, reducing ||v;||2 by removing the nullspace of S may be
insufficient to reduce components in the nullspace of B. We could remove all small
eigenvalues of S from the Krylov subspace. This can be achieved by applying S” to the
Lanczos basis with v large enough. This filtering can be done by an implicit restart and
was illustrated successfully in Example 3.1.

In some practical situations, B does not have an explicit zero block, but has a number
of eigenvalues with very small absolute values. In this situation, we should again try to
remove the components corresponding to the eigenvalues of S with small modulus.

When B is positive semi-definite and the initial vector vy lies in R, all Lanczos vectors
lie in R, since R is an invariant subspace of S. Breakdown cannot occur. In finite
precision arithmetic, components from A(S) may be introduced in the Lanczos vectors
so that ||v;||» may become large and breakdown is possible. It is good practice to start
the Lanczos method with v; = S¥ - v with v randomly chosen so that v; € R(S”). This
reduces the chance that v; is quickly corrupted by components in A'(S). When B has
eigenvalues with very small absolute values, the conclusions are similar. In this case
N(S) is the invariant subspace corresponding to these eigenvalues.

6



4.2 Analysis of the Lanczos recurrence relation

The Lanczos method orthogonalizes Sv; against vq,...,v;. It subtracts a linear combi-
nation of vy,...,v; from Sv;. In finite precision arithmetic, the error on the recurrence
relation is thus

Svj — Vipt; = fj
with
| fill2 < 1IVigal - [Elllz < Vjealll2]l25]l2 -

On the global level, we can conclude that
SV — VL), = Fy,

and
1 Fell2 < [Vasa] - [Zilll2 < [1Vatalll2l| T2 -

In practice we want that for a Ritz pair (6, z) with = Vj,z, the residual
r=8SViz—0V,z = vk+1,8kefz + Fiz ~ vk+15]‘;e£z .

Often, we want ||7||p < +/u||T}||2, so we also want the term ||F,z||p much smaller than
|IT4]|2- This is satisfied if [|[Vis1l|lz < 1/4/[|Bll2- When |||Vit1]||2 is large, the major
problem is that the product Vj,,T; has modest norm, but the terms in the summation
may have large modulus. This is a typical situation where rounding errors may be large
due to cancellation. In Example 3.1, we have that ||Fy|l2 ~ 91077 and || Fg|]2 ~ 4107°.
This matches the observations that ||[Tss|l2 ~ 1 and ||vq|]2 =~ 1.12 and |Jvge||o ~ 9.9107.
In the last Lanczos iteration, we lose 7 digits through cancellation.

4.3 Analysis for the implicit restart

The idea is to apply S” to the Lanczos vectors so that they are free of components in
N(B). The expensive way is to explicitly multiply V;,1 v times by S. A cheaper but
equivalent way is an implicit restart.

Assume that

SVi—= VL, = F (4a)

Vk*+1BVk+1 == .[ + Fk+1 (4b)

where the terms Fj, and I'y4; are the errors from computations in finite precision. We
assume that || Fglle < |||Vis1]ll2]|Txll2 and || Trsq]|2 < 1.

An implicit restart produces @, and Ry, so that T, = Q, Ry + A with [|A[ly < |||l
From (4a), we then derive that

SVi = Vi@ Ry, — Vi1 A = Fy,

and
Vit1Q, = (SVi) Ry — (Vi A + F) R



The left-hand side forms the new basis vectors after the implicit restart. They clearly
span the columns of SV}, when the second term in the right-hand side is small. This is
the case when ||R,. |2 is not very large. In (Meerbergen and Spence 1997), we find that

~1
1R |2 > (min(|0] + p°)*/?)

where @ is a Ritz value and p = (i|el 2| the corresponding residual norm. So, when Tj,
has a small eigenvalue with a small corresponding residual norm the implicit filtering
may lose accuracy. Since, usually, ||A||2 is of the order of || T ||ou and ||Fg||2 of the order
of ||[Vis1|l|l2|Tx||2u, we may conclude that, roughly speaking,

Vi1 @, — SVAR; |2 ~ ul||[Vayalllara (L)

where k3 denotes the two-norm condition number. For Example 3.1, x2(T;,) ~ 148, which
is small. So, the filtering is almost perfect.

Since Ty, = Vi BSV},, Vi¥ 1 BVj41 = I and B filters away the zero eigenvalues of S it is
very unlikely that T} has an eigenvalue very close to zero. There may be a problem when
0 is a defective eigenvalue of S. In this case, T} may have a zero eigenvalue (Ericsson
1986, Meerbergen and Spence 1997). One way to prevent this is regularly performing
implicit restarts.

5 Numerical example

Algorithm A practical algorithm using the ideas discussed in this paper is the follow-
ing.

Algorithm 5.1

1. Choose o, an initial vector v and the power v.

2. Prefilter v = S” - v and normalize vy < v1/||v1]|B.

3. Perform k steps of the Lanczos method. If ||vj|la > u=Y?||v1||2, go to Step 4. If
U;ij <0, letg=7—1, go to Step 4.

Perform v implicit restarts.

Compute Ritz values and Ritz vectors.

Check convergence.

NS S

Continue the Lanczos method from iteration j + 1.

Since v; Bv; < 0 leads to breakdown, we hope that it is curable by applying an implicit
restart on the first j — 1 Lanczos iterations. When |[|v;||2 becomes too large, we also
perform v implicit restarts in order to reduce this norm. Since an implicit restart for
J < 2 does not make any sense, a breakdown for j = 2 is incurable. This algorithm is
implemented in the code EA16 (Meerbergen and Scott 2000, HSL 2000).

An example Consider the 200 x 200 matrices A = LT D4L and B = LT DL where

dlag(l “e 150) 1150 50 1150 0
D= e : d Dp= ,
A Is 150 050 an B 0 Ms



My a diagonal matrix with uniformly distributed elements between —107! and 10*°, and
L a lower triangular matrix with ones on the main diagonal and with the off-diagonal
elements uniformly distributed between —0.1 and 0.1. The condition number of B is of
the order of 2.510%. If My, was the zero matrix, the index of the zero eigenvalue of S
would be v = 2. We used EA16 to compute the leftmost eigenvalue using shift-invert
mode (MODE=4), blocksize BLK=1, pole SIGMA=0, and using NV=31 Lanczos vectors. The
experiments were performed on a SUN SPARC Ultra 1 with the EPC Fortran 90 compiler.
The code automatically performs an implicit restart when the inner product becomes
negative or the ratio of ||v1||2/||vj|2 is smaller than \/u as suggested in Algorithm 5.1.

The following table shows at which iteration breakdown (v Bv; < 0) occurs for dif-
ferent values of v.

v 0 1 2 3 4 5 6
g 19 18 29 28 28 36 40

The iteration number j at which breakdown occurs increases as v increases, since the
initial vector has smaller components in the eigenvectors corresponding to the small
eigenvalues of S.

When we use Algorithm 5.1, an implicit restart is performed when the inner-product
is negative or ||vj||2 is too large, which improves the reliability of EA16. For all values
of v > 0 listed in the table above, the code completes the computations and returns the
wanted eigenvalues with the desired accuracy. For v = 0, the algorithm breaks down.

We have computed the eigenvalues nearest zero using the code ARPACK (Lehoucq,
Sorensen and Yang 1998) in shift-invert mode with pole o = 0. The eigenvalues returned
are —1.365, 1.34, and 1.476, which are completely wrong. ARPACK is using a pre-filtered
initial vector v; = Sv but not an implicit restart (as in the spirit of this paper). However,
when My, has positive diagonal elements, ARPACK returns the right answers 51, 52 and
53.

An more difficult example We now solve the same problem with the same parameters
for EA16 but with
_ ]_05 dlag(l, ceey 150) ]150750

Dy
Is 150 050

which only differs in the factor 10°. The \’s are large, so the #’s are small. Following
Theorem 4.2, this may lead to larger components in A/(B). For this example the Lanczos
method breaks down after the first or second iteration for v = 0,...,20. We did not try
higher values of of v.

6 Conclusions

In this paper, we suggested the use of implicit restarts to avoid breakdown of the Lanczos
method with semi inner-product. We conclude that this method works when the eigen-
vectors of S corresponding to the nonzero eigenvalues of S have small components in the
nullspace of B.

The numerical results are promising, but the solution of eigenvalue problems with ill-
conditioned mass matrix remains a difficult problem. Usually problems of this form arise



from DAE’s (differential algebraic equations) which may be transformed into eigenvalue
problems that have more favourable structure for the Lanczos method, e.g. with a well
conditioned positive definite mass matrix.
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