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Abstract

During the last decade there has been a rise in interest in numerical methods for
computing eigenvalues (and eigenvectors) of large sparse nonsymmetric matrices.
The research effort is now being accompanied by the development of high-quality
mathematical software. One of the methods which has received attention is that of
subspace iteration and several software packages implementing subspace iteration
algorithms have become available. In this report, as part of an extensive study to
evaluate state-of-the-art software for the sparse nonsymmetric eigenproblem, we re-
view subspace iteration software. We look at the key features of the software, the
main differences between the packages, and their ease of use. Then, using a wide
range of test matrices arising from practical problems, we compare the performance
of the codes in terms of storage requirements, execution times, accuracy, and re-
liability, and consider their suitability for solving large-scale industrial problems.
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1 INTRODUCTION 1

1 Introduction
Consider the standard eigenvalue problem
Az = )z (1.1)

where A is a large sparse real nonsymmetric matrix. During the last decade there
has been a considerable increase in interest in computing selected eigenvalues and
eigenvectors of (1.1). One of the methods of solution that has received attention is
the method of subspace (or simultaneous) iteration (see, for example, Saad, 1984,
Duff and Scott, 1993, and Bai and Stewart, 1992). Subspace iteration was origi-
nally introduced by Bauer (1957), who called the method Treppeniteration (stair-
case iteration). It is a straightforward method for computing the eigenvalues of
largest modulus of a real nonsymmetric matrix and is a generalisation of the power
method. Several packages which employ subspace iteration techniques have been
developed. In additional to numerous research codes and implementations of sub-
space iteration embedded within engineering packages, there are currently (to the
authors’ knowledge) three subspace iteration packages which are available either in
the public domain or under licence. These are

e LOPSI (Stewart and Jennings, 1981a, 19810)
e the Harwell Subroutine Library routine EB12 (Duff and Scott, 1993)
e SRRIT (Stewart, 1978 and Bai and Stewart, 1992)

Details of the availability of the codes is given in Section 7.

The reports and papers which accompany each of these codes provide some nu-
merical results illustrating their use but a only small number of test problems is
generally used and almost no results comparing the performance of the different
codes have been reported. In this study we review, compare, and evaluate the sub-
space iteration software by considering the algorithms implemented by the software,
examining the main differences between the codes, looking at the user interfaces
and documentation. By running the codes on a set of test problems, we compare
their performance and assess their reliability and robustness. We also illustrate the
limitations of current subspace iteration codes and highlight problems for which
more sophisticated software and software employing other numerical techniques are
needed. An evaluation of Arnoldi-based software is the subject of a separate re-
port (Lehoucq and Scott, 1996a) and subspace iteration software is compared with
Arnoldi-based software in Lehoucq and Scott (19965).

This report is organised as follows. We briefly review subspace iteration in
Section 2 then in Section 3 we look at the subspace iteration software which is
currently available. We outline the algorithms used and discuss the main features of
each of the codes. We highlight the main differences between the codes in Section 4.
In Section 5 we discuss the design of our experiments to compare the performance of
the software, we explain how we verify the computed results, and present numerical
results for our test matrices. In Section 6 we summarise our findings.

We end this section by introducing the notation which is used throughout this
report.
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e n denotes the order of A.

e The eigenvalues of A are denoted by A, Ay, ..., A,, with associated eigenvec-
tors zy,Zy,...,Z,. The eigenvalues are assumed to be ordered according to
which are being sought. For example, if the eigenvalues of largest absolute
value are required, the eigenvalues are ordered in decreasing order of their
absolute values. Subscripts are dropped when doing so causes no confusion.

e r denotes the number of sought-after eigenvalues of A.

e m denotes the dimension of the subspace used in the subspace iteration algo-
rithm.

e X,, denotes the matrix representation of this subspace.

o X(¥) denotes the matrix representation of this subspace on the kth iteration

(k > 0).The superscript is dropped when doing so causes no confusion.

e (s,60) denotes an eigenpair of the projection matrix of order m of A onto the
column space of X,,.

e The approximate eigenpairs for A are called Ritz pairs if Ay ~ y#, where
y = X,.:S.

o T, denotes the quasi-triangular Schur matrix associated with the projection

of A.
e XTI AX,, ~ T,, is an approximate real partial Schur form if X X,, ~ I,,,.

e u denotes the relative machine precision (that is, the smallest machine number
such that 1 +u > 1).

o ¢ denotes the user-prescribed convergence tolerance.

In this report we are concerned with the case r < m < n.

2 Subspace iteration

We briefly recall the main ideas behind the subspace iteration algorithm for com-
puting the dominant eigenvalues of A. Starting with an initial n x m matrix X©)
with independent columns w1, q,..., 2, (called the ‘trial’ vectors), the subspace
iteration method computes the matrix X*) = A*X©)  If on each iteration k the
columns of X*) are normalised so that the largest component of each column is
unity, in general, as k increases, the columns will each converge to the eigenvector
corresponding to the dominant eigenvalue of A. The idea of Bauer (1957) was to
reestablish the linear independence of the columns by using (for example) the QR
algorithm. Thus, in its simplest form the subspace iteration algorithm is as follows:

1. Start: Choose an initial set of normalised vectors X,,, = [z, 22, ..., Tp]-
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2. Iteration: Until convergence do
(a) Compute X,, — AX,,.
(b) Form the QR factorisation X,, = QR and set X,,, « Q.

The orthogonalisation of X,,, maintains linear independence among its columns.
Overheads can be reduced by only orthogonalising X,, when there is reason to
believe that some columns have become linearly dependent. Thus, in practice, AX,,
is replaced by A'X,, for some [ > 1 (I = I(k), where k is the iteration number).

Assuming the eigenvalues are ordered so that

Al > Ao >0 > [l

it can be shown that if |\, | > |[Am41], then under mild restrictions on the initial
set of vectors, the columns of X,, converge to a basis for the invariant subspace
of A corresponding to the m dominant eigenvalues. Convergence is linear, with a
convergence ratio for the ¢th eigenvalue of max(|A;/A;_1|, |Aix1/Ai]), which can be
intolerably slow. Efficiency can be enhanced by combining subspace iteration with
a projection method. Stewart (1978) uses an orthogonal projection method while
Stewart and Jennings (19815) use an oblique projection method. For these methods
convergence is still linear but, if |A;_1| > |A;| > |Xiz1], the convergence ratio for the
ith column of X,, is |A,41/A;|. Thus the first columns of X,, generally converge
more rapidly than the later ones and, even if only one eigenvalue is wanted, m should
be chosen larger than 1 to attain reasonable convergence.

Further details and discussion of subspace iteration may be found, for example,
in Stewart (19765), Watkins and Elsner (1991), and in the recent books by Chatelin
(1993) and Saad (1992).

3 Subspace iteration software

In this section we briefly review the software packages LOPSI, SRRIT, and EB12,
which implement subspace iteration methods for nonsymmetric matrices.

3.1 LOPSI

The code LOPSI of Stewart and Jennings (1981a), which is based on work done in
1970’s by Clint and Jennings (1971) and Jennings and Stewart (1975), has been
available for more than a decade. It uses subspace iteration combined with a ‘lop-
sided” oblique projection to compute the r eigenvalues of largest modulus and the
corresponding eigenvectors of A . The algorithm used by LOPSI, which is described
in Stewart and Jennings (19815), has the following general structure.

1. Start: Choose the subspace dimension m and an n X m matrix X,, with
orthonormal columns. Choose 4, > 1 and set | = maz(l0,/2,1).

2. Iteration: Compute V = A'X,,.

3. Projection:

(a) Compute G = XZX,,, H=XLV.
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(b) Solve GB = H by forming the Cholesky factorisation of G.

(c) Find the eigenvalues and eigenvectors of B using the QR algorithm. Sort
the eigenvalues and corresponding eigenvectors so that the eigenvalues are in
descending order of their absolute values.

(d) Set X,, « VZ, where Z is the matrix whose columns are the ordered
eigenvectors of B. Normalise the columns of X,,.

4. Convergence test: If the first r columns of X,,, satisfy the convergence criteria
then stop, else determine [ for the next iteration and go to 2.

The convergence criteria are discussed in Section 4.5.

After the first iteration, the number [ of premultiplications between projections
is chosen so that the dominant eigenvector components do not “swamp” the predic-
tions for the lower eigenvectors and also to avoid unnecessary work being performed
by carrying the iteration beyond the stage at which convergence is achieved. A
restriction

1<I<

maxy

where [,,,4. 1s a user-defined parameter, is also imposed. The value of [,,,, recom-
mended by Stewart and Jennings is 10.

The user is allowed to supply an initial estimate for one or more of the columns of
X, If the user supplies less than m columns, the remaining columns are generated
using a random number generator.

To increase efficiency when more than one eigenvalue is required, LOPSI incor-
porates a deflation strategy whereby a column of X,, is “locked” as soon as it has
converged. This means that no further computations are carried out with this vec-
tor. Imitially, the convergence test is applied to column 1 of X,, and, only if it
satisfies the convergence criteria, is column 2 tested.

Matrix products AX,, are performed within LOPSI by an internal subroutine
PREMULT. The matrix A must be passed to LOPSI using the coordinate storage
scheme, that is, the matrix must be held as an unordered set of triples (a;;, 1, j) using
a real array and two integer arrays, of length equal to the number of (nonzero) entries
in A. To ensure finite termination, the user is required to specify the maximum
number of products which may be performed.

3.2 SRRIT

The recent code SRRIT of Bai and Stewart (1992) is a revised and updated version
of a code by Stewart (1978) of the same name. It uses subspace iteration with an
occasional application of a ‘Schur-Rayleigh-Ritz step’ (from which the code derives
its name).The algorithm used by SRRIT can be summarised as follows.

1. Start: Choose the subspace dimension m and an n X m matrix X,, with
orthonormal columns.

2. SRR step:
Compute B = X1 AX,,.
Reduce B to the real Schur form T,, = ZTBZ, where each diagonal block
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(T,.):i is either of order 1 or is a 2 X 2 matrix having complex conjugate
eigenvalues, with the eigenvalues in descending order of their absolute values
along the diagonal blocks. Set X,,, «— X, Z.

3. Convergence test: If the first r columns of X,, satisfy the convergence criteria
then accept the first r eigenvalues of T,, as the sought-after eigenvalues of A
and stop else determine the interval [ between orthogonalisations and the
number k of orthogonalisations before the next SRR step.

4. Iteration:
for:=1,...,k do

Compute X,,, — A'X,,
Orthonormalise the columns of X,,

end do
Go to 2.

As in the code LOPSI, efficiency is increased by locking columns as soon as they
have converged. SRRIT also gives the user the option of supplying the initial basis
X,.. If X, is supplied, the user sets a parameter to indicate whether or not the
columns of X,,, are orthonormal. This offers a potential saving in work. If X, is
not supplied, the initial basis is generated using a random number generator.

SRRIT requires the user to supply a subroutine ATQ to perform matrix products
AX,,. The subroutine ATQ does not include the matrix A in its argument list so A
need not be held explicitly - only the action of A on vectors is needed.

The columns of X,,, are orthonormalised using the modified Gram-Schmidt al-
gorithm with reorthogonalisation. An internal parameter controls the maximum
number of reorthogonalisations that may be performed; this is set to 5. At each
iteration the code computes the interval [ between orthogonalisations and the num-
ber k of orthogonalisations before the next SRR step; no upper limits are imposed
on these quantities. [ is chosen so that the columns of A'X,, remain linearly inde-
pendent and % is chosen to try and ensure an SRR step is only performed when it
is anticipated that one or more of the columns of X,,, will have converged.

3.3 EB12

Of the packages considered in this study, the Harwell Subroutine Library code EB12
(Duff and Scott, 1993) is the most general since it is designed to calculate either
the right-most or the left-most eigenvalues of A, or the eigenvalues which are of
largest modulus. In many practical applications the eigenvalues with the largest real
parts (that is, the right-most eigenvalues) are the ones of importance. For example,
bifurcation problems commonly involve computing the eigenvalue A of largest real
part of a stability matrix and then detecting when Re(A) crosses the imaginary axis
as a parameter to the stability matrix varies (see, for example, the problem studied
by Garratt, Moore and Spence, 1991).

EB12 computes the right-most (or left-most) eigenvalues by replacing the power
A'! in the subspace iteration algorithm by a Chebychev polynomial p;(A). Suppose
the eigenvalues of A are ordered so that the right-most ones are Ay, Ag,... A,. Let
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E(d, ¢, a) denote an ellipse with centre d, foci d £ ¢, major semi-axis a, and which is
symmetric with respect to the real axis (since A is real, its spectrum is symmetric
with respect to the real axis). Suppose E(d,c¢,a) contains the set S of unwanted
eigenvalues. EB12 uses p;()) given by

LA —d)/d]

pl()‘) = Tl[()‘r _ d)/C]j

(3.2)
where T;()) is the Chebychev polynomial of degree [ of the first kind. This choice
is made since the maximum modulus of p;(A) within the ellipse is small compared
to its modulus on the sought-after eigenvalues. The use of Chebychev polynomials
with subspace iteration was proposed by Saad (1984).

The algorithm used by EB12 is very similar to that outlined in Section 3.2 and
is as follows.

1. Start: Choose the subspace dimension m and an n X m matrix X,, with
orthonormal columns.

2. SRR step:
Compute B = XL AX,,.
Reduce B to the real Schur form T,, = ZTBZ, where each diagonal block
(T,.):i is either of order 1 or is a 2 X 2 matrix having complex conjugate
eigenvalues, with the eigenvalues ordered along the diagonal blocks. Set X,,, «

XnZ.

3. Convergence test: If the first r columns of X, satisfy the convergence criteria
then accept the first r eigenvalues of T,, as the sought-after eigenvalues of A
and stop else determine the iteration polynomial p;(A) for the next iteration.

4. Iteration: Compute X,, — p(A)X,,. Orthonormalise the columns of X,,
and go to 2.

If the eigenvalues of largest modulus are required, EB12 sets p;(\) = A, otherwise
pi is the polynomial defined by (3.2) and the method is known as subspace iteration
with Chebychev acceleration (Saad, 1984 and Duff and Scott, 1993) or as Chebychev
subspace iteration (Meerbergen and Roose, 1994).

The evaluation of p;(A)X,, with p; defined by (3.2) is carried out using the three-
term recurrence relation for Chebychev polynomials (see Saad, 1984 for details).
Since A, is not known, in practice it is replaced by an approximation ~, which is
updated at each iteration. It can be shown (see, for example, Saad, 1984) that the
convergence ratio for the ith basis vector using (3.2) is 5’ where

a+a?—1]3
a; + [a,-z — 1]%

Y

where E(d, ¢, a;) is the ellipse with centre d, foci d & ¢, and major semi-axis a; which
passes through \;. Thus, it is the ‘gap’ between E(d,c¢,a) and E(d,¢,a;) which
determines how fast \; converges.
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In EB12, the columns of X,, are orthonormalised using the modified Gram-
Schmidt algorithm. On each iteration, the degree [ of the iteration polynomial
is chosen to try and ensure the columns of X,, remain linearly independent. If
Chebychev acceleration is employed, [ is also chosen to ensure the ellipse is up-
dated sufficiently often. Furthermore, [ is limited close to convergence to prevent
unnecessary work being performed.

As in the other codes, EB12 incorporates locking techniques to reduce the com-
putational effort if more than one eigenvalue has been requested. EB12 also allows
the user to supply the initial basis vectors. If they are not supplied by the user, a
starting basis is obtained by performing a single step of Arnoldi’s method.

The code EB12 uses reverse communication. Each time a set of vectors is required
to be multiplied by A, control is returned to the user. This allows full advantage to
be taken of the sparsity and structure of A and of vectorisation or parallelism. It also
gives the user greater freedom in cases where the matrix A is not held explicitly and
only the product of A with vectors is known. Reverse communication is discussed
further in Section 4.2.

Once EB12 has successtully computed the required eigenvalues of A, the user
may call a separate subroutine EB12B to compute the corresponding eigenvectors.
EB12B computes the eigenvectors s of the quasi-triangular matrix T,, using back-
substitution and then takes the approximate eigenvectors of A to be y = X,;;s.
The computed eigenvectors y are normalised. EB12B optionally computes the scaled
eigenvector residuals

|[AY — Oy|2
Ay

4 Key differences between the codes

Although LOPSI, EB12, and SRRIT are all subspace iteration-based codes written in
FORTRAN 77, it is clear from the above descriptions that the codes differ from one
another in a number of important ways. In this section we consider some of these
differences.

4.1 Use of Schur vectors

A principal difference between the LOPSI algorithm and those used by EB12 and
SRRIT is that LOPSI uses an oblique projection method rather than an orthogo-
nal projection method and, in so doing, avoids any vector orthogonalisation. In
addition, LOPSI computes approximations to eigenvectors of A, whereas EB12 and
SRRIT, by working with the Schur vectors, compute an approximation to the in-
variant subspace of A corresponding to the sought-after eigenvalues. According to
Stewart (1976a), it is more stable to work with the Schur vectors since if A is de-
fective, it may not have enough eigenvectors to span the subspace corresponding to
the sought-after eigenvalues. Even when A is not defective, its eigenvectors may
be nearly dependent so that they form a poor numerical basis for this subspace.
EB12 offers the user the option of computing the eigenvectors once the eigenvalues
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have converged. In their paper, Bai and Stewart (1992) recommend that, if the
eigenvectors are desired, they may be obtained by first using the program DTREVC
in LAPACK (Anderson, Bai, Bischof, Demmel, Dongarra, Croz, Greenbaum, Ham-
marling, McKenney, Ostrouchov and Sorensen, 1992) to compute eigenvectors s of
the quasi-triangular matrix T,, and then forming X,,s.

4.2 Matrix products AX

A major implementation difference between the codes is the way in which they cope
with forming the product of A with sets of vectors. If the order n of A is large, this
can represent the dominant cost. Thus, it is important to minimise the number of
times that A is applied and to ensure its application is implemented efficiently.

The code LOPSI is the most restrictive of the codes in our study since it re-
quires the user to pass the matrix to the routine using a defined storage scheme.
The matrix products AX are all performed by a single subroutine within the code
and the authors comment in their paper that considerable savings can be obtained
by converting this subroutine to machine code (see Stewart and Jennings, 19815b).
Clearly this involves intervention by the user. A user could also change the storage
scheme used for A to one more suited to his or her problem, but this would involve
considerable effort and no documentation is provided to assist with this.

SRRIT adopts a somewhat more flexible approach by requiring the user to supply
the subroutine to perform the matrix products. Even though A is not required to
be held explicitly, for some problems it can be inconvenient for the user to pass
the matrix into this subroutine. For example, since SRRIT uses the FORTRAN 77
programming language, the number of subroutine arguments is fixed. If a user needs
additional descriptors to perform matrix products, these must be passed through a
COMMON block.

The reverse communication approach followed by EB12 provides the most flexi-
bility and gives the user the greatest degree of control. The user is able to exploit the
sparsity and structure of the matrix and, by avoiding passing the matrix through
a COMMON block, full advantage may be taken of parallelism and/or vectorisation.
Another obvious advantage of reverse communication is that the user is able to in-
corporate different preconditioning techniques in a very straightforward way. For
example, the user may wish to use a shift-and-invert transformation, in which a ma-
trix of the form (A — oI)™! is used in place of A. The eigenvalues close to the shift
o will tend to converge most rapidly since under the transformation they become
dominant. In this case, linear systems of the form (A — ¢I)W = X are solved in
place of the matrix products W = AX. If a direct method of solution is used, the
LU factorisation of (A — oI) need only be performed once. However, since reverse
communication allows progress to be monitored, the user may choose to update o as
the computation progresses, and a new factorisation will be required for each shift.

Another advantage of reverse communication is that, in the case of unacceptably
slow convergence, EB12 is able to offer the option of restarting the computation
with, for example, an increased subspace dimension but taking advantage of the
approximations to the sought-after eigenvalues and Schur vectors already computed.
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4.3 Orthogonalisation of sets of vectors

The code LOPSI avoids the need to orthogonalise sets of vectors but one of the im-
portant implementation differences between SRRIT and EB12 concerns the orthog-
onalisation of the columns of X,,, how frequently this is done, and how often an
SRR step is performed. As already mentioned, SRRIT employs the modified Gram-
Schmidt algorithm with reorthogonalisation and, in general, performs more than
one orthogonalisation between SRR steps. EB12, however, adopts the somewhat
different approach of attempting to keep the columns of X,, linearly independent
by limiting the degree [ of the iteration polynomial and using the modified Gram-
Schmidt algorithm without reorthogonalisation. In the Harwell Subroutine Library
Release 11 version of EB12, only one orthogonalisation was performed between each
SRR step. In the latest Release 12 version, experience with practical problems has
led to the code being modified slightly. Bjorck (1967) showed that the modified
Gram-Schmidt algorithm applied to a matrix X produces a computed matrix X
which satisfies

X'X =1+ E, ||E|z ~ uxz(X), (4.3)

where £5(X) is the condition number of X and u is the relative machine precision.
On iteration k, EB12 uses (4.3) to obtain an estimate of ko(X,,) and this in turn is
used to restrict the degree I(k+1) of the iteration polynomial for the next iteration.
If either k2(X,,) > 10% or (k4 1) > ¢, the code immediately moves to performing
an SRR step. In the Release 11 version, ¢ is equal to 1. This tends to result in
an SRR step being performed too early, that is, before any of the columns of X,,
have converged. In the Release 12 version, ¢ is set to 10 and, if the degree I(k + 1)
is less than 10, the columns of X,, are reorthogonahsed X,, — pl(k+1)(A)Xm is
computed, its columns orthogonalised, and k9(X,,) recomputed. The process is
repeated, if necessary, until at least ¢ matrix products AX,, have been performed
on iteration k. Thus, step 4 of the EB12 algorithm given in Section 3.3 becomes
Set g =10

while ¢ < 10 do

g=q+1(k+1)

Compute X, — pye+1)(A) X,
Orthonormalise the columns of X,,
Compute £2(X,,) and update I[(k + 1)

end do

This delaying of the SRR step can give significant improvements in performance.
This is illustrated in Table 4.1. The results in this table are for a convergence
tolerance € = u* 102 and the runs were performed on a SUN SPARCstation 10. The
number of iterations is the number of SRR steps. All the examples in Table 4.1
are taken from the Harwell-Boeing collection (Duff, Grimes and Lewis, 1992). In
Table 4.1, a t indicates the requested accuracy was not achieved before the stopping
criteria terminated the computation (see Section 4.5).
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Matrix-
vector Iterations CPU time

products
Identifier r m hslll hsl12 hslll hsl12  hslll hsl12
PORES3 8 16 3127 2827 12 9 7.25 6.78
GRE1107 1 8 3135 3135 13 13 12.93 12.93
IMPCOLA 8 16 1745 1653 33 12 3.59¢ 2.52
IMPCOLB 8 16 3095 3569 62 25 3.31¢ 2.75
IMPCOLC 8 16 1471 1569 26 10 1.747 1.13
NNC666% 8 16 3518 3263 24 19 13.71  12.95
WESTO0156% 4 10 4365 1709 217 15 8.461 2.62
WEST0167 8 24 659 461 16 9 2.56 1.74

Table 4.1: A comparison of Release 11 and Release 12 versions of the Harwell
Subroutine Library routine EB12 (hsl11 denotes Release 11 and hsl12 denotes Release
12). 1 indicates the requested accuracy not achieved. I indicates Chebychev
acceleration is used.

4.4 The use of BLAS

Apart from the matrix products AX,,, the subspace iteration algorithm requires
only dense linear algebra operations to be performed on matrices of order m. One
way of achieving an efficient implementation and assisting with robustness, porta-
bility, and readability of the software is through the use of BLAS (Basic Linear
Algebra Subprograms) kernels (Lawson, Hanson, Kincaid and Krogh, 1979, Don-
garra, DuCroz, Hammarling and Hanson, 1988, and Dongarra, DuCroz, Duff and
Hammarling, 1990). The codes in our study make use of the BLAS to very different
degrees. When LOPSI was developed, only the Level 1 BLAS were available and
LOPSI, in fact, makes no use of these kernels.

EB12 makes some use of Level 1 and Level 2 BLAS kernels, as well as using
the Level 3 kernel GEMM for performing matrix-matrix multiplications of the form
B = X"W, where W = AX has been computed by the user. In the SRR step,
EB12 uses modified versions of the EISPACK routines ORTHES and ORTRAN (Smith,
Boyle, Garbow, Ikebe, Klema and Moler, 1976) and of the routine HQR3 given
by Stewart (1976b). Since the release of EB12 in 1991, LAPACK (Anderson et al.,
1992) has become available. LAPACK was designed to supersede EISPACK, by
developing new routines and by restructuring the EISPACK software to achieve
much greater efficiency, where possible, on modern high-performance computers.
To help do this, LAPACK routines are written so that as much as possible of the
computation is performed by calls to the BLAS. The updating of the original 1978
version of SRRIT included using BLAS kernels and replacing EISPACK routines with
LAPACK routines. Therefore, of the three codes, SRRIT makes the most use of the
BLAS and we anticipate that this will be reflected in the performance of SRRIT.
The only part of the codes where EB12 makes more use than SRRIT of the higher
level BLAS is in orthonormalising the columns of X,,. SRRIT uses a Level 1 BLAS
implementation of the modified Gram-Schmidt algorithm with reorthogonalisation;
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EB12 has a Level 2 implementation of the modified Gram-Schmidt algorithm.

4.5 The stopping criteria

The codes all use different stopping criteria, which adds to the difficulties associated
with trying to compare their performance (see Section 5). Useful discussions of
stopping criteria for iterative eigensolvers are given by Bennani and Braconnier
(1994) and Scott (1995). Throughout this section, € denotes a user-defined tolerance.

For subspace iteration, the dominant eigenvalues converge most rapidly so the
(7 + 1)-st eigenvalue needs to be tested only once the jth one has converged. In the
code LOPSI, a column of X,, is accepted as an approximation to an eigenvector of
A when it becomes nearly stationary. Specifically, if X*) is X,, on the kth iteration
(k > 0), the jth column of X*) is accepted if it satisfies the inequality

IXE = XE il < e

Such a stopping criterion may fail in the case of A having equal, or nearly equal,
eigenvalues.

In an attempt to overcome this problem, SRRIT and EB12 follow Stewart (1978)
and base their stopping criterion on demanding that AX, ~ X, T,. In SRRIT, the
Jth column of X, is said to have converged if

[(AXm = X Tl < [65]e,

where 6, is the jth eigenvalue of T,,. At each iteration, the residuals ||[(AX,, —
XmTm)jl|2 are computed for j =¢+1,...,r, where ¢ + 1 points to the first uncon-
verged eigenvalue. The code groups eigenvalues which have nearly equal moduli.
The eigenvalues computed on the previous iteration are also grouped. If the two
groups have the same number of eigenvalues and the average value of the eigenvalues
has settled down, the residuals are averaged and tested against e.

The convergence criteria used by EB12 for the jth column of X,, requires

JAX, ~ XuTo)illz < [(AX,); e (4.4)

To save work, the residual ||[(AX,, — X,,T.,) ||z is computed only if all the basis
vectors X; with 0 < z < 7 have already been accepted. EB12 monitors the residuals
for unacceptably slow convergence and, if necessary, terminates the computation
with a warning that the requested accuracy was not achieved. In this event, the user
is advised on how to modify the input parameters to try and obtain the requested
accuracy and facilities are included for restarting the computation from the point
at which the warning was issued.

We remark that recent work by Chatelin and Fraysée (1993) recommends that
stopping criteria for iterative methods should be based on the backward error. The
idea of backward error is to measure the shortest distance between the original
problem with computed solution z and a perturbed problem with exact solution z.
The normwise backward error associated with (T,,,X,,) is defined by

n=min{é > 0: |AA| < §]|Al, (A + AA)X,, = T,.}. (4.5)
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In the 2-norm, it can be shown that

_ AX, = X, T

TAT: (4.6)

Computing ||A || (or a bound on ||A||,) is often very expensive. Since |[(AX,,) |2 <
||All, and |#] < ||A||2, the stopping criteria used by SRRIT and EB12 are related to
the backward error.

4.6 Storage requirements

For large problems, the amount of storage needed can be an important consideration
when selecting which code to use. In Table 4.2, we compare the storage requirements
of the three codes. We observe that LOPSI requires the most storage and that EB12
needs 3 real arrays of length nm while SRRIT requires only 2 such arrays. There are
two reasons why EB12 demands an extra array. Firstly, to use the 3-term recurrence
relation for Chebychev polynomials to compute p;(A)X,,, three arrays of length nm
are needed. Secondly, as already discussed, EB12 uses reverse communication. To try
and ensure against the user overwriting the latest approximation X,, to the Schur
vectors, the user forms matrix products using two arrays U and W of dimension nm
and then, within the code, copying into the appropriate part of the third array X,,
is performed. Thus, even if Chebychev acceleration is not employed, EB12 demands
3 arrays of length nm.

Code Storage
LOPSI | 3nm + 4m* 4+ O(m)
SRRIT | 2nm + 2m?* + O(m)
EB12 3nm + 2m? + O(m)

Table 4.2: Storage requirements for the subspace iteration software.

4.7 User interface

An important feature of any code written for general use is that it should be ac-
companied by straightforward but comprehensive documentation which allows the
code to be used with a minimum of effort. The documentation should also assist the
user in the event of the computation failing for his or her problem. Our numerical
experiments have provided us with a feel for how easy the software is to use and in
this section we comment briefly on our experience.

e Each of the codes came with a well-commented parameter list which allowed
us to use them on straightforward problems without any difficulties.

e A particularly helpful feature of the documentation provided with EB12 was
that it included a simple sample program. This would be of particular value
to users who are unfamiliar with using reverse communication.
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e Each of the codes includes a parameter in its argument list which is employed
as an error flag. On exit from LOPSI, the error flag should have the value 0 if the
requested number of eigenvalues have satisfied the convergence criteria and the
value 1 otherwise. LOPSI does not provide any useful information in the event
of a failure. A warning message is issued if the size of a pivot was increased to
maintain stability during a Cholesky decomposition but the significance of this
warning (which we found could be issued many times during the computation)
is not adequately explained. Furthermore, we found the error flag could be
set to indicate all was well but when the computed eigenvalues were checked,
they could be totally inaccurate. We conclude that the code has not been
comprehensively tested. !

e LOPSI does not check input parameters for errors. SRRIT and EB12 check the
user’s data and, in the event of an error, set the error flag and return control
to the user. The documentation explains the meaning of the possible different
values for the error flag. In addition, EB12 optionally prints a self-explanatory
erTor message.

e During the computation, SRRIT and EB12 monitor for fatal errors and termi-
nate the computation if such an error is encountered. Again, EB12 optionally
prints an error message. EB12 also warns the user if convergence has been
judged to be unacceptably slow and returns the convergence tolerance which
the computed Schur vectors actually satisfy.

e A nice feature of SRRIT is an input parameter which can be set to allow
information on the course of the computation to be printed. After each SRR
step, this printing includes the values of the sought-after eigenvalues and the
norm of the corresponding residuals. This allows the user to see how fast the
eigenvalues are converging but, as reverse communication is not used, the user
is unable to take action to terminate or restart the computation if convergence
is not proving satisfactory. It is confusing that the parameter which must be
set if printing is required doubles-up as the error flag. The current version of
EB12 does not offer the user the option of printing on each iteration: the user
must take advantage of reverse communication if printing is required.

e The documentation for SRRIT points to parameters within the code which
are given values at the start of the computation. It is suggested that the
knowledgeable user may wish to alter these values to improve efficiency for
particular problems. This is not a friendly interface. If these really are control
parameters which the user may want to alter, it would be advisable to give
them default values by calling an initialisation subroutine and then passing
them as input arguments to the main routine. The user could alter one or
more of the control parameters after the call to the initialisation routine and
prior to the call to the main routine.

e At the end of the computation, SRRIT and EB12 return some useful informa-
tion, including the number of matrix products performed. For our numerical

!The author was contacted with our findings.
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experiments, it was necessary to modify LOPSI so that information needed for
comparing the performance of the codes could be collected.

o When checked with a FORTRAN code analyser?, each code was passed as con-
forming to the FORTRAN 77 Standard.

To summarise, LOPSI is easy to use if A is held in the required form and if no
difficulties are experienced. However, the user is given no help if A is supplied in any
other form, nor if the method fails to converge. SRRIT offers printing for monitoring
progress but offers only limited assistance if a non-zero error flag is returned. EB12
provides error messages and help if an error is encountered but could be improved
by offering printing at each iteration.

5 Numerical experiments

In this section we present the results of using the subspace iteration software to
compute a few eigenvalues and eigenvectors of a range of problems arising from real
scientific and industrial applications.

5.1 The test matrices

The test problems are taken either from the well-known Harwell-Boeing collection
of sparse matrices (Duff et al., 1992) or from the collection of large eigenvalue
problems of Bai, Barrett, Day and Dongarra (1995). Many of the problems we
chose have appeared elsewhere in the literature on solving large sparse nonsymmetric
eigenvalue problems (for example, Sadkane, 1993 uses the matrices GRE1107 and
PORESS3 when testing his block Arnoldi-Chebychev method and Saad, 1984 uses the
random walk problem in his tests on Arnoldi-based methods). We employ the same
set of test problems in our evaluation of Arnoldi based software (Lehoucq and Scott,
1996a). We remark that the Harwell-Boeing matrices arise from linear systems of
equations and are not nonsymmetric eigenvalue problems. Nevertheless, computing
eigenvalues for some of the matrices in the collection can provide useful tests for
the software. The problems in the collection of Bai et al. are ideal for our study
since the primary purpose in developing the collection was to provide a testbed
of practical problems for use in testing numerical algorithms for solving eigenvalue
problems. However, this test set is still under development and the whole set is not
yet available.

The CDDE problem is a two-dimensional model convection-diffusion problem

—Au(x, y) + pv ) vu(wa y) = All(x7 y)a

on the unit square [0,1] x [0,1], with zero boundary data and p a real number.
The problem is discretised using centered finite differences. The eigenvalues and
eigenvectors of the resulting matrix are known explicitly (see Bai et al., 1995).
Many of the eigenvalues have multiplicity two. It may be shown that, if |p| < \/n,
the eigenvalues are all real and the matrix is diagonalisable. As the mesh size

2pfort, ISTLA - Toolpack Static Analyser, Version 1.2
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Identifier Order | Number of Description/discipline
entries
PORES2 1224 9613 | Oil reservoir simulation.
PORES3 532 3474 | Oil reservoir simulation.
GRE1107 1107 5664 | Simulation studies in
computer systems.
HOR131 434 4710 | Flow network problem.
IMPCOLC 137 411 | Ethylene plant model.
IMPCOLD 425 1339 | Nitric acid plant model.
NNC666 666 4044 | Nuclear reactor core modelling.
NNC1374 1374 8606 | Nuclear reactor core modelling.
WEST0156 156 371 | Chemical engineering plant model.
WEST0167 167 507 | Chemical engineering plant model.
WEST2021 || 2021 7353 | Chemical engineering plant model.
*CK400 400 2860 | Not available.
*x CK656 656 3884 | Not available.
* RWK5151 || 5151 20199 | Markov chain modelling:
random walk.

* CDDE 2-D convection diffusion problem.
* TOLOSA Stability of aircraft in flight.
* BW2000 2000 7996 | Chemical engineering model.

Table 5.3: The matrices used for performance testing (* indicates matrix from the
collection of Bai, Barratt, Day and Dongarra, 1995).

decreases, the relative separation of all the eigenvalues decreases. All the eigenvalues
are contained within the interval (0, 8). As p increases so does the non-normality
of the matrix.

5.2 Verification

It is important when testing software that an attempt is made to check the correct-
ness of the computed results. For example, an important consideration is whether
any of the sought-after eigenvalues have been missed. In the symmetric case, if a
factorisation is performed, an inertia count can then be used to provide a check
for missing eigenvalues (see Grimes, Lewis and Simon, 1994 and Parlett, 1980 for
details). There is no analogous procedure for nonsymmetric matrices.

For the purposes our study, we may determine the reliability of the codes using
the exact eigenvalues. The forward error is defined to be

i — B
FFE o = max| : d

1< |\

(5.7)

where \; and 6, are the exact and computed eigenvalues, respectively, of A. This
tests the forward stability of the software. For the test problems for which the exact
eigenvalues are not known, we compare the computed eigenvalues with those found
using the QR algorithm.
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We also check results by computing the r eigenvector residuals

Ay — 8yl (5.8)

and the real and imaginary portions of the Rayleigh Quotient errors

ly" Ay — 6y"y].. (5.9)

As mentioned in Section 4.1, SRRIT does not compute the eigenvectors of A, but
they can be computed using the LAPACK routine DTREVC. We have done this in
our tests with SRRIT.

For SRRIT and EB12, we check the orthogonality of the computed Schur basis
and quality of the Schur projection by computing

IXIX, — 1|l and [|[XTAX, —T,|s, (5.10)

respectively.
The checks (5.8)—(5.10) are designed to test the backward stability of the soft-

ware.

5.3 The test environment

The numerical experiments were performed on an IBM RS/6000 3BT using double
precision arithmetic, and the vendor-supplied BLAS. As we have already seen, the
software in our study employ different stopping criteria. Therefore, even if we supply
each code with the same convergence tolerance and the computations all terminate
successfully, the eigenvalues computed by each code may differ. For the results
reported in this section and in the Appendix, the codes each used a convergence
tolerance that gave eigenvalues with an accuracy of at least \/u (for some of the test
examples, different codes used different convergence tolerances). The convergence
tolerances used were all in the range 10u to 1074,

In designing their software, the authors have all attempted to produce software
which can be used as a black box while at the same recognising that in doing so
they have had to make a number of ad hoc decisions and there may be problems
for which the choices they have made are either poor or completely unsuitable. To
assess the usefulness of the choices, in our numerical experiments we only use the
default values (or values recommended by the authors in their documentation).

Even if we use the default parameters, there remain parameters which must
be chosen by the user. In particular, each of the codes in our study requires the
user to choose the number r of required eigenvalues, the subspace dimension m,
and the convergence tolerance e. Requiring the user to choose these parameters
may appear reasonable since the user is likely to know how many eigenvalues are
required and how much accuracy is wanted. However, as discussed in Section 4.5, in
order to select an appropriate value for €, the user generally needs some knowledge
of the problem, such as the size of the sought-after eigenvalues. Furthermore, our
experience with the codes has shown that selecting r to be greater than the number
of eigenvalues actually required can sometimes yield more rapid convergence. This
can happen if the sought-after eigenvalues are not well-separated from the remaining
ones and better separation is achieved by increasing r. Moreover, the efficiency of
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the software is strongly dependent on the choice of m. For small m, convergence
may not be possible. On the other hand, if m is large, the amount of work per
iteration and the storage requirements may be prohibitively high. Some numerical
results illustrating the effects of different choices for m may be found in Duff and
Scott (1993). When testing the software on a particular problem, we use the same
value of r and m for each code. This allows use to compare the relative performances
of the codes.

‘ Code Required input ‘

LOPSI Matrix A in standard sparse format
Maximum number of products AX,,
Maximum number [ products AX,,
between the oblique projections

SRRIT Routine for performing AX,,
Maximum number of iterations

EB12  Which eigenvalues

Table 5.4: Input from the user

In addition to the parameters m, r, and €, all the codes require the user to
supply values for at least one other input parameter. These parameters are listed in
Table 5.4. For EB12 it is only necessary to specify whether the right-most eigenvalues,
the left-most eigenvalues, or eigenvalues of largest modulus are required. Finite
termination of the computation is ensured by specifying the maximum number of
iterations and/or the maximum number of matrix products. EB12 avoids requiring
the user to set these parameters by using default values, which are held in fully
documented COMMON block and which the user is able to reset.

In our tests, a limit of 4000m was imposed on the number of matrix-vector
products allowed.

5.4 Results

The results of our numerical experiments are lengthy so we only summarise our
findings here. The complete set of results for computing a single eigenpair are given
in Appendix A and for several eigenpairs the results are in Appendix B. For each
of the test examples, results are only given for the codes which converged with the
requested accuracy to the correct eigenvalues. No results are given for the matrix
BWM2000 since, for a range of values of m, the codes all failed to achieve the
required accuracy within the limit of 4000m matrix-vector products. The codes also
failed to converge for the CDDE problem as n and p were increased. In particular,
for n = 10000 and p = 40, convergence was not achieved. The code LOPSI could only
be run on the test matrices which are held explicitly (which includes all the Harwell-
Boeing matrices but not TOLOSA, RWK5151, and CDDE). For the test matrices
for which the eigenvalues of largest modulus are also the right-most (or left-most)
eigenvalues, results are given for EB12 with and without Chebychev acceleration. If
Chebychev acceleration is used, this indicated by a f symbol.
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Our general findings from the numerical experiments were the following.

e LOPSI can be the fastest subspace iteration code for computing a single eigen-
value but if r > 1, it can return spurious eigenvalues, without warning. We
believe there is probably a bug in the code but we have not yet located the
source of the problem.

e For some examples, EB12 and LOPSI require a large number of iterations to
achieve convergence (see, for instance, EB12 applied to TOLOSA and LOPSI
applied to NNC666).

e SRRIT can be much slower than EB12 and LOPSI. The reason for this appears to
be that it generally performs many more reorthogonalisations than the other
codes. The extra cost incurred by the reorthogonalisations is illustrated by
our results for the problems IMPCOLD and NNC1374 with r = 5. Both EB12
and SRRIT perform a similar number of iterations and matrix-vector products
but the CPU time for SRRIT is much greater than for EB12.

e An attractive feature of SRRIT is that it displays monotonic consistency, that
is, as the convergence tolerance decreases so does the size of the computed
residuals. The stopping criteria used by EB12 which attempts to detect stag-
nating convergence means that EB12 does not always display this property.
However, SRRIT may return eigenvalues which have much greater accuracy
than was requested by the user. For example, for the problem TOLOSA with
n = 1000 and m = 16, the amount of work required for convergence using a
convergence tolerance of 107* is the same as for a convergence tolerance of /u;
both tolerances yield computed eigenvalues with a maximum forward error of
order 1077,

e In general, the subspace iteration codes were found to be good at detecting
multiple eigenvalues and at not missing any of the sought-after eigenvalues. In
particular, SRRIT has a useful property of being able to recognise clusters of
eigenvalues. For problems such as CK400 and CK656, which have multiple and
clustered eigenvalues, SRRIT was the most efficient code. The ability to detect
clusters can lead to SRRIT returning more eigenvalues than was requested. Our
experience suggests some adjustment to the values of the (internal) parameters
used in detecting a cluster may be beneficial.

e Use of a Chebychev polynomial may improve the performance of EB12 but
it can also degrade it. An example for which Chebychev acceleration led to
substantial improvements was CDDE. For this problem, as n and p where in-
creased, convergence was not achieved without Chebychev acceleration. How-
ever, it cannot be anticipated whether Chebychev acceleration will be bene-
ficial unless some knowledge of the distribution of the eigenvalues is already
known.

o All the codes were either slow to converge or failed to converge for matrices
with a large departure for non-normality. The eigenvalues of the TOLOSA
matrix lie on a parabola in the left-half plane that opens to the left. The
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6

eigenvalues of interest are the eigenvalues of largest imaginary part, which are
also those of largest modulus so the subspace iteration codes may be used.
The matrix is non-normal and its departure from normality increases with
the order n of the matrix. We found that the time taken and the number of
matrix-vector products performed to achieve convergence increases with n so
that, for sufficiently large n, the subspace iteration codes become too expensive
to be of practical use. For this problem and the CDDE problem with n large
an alternative approach, such as Arnoldi’s method or the Lanczos method,
may be needed.

Concluding remarks and comments

In this final section, we briefly highlight some of the main weaknesses of the current
subspace iteration software. We also look at features found in the software that
should be part of any revisions to existing software or should be incorporated in
new attempts at high quality sparse eigenvalue software.

The software could be made more user-friendly by improving the error handling
and printing options.

The grouping of clustered eigenvalues would appear to be an important feature
for problems with equal or nearly equal eigenvalues. This is attempted by
SRRIT but further investigation is needed.

A well-engineered strategy for detecting stagnating convergence may prevent
unnecessary work being performed. Although not always successtul, EB12 at-
tempts to do this; further investigation is needed. More generally, as examined
in Section 4.5, further research and testing needs to be undertaken to improve
the ways in which the software decides to terminate the computation.

All the codes we looked at were written in FORTRAN 77. For such codes, we
recommend the use of reverse communication for carrying out matrix products
AX. However, perhaps the time has now come to consider a more modern
programming language. This could remove the requirement for a reverse com-
munication interface.

Improved polynomial acceleration methods are needed. EB12 offers Cheby-
chev acceleration but no other acceleration methods are currently incorpo-
rated within the software. EB12 has no mechanism for automatically selecting
or deselecting Chebychev acceleration as the computation proceeds. Reverse
communication allows EB12 to be used with shift-and-invert but no shift se-
lection strategy is offered.

The ability to deflate a converged invariant subspace can substantially reduce
the amount of work performed when more than one eigenpair is wanted. In
common with the existing codes, deflation should be incorporated within any
new software.
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e Automatic verification procedures are sorely needed. At present, there is no
software available for determining if the given eigenvalue problem was solved.
Successful convergence only implies that an eigenvalue problem was solved.
This is to be contrasted with the situation when A is symmetric. Some work
on a possible approach in the nonsymmetric case has been done by Meerbergen,
Spence and Roose (1994). This approach itself employs subspace iteration.

e The automated selection of software parameters needs further work. For ex-
ample, given that the user requests r eigenvalues, the software should attempt
to determine the appropriate size m of the subspace needed during each iter-
ation. There could be advantages here in using, for example, the FORTRAN 90
programming language, since dynamic allocation of storage is allowed as well
as optional arguments.

7 Availability of the Software and Test Matrices

We summarise how the interested reader may obtain the test matrices and software
reviewed in this study.

o The test matrices of Bai et al. are available by anonymous ftp to ftp.ms.uky.edu
in the directory pub/misc/bai/Collection.

e The Harwell-Boeing matrices of Duff et al. can be obtained by anonymous
ftp to seamus.cc.rl.ac.uk in the directory pub/harwell boeing.

e LOPSI is available by anonymous ftp to netlib.att.com in the directory
netlib/toms as the compressed FORTRAN file 570.Z.

e SRRIT is available by anonymous ftp to ftp.ms.uky.edu in the directory
pub/misc/bai/SRRIT.

e EB12 is included in the Harwell Subroutine Library and anyone interested
in using the code should contact the HSL Manager: Dr S. J. Roberts, Har-
well Subroutine Library, AEA Technology, Building 552, Harwell, Oxfordshire,
OX11 ORA, England, tel. +44 (0) 1235 434714, fax 444 (0) 1235 434136, or
e-mail Scott.Roberts@aeat.co.uk, who will provide details of price and con-
ditions of use.
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A Appendix: Tables of results for a single eigen-
pair

A superscript of the form (kX) indicates the code returned k eigenpairs (k > 1, or 2
if the dominant eigenpair is complex).

PORES2, r =1,m =8

Code Matrix-vector Iterations Time

products (secs)
LOPSI 121 4 0.18
SRRIT 168 4BY 0.38
EB12 111 2 0.20

i indicates Chebychev acceleration used.

PORES3, r =1,m =8

Code Matrix-vector Iterations Time

products (secs)
LOPSI 769 11 0.26
SRRIT 128 7N 0.81
EB12 1735 7 0.56
EB12} 815 4 0.35

i indicates Chebychev acceleration used.

GRE1107,r =1,m = 8

Code Matrix-vector Iterations Time

products (secs)
LOPSI 1761 24 1.41
SRRIT 2032 8 2.58
EB12 2159 12 1.59
EB12} 3367 14 3.13

i indicates Chebychev acceleration used.



A APPENDIX: TABLES OF RESULTS FOR A SINGLE EIGENPAIR

HOR131,r=1,m =8

Code Matrix-vector Iterations Time

products (secs)
LOPSI 177 5 0.08
SRRIT 168 4 0.11
EB12 127 3 0.08
EB12% 119 2 0.08

i indicates Chebychev acceleration used.

IMPCOLC, r = 1,m = 8

Code Matrix-vector Iterations Time

products (secs)
LOPSI 2753 36 0.16
SRRIT 2248 g(8A) 0.40
EB12 183 3 0.02

IMPCOLD, r = 1,m = 8

Code Matrix-vector Iterations Time

products (secs)
LOPSI i i i
SRRIT 3976 9 1.61
EB12 3295 10 0.53

7 indicates sought-after eigenvalue was missed.

NNC666, r =1,m =8

Code Matrix-vector Iterations Time

products (secs)
LOPSI 1849 40 0.94
SRRIT 1288 72N 1.23
EB12 1095 5 0.40

i indicates Chebychev acceleration used.
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NNC1374,r =1,m =8

Code Matrix-vector Iterations Time
products (secs)
LOPSI 3457 58 3.72
SRRIT 5128 9(23) 8.24
EB12 3079 8 2.61
EB12} 583 5 0.76

i indicates Chebychev acceleration used.

WESTO0156, r = 1,m = 8

Code Matrix-vector Iterations Time
products (secs)
LOPSI 177 9 0.02
SRRIT 200 5(74) 0.06
EB12 119 2 0.03
WESTO0167, r =1,m =8
Code Matrix-vector Iterations Time
products (secs)
LOPSI 137 4 0.20
SRRIT 1288 7(6%) 0.35
EB12 119 2 0.02
WEST2021, r = 1,m = 8
Code Matrix-vector Iterations Time
products (secs)
LOPSI 49 2 0.10
SRRIT 72 3 0.34
EB12 15 1 0.08
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B Appendix: Tables of results for several eigen-
pairs

A superscript of the form (k) indicates the code returned k eigenpairs (k > r where
r is the requested number of eigenpairs.

PORES2, r =4,m =20

Code Matrix-vector Iterations Time

products (secs)
LOPSI & & &
SRRIT 2704 7 7.88
EB12 695 5 231

<& indicates spurious eigenvalues were returned.
i indicates Chebychev acceleration used.

PORES3, r =5,m =20

Code Matrix-vector Iterations Time

products (secs)
LOPSI 841 6 0.47
SRRIT 1364 6(13Y) 1.34
EB12 869 6 0.67
EB12} 717 4 0.51

i indicates Chebychev acceleration used.

GRE1107, r = 5,m = 20

Code Matrix-vector Iterations Time

products (secs)
LOPSI i i i
SRRIT 2198 10 4.48
EB12 4774 14 4.35
EB12} 5207 18 6.27

i indicates eigenvalues were missed.
i indicates Chebychev acceleration used.
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HORI13L, r = 5,m = 20

Code Matrix-vector Iterations Time

products (secs)
LOPSI 281 4 0.21
SRRIT 279 5 0.41
EB12 483 4 0.38
EB12} 719 5 0.52

i indicates Chebychev acceleration used.

IMPCOLC, r = 5,m = 20

Code Matrix-vector Iterations Time

products (secs)
LOPSI 581 7 0.08
SRRIT 620 5 0.20
EB12 279 2 0.06

IMPCOLD, r = 5,m = 20

Code Matrix-vector Iterations Time

products (secs)
LOPSI o o 1
SRRIT 8500 10(8%) 6.36
EB12 8233 11 1.69

< indicates spurious eigenvalues were returned

NNC666, r = 5,m = 20

Code Matrix-vector Iterations Time

products (secs)
LOPSI 17429 152 12.67
SRRIT 1620  6(6Y 2.23

EB12 3347 8 1.63
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NNC1374, r = 5, m = 20

Code Matrix-vector Iterations Time

products (secs)
LOPSI 5211 43 7.87
SRRIT 5600 86N 12.48
EB12 5755 10 5.45

WESTO0156, r = 5, m = 20

Code Matrix-vector Iterations Time

products (secs)
LOPSI O O o
SRRIT 340 4(7) 0.20
EB12 39 1(63) 0.02

< indicates spurious eigenvalues were returned

WESTO0167, r = 5, m = 20

Code Matrix-vector Iterations Time

products (secs)
LOPSI 421 6 0.07
SRRIT 420 4B 0.23
EB12 383 4 0.05

WEST2021, r = 5,m = 20

Code Matrix-vector Iterations Time

products (secs)
LOPSI & & &
SRRIT 3070 7N 19.19
EB12 724 5 6.44

<& indicates spurious eigenvalues were returned.
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CK400, r = 8,m = 20

Code Matrix-vector Iterations Time
products (secs)
LOPSI & & O
SRRIT 994 7 0.83
EB12 1401 8 0.90
EB12% 943 6 0.83

<& indicates spurious eigenvalues were returned.

+

i indicates Chebychev acceleration used.

CK656, r = 8,m = 20

Code Matrix-vector Iterations Time
products (secs)
LOPSI & & &
SRRIT 994 21 1.29
EB12 1508 21 2.15
EB12} 1065 7 1.61

<& indicates spurious eigenvalues were returned.

+

i indicates Chebychev acceleration used.

RWK5151, r = 2,m = 10

Code Matrix-vector Iterations Time
products (secs)

SRRIT 15140 1104Y 125.10
EB12 14609 18 56.19
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TOLOSA, r = 2

n m  Code Matrix-vector Iterations Time
products (secs)

500 8 SRRIT 20488 1163 15.8
EB12 6367 73 5.9

500 16 SRRIT 64016 11043 41.9
EB12 11327 65 15.3

1000 8 SRRIT 20488 11040 33.2
EB12 17719 202 34.1

1000 16 SRRIT 64016 120143 141.3
EB12 35087 200 119.8

2000 & SRRIT * * *
EB12 26255 299 117.0

2000 16 SRRIT * * *
EB12 9919 57 72.0

3000 8 SRRIT X X
EB12 * *

3000 16 SRRIT * * X
EB12 14847 85 159.4

* denotes that code did not converge within
4000m matrix-vector products.
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CDDE,r =6

p n m Code Matrix-vector Iterations Time
products (secs)

0 2500 18 SRRIT 29583 11 83.2
EB12 29205 25 29.0

EB12} 5312 11 9.6

0 2500 36 SRRIT 27465 10 106.4
EB12 26527 18 37.5

EB12f 14450 12 27.5

10 2500 18 SRRIT 46098 11 126.9
EB12 48296 33 45.8

EB12} 5971 22 13.5

10 2500 36 SRRIT 88356 11(19%) 331.6
EB12 45192 25 55.5

EB12} 9668 19 32.8

0 10000 18 SRRIT * X %
EB12 * ¥ "

EB12} 8631 13 62.2

0 10000 36 SRRIT 92196 1101X) 2326
EB12 93509 35 426.4

EB12 20099 14 153.0

15 10000 18 SRRIT * * *
EB12 * * *

EB12} 41857 54 283.7

15 10000 36 SRRIT * * *
EB12 * * *

EB12} 34268 36 291.7

* denotes that code did not converge within
4000m matrix-vector products.
indicates Chebychev acceleration used.

+
+
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