
RAL-TR-2003-036

HSL MC73 : A fast multilevel Fiedler and profile

reduction code

Yifan Hu1 and Jennifer A. Scott2,3,4

ABSTRACT

In recent years, multilevel algorithms have been used for the efficient computation of
the eigenvector corresponding to the smallest positive eigenvalue of the Laplacian matrix
associated with a graph of a symmetric matrix (the Fiedler vector). Multilevel algorithms
have also been proposed for computing profile-reducing orderings for sparse symmetric
matrices. In this paper, these multilevel algorithms are described within a unified
framework. This is then used in the design of a new Fortran 95 code HSL MC73 that
implements a multilevel algorithm for the computation of an approximate Fiedler vector
as well as a number of multilevel profile-reducing algorithms. HSL MC73 is used to compute
spectral orderings for a class of undirected random graphs and its performance is compared
with obtaining the Fiedler vector using a state-of-the-art sparse eigensolver.

1 Wolfram Research, Inc., 100 Trade Center Drive, Champaign, IL61820, USA.
Email: yifanhu@wolfram.com

2 Computational Science and Engineering Department, Rutherford Appleton Laboratory,
Chilton, Oxfordshire, OX11 0QX, England, UK.
Email: j.a.scott@rl.ac.uk

3 The work of this author was supported by the EPSRC grant GR/R46641.

4 Current reports available from “http://www.numerical.rl.ac.uk/reports/reports.html”

Computational Science and Engineering Department
Atlas Centre
Rutherford Appleton Laboratory
Oxfordshire OX11 0QX

December 19, 2003.

1 Introduction

During the last decade there has been considerable interest in spectral orderings for
use in a number of different application areas, including graph partitioning for parallel
computing (for example, Hendrickson and Leland, 1995), image analysis (Shi and Malik,
2000), profile and wavefront reduction algorithms for sparse symmetric matrices (Barnard,
Pothen and Simon, 1995) and, most recently, the study of range-dependent random graphs
(Higham, 2003a, 2003b). Spectral orderings are dependent upon the computation of the
eigenvector corresponding to the smallest non-trivial eigenvalue of the Laplacian matrix
associated with the graph of the problem, the so-called Fiedler vector (Fiedler, 1975).
Early implementations used a Lanczos algorithm to compute the Fiedler vector (Simon,
1991). This can be prohibitively expensive for large problems and led Barnard and Simon
(1994) to propose a multilevel approach that they demonstrated to be capable of achieving
an order-of-magnitude improvement in run time.

Even with a multilevel implementation, computing a spectral ordering for use as
a profile reduction ordering is still significantly more expensive than using a heuristic
algorithm such as Reverse Cuthill-McKee (Cuthill and McKee, 1969) or the Sloan method
(Sloan, 1986). The hybrid Sloan algorithm of Kumfert and Pothen (1997) produces higher
quality orderings than the Sloan method (particularly for very large problems), but it
requires the spectral ordering to be computed. This motivated the development by Hu
and Scott (2001) of an efficient multilevel algorithm for profile and wavefront reduction
that in terms of quality is competitive with hybrid Sloan but is faster because it avoids
the need for any spectral information.

The aim of this report is to describe the design and development of a new flexible
software package that implements both a multilevel algorithm for computing the Fiedler
vector and a number of multilevel profile reduction algorithms. The multilevel Fiedler
vector and profile reduction algorithms are included in a single package because, as we
will see, they employ similar techniques and the software needed to implement them
contains common elements; it is thus efficient for software development and maintenance
to incorporate both within one package. The new code, which is called HSL MC73, is written
in Fortran 95 and will be included in the next release of the mathematical software library
HSL (HSL, 2002).

The report is organised as follows. In Sections 2 and 3, we briefly introduce Fiedler
vectors and multilevel algorithms for the computation of approximate Fielder vectors
and for obtaining profile reducing orderings. A unified framework for these algorithms
is introduced in Section 4. We then describe the design of our new package HSL MC73

in Section 5 and in Section 6 we illustrate its use to reorder a class of range-dependent
random graphs.

1.1 Notation

We end this section with some nomenclature and notation that is used throughout the
remainder of the report. We use plain lowercase letters (such as λ) to refer to scalars.
Bold lowercase letters x are vectors; xj denotes the jth entry of the vector x. (A)ij refers
to the (i, j)th entry of the matrix A. G denotes a graph.

1

Let A be an n× n matrix with a symmetric sparsity pattern. The profile of A is the
total number of entries in the lower triangle when any zero ahead of the first entry in its
row is excluded, that is,

P (A) =
n
∑

i=1

max
(A)ij 6=0

{i + 1− j}.

An undirected graph G is defined to be a pair (V,E) where V is a set of n vertices
{v1, v2, ..., vn} and E is a set of edges defined as unordered pairs (vi, vj) of distinct vertices.
A weighted graph is one for which a (positive) value wi is associated with each vertex vi

and a (positive) weight wij is associated with each edge (vi, vj). An ordering (or labelling)
of a graph G with n vertices is a bijection of {1, 2, ..., n} onto V .

A path of length k in G is an ordered set of distinct vertices (vi1 , vi2 , ..., vik+1
) where

(vij , vij+1
) ∈ E for 1 ≤ j ≤ k. Two vertices are connected if there exists a path between

them. The distance between two vertices u and v is the length of the shortest path
connecting them and is denoted by dist(u, v). The diameter length δ(G) is the greatest
distance between any two vertices in G. A diameter is a shortest path between two vertices
u and v in G whose distance apart is equal to δ(G). A pseudodiameter is either a diameter
or a shortest path between two vertices in G whose distance apart is slightly more than
δ(G).

The adjacency graph G(A) of the symmetric matrix A has vertices V (A) = {1, 2, . . . , n}
and edges E(A) = {(i, j) | (A)ij 6= 0, i > j} . Symmetric permutations of A correspond to
relabelling the vertices of the G(A).

Throughout our discussion, it is assumed that the matrix A of interest is irreducible
so that its adjacency graph G(A) is connected (that is, each pair of distinct vertices
is connected). Disconnected graphs can be treated by considering each component
separately.

2 Introduction to Fiedler vectors and a multilevel approach

We start by defining the Laplacian matrix. Let G = (V,E) be an undirected weighted
graph with (positive) weights {wij}. The weighted Laplacian L(G) is defined to be the
n× n symmetric matrix

L(G) = D −W, (2.1)

where W has entries

(W)ij =

{

wij if (vi, vj) ∈ E
0 otherwise,

and D is the diagonal matrix with entries (D)ii =
∑

i Wij. The unweighted Laplacian
(often simply referred to as the Laplacian) is obtained by setting the weights equal to one.

The Laplacian has a number of important properties; details may be found, for
example, in Mohar (1991). First note that the bilinear form associated with the Laplacian
can be written as

pT L(G)p =
∑

i<j

wij(pi − pj)
2. (2.2)

2

It follows that L(G) is diagonally dominant and positive-semidefinite. Furthermore, it
is easy to see that the smallest eigenvalue is zero, with associated eigenvector e =
[1, 1, . . . , 1]T . Provided G is connected, the smallest eigenvalue is simple and the second
smallest eigenvalue λ2 is positive.

The special properties of the eigenvector x corresponding to λ2 and its relationship
to the connectivity of a graph were first studied by Fiedler (1975). His work provides
much of the theoretical justification of the use of the second eigenvector of L(G) for
graph partitioning and hence this vector is usually called the Fiedler vector. The Fiedler
vector is a real-valued vector but by ordering its components into monotonic increasing
(or decreasing) order a permutation vector p can be induced. Thus p is chosen such that
pi ≤ pj if and only if xi ≤ xj. A permutation induced by the Fiedler vector is what is
meant by a spectral ordering. A key property of this ordering is that if a component xj

in the ordered Fiedler vector is distinct from its neighbours (xj−1 < xj < xj+1), vertex
j must be connected both to its set of predecessors and its set of successors. Similarly,
a set of vertices whose components have identical values distinct from its neighbours
(xj−1 < xj = xj+1 = . . . = xj+s−1 < xj+s) must be connected to its set of predecessors
and its set of successors.

The graph partitioning problem is to find a set of disjoint subsets Vi of the vertex set
V with V =

⋃

i Vi such that the number of edges (vi, vj) ∈ E with vi and vj belonging
to different subsets is small (that is, the edge cut is small) while also satisfying certain
load balance conditions. One approach to this problem is the recursive spectral bisection
(RSB) method of Pothen, Simon and Liou (1990). RSB is based upon computing the
Fiedler vector x. For the initial partition, the median value µ of x is computed and all
vertices j with xj < µ are assigned to subdomain 1, all vertices with xj > µ to subdomain
2, and an equal number of all the vertices j with xj = µ to subdomains 1 and 2. If
partitioning to more than two subdomains is required, the algorithm is applied recursively
to each subdomain until the desired number of partitions is achieved.

The main problem with implementing the RSB method is that computing eigenvectors
of large matrices is expensive. This led Barnard and Simon (1994) to propose a multilevel
algorithm for computing the Fiedler vector. The basic multilevel algorithm proceeds as
follows:

• A series of graphs of successively coarser (smaller) sizes is generated (we discuss this
further in Section 4.1).

• At some point the graph has so few vertices that it is very cheap to compute the
Fiedler vector of the associated Laplacian matrix.

• The coarse graph Fiedler vector is projected from one level to another. At each
level some refinement is performed until, finally, an (approximate) Fiedler vector for
the original Laplacian matrix is obtained. The refinement process is discussed in
Section 4.3.

This algorithm is implemented within the new software package HSL MC73. A key
observation is that, for graph partitioning, it is not necessary to obtain the Fiedler vector
to high accuracy; instead an approximate Fiedler vector is sufficient. Thus HSL MC73 is
designed to compute an approximate Fiedler vector and, as we shall see in our discussion

3

of the software design (Section 5.1), a number of parameters under the user’s control are
used in determining how accurate the requested eigenvector is.

3 Multilevel profile reduction algorithms

In this section we briefly describe the three profile reduction algorithms offered by
HSL MC73, namely the spectral ordering algorithm, the hybrid algorithm and the multilevel
Sloan algorithm.

3.1 Spectral profile ordering algorithm

Following the success of spectral orderings for graph partitioning, Barnard et al. (1995)
proposed using the Fiedler vector to obtain profile reducing orderings for matrices A with
symmetric sparsity patterns. The algorithm is motivated as an attempt to minimize the
two-sum

min
x∈P
{

∑

{i<j: (A)ij 6=0}

(xi − xj)
2}. (3.1)

where P denotes the set of vectors whose components are permutations of

i− (n + 1)/2, i = 1, 2, . . . , n.

That is,
min
x∈P

xT L(G)x (3.2)

where L(G) is the unweighted Laplacian. To make this problem tractable, albeit at the
expense of not computing a guaranteed optimal solution, a heuristic is introduced. Instead
of minimizing over the discrete set P, the problem (3.2) is relaxed to x ∈ Rn with xTe = 0
and ‖x‖2 = ‖p‖2 for any p ∈ P. The solution is then the eigenvector corresponding to the
second smallest eigenvalue of L(G), that is, the Fiedler vector. Applying the permutation
induced by ordering the components of the Fiedler vector to the matrix A gives the so-
called spectral ordering algorithm. In general, it not only reduces the two-sum but also
the profile and wavefront of the matrix. Again, the Fiedler vector does not generally need
to be computed to great accuracy to obtain a good ordering.

Barnard et al. (1995) work only with the unweighted Laplacian associated with the
adjacency graph G(A) of A. However, in his recent work on undirected range-dependent
random graphs, Higham (2003a) computes the Fiedler vector of a weighted Laplacian
and uses it to obtain a spectral ordering (we discuss this further in Section 6). To be as
general-purpose as possible, HSL MC73 offers a multilevel spectral ordering algorithm that
optionally uses a weighted Laplacian.

3.2 Sloan algorithm

Before describing the hybrid algorithm, it is helpful to recall the Sloan algorithm for profile
and wavefront reduction (Sloan, 1986). The method uses the adjacency graph G(A) of A
and has two distinct phases:

1. Selection of a start vertex s and a target end vertex e.

4

2. Vertex reordering.

The first phase looks for a pseudodiameter of G(A) and uses it to provide s and e. A
pseudodiameter may be computed using a modification of the Gibbs-Poole-Stockmeyer
algorithm (see Reid and Scott (1999) for details of an efficient approach). In the second
phase, the chosen start vertex is numbered first and a list of vertices that are eligible to
be numbered next is formed. At each stage of the numbering, the list of eligible vertices
comprises the neighbours of the vertices that have already been renumbered and their
neighbours. The next vertex to be numbered is selected from the list of eligible vertices
to maximise the priority function

P (i) = −W1 inc(i) + W2 dist(i, e), (3.3)

where (W1,W2) are positive weights. The first term, inc(i), is the amount by which the
wavefront will increase if vertex i is ordered next. The second term, dist(i, e), is the
distance between vertices i and the end vertex e. Thus, a balance is maintained between
the aim of keeping the wavefront small and bringing in vertices that have been left behind
(that is, those far away from the target end vertex e). A vertex has a high priority if it
causes either no increase or only a small increase to the current wavefront size and is at a
large distance from the end vertex e. Experiments have shown that the best choice for the
weights (W1,W2) is problem dependent, but either (2, 1) or (16, 1) generally gives good
results (see Reid and Scott, 1999).

Sloan’s algorithm has been enhanced by a number of authors, notably Duff, Reid
and Scott (1989), Kumfert and Pothen (1997), and Reid and Scott (1999). In the HSL
mathematical software library, an efficient Fortran implementation of Sloan’s algorithm is
included as routine MC60, with a straightforward user interface to this package provided
by routine MC61.

3.3 Hybrid algorithm

The hybrid algorithm is a generalisation of the Sloan algorithm proposed by Kumfert and
Pothen (1997). They observed that there are problems on which the spectral algorithm can
perform poorly and this motivated them to propose a hybrid method that combines use
of the spectral ordering with a modified version of the second phase of Sloan’s algorithm.
The first term in (3.3) affects the priority function in a local way, by giving higher priority
to vertices that will result in a small (or negative) increase to the current wavefront. This
is done in a greedy fashion, without consideration of the long-term effect. The second
term acts in a more global manner, ensuring vertices lying far away from the end vertex
are not left behind. The second phase of the Sloan algorithm can therefore be viewed as
an algorithm that refines the ordering implied by the distance function dist(i, e). Thus
the idea of Kumfert and Pothen was to modify the second phase of Sloan’s algorithm so
that, in place of the distance function, it refined the spectral ordering.

The hybrid algorithm chooses as the start vertex s the first vertex in the spectral
ordering and replaces (3.3) with the priority function

P (i) = −W1 inc(i)−W2 ν pi. (3.4)

5

Here ν is a normalising factor and pi is the position of vertex i in the spectral ordering,
also referred to as its global priority value. ν is chosen so that the factor for W2 varies up
to dist(s, e), as in (3.3). Numerical experiments reported by Kumfert and Pothen (1997)
and Reid and Scott (1999) have shown that, for large problems, in terms of the quality
of the orderings produced, the hybrid method with an appropriate choice of weights can
significantly outperform both the spectral and the Sloan algorithms. Our new package
HSL MC73 may be used to compute the multilevel spectral ordering and then it optionally
employs MC60 to compute a hybrid ordering.

3.4 Multilevel Sloan algorithm

The main disadvantage of the hybrid method is that it requires significantly more CPU
time than Sloan’s algorithm because it is more expensive to compute the Fiedler vector
than it is to find a pseudodiameter for A using the (modified) Gibbs-Poole-Stockmeyer
algorithm of Reid and Scott (1999). Even if the Fiedler vector is computed using a
multilevel algorithm, the hybrid algorithm can be too expensive. In an attempt to
avoid computation of the Fiedler vector while still maintaining the quality of the hybrid
algorithm, Hu and Scott (2001) proposed a multilevel version of Sloan’s algorithm.
Mirroring the multilevel Fiedler algorithm introduced in Section 2, the multilevel Sloan
algorithm comprises three separate steps:

• A series of graphs of successively smaller sizes is generated.

• The coarsest graph is reordered using the Sloan algorithm.

• The coarse graph ordering is projected from one level to another by first mapping
the ordering for the previous (coarser) level onto the current level and then
performing refinement using the second phase of Sloan’s algorithm (this is discussed
in Section 4.3).

Numerical results presented by Hu and Scott confirm that this approach is faster than
the hybrid method and, with appropriate coarsening and refinement, produces orderings
that are of comparable quality. Thus, in addition to the multilevel spectral and hybrid
methods, HSL MC73 includes an efficient implementation of the multilevel Sloan algorithm
for profile reduction.

4 Unified framework for the multilevel approach

We now summarise both the multilevel Fiedler and profile reduction algorithms outlined
in Sections 2 and 3 within a single framework. This forms the basis of the design of our
software package HSL MC73. It is convenient to introduce some further notation. The
subscripts f and c are used to represent fine and coarse graph quantities, respectively. For
example, Gf denotes the fine graph with nf vertices and Gc is the graph with nc vertices
obtained after coarsening (nc < nf). We will associate with Gf an nf × nf adjacency
matrix Gf which has a nonzero entry in position (i, j) if and only if vertices i and j are
adjacent in Gf . Gc is defined analogously.

6

When moving from a coarse graph to a fine graph, the Fiedler vector or the ordering
for the coarse graph must be mapped from the coarse graph onto the fine graph. This
mapping is represented by a prolongation (or interpolation) matrix. If P denotes an nf×nc

prolongation matrix, the coarse graph may be expressed as the Galerkin product

Gc ← P T Gf P.

We denote by p either the Fiedler vector or the profile reducing ordering that is
computed for the graph G. We let CoarsestAlg(G) be an algorithm that returns the
Fiedler vector or ordering for the coarsest graph G and let Refine(G,p0) denote the
algorithm that takes the graph G, and its Fiedler vector or ordering p0 and returns a
refined Fiedler vector or ordering p for G.

With this notation, the multilevel Fiedler vector and profile reduction algorithms can
be formally presented as follows. The starting point is the fine graph Gf and associated
adjacency matrix Gf .

FUNCTION MultilevelAlg (Gf)

• If no further coarsening is needed

– pf = CoarsestAlg(Gf)

– return pf

• The coarsening phase:

– set up the nf × nc prolongation matrix P

– Gc ← P T Gf P

– pc = MultilevelAlg (Gc)

• The prolongation and refinement phase:

– p0
f = P pc

– pf = Refine(Gf ,p0
f)

– return pf

In the remainder of this section, we briefly discuss each of the three key steps (coarsening,
the coarse graph algorithm, and prolongation and refinement).

4.1 The coarsening phase

There are a number of ways to coarsen an undirected graph. For graph partitioning the
aim is to ensure a small edge-cut. The most popular method is based on edge collapsing
(Hendrickson and Leland, 1993, Karypis and Kumar, 1999), in which pairs of adjacent
vertices are selected and each pair is coalesced into one new vertex. Each edge of the
fine graph has weight one. Each edge of the coarse graph has a weight associated with
it which is related to the number of edges in the fine graph that it replaces; heavy-edge

7

matching preferentially collapses heavier edges. HSL MC73 uses heavy-edge collapsing in
its implementation of the multilevel Fiedler vector and spectral ordering algorithms.

Hu and Scott (2000) report that for their multilevel Sloan algorithm, heavy-edge
collapsing, while improving on the profiles obtained using the Sloan algorithm, generally
produces profiles that are of a poorer quality than those obtained using the hybrid
algorithm. Instead, following Ruge and Stüben (1987) and Barnard and Simon (1994), Hu
and Scott use a maximal independent vertex set strategy. An independent set of vertices
is a subset of the vertices such that no two vertices in the subset are connected by an edge
in the graph. An independent set is maximal if the addition of an extra vertex always
destroys the independence. Each vertex of the fine graph has weight one and each vertex
of the coarse graph has a weight related to the number of neighbouring fine graph vertices
that belong to the maximal independent set. The algorithm for constructing a maximal
independent set used by HSL MC73 is discussed by Hu and Scott (2001).

Having chosen an appropriate coarsening process, it is applied recursively until one of
the following is achieved:

• the number of vertices nc in the coarsest graph is less than a preset number

• the number of levels exceeds a preset limit

• the ratio of the number of vertices in two successive graphs exceeds a preset constant.

The last condition is necessary, particularly if edge collapsing is used, because it is possible
that after a number of levels of coarsening the coarsest graph has one supervertex with
a very high vertex weight, possibly exceeding 50% of the total. In this case, subsequent
coarsening will not reduce the size of the graph significantly. Furthermore, a multilevel
algorithm with only a small reduction between fine and coarse graph sizes will have a high
algorithmic complexity.

4.2 The coarse graph algorithm

If the aim of the multilevel algorithm is to compute an approximate Fiedler vector, then
on the coarsest graph Gc the Fiedler vector x = pc of the associated Laplacian Lc must
be computed. As the number of vertices nc in the coarsest graph is small compared with
the order n of the original matrix A, this can be done cheaply. Clearly, there are several
possible approaches; in HSL MC73 a standard Lanczos algorithm is used.

For the multilevel Sloan algorithm, a profile reducing ordering pc must be computed
on Gc. HSL MC73 uses the enhanced Sloan algorithm of Reid and Scott (1999) to compute
pc.

4.3 Prolongation and refinement

The prolongation step depends on the coarsening algorithm used. When computing the
Fiedler vector, HSL MC73 performs the coarsening using heavy-edge collapsing and the
position of a vertex j in the coarse graph is injected to give a value to its parent (or
parents). A parent of j is defined to be a vertex on the fine graph that either coalesces
into j, or remains as j itself. The prolongation matrix P thus has entries (P)ij given by

(P)ij =

{

1, if fine graph vertex i is a parent of coarse graph vertex j,
0, otherwise.

(4.1)

8

Having prolonged the coarse grid Fiedler vector onto the fine grid (p0
f = P pc), the

Rayleigh Quotient Iteration algorithm (see, for example, Parlett, 1980) is used to give a
more accurate result.

ALGORITHM RQI (x, L, ε)

θ← xT Lx

do

Solve (L− θI)z = x

x← z/||z||

θ← xT Lx

if ‖Lx− θx‖ < ε return x

end do

An approximate eigenvector x = p0
f of Lf is input and, after refinement, a more

accurate eigenvector pf is output. Here ε is the convergence tolerance. A limit is normally
imposed on the number of iterations performed at each refinement step. A sparse indefinite
linear system of the form (Lf − θI)z = x must be solved at each iteration. The SYMMLQ
algorithm (Paige and Saunders, 1974), which is an extension of the conjugate gradient
method, is used by HSL MC73.

When coarsening is based on a maximal independent vertex set, the vertices of Gc

comprise the maximal independent set of Gf . For each coarse graph vertex j, let fine(j)
denote the corresponding fine graph vertex. For each fine graph vertex i, define mdeg(i) to
be the number of neighbouring fine graph vertices that belong to the maximal independent
set. The prolongation matrix has entries

(P)ij =











1, if i = fine(j),
1

mdeg(i) , if i↔ fine(j), i 6= fine(j),

0, otherwise

(4.2)

where i↔ j if i and j are neighbours.
Prolongation of the coarse grid ordering pc onto the fine grid gives an ordering p0

f

that must be refined. The multilevel Sloan algorithm does this using the second phase of
Sloan’s algorithm with the priority function

P (i) = −W1 inc(i) −W2 ν {p0
f}i. (4.3)

Here ν is again a normalising factor, (W1, W2) are positive weights, and the global priority
value {p0

f}i is the position of vertex i in the prolonged coarse grid ordering. The vertex

which is first in the ordering p0
f is chosen as the start vertex; a list of eligible vertices is

then constructed and the ordering of the fine grid proceeds as in the Sloan algorithm with
(3.3) replaced by (4.3).

9

5 Software design

In this section, we discuss the design of our new software package HSL MC73 for
computing either the (approximate) Fiedler vector of the unweighted or weighted Laplacian
associated with A or a symmetric permutation that reduces the profile and wavefront
of A by using a multilevel algorithm. The new subroutines are named according to
the naming convention of the mathematical software library HSL. The package itself
is now available; details of obtaining a licence to use the code can be found at
www.cse.clrc.ac.uk/nag/index.shtml.

The interface is designed to be straightforward to use but at the same time offers
flexibility through the choice of algorithms available and the freedom to set parameters
that control the performance of the algorithms. The following procedures are available to
the user:

(a) The initialization subroutine MC73 INITIALISE must first be called. This call gives
default values to the parameters that control the execution of the package (see
Section 5.1).

(b) If the user wishes to compute the (approximate) Fiedler vector of the (weighted)
Laplacian, MC73 FIEDLER should be called.

(c) To compute a symmetric permutation that aims to reduce the profile and wavefront,
MC73 ORDER should be called.

(d) MC73 PRINT MESSAGE can be used after a return from MC73 FIEDLER or MC73 ORDER

to print the error or warning message associated with a nonzero error flag.

We describe these now in greater detail.

5.1 The control parameters

The derived data type MC73 CONTROL is used to control the action. The user must declare
a structure of type MC73 CONTROL. Components of this derived type are initialised to their
default values by a call to MC73 INITIALIZE, and the user does not need to reset them
unless values other than the defaults are required. The components of MC73 CONTROL

include stream numbers to which error and warning messages, as well as diagnostic
printing, are sent. A further component controls the level of diagnostic printing the
user requires. The remaining components, which we now discuss, are likely to be of
most interest to the more experienced user. The default values were all selected following
extensive numerical experiments.

COARSEST SIZE determines the problem size in the multilevel hierarchy below which no
further coarsening is performed. The default value is nc = 200.

MGLEVEL holds the maximum number of levels in the multilevel hierarchy and has a default
value of 100. If the default is used then, in general, coarsening will terminate long
before MGLEVEL is reached (because further coarsening would reduce the number of
vertices to less than COARSEST SIZE). If the user sets MGLEVEL to one, the multilevel
Fiedler code MC73 FIEDLER reduces to the Lanczos algorithm and the multilevel

10

Sloan algorithm is replaced by the Sloan algorithm. In the latter case, MC73 ORDER

calls the HSL code MC61 to compute a profile-reducing ordering.

MAX REDUCTION and MIN REDUCTION are maximum and minimum grid reduction factors
(MAX REDUCTION > MIN REDUCTION). They have default values of 0.8 and
0.1, respectively. If two successive grids have nc and nf vertices, respectively,
coarsening continues while nc < nf∗MAX REDUCTION and nc > nf∗MIN REDUCTION.
MAX REDUCTION must lie in the interval (0.5, 1.0); values greater than 1 are treated
as 1 and values less than 0.5 are treated as 0.5. This restriction avoids a slow
reduction between fine and coarse graph sizes.

MLANCZ is the maximum number of Lanczos vectors used in the computation of the Fiedler
vector on the coarsest grid. The default value is 300.

TOL, TOL1, and RTOL hold convergence tolerance parameters used in the computation of
the Fiedler vector and the multilevel spectral ordering. On the coarsest graph Gc

the norm of the residual Lcpc− λ2pc must be less than TOL. Here λ2 is the smallest
positive eigenvalue and pc is the approximate Fiedler vector (with ‖pc‖2 = 1). TOL1
holds the convergence tolerance for the RQI algorithm. TOL and TOL1 have default
value 10−3. Smaller values may slow convergence while providing greater accuracy.
If the computation of the Fiedler vector is requested, the convergence tolerance used
by the SYMMLQ algorithm within the RQI algorithm is min(10−3∗RTOL, 10∗TOL).
If the Fiedler vector is used within MC73 ORDER to obtain a spectral ordering, less
accuracy is generally required and in this case the tolerance used by SYMMLQ is
min(RTOL, 10∗TOL). The default value for RTOL is 10−2.

MAXIT controls the maximum number of Rayleigh Quotient iterations at each refinement
step. The default value is 10.

HAGER EXCHANGE controls the use of the Hager exchange algorithms that aim to refine the
profile reducing ordering (see below for further details). By default, no exchanges are
performed but if HAGER EXCHANGE > 0, down/up exchanges are applied a maximum
of HAGER EXCHANGE times.

5.2 Computation of an approximate Fiedler vector

MC73 FIEDLER accepts the pattern of the lower-triangular part of the matrix A. This is
checked for errors and the sparsity pattern of the whole of A (with the diagonal removed)
is constructed using the HSL package of sparse matrix manipulation routines HSL MC65.
Whether or not the user requires the weighted or unweighted Laplacian is controlled by
the optional argument WGT. If this array is present, it must be set by the user to hold the
weights corresponding to the nonzero entries of A. In this case, the weighted Laplacian is
constructed; otherwise the unweighted Laplacian is used.

The approximate Fiedler vector is then computed using the multilevel algorithm and
is returned to the user without sorting. If A is reducible or equivalently, if the adjacency
graph G(A) of A has more than one component, the approximate Fiedler vector for
each component is computed and the resulting Fiedler vectors are merged into the array

11

FVECTOR. The integer array LIST is used to index the component to which each variable
belongs. If a component consists of a single vertex, it is assigned the value 0 in LIST and
in the returned Fiedler vector.

5.3 Computation of a symmetric permutation

The algorithm implemented by MC73 ORDER is determined by the parameter JOB, which
must be set by the user. The possible values are:

1: multilevel Sloan algorithm

2: multilevel spectral ordering algorithm

3: hybrid ordering algorithm.

Again, the user must supply the pattern of the lower-triangular part of A and, for JOB = 2

or 3, the use of the weighted Laplacian is controlled by the presence of the optional
argument WGT. The computed ordering starts with the components that consist of single
vertices and is followed in turn by the orderings of each of the non-trivial components.

If JOB = 1, the adjacency graph G(A) is constructed and the multilevel Sloan algorithm
applied to each component of this graph. At the coarsest level, the HSL package MC60

that implements the (enhanced) Sloan algorithm is used with the two pairs of weights
(2,1) and (16,1) and the ordering with the smallest profile is chosen as the coarse graph
ordering. At each level, MC60 is again used to perform the refinement, but in this case the
pairs (1,2) and (16,1) are used (this choice is based on the reported experience of Hu and
Scott, 2001).

If JOB = 2, the approximate Fiedler vector of the Laplacian of each component is
computed. The entries of this vector are sorted in non-decreasing order to give the required
multilevel spectral ordering.

If JOB = 3, the algorithm proceeds as in the case JOB = 2. Once the spectral ordering
has been computed, MC60 is used (on the finest graph) to compute the hybrid ordering.
Two sets of weights (1,2) and (16,1) are used and the ordering with the smallest profile
is selected (see Reid and Scott, 1999). If different weights are wanted, the user may call
MC60 with his or her own choice of weights after the spectral ordering has been computed.

For each value of JOB, the computed ordering may optionally be refined by the HSL
routine MC67, which implements Hager’s exchange algorithms. Hager (2000) suggested
two methods for improving any given permutation for profile reduction. These methods
work only with the sparsity pattern of the matrix. His down exchange algorithm involves
a cyclic permutation, that is, the successive exchange of rows (k, k +1), (k +1, k +2), . . . ,
(l − 1, l) of the permuted matrix and interchanging corresponding columns. For a given
k, Hager finds the value of l that most reduces the profile. He performs a pass over the
matrix with k taking the values n− 1, n− 2, . . . , 1; he calculates l for each k and, if this
gives a profile reduction, applies the corresponding permutation. Hager’s up exchange
is similar, with the direction reversed. For a given k, he exchanges rows and columns
(k, k−1), (k−1, k−2), . . . , (l+1, l), finding the value of l that most reduces the profile. He
performs a pass over the matrix with k taking the values 2, 3, . . . , n. Hager proposed using
the down exchange and up exchange schemes in an iterative fashion: the down exchange

12

algorithm is first applied, followed by the up exchange algorithm, followed by the down
exchange algorithm, and so on. If the unweighted graph of A is used, HSL MC73 will perform
down/up exchanges provided the user resets the control parameter HAGER EXCHANGE to a
nonzero value; if other combinations of down and up exchanges are required, the user may
call MC67 directly after the call to MC73 ORDER. Note that if the weighted graph is used,
HAGER EXCHANGE is not accessed and exchanges are not performed.

6 An application: spectral reordering of range-dependent

random graphs

In this section, we report on using HSL MC73 to obtain spectral orderings for range-
dependent random graphs. The numerical experiments were performed on a single Xeon
3.06 GHz processor of a Dell Precision Workstation 650 with 4 GBytes of RAM under
the Red Hat 9 Linux operating system. The NAG Fortran 95 compiler was used with the
compiler optimization flag -O. Unless otherwise stated, the default values are used for all
the HSL MC73 control parameters discussed in Section 5.1.

Higham (2003a) defines an undirected range-dependent random graph as follows.

Definition 1 Given a set of edge density functions {f [k](x)}nk=1, with f [k](x) = 0 for
x < 0, the corresponding undirected range-dependent random graph (URDRG) has vertices
ordered 1, 2, . . . , n with independent edge weights wij such that wij has density f [j−i](x).

Higham considers the question “If the vertices of a URDRG are ordered arbitrarily,
can an ordering be found that reveals the underlying short-range connectivity patterns?”
Higham shows that a possible approach to this problem is to obtain a reordering for the
URDRG using the spectral algorithm applied to the weighted graph. To illustrate the
approach, edge weights for the original URDRG are generated from a pseudo-random
number generator using an exponential distribution with parameter (i− j)2. An arbitrary
symmetric row and column permutation is applied to the URDRG; this results in a
“shuffled” graph, which is then reordered using the spectral algorithm. The interest is
in how close the final graph is to the original URDRG.

To measure how well the unshuffling works, we need some notation. Let q denote the
initial permutation such that qj is the position in the original graph of vertex j in the
shuffled graph. Similarly, let p denote the spectral ordering such that pi is the position in
the final graph of vertex i in the shuffled graph. Thus (q(p))i is the position in the original
graph of vertex i in the final graph. If the unshuffling is exact, plotting q(p) would give
points on a straight line with slope ±1.

We now define the maximum and mean errors in the unshuffling to be perr and pavg
where

perr = min

(

max
i
|(q(p))i − i|,max

i
|(q(p))i − (n− i + 1)|

)

and

pavg =
1

n
min

(

∑

i

|(q(p))i − i|,
∑

i

|(q(p))i − (n− i + 1)|

)

13

To define the two-sum error, let the weights of the original and final graphs be wij and
ŵij , respectively. Then

2sumerr =

∣

∣

∣

∣

∣

∑

ij(i− j)2 ŵij −
∑

ij(i− j)2 wij
∑

ij(i− j)2wij

∣

∣

∣

∣

∣

(6.1)

Thus 2sumerr records how close the two-sum of the final unshuffled matrix is to that of
the original matrix. Clearly, the three statistics should be small if the unshuffling (that
is, the spectral reordering of the permuted graph) has been successful.

If we generate the weights for the URDRG using f [k](x) = k2exp(−k2x), the associated
matrix A will be dense but with a large number of small entries. To obtain a sparse matrix
Ã we “drop” small entries, that is, we set them to zero. Once the resulting sparse matrix
has been shuffled, HSL MC73 is employed to compute the spectral ordering of the resulting
weighted Laplacian. Note that the errors perr and pavg are for the spectral ordering
applied to the sparse matrix Ã but 2sumerr measures the success of the unshuffling
relative to the original matrix A.

Higham (2003a) derives Ã by retaining only the largest 20 per cent of the entries of
A. We do not follow this method here for a number of reasons. Firstly, the choice of 20
per cent appears to be somewhat arbitrary and the effects of varying this choice on both
the quality of the ordering and on the computational time are not considered. Moreover,
to retain a fixed percentage of the entries requires n2 entries to be stored and then sorted.
For very large n this will be prohibitively expensive in terms of the memory required as
well as the time needed for sorting. Instead, we set all entries that are less than a given
value ε to zero. We have performed experiments with a range of values of n and have
examined how sensitive the results are to the choice of the dropping parameter ε. In
Table 6.1, results are presented for n = 200, 2000 and 20000 using different choices for ε.
In each case, 100 examples are generated; we report the maximum and mean values of
2sumerr and the mean CPU time (in seconds) to compute the spectral ordering. We also
report the density of Ã, that is 100 ∗ nz/n2, where nz is the number of entries in Ã. In
our tests we consider ε ≤ 0.01; we found that larger values can lead to so many entries
being dropped that Ã may have columns with no nonzero entries. We see that, provided ε
is sufficiently small, the 2sumerr is not very sensitive to the precise choice of ε, but as ε is
reduced, the density of Ã increases and this leads to an increase in the CPU time. Based
on our findings, in the remainder of our experiments we set ε = 0.001.

Results obtained using HSL MC73 for a range of values of n are given in Table 6.2.
Again, in each case, 100 examples are generated. Because we are anxious for MC73 ORDER

to converge to the correct eigenvector, we set the control parameter RTOL used by the
SYMMLQ algorithm to 10−5 (see Section 5.1). Even with a small value for RTOL, we
cannot guarantee convergence to the required vector. In many applications, the spectral
ordering obtained from a misconverged vector (that is, from an eigenvector that is not the
Fiedler vector) will be adequate (for example, it will usually provide a good profile-reducing
ordering, see Kumfert and Pothen, 1997) but experiments show that it will not give a
good reordering of a shuffled matrix. The entry in the final column is the number of times
HSL MC73 misconverged; these misses are not included in the computation of the maximum
and mean values reported in other columns. We see that, in general, HSL MC73 is able to

14

n ε Density 2sumerr Time

of Ã max. mean

200 1e-02 8 3.47e-03 4.06e-04 0.02
1e-03 25 8.85e-04 2.83e-04 0.03
1e-04 63 9.18e-04 2.72e-04 0.06
1e-05 93 9.18e-04 2.62e-04 0.09

2000 1e-02 0.8 3.57e-04 1.95e-05 0.13
1e-03 3 7.00e-05 1.08e-05 0.26
1e-04 9 8.26e-05 1.31e-05 0.74
1e-05 25 5.98e-04 4.08e-05 2.24

20000 1e-02 0.08 3.93e-05 5.01e-06 1.31
1e-03 0.3 7.66e-05 2.77e-06 3.28
1e-04 0.9 2.60e-04 2.95e-05 8.92
1e-05 3 4.67e-05 1.94e-05 29.1

Table 6.1: The sensitivity of the reordering algorithm to the dropping parameter ε. Times
for computing the spectral ordering are in seconds.

n perr pavg 2sumerr Misses
max. mean max. mean max. mean

500 3 1.66 1.24e-01 8.01e-02 3.20e-04 8.22e-05 0
1000 7 1.84 1.14e-01 8.25e-02 4.05e-04 3.28e-05 0
2000 5 2.09 1.04e-01 8.34e-02 7.00e-05 1.08e-05 0
3000 5 2.18 1.04e-01 8.25e-02 6.05e-05 7.32e-06 0
5000 10 2.59 9.52e-02 8.18e-02 2.08e-04 9.09e-06 0

10000 16 2.67 8.92e-02 8.05e-02 1.59e-04 5.06e-06 0
20000 21 3.55 8.79e-02 8.05e-02 7.66e-05 2.77e-06 2
40000 35 3.83 8.82e-02 8.03e-02 7.67e-05 2.14e-06 2

Table 6.2: Statistics for the spectral reordering algorithm for a range of values of n.

15

provide an ordering that unshuffles the matrix. However, occasionally misconvergence
does occur for larger values of n.

Our final set of results compares using HSL MC73 with using the sparse eigensolver EA16.
The code EA16 is designed to compute selected eigenvalues of large sparse symmetric
problems using an implicitly restarted block Lanczos method. The algorithm used is
described in Meerbergen and Scott (2000) and the code is available in HSL. In our tests,
we use default settings for the EA16 control parameters. We start by using the simple
regular mode (MODE = 1), with a block size of 1, and request the two left-most eigenvalues
(WHICH = 2 and NWANT = 2). We take the second eigenvector as an approximation to the
Fiedler vector and use this to determine the required spectral ordering. The efficiency of
EA16 is dependent upon the number NV of Lanczos vectors used. This parameter must be
set by the user. Larger values tend to result in the restarted Lanczos process requiring
fewer restarts but more work is performed at each iteration. Furthermore, because the
code requires a real work array of size at least n∗NV, for large problems NV may be limited
by the amount of memory available. In our experiments, we set NV = 100 (for n = 40000

n perr pavg 2sumerr Misses
HSL MC73 EA16 HSL MC73 EA16 HSL MC73 EA16 HSL MC73 EA16

500 1.66 1.63 7.90e-02 8.01e-02 7.44e-05 8.22e-05 0 0
1000 1.88 1.84 8.10e-02 8.25e-02 2.69e-05 3.28e-05 0 0
2000 2.01 2.09 7.99e-02 8.34e-02 2.69e-05 1.08e-05 0 0
3000 2.03 2.18 7.85e-02 8.25e-02 8.63e-06 7.32e-06 0 0
5000 2.59 2.11 8.18e-02 7.90e-02 9.09e-06 5.18e-06 0 0

10000 2.67 2.50 8.05e-02 7.76e-02 5.06e-06 2.44e-06 0 0
20000 3.55 2.10 8.05e-02 7.75e-02 2.77e-06 1.23e-06 2 0
40000 3.83 2.30 7.03e-02 7.68e-02 2.14e-06 6.17e-07 2 0

Table 6.3: A comparison of HSL MC73 and EA16 for a range of values of n.

we used NV = 200 since this cut the convergence time by almost half).
In Table 6.3, we compare the maximum and mean values of perr, pavg and 2sumerr

for HSL MC73 and EA16; again 100 examples are run for each n (10 examples for EA16

when n ≥ 10000) and the number of “misses” (misconvergence of the Fiedler vector) is
given. In general, the spectral orderings obtained using the two different approaches are
of comparable quality but EA16 appears to be slightly more reliable for large n.

The important advantage of the multilevel approach over EA16 in regular mode is its
speed. The average CPU times (in seconds) are recorded in Table 6.4. We see that as
n doubles, the time for HSL MC73 increases by a factor a little over 2. However, as n
increases, the cost of EA16 using the regular mode quickly becomes prohibitive. To try
and reduce the EA16 time we have also run using the shift-invert mode (MODE = 2). To
do this, we have used the useful facility offered by EA16 of allowing the user to start the
computation using the regular mode and then automatically switches to shift-invert mode
once the code has found a suitable shift σ. The disadvantage of working in shift-invert
mode is the need to solve linear systems of the form (L − σI)x = b. We use the HSL
direct solver MA57 to do this (Duff, 2002). (L−σI) is factorized once and then the factors
used to solve repeatedly for different right-hand sides. We record in Table 6.4 the time

16

n MC73 EA16

Regular Shift-invert

500 0.06 0.16 0.11 (0.02)
1000 0.13 0.54 0.22 (0.04)
2000 0.26 2.10 0.44 (0.09)
3000 0.40 4.53 0.68 (0.15)
5000 0.73 10.2 1.12 (0.24)

10000 1.60 41.0 2.48 (0.55)
20000 3.28 233 12.2 (1.48)
40000 8.19 1385 57.2 (2.68)

Table 6.4: A comparison of the CPU times (in seconds) for HSL MC73 and EA16 for a range
of values of n. The figures in parentheses are the times taken to factorize the shifted
Laplacian using MA57.

taken by MA57 for the factorization of the shifted Laplacian. We see that, although EA16

remains more expensive than HSL MC73, use of the shift-invert mode substantially speeds
up the computation of the Fiedler vector.

7 Acknowledgements

We would like to thank Des Higham of the University of Strathclyde for helpful discussions
on his work on URDRGs. We are also grateful to Iain Duff and John Reid of the Rutherford
Appleton Laboratory for many useful comments on a draft of this report.

References

S.T. Barnard and H.D. Simon. A fast multilevel implmentation of recursive spectral
bisection for partitioning unstructured problems. Concurrency: Practice and
Experience, 6, 101–117, 1994.

S.T. Barnard, A. Pothen, and H.D. Simon. A spectral algorithm for envelope reduction
of sparse matrices. Numerical Linear Algebra with Applications, 2, 317–198, 1995.

E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. in
‘Proceedings of the 24th National Conference of the ACM’. Brandon Systems Press,
1969.

I.S. Duff. MA57– a new code for the solution of sparse symmetric definite and indefinite
systems. Technical Report RAL-TR-2002-024, Rutherford Appleton Laboratory,
2002.

I.S. Duff, J.K. Reid, and J.A. Scott. The use of profile reduction algorithms with a frontal
code. Inter. Journal on Numerical Methods in Engineering, 28, 2555–2568, 1989.

M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its
application to graph theory. Czechoslovak Math. J., 25, 619–633, 1975.

17

W.W. Hager. Minimizing the profile of a matrix. Department of Mathematics, University
of Florida (www.math.ufl.edu/∼hager/), 2000. To appear in SIAM J. Scientific
Computing.

B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. Technical
report sand93-1301, Sandia National Laboratories, Allbuquerque, NM, 1993.

B. Hendrickson and R. Leland. The Chaco user’s guide: Version 2.0. Technical Report
SAND94-2692, Sandia National Laboratories, Albuquerque, NM, 1995.

D.J. Higham. Spectral reordering of a range-dependent weighted random graph.
Mathematics Research Report 14, Univeristy of Strathclyde, 2003a.

D.J. Higham. Unravelling small world networks. J. Comp. Appl. Maths, 2003b. To appear.

HSL. A collection of Fortran codes for large scale scientific computation, 2002. Full details
from www.cse.clrc.ac.uk/nag/hsl/.

Y.F. Hu and J.A. Scott. A multilevel algorithm for wavefront reduction. Technical Report
RAL-TR-2000-031, Rutherford Appleton Laboratory, 2000.

Y.F. Hu and J.A. Scott. A multilevel algorithm for wavefront reduction. SIAM J. Scientific
Computing, 23, 1352–1375, 2001.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing, 20, 359–392, 1999.

G. Kumfert and A. Pothen. Two improved algorithms for envelope and wavefront
reduction. BIT, 37:3, 559–590, 1997.

K. Meerbergen and J.A. Scott. The design of a block rational lanczos code with partial
reorthogonalization and implicit restarting. Technical Report RAL-TR-2000-011,
Rutherford Appleton Laboratory, 2000.

B. Mohar. The Laplacian Spectrum of Graphs. J. Wiley and Sons, 1991.

C.C. Paige and M.A. Saunders. Solution of sparse indefinite systems of linear equations.
SIAM J. Numerical Analysis, 12, 617–629, 1974.

B.N. Parlett. The Symmetric Eignevalue Problem. Prentice Hall, Engglewood Cliffs, New
Jersey, 1980.

A. Pothen, H.D. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors of
graphs. SIAM J. Matrix Analysis and Applications, 11, 430–452, 1990.

J.K. Reid and J.A. Scott. Ordering symmetric sparse matrices for small profile and
wavefront. Inter. Journal on Numerical Methods in Engineering, 45, 1737–1755,
1999.

J. W. Ruge and K. Stüben. Algebraic multigrid (AMG). in S. F. McCormick, ed.,
‘Multigrid Methods’, Vol. 3 of Frontiers in Applied Mathematics, pp. 73–130. SIAM,
Philadelphia, PA, 1987.

18

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans. Pattern
Analysis and Machnine Intelligence, 22, 888–905, 2000.

H.D. Simon. Partitioning of unstructured problems for parallel processing. Computing
Systems in Engineering, 2, 135–148, 1991.

S.W. Sloan. An algorithm for profile and wavefront reduction of sparse matrices. Inter.
Journal on Numerical Methods in Engineering, 23, 1315–1324, 1986.

19

