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A note on the second-order convergence of
optimization algorithms using barrier functions
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ABSTRACT

It has long been known that barrier algorithms for constrained optimization can produce
a sequence of iterates converging to a critical point satisfying weak second-order necessary
optimality conditions, when their inner iterations ensures that second-order necessary
conditions hold at each barrier minimizer. We show that, despite this, strong second-order
necessary conditions may fail to be attained at the limit, even if the barrier minimizers
satisfy second-order sufficient optimality conditions.
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1 Introduction
We consider the constrained optimization problem
minimize f(z) (1.1)

subject to
ci(z) >0 for all i € Z, (1.2)

where f and the ¢; map R” into R and 7 is a finite set of indices. We assume that f(z) and the
ci(z) are twice continuously differentiable on an open set containing

F={zeR"|ci(z) >0 forall i T}

Our principal interest is in identifying nonlinear programming methods which, under reasonable
assumptions, are capable of ensuring convergence to points at which second-order necessary
optimality conditions are satisfied. When the problem is unconstrained, it is well known that
a number of optimization techniques (principally trust-region-, but also linesearch-, based, see
Moré, 1983, Shultz, Schnabel and Byrd, 1985, McCormick, 1977, and Moré and Sorensen, 1979)
are capable of guaranteeing convergence to second-order points. The difficulty when constraints
are present is that the second-order conditions are not expressible in a computationally convenient
form. Indeed, even establishing that the conditions are satisfied is, in general, an NP-hard problem
(see Murty and Kabadi, 1987, and Vavasis, 1992).
Let 4(z,y) be the Lagrangian function

ay) = (o) = Y icilo): (13)
icT
Under suitable constraint qualifications (see Gould and Tolle, 1972, Mangasarian, 1979, and the
papers quoted therein), it is well known that a (local) solution z, of (1.1)—(1.2), together with an
associated set of Lagrange multipliers v, satisfies the first-order (Karush-Kuhn-Tucker) necessary
conditions

Vol(zse,y:) = 0 (1.4)
ci(z) >0 and (y«); > 0 forall i€
and c¢;(z«)(y«); = 0 forall i€ Z, (1.6)

as well as the strong second-order necessary condition

§TV gol(4,y)s > 0 for all s € Ny, (1.7)
where
sTVyci(ze) =0 forall i€ {j € A(z:) | (y«); >0} and
— c Rn e * * *)] 1.8
Ny {s sTVzei(ze) >0 forall i€ {j € A(zs) | (y); =0} ’ (18)
and

A(z) ={i € T| ¢i(z) =0}

is the active set at z. The second-order necessary conditions given here are those given by
Fletcher (1981 Section 9.3). Significantly weaker conditions are given by, for instance, Fiacco



and McCormick (1968 Section 2.2) and Gill, Murray and Wright (1981 Section 3.4), which are
equivalent to requiring that the solution at the constrained minima under consideration is strictly
complementary, that is

{i € A(zs) | (y+)i =0} = 0, (1.9)
and thus that

Ny =N def {s eR" sTVa;ci(ac*) =0 forall 7€ A(z,) } . (1.10)

While such an assumption is realistic for linear programming,—all linear programs have such
solutions (see, Wright, 1997, page 28), and many interior-point methods find one—it frequently
does not hold for nonlinear programs. On the other hand, the advantage of requiring (1.9) is that
the second-order optimality conditions reduce to checking that the Hessian of the Lagrangian is
positive (semi-) definite on the manifold (1.10) rather than in the cone (1.8). We shall call the
requirement that

8TV ol (z4,y)s > 0 forall s€ N (1.11)

a weak second-order necessary condition. That (1.11) is weaker than (1.7) is clear once one realizes
that the weak condition is satisfied by the mazimizer of the quadratic programming problem
min —|z][3,
>0
while (1.4)—(1.6) and the strong condition are together both necessary and sufficient for local
optimality of general quadratic programs (see Contesse, 1980, and Borwein, 1982).

A number of algorithms for solving (1.1)—(1.2) have been shown to converge to points at
which the weak second-order necessary conditions hold (see, for example, Gay, 1984, Bannert,
1994, Bonnans and Launay, 1995, Facchinei and Lucidi, 1996, and Vicente, 1996). In particular,
Auslender (1979) has shown that that, if one traces the trajectory of points at which second-order
necessary conditions hold for the barrier function—such points may be found by applying trust-
region or line-search methods to the unconstrained barrier problems—then the limit point will
satisfy the weak second-order conditions for (1.1)—(1.2). However, to our knowledge, no algorithm
has been shown to converge to a point at which the strong conditions hold. In this paper, we ask
the natural question as to whether interior-point (or, specifically, barrier) methods might do so.
It is our purpose to show that, in general, the limit of this barrier trajectory may fail to satisfy
the strong second-order necessary conditions.

2 A simple counter-example

We shall consider the logarithmic barrier function
bo(z, 1) = f(2) — Y log ci(),
and the reciprocal barrier functions

bao,p) = Sl + 230 (2:1)



for & > 0.(). These functions depend on the barrier parameter & > 0. In a typical barrier method,
(approximate) stationary points of the barrier functions are traced as the barrier parameter is
reduced to zero, and, under reasonable assumptions, this leads to convergence to a Karush-Kuhn-
Tucker point.

The example we shall exhibit is a bound-constrained quadratic program of the form

min 1z7 Haz, (2.2)

where H is a symmetric, indefinite n x n matrix. For future reference, when (1.1)—(1.2) is of the
form (2.2), the first and second derivatives of the barrier functions above are given by

Vaba(, 1) = Vo f (x) — pX Ve (2.3)
and
Vagba (T, p) = Vo f () + pla + 1)X7(a+2)>
for all & > 0, where e is the vector of all ones and where X = diag(z1,...,z,). We also note that

Vil(z,y) = H (2.4)

because of (1.3).
We now choose a sequence {uy} of barrier parameters converging to zero and we define H to

be of the form

ZZT

H=1-(a+32)

P 25)

where I is the identity matrix and where we have chosen z = e — nej, the vector e; being the
first vector of the canonical basis. We then verify that

2ZTe = ele—nele=n—n=0, (2.6)
zTel = eTel - nelTel =1-—n
and
|23 = efe + n2efe; — 2nele = n4+n? — 2n = n(n —1). (2.8)

The definition (2.5) and (2.6) together imply that
He =e. (2.9)

Now let

1

z, = pp e (2.10)

We then verify that x is a minimizer of the problem

min by (x, k) (2.11)

zERM
>0

W The scaling factor a in (2.1) is, perhaps, nonstandard, but may easily be assimilated into the barrier parameter.
This allows for a uniform treatment of both barrier functions.



that satisfies second-order sufficient optimality conditions for this problem. Indeed, the first-order
optimality condition holds since

1 a+1 1
—(at1 P l-at2 a2
Vaba Tk, pi) = Hry — pX, (at1)e — pptle—py “Pe=pp(e—e) =0,

where we used (2.3), (2.9) and (2.10), and we have also that

T
_ 2z
Vasba(@rs i) = H + ppla+ DX T = 114 (a + 3) (I - W)
2
is obviously positive definite since the first term of the last right-hand side is positive definite and
the last term in brackets is an orthogonal projector, which is therefore positive semidefinite. As

expected, {z} converges to zero, the only critical point of problem (2.2). However, using (2.5),
(2.7) and (2.8), we find that

—~

el 2)? B . (n—1)2 - n—(a+2)(n—-1)
1 _1_(a+§)n(n—1)_ n ’

elTVMZ(m,y)el = elTHel =1—(a+32) EE
2

which is strictly negative for all values of n satisfying the inequality

3
Ol+§

e
a+5

n >

But e; belong to Ny = {z € R" | z > 0}, and thus the strong second-order necessary conditions
do not hold at the origin.

3 Conclusion

We have shown that the strong second-order necessary optimality conditions for inequality con-
strained problems may not hold at limit points of a sequence of barrier minimizers, even if each of
these minimizers satisfies the second-order sufficient conditions for unconstrained minimization.
This negative conclusion is valid for a large class of barrier functions, including the popular log-
and reciprocal barriers.

This result casts doubts on the possibility of obtaining strong second-order convergence prop-
erties for a number of practical interior-point methods for nonlinear programming. However, it
also raises the intriging question of determining if there are barrier functions, outside the class
considered here, for which the desired strong second-order convergence properties are satisfied.
More generally, the question of whether there are effective methods which ensure convergence to
stong second-order points remains open.
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