
RAL-TR-2004-009

A filter-trust-region method for

unconstrained optimization

Nicholas I. M. Gould1,2,3, Caroline Sainvitu4,5 and Philippe L. Toint4,5

ABSTRACT

A new filter-trust-region algorithm for solving unconstrained nonlinear optimization problems

is introduced. Based on the filter technique introduced by Fletcher and Leyffer, it extends an

existing technique of Gould, Leyffer and Toint (SIAM J. Optim., to appear, 2004) for nonlinear

equations and nonlinear least-squares to the fully general unconstrained optimization problem.

The new algorithm is shown to be globally convergent to at least one second-order critical point,

and numerical experiments indicate that it is very competitive with more classical trust-region

algorithms.

1 Computational Science and Engineering Department, Rutherford Appleton Laboratory,

Chilton, Oxfordshire, OX11 0QX, England, UK.

Email: n.gould@rl.ac.uk

2 Current reports available from “http://www.numerical.rl.ac.uk/reports/reports.shtml”.

3 This work was supported by the EPSRC grant GR/S42170

4 Department of Mathematics, Facultés Universitaires ND de la Paix,

61, rue de Bruxelles, B-5000 Namur, Belgium, EU.

Email : caroline.sainvitu@math.fundp.ac.be & philippe.toint@fundp.ac.be

5 Current reports available from “http://www.fundp.ac.be/∼phtoint/pht/publications.html”.

Computational Science and Engineering Department

Atlas Centre

Rutherford Appleton Laboratory

Oxfordshire OX11 0QX

March 8, 2004.

A filter-trust-region method for unconstrained optimization 1

1 Introduction

Ever since filter methods were introduced for constrained nonlinear optimization by Fletcher

and Leyffer [5], they have enjoyed considerable interest in their original domain of appli-

cation [1, 4, 6, 7, 16, 17]. More recently, they have been extended by Gould, Leyffer and

Toint [8, 12] to the nonlinear feasibility problem (including nonlinear equations and non-

linear least-squares), which is to minimize the norm of the violations of a set of (possibly

nonlinear and/or nonconvex) constraints. Since nonlinear least-squares can be seen as a

specialized case of unconstrained optimization, it is natural to consider the further exten-

sion of the filter techniques to general unconstrained optimization problems: this is the

object of the present paper.

The presentation is organized as follows. Section 2 introduces the problem and the

new algorithm, whose global convergence to points satisfying second-order optimality con-

ditions is shown in Section 3.1. The results of numerical experience with the new method

are discussed in Section 4 and some conclusions and perspectives are finally presented in

Section 5.

2 The problem and the new algorithm

We consider the following unconstrained minimization problem

min
x∈IRn

f(x), (2.1)

where f is a twice continuously differentiable function of the variables x ∈ IRn. An efficient

technique for solving this problem is to use Newton’s method, which, from a current iterate

xk, computes a trial step sk by minimizing a model of the objective function consisting of

the first three terms of its Taylor’s expansion around xk, yielding a trial point

x+
k = xk + sk.

Unfortunately, it is well-known that such an algorithm may not always be well-defined

(when the Taylor’s model is nonconvex), or convergent from any initial point x0. These

difficulties can be circumvented by restricting the model minimization to a trust region

containing xk, in a manner that is now well established (see Conn, Gould and Toint [2]

for an extensive description of trust-region methods and their properties). We propose

to further extend such methods by introducing a multidimensional filter technique, whose

aim is to encourage convergence to first-order critical points by driving every component

of the objective’s gradient

∇xf(x)
def
= g(x) = (g1(x), . . . , gn(x))T

to zero.

2 Nicholas I. M. Gould, Caroline Sainvitu and Philippe L. Toint

2.1 Computing a trial point

Before indicating how to apply our filter technique, we start by describing how to compute

the trial point x+
k = xk + sk from a current iterate xk. At each iteration, we define the

model of the objective function to be

mk(xk + s) = f(xk) + gT
k s +

1

2
sT Hks,

where Hk is a symmetric approximation to ∇xxf(xk), and consider a trust-region centered

at xk

Bk = {xk + s | ‖s‖ ≤ ∆k},
where we believe this model to be adequate. A trial step sk is then computed by minimizing

the model (possibly only approximately). At variance with classical trust-region methods,

we do not require here that

‖sk‖ ≤ ∆k (2.2)

at every iteration of our algorithm. The convergence analysis that follows requires, as is

common in trust-region methods [2, Chapter 6], that this step provides, at iteration k, a

sufficient decrease on the model, which is to say that

mk(xk) − mk(xk + sk) ≥ κmdc max

[

‖gk‖min

[

‖gk‖
βk

, ∆k

]

, |τk|min[τ 2
k , ∆2

k]

]

(2.3)

where κmdc is a constant in (0, 1), βk is a positive upper bound on the norm of the Hessian

of the model mk, i.e.

βk
def
= 1 + max

x∈Bk

‖∇xxmk(xk)‖

and τk = min [0, λmin[Hk]]. Although this condition seems technical, there are efficient nu-

merical methods to compute sk that guarantee that it holds (see [9, 13], or, more generally,

[2, Chapter 7]). Typical trust-region algorithms then evaluate the objective function at

the trial point and accept x+
k as the new iterate if the reduction achieved in the objective

function is at least a fraction of that predicted by the model. The trust-region radius ∆k

is also possibly enlarged if this is the case, or it is reduced if the achieved reduction is too

small.

2.2 The multidimensional filter

We now consider using a filter mechanism to potentially accept x+
k as the new iterate more

often. The notion of filter is based on that of dominance: for our problem, we say that a

point x1 dominates a point x2 whenever

|gi(x1)| ≤ |gi(x2)| for all i = 1, . . . , n.

Thus, if iterate x1 dominates iterate x2 and if we focus our attention on convergence to

first-order critical points only, the latter is of no real interest to us since x1 is at least as

A filter-trust-region method for unconstrained optimization 3

good as x2 for each of the components of the gradient. All we need to do is to remember

iterates that are not dominated by other iterates by using a structure called a filter. We

define a multidimensional filter F as a list of n-tuples of the form (gk,1, . . . , gk,n), where

gk,i
def
= gi(xk), such that, if gk and g` belong to F , then

|gk,j| < |g`,j| for at least one j ∈ {1, . . . , n}. (2.4)

Filter methods propose to accept a new trial iterate x+
k if it is not dominated by any other

iterate in the filter.

However, we do not wish to accept a new point x+
k if one of the components of g(x+

k)

is arbitrarily close to being dominated by another point already in the filter. In order to

avoid this situation, we slightly strengthen our acceptability test and we say that a new

trial point x+
k is acceptable for the filter F if and only if

∀gl ∈ F ∃ j ∈ {1, . . . , n} : |gj(x
+
k)| ≤ |gj,l| − γg‖gl‖, (2.5)

where γg ∈ (0, 1/
√

n) is a small positive constant. If an iterate xk is acceptable in the

sense of (2.5), we may wish to add it to the filter and remove from it every g` ∈ F such

that |gj,`| > |gj,k| for all j ∈ {1, . . . , n}.
If the mechanism described so far is adequate for convex problems (where a zero gra-

dient is both necessary and sufficient for second-order criticality), it may be unsuitable

for nonconvex ones. Indeed it might prevent progress away from a saddle point, in which

case an increase in the gradient components is acceptable. We therefore modify the filter

mechanism to ensure that the filter is reset to the empty set after each iteration giving

sufficient descent on the objective function at which the model mk was detected to be

nonconvex, and set an upper bound on the acceptable objective function values to ensure

that the obtained decrease is permanent.

We are now able to combine these ideas into an algorithm, whose main objective is to

let the filter play the major role in ensuring global convergence within “convex basins”,

falling back on the usual trust-region method only if things do not go well or if negative

curvature is encountered.

Algorithm 2.1. Filter-Trust-Region Algorithm

Step 0 : Initialization.

An initial point x0 and an initial trust-region radius ∆0 > 0 are given. The constants

γg ∈ (0, 1/
√

n), η1, η2, γ1, γ2 and γ3 are also given and satisfy

0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1 ≤ γ3. (2.6)

Compute f(x0) and g(x0), set k = 0. Initialize the filter F to the empty set and

choose fsup ≥ f(x0). Define two flags RESTRICT and NONCONVEX, the former to be

unset.

4 Nicholas I. M. Gould, Caroline Sainvitu and Philippe L. Toint

Step 1: Determine a trial step.

Compute a finite step sk that “sufficiently reduces” the model mk, i.e. that satisfies

(2.3) and that also satisfies ‖sk‖ ≤ ∆k if RESTRICT is set or if mk is nonconvex. In the

latter case, set NONCONVEX; otherwise unset it. Compute the trial point x+
k = xk +sk.

Step 2: Compute f(x+
k) and define the following ratio

ρk =
f(xk) − f(x+

k)

mk(xk) − mk(x
+
k)

.

If f(x+
k) > fsup, set xk+1 = xk, set RESTRICT and go to Step 4.

Step 3: Test to accept the trial step.

• Compute g+
k = g(x+

k).

• If x+
k is acceptable for the filter F and NONCONVEX is unset:

Set xk+1 = x+
k , unset RESTRICT and add g+

k to the filter F if either ρk < η1 or

‖sk‖ > ∆k.

• If x+
k is not acceptable for the filter F or NONCONVEX is set:

If ρk ≥ η1 and ‖sk‖ ≤ ∆k, then

set xk+1 = x+
k , unset RESTRICT and if NONCONVEX is set, set fsup =

f(xk+1) and reinitialize the filter F to the empty set;

else set xk+1 = xk and set RESTRICT.

Step 4: Update the trust-region radius.

If ‖sk‖ ≤ ∆k, update the trust-region radius by choosing

∆k+1 ∈

[γ1∆k, γ2∆k] if ρk < η1,

[γ2∆k, ∆k] if ρk ∈ [η1, η2),

[∆k, γ3∆k] if ρk ≥ η2;

(2.7)

otherwise, set ∆k+1 = ∆k. Increment k by one and go to Step 1.

Note that, as stated, our algorithm lacks a formal stopping criterion. In practice, one

would obviously stop the calculation if ‖gk‖ falls below some user-defined tolerance and

NONCONVEX is unset, or if some fixed maximum number of iterations is exceeded. Also note

that our conditions on the step might impose to recompute sk within the trust region if

negative curvature was discovered for the model only after computing a step beyond the

trust-region boundary. Fortunately, this is typically a very cheap calculation and can be

achieved by backtracking [14] or by other suitable restriction techniques [9].

A filter-trust-region method for unconstrained optimization 5

3 Global convergence

Global convergence properties of Algorithm 2.1 will be proved under the following assump-

tions.

A1 f is twice continuously differentiable on IRn.

A2 The iterates xk remain in a closed, bounded domain of IRn.

A3 For all k, the model mk is twice differentiable on IRn and has a uniformly bounded

Hessian.

A4 For all k, mk(xk) = f(xk) and gk = ∇xmk(xk) = ∇xf(xk).

Note that A1, A2 and A3 together imply that there exist constants κl, κu ≥ κl, κufh ≥ 1

and κumh ≥ 1 such that

f(xk) ∈ [κl, κu], ‖∇xxf(xk)‖ ≤ κufh and ‖Hk‖ ≤ κumh − 1 (3.8)

for all k. Combining this with the definition of βk, we have that

βk ≤ κumh (3.9)

for all k and all x in the convex hull of {xk}. For the purpose of our analysis, we shall

consider

S = {k | xk+1 = xk + sk},
the set of successful iterations,

A = {k | x+
k is added to the filter },

the set of filter iterations,

D = {k | ρk ≥ η1},
the set of sufficient descent iterations, and

N = {k | NONCONVEX is set },
the set of nonconvex iterations. Observe that A ⊆ S and

S ∩ N = D ∩N . (3.10)

We conclude this section by stating a crucial property of the algorithm.

Lemma 3.1. We have that, for all k ≥ 0,

f(x0) − f(xk+1) ≥
k

∑

j=0

j∈S∩N

[f(xj) − f(xj+1)]. (3.11)

Proof. Denoting S ∩ N = {ki}, we observe that the mechanism of the algorithm

ensures that

f(xki+1
) ≤ f(x`) < f(xki

)

for all i and all ki + 1 ≤ ` ≤ ki+1. This directly implies the desired inequality. 2

6 Nicholas I. M. Gould, Caroline Sainvitu and Philippe L. Toint

3.1 Convergence to Critical Points

We first prove the convergence of our algorithm to first-order critical points.

Our first step is to prove that, as long as a first-order critical point is not approached, we

do not have infinitely many successful nonconvex iterations in the course of the algorithm.

We start by recalling three results from [2] in order to show that the trust-region radius is

bounded away from zero in this case.

Lemma 3.2. Suppose that A1-A4 hold and that ‖sk‖ ≤ ∆k. Then we have that

|f(xk + sk) − mk(xk + sk)| ≤ κubh∆
2
k, (3.12)

where xk + sk ∈ Bk and

κubh

def
= max[κufh, κumh]. (3.13)

The proof is identical to that of Theorem 6.4.1 in [2] but we now need to make the

additional assumption that ‖sk‖ ≤ ∆k explicit (instead of being implicit, in this reference,

in the definition of a trust-region step).

We now show that the trust-region radius must increase if the current iterate is not

first-order critical and the trust-region radius is small enough.

Lemma 3.3. Suppose that A1-A4 hold and that ‖sk‖ ≤ ∆k. Suppose furthermore that

gk 6= 0 and that

∆k ≤ κmdc‖gk‖(1 − η2)

κubh

. (3.14)

Then iteration ρk ≥ η2 and

∆k+1 ≥ ∆k. (3.15)

The proof is the same as Theorem 6.4.2 in [2] when ‖sk‖ ≤ ∆k, while (3.15) follows from

Step 4 when ‖sk‖ > ∆k as then ∆k+1 = ∆k. As a consequence, we obtain that the radius

cannot become too small as long as a first-order critical point is not approached.

Lemma 3.4. Suppose that A1-A4 hold and that there exists a constant κlbg > 0 such that

‖gk‖ ≥ κlbg for all k. Then there is a constant κlbd > 0 such that

∆k ≥ κlbd (3.16)

for all k.

Proof. Assume that iteration k is the first such that

∆k+1 ≤
γ1κmdc κlbg(1 − η2)

κubh

· (3.17)

A filter-trust-region method for unconstrained optimization 7

This means that the trust-region radius has been decreased at iteration k, which in

turn implies, from the condition in Step 4 of the algorithm, that ‖sk‖ ≤ ∆k. We also

have that γ1∆k ≤ ∆k+1, and hence that

∆k ≤ κmdc κlbg(1 − η2)

κubh

·

Our assumption on the norm of the gradient then implies that (3.14) holds. This and

the fact that ‖sk‖ ≤ ∆k thus give that (3.15) is satisfied. But this contradicts the

fact that iteration k is the first such that (3.17) holds, and our initial assumption is

therefore impossible. This yields the desired conclusion with

κlbd =
γ1κmdc κlbg(1 − η2)

κubh

·
2

We now prove the crucial result that the number of successful nonconvex iterations

must be finite unless a first-order critical point is approached.

Theorem 3.5. Suppose that A1-A4 hold and that there exists a constant κlbg > 0 such that

‖gk‖ ≥ κlbg for all k. Then there can only be finitely many successful nonconvex iterations

in the course of the algorithm, i.e. |S ∩ N | < +∞.

Proof. Suppose, for the purpose of obtaining a contradiction, that there are infinitely

many successful nonconvex iterations, which we index by S ∩N = {ki}. It follows from

(3.10) that the algorithm also guarantees that ρk ≥ η1 for all iterations in S ∩N , which

in turn implies, with (2.3), that, for k ∈ S ∩ N ,

f(xk) − f(xk+1) ≥ η1[mk(xk) − mk(xk + sk)]

≥ η1 κmdc‖gk‖min

[

‖gk‖
βk

, ∆k

]

≥ η1 κmdc κlbg min
[

κlbg

κumh

, κlbd

]

,

where we have used the Lemma 3.4, (3.9) and our lower bound on the gradient norm

to obtain the last inequality. Combining now this bound with (3.11), we deduce that

f(x0) − f(xk+1) ≥
k

∑

j=0

j∈S∩N

[f(xj) − f(xj+1)] ≥ ςk η1 κmdc κlbg min
[

κlbg

κumh

, κlbd

]

,

where ςk = |{1, . . . , k} ∩ S ∩ N|. As we have supposed that there are infinitely many

successful nonconvex iterations, we have that

lim
k→∞

ςk = +∞,

and [f(x0)−f(xk+1)] is unbounded above, which contradicts the fact that the objective

function is bounded below, as stated in (3.8). Our initial assumption must then be false,

and the set S ∩ N of successful nonconvex iterations must be finite. 2

8 Nicholas I. M. Gould, Caroline Sainvitu and Philippe L. Toint

We now establish the criticality of the limit point of the sequence of iterates when there

are only finitely many successful iterations.

Theorem 3.6. Suppose that A1-A4 and (2.3) hold and that there are only finitely many

successful iterations, i.e. |S| < +∞. Then xk = x∗ for all sufficiently large k, and x∗ is

first-order critical.

Proof. Let k0 be the index of the last successful iterate. Then x∗ = xk0+1 = xk0+j

and

ρk0+j < η1 for all j > 0. (3.18)

Now observe that RESTRICT is set by the algorithm in the course of every unsuccessful

iteration. This flag must thus be set at the beginning of every iteration of index k0+j+1

for j > 0. As a consequence, ‖sk0+j+2‖ ≤ ∆k0+j+2 for all j > 0. This, (3.18) and the

mechanism of Step 4 of the algorithm then imply that

lim
k→∞

∆k = 0. (3.19)

Assume now, for the purpose of establishing a contradiction, that ‖gk0+1‖ ≥ ε for some

ε > 0. Then Lemma 3.4 implies that (3.19) is impossible and we deduce that

‖gk0+j‖ = 0

for all j > 0. 2

Having proved the desired convergence property for the case where S is finite, we

restrict our attention, for the rest of this section, to the case where there are infinitely

many successful iterations, i.e. |S| = +∞. We first investigate what happens if infinitely

many values are added to the filter in the course of the algorithm.

Theorem 3.7. Suppose that A1-A4 hold and that |A| = |S| = +∞. Then

lim inf
k→∞

‖gk‖ = 0. (3.20)

Proof. Assume, for the purpose of obtaining a contradiction, that, for all k large

enough,

‖gk‖ ≥ κlbg (3.21)

for some κlbg > 0. This bound and Theorem 3.5 then imply that |S ∩ N | is finite

and therefore that the filter is no longer reset to the empty set for k sufficiently large.

Moreover, since our assumptions imply that {‖gki+1
‖} is bounded above and below,

there must exist a subsequence {k`} ⊆ {ki+1} where {ki} = A such that

lim
`→∞

gk`
= g∞ with ‖g∞‖ ≥ κlbg. (3.22)

A filter-trust-region method for unconstrained optimization 9

By definition of {k`}, xk`
is acceptable for the filter for every `, which implies, since

the filter is not reset for ` large enough, that, for each ` sufficiently large, there exists

an index j ∈ {1, . . . , n} such that

|gk`,j| − |gk`−1,j| < −γg‖gk`−1
‖. (3.23)

But (3.21) implies that ‖gk`−1
‖ ≥ κlbg for all ` sufficiently large. Hence we deduce from

(3.23) that

|gk`,j| − |gk`−1,j| < −γgκlbg

for all ` sufficiently large. But the left-hand side of this inequality tends to zero when

` tends to infinity because of (3.22), yielding the desired contradiction. Hence (3.20)

holds. 2

Consider now the case where the number of iterates added to the filter in the course of

the algorithm is finite.

Theorem 3.8. Suppose that A1-A4 hold and that |S| = +∞ but |A| < +∞. Then (3.20)

holds.

Proof. Assume, again for the purpose of obtaining a contradiction, that (3.21) holds

for all k large enough and for some κlbg > 0. The finiteness of |A| then implies that ρk ≥
η1 and that ‖sk‖ ≤ ∆k for all k ∈ S sufficiently large. If we define ς̄p,k = |{p, . . . , k}∩S|,
we then obtain that

f(xp) − f(xk+1) =
k

∑

j=p

j∈S

[f(xj) − f(xj+1)] ≥ ς̄p,k η1 κmdc κlbg min
[

κlbg

κumh

, κlbd

]

,

for p and k sufficiently large, where, as above, we used (2.3), (3.9) and (3.21) to derive

the inequality. But ς̄p,k tends to infinity with k for a fixed p sufficiently large since |S|
is infinite, and we again derive a contradiction from the fact that f(xk+1) then becomes

unbounded below. The limit (3.20) then follows. 2

By the two last theorems, we have that at least one of the limit points of the sequence

of iterates generated by the algorithm satisfies the first-order necessary condition. As the

following example shows, this cannot be improved without modifying the algorithm.

Example 3.1. Consider the objective function

f(x) = x3(3x − 4),

which has a (degenerate1) critical point at x = 0, and its global minimizer at x = 1. We

will show that it is possible for Algorithm 2.1 to construct iterates for which x2k = − 1
2

k

1i.e., both its first and second derivatives vanish.

10 Nicholas I. M. Gould, Caroline Sainvitu and Philippe L. Toint

and x2k+1 = 5
4

for k = 0, 1, 2, . . .; clearly there are two limit points, xL

∗ = 0 and xR

∗ = 5
4
,

but only the first is critical.

Let ∆0 > 2, and suppose that γg < 1
2

and that the trust-region updating scheme (2.7)

is specifically

∆k+1 =

1
2
∆k if ρk < η1,

∆k if η1 ≤ ρk < η2 and

2∆k if η2 ≤ ρk.

(3.24)

Now suppose that

F = {f ′(x2k)} ≡ {−12(1 + 1
2

k) 1
2

2k} and ∆2k > 2. (3.25)

We then show that the above iteration is possible for Algorithm 2.1, and that (3.25) will

persist.

Consider first x2k = − 1
2

k, and the convex model

m2k(x2k + s) = f(x2k) + sf ′(x2k) + 1
2
s2h2k, where h2k = − f ′(x2k)

5
4
− x2k

> 0.

Then the unconstrained global minimizer of m2k is s2k = 5
4
− x2k, and s2k will sufficiently

reduce the model within the trust region since ∆2k > 2 > 5
4
+ (1

2
)k. Moreover

m2k(x2k) − m2k(x2k + s2k) = 1
2

(f ′(x2k))
2

h2k

= 1
2
(5

4
− x2k)f

′(x2k) → 0

while

f(x2k) − f(x2k + s2k) = f(x2k) − f(5
4
) > f(0) − f(5

4
) = 125

256
> 0

and thus

ρ2k ≥ η2 (3.26)

for large enough k. The trial point x2k +s2k is not acceptable for the filter since its gradient

is f ′(5
4
) = 75

16
� f ′(x2k), but it is an acceptable point because the trust region bound is

inactive and because of (3.26). Thus x2k+1 = x2k + s2k = 5
4
, while (3.24) and (3.26) ensure

that ∆2k+1 = 2∆2k.

Now consider x2k+1 = 5
4
, and the convex model

m2k+1(x2k+1 + s) = f(x2k+1) + sf ′(x2k+1) + 1
2
s2h2k+1,

where

h2k+1 =
f ′(x2k+1)

x2k+1 + 1
2

k+1
> 0.

As before, the unconstrained global minimizer of m2k+1 is s2k+1 = −x2k+1 − 1
2

k+1, and

s2k+1 will sufficiently reduce the model within the trust region since ∆2k+1 > 4 > 5
4
+ (1

2
)k.

Although f(x2k+1) − f(x2k+1 + s2k+1) < 0 and hence

ρ2k+1 < 0, (3.27)

A filter-trust-region method for unconstrained optimization 11

x2k+1 + s2k+1 = − 1
2

k+1 is acceptable for the filter since it is easy to check that

|f ′(x2k+1 + s2k+1)| = |f ′(− 1
2

k+1)| < 1
2
|f ′(x2k)|.

Hence x2k+2 = x2k+1 + s2k+1 = − 1
2

k+1. Moreoever (3.24) and (3.27) imply that f ′(x2k+2)

replaces f ′(x2k) in the filter, and that ∆2k+2 = 1
2
∆2k+1 = ∆2k, and thus that (3.25) persists.

It is unclear how to modify the algorithm to enforce the property that all limit points are

first-order critical without adversely affecting its numerical behaviour. We have considered

not allowing filter iterations when the ratio between the current gradient norm and the

smallest gradient norm found so far exceeds some prescribed (large) constant. While such

a modification does not appear to affect the results of our numerical experiments, to date

we have been unable to show that the modification yields the desired conclusion. Since we

believe that the likelihood of the algorithm converging to more than a single limit point

is very small (as with every trust-region method we are aware of), the issue really is of

mostly theoretical interest.

We thus pursue our analysis by examining convergence to second-order critical points

under the assumption that there is only one limit point. As in [2], we also assume the

following.

A5 The matrix Hk is arbitrarily close to ∇xxf(xk) whenever a first-order critical point

is approached, i.e.

lim
k→∞

‖∇xxf(xk) − Hk‖ = 0 whenever lim
k→∞

‖gk‖ = 0.

(Notice that h2k → 0, and thus that A5 holds in the above example.)

We are then able to derive the following theorem.

Theorem 3.9. Suppose that A1-A5 hold and that the complete sequence of iterates {xk}
converge to the unique limit point x∗. Then x∗ is a second-order critical point.

Proof. We start our proof (strongly inspired by Theorem 6.6.4 of [2]) by noting that

[2, Lemma 6.5.3] is valid in our context. Observe also that our previous results imply

that

g(x∗) = 0. (3.28)

For the purpose of deriving a contradiction, assume now that

τ∗
def
= λmin[∇xxf(x∗)] < 0. (3.29)

Then, using A5 and (3.28), we deduce that there exists a k0 such that, for k ≥ k0,

λmin[Hk] < 1
2
τ∗ < 0,

and, consequently, that k ∈ N and

‖sk‖ ≤ ∆k (3.30)

12 Nicholas I. M. Gould, Caroline Sainvitu and Philippe L. Toint

for k ≥ k0. Our sufficient decrease condition (2.3) then ensures that, for k ≥ k0,

mk(xk) − mk(xk + sk) ≥ 1
2
κmdc|τ∗|min[1

4
τ 2
∗ , ∆2

k]. (3.31)

Consider now the ratio of achieved versus predicted reduction ρk in the case where

∆k ≤ 1
2
|τ∗|. Applying [2, Lemma 6.5.3] to the complete sequence {xk}, we deduce from

(3.30) that there must exist a k1 ≥ k0 and a δ1 ∈ (0, 1
2
|τ∗|] such that

ρk ≥ η2 for all k ≥ k1 such that ∆k ≤ δ1.

As a consequence, each iteration where these two conditions hold must be very suc-

cessful and the algorithm then guarantees that ∆k+1 ≥ ∆k. This and the inequality

γ1δ1 < δ1 ≤ 1
2
|τ∗| in turn imply that

∆k ≥ min[γ1δ1, ∆k0
]

def
= δ2 (3.32)

for all k ≥ k1. For every successful iteration k ≥ k1, we then obtain from (3.31) that

f(xk) − f(xk+1) ≥ 1
2
η1κmdc|τ∗|min[1

4
τ 2
∗ , δ2

2] > 0.

Remembering now that k ∈ N for k ≥ k1 (and thus that |N | = ∞), we obtain from

(3.11) that |S ∩N |, and hence |S|, must be finite, which in turn implies that the trust-

region radius tends to zero. But this contradicts (3.32). Hence our initial assumption

(3.29) must be false and the proof is complete. 2

4 Numerical experiments

We now report the results obtained by running our algorithm on the set of 160 uncon-

strained2 problems from the CUTEr collection [10]. The names of the problems with their

dimensions3 are detailed in Table 4.1.

In each case, the starting point supplied with the problem was used. All tests were per-

formed in double precision on a Dell Latitude C840 portable computer (1.6 Mhz, 1 Gbyte

of RAM) under Red Hat 9.0 Linux and the Lahey Fortran compiler (version L6.10a) with

default options. All attempts to solve the test problems were limited to a maximum of

1000 iterations or 1 hour of CPU time. The values γ1 = 0.625, γ2 = 0.25, γ3 = 2,η1 = 0.01,

η2 = 0.9, ∆0 = 1 and

γg = min

[

0.001,
1

2
√

n

]

were used.

Two particular variants were tested. The first (called default) is the algorithm as

described above, where, exact first and second derivatives are used and where, at each

2We excluded problem BROYDN7D because of its multiple local minima.
3The number of free variables.

A filter-trust-region method for unconstrained optimization 13

Problem n Problem n Problem n

AIRCRFTB 5 DQRTIC 5000 OSBORNEA 5

ALLINITU 4 EDENSCH 10000 OSBORNEB 11

ARGLINA 200 EG2 1000 PALMER1C 8

ARGLINB 200 EIGENALS 2550 PALMER1D 7

ARGLINC 200 EIGENBLS 2550 PALMER2C 8

ARWHEAD 5000 EIGENCLS 2652 PALMER3C 8

BARD 3 ENGVAL1 10000 PALMER4C 8

BDQRTIC 5000 ENGVAL2 2 PALMER5C 6

BEALE 2 ERRINROS 50 PALMER6C 8

BIGGS3 3 EXPFIT 2 PALMER7C 8

BIGGS5 5 EXTROSNB 1000 PALMER8C 8

BIGGS6 6 FMINSRF2 5625 PARKCH 15

BOX2 2 FMINSURF 49 PENALTY1 1000

BOX3 3 FREUROTH 5000 PENALTY2 200

BRKMCC 2 GENROSE 500 PENALTY3 200

BROWNAL 200 GROWTHLS 3 POWELLSG 5000

BROWNBS 2 GULF 3 POWER 100

BROWNDEN 4 HAIRY 2 QUARTC 5000

BRYBND 5000 HATFLDD 3 RAYBENDL 2046

CHAINWOO 4000 HATFLDE 3 RAYBENDS 2046

CHNROSNB 50 HEART6LS 6 ROSENBR 2

CLIFF 2 HEART8LS 8 S308 2

CLPLATEA 10100 HELIX 3 SBRYBND 500

CLPLATEB 4970 HIELOW 3 SCHMVETT 5000

CLPLATEC 4970 HILBERTA 2 SCOSINE 5000

COSINE 10000 HILBERTB 10 SCURLY10 100

CRAGGLVY 5000 HIMMELBB 2 SCURLY20 100

CUBE 2 HIMMELBF 4 SCURLY30 100

CURLY10 10000 HIMMELBG 2 SENSORS 100

CURLY20 10000 HIMMELBH 2 SINEVAL 2

CURLY30 1000 HYDC20LS 99 SINQUAD 10000

DECONVU 61 JENSMP 2 SISSER 2

DENSCHNA 2 KOWOSB 4 SNAIL 2

DENSCHNB 2 LIARWHD 5000 SPARSINE 5000

DENSCHNC 2 LMINSURF 5329 SPARSQUR 10000

DENSCHND 3 LOGHAIRY 2 SPMSRTLS 4900

DENSCHNE 3 MANCINO 100 SROSENBR 5000

DENSCHNF 2 MARATOSB 2 SSC 4900

DIXMAANA 9000 MEXHAT 2 STRATEC 10

DIXMAANB 9000 MEYER3 3 TESTQUAD 5000

DIXMAANC 9000 MINSURF 36 TOINTGOR 50

DIXMAAND 9000 MOREBV 5000 TOINTGSS 5000

DIXMAANE 9000 MSQRTALS 1024 TOINTPSP 50

DIXMAANF 9000 MSQRTBLS 1024 TOINTQOR 50

DIXMAANG 9000 NCB20 5010 TQUARTIC 5000

DIXMAANH 9000 NCB20B 5000 TRIDIA 5000

DIXMAANI 9000 NLMSURF 5329 VARDIM 200

DIXMAANJ 9000 NONCVXU2 5000 VAREIGVL 50

DIXMAANK 9000 NONCVXUN 5000 VIBRBEAM 8

DIXMAANL 9000 NONDIA 5000 WATSON 12

DIXON3DQ 10000 NONDQUAR 5000 WOODS 10000

DJTL 2 NONMSQRT 100 YFITU 3

DQDRTIC 5000 ODC 4900 ZANGWIL2 2

Table 4.1: The test problems and their dimension

14 Nicholas I. M. Gould, Caroline Sainvitu and Philippe L. Toint

iteration, the trial point is computed by approximately minimizing mk(xk + s) using the

Generalized Lanczos Trust-Region algorithm of [9] (without preconditioning) as imple-

mented in the GALAHAD library [11]. This procedure is terminated at the first s for

which

‖∇mk(xk + s)‖ ≤ min
[

0.1,
√

max(εM , ‖∇mk(xk)‖)
]

‖∇mk(xk)‖, (4.33)

where εM is the machine precision. In addition, we choose

fsup = min(106f(x0), f(x0) + 1000)

at Step 0 of the algorithm. Based on practical experience [12], we also impose that ‖sk‖ ≤
1000∆k at all iterations following the first one at which a restricted step was taken. Finally,

the algorithm stops if

‖∇f(xk)‖ ≤ 10−6
√

n. (4.34)

The second algorithmic variant is the pure trust-region version, that is the same algorithm

with the exception that no trial point is ever accepted in the filter.

On the 160 problems, the default version successfully solved 144 and the pure trust-

region 143. Failure always occurs because the maximal iteration count is reached before

convergence is declared, with the exception of the trust-region variant failing on MEYER3

because the problem is judged to be too ill-conditioned. The filter variant is thus just as

reliable4 as the trust-region version.

Figures 4.1, 4.2 and 4.3 give the performance profiles for the two variants for iterations,

cpu-time and the total amount of conjugate-gradient iterations, respectively. Performance

profiles give, for every σ ≥ 1, the proportion p(σ) of test problems on which each considered

algorithmic variant has a performance within a factor σ of the best (see [3] for a more

complete discussion). When comparing CPU times, we also take into account inaccuracies

in timing by considering run-times as indistinguishable if they differ by less than 1 second

or less than 5%.

It is not difficult to see in these figures that the filter variant is significantly more

efficient than the pure trust-region method in terms of the number of iterations (which is

identical to the number of function and gradient evaluations). Its advantage is smaller but

significant in terms of conjugate-gradients iterations, but is offset by the additional cost of

the filter management operations. As a result, both variants are essentially comparable in

terms of cpu-time efficiency, with a very slight advantage for the default method.

The profiles also include a comparison with LANCELOT-B, one of the GALAHAD codes

[11]. This is a non-monotone trust-region algorithm (see [15] or [2, Section 10.1]), which

we used unpreconditioned with ∆0 = 1 and with its other settings at their default values.

Again this method, which successfully solves 141 out of 160 problems, appears to be

consistently inferior to the new filter algorithm.

4The two variants consistently fail on CHAINWOO, HYDC20LS, LMINSURF, LOGHAIRY, MEYER3, NLMSURF,

NONCVXU2, NONCVXUN and SCURLY10.

A filter-trust-region method for unconstrained optimization 15

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Default
Pure trust region
LANB

Figure 4.1: Iterations performance profiles for the two variants and LANCELOT B

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Default
Pure trust region
LANB

Figure 4.2: CPU performance profiles for the two variants and LANCELOT B

16 Nicholas I. M. Gould, Caroline Sainvitu and Philippe L. Toint

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Default
Pure trust region
LANB

Figure 4.3: CG iterations performance profiles for the two variants and LANCELOT B

5 Conclusion

We have presented a filter algorithm for unconstrained optimization and have shown, under

standard assumptions, that it produces at least a first-order critical point, irrespective of

the chosen starting point. Under mild additional conditions, we also proved, convergence

of the complete sequence of iterates can only occur to a second-order critical point. Pre-

liminary numerical experience on the set of unconstrained test problems from the CUTEr

collection indicate that, although there is little to gain in CPU-time when comparing the

new algorithm to a pure trust-region method, significant gains in the number of iterations

and function/gradient evaluations can be achieved.

References

[1] C. M. Chin and R. Fletcher. Convergence properties of SLP-filter algorithms that

takes EQP steps. Mathematical Programming, Series A, 96(1):161–177, 2003.

[2] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. Number 01 in

MPS-SIAM Series on Optimization. SIAM, Philadelphia, USA, 2000.

[3] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance

profiles. Mathematical Programming, 91(2):201–213, 2002.

A filter-trust-region method for unconstrained optimization 17

[4] R. Fletcher, N. I. M. Gould, S. Leyffer, Ph. L. Toint, and A. Wächter. Global conver-

gence of trust-region SQP-filter algorithms for nonlinear programming. SIAM Journal

on Optimization, 13(3):635–659, 2002.

[5] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Math-

ematical Programming, 91(2):239–269, 2002.

[6] R. Fletcher, S. Leyffer, and Ph. L. Toint. On the global convergence of a filter-SQP

algorithm. SIAM Journal on Optimization, 13(1):44–59, 2002.

[7] C. C. Gonzaga, E. Karas, and M. Vanti. A globally convergent filter method for

nonlinear programming. SIAM Journal on Optimization, 13(3):646–669, 2003.

[8] N. I. M. Gould, S. Leyffer, and Ph. L. Toint. A multidimensional filter algorithm for

nonlinear equations and nonlinear least-squares. SIAM Journal on Optimization, (to

appear), 2004.

[9] N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint. Solving the trust-region

subproblem using the Lanczos method. SIAM Journal on Optimization, 9(2):504–

525, 1999.

[10] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr, a contrained and unconstrained

testing environment, revisited. Transactions of the ACM on Mathematical Software,

29(4):373–394, 2003.

[11] N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD—a library of thread-safe

Fortran 90 packages for large-scale nonlinear optimization. Transactions of the ACM

on Mathematical Software, 29(4):353–372, 2003.

[12] N. I. M. Gould and Ph. L. Toint. FILTRANE, a Fortran 95 filter-trust-region package

for solving systems of nonlinear equalities, nonlinear inequalities and nonlinear least-

squares problems. Technical Report 03/15, Rutherford Appleton Laboratory, Chilton,

Oxfordshire, England, 2003.

[13] J. J. Moré and D. C. Sorensen. Computing a trust region step. SIAM Journal on

Scientific and Statistical Computing, 4(3):553–572, 1983.

[14] J. Nocedal and Y. Yuan. Combining trust region and line search techniques. In

Y. Yuan, editor, Advances in Nonlinear Programming, pages 153–176, Dordrecht,

The Netherlands, 1998. Kluwer Academic Publishers.

[15] Ph. L. Toint. A non-monotone trust-region algorithm for nonlinear optimization sub-

ject to convex constraints. Mathematical Programming, 77(1):69–94, 1997.

[16] M. Ulbrich, S. Ulbrich, and L. N. Vicente. A globally convergent primal-dual interior

point filter method for nonconvex nonlinear programming. Mathematical Program-

ming, Series A, (to appear), 2004.

18 Nicholas I. M. Gould, Caroline Sainvitu and Philippe L. Toint

[17] A. Wächter and L. T. Biegler. Global and local convergence of line search filter

methods for nonlinear programming. Technical Report CAPD B-01-09, Department

of Chemical Engineering, Carnegie Mellon University, Pittsburgh, USA, 2001.

