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1 Introduction

Large-scale nonlinear optimization is concerned with the numerical solution of continuous

problems expressed in the form

minimize
x∈IRn

f(x) subject to cE(x) = 0 and cI(x) ≥ 0, (1)

where f: IRn → IR, cE: IRn → IRnE and cI: IRn → IRnI are smooth and n, and possibly nE

and/or nI , are large. Here, the components of the vector x are the variables, f(x) is the

objective function and the components of the vectors cE(x) and cI(x) are the constraint

functions. Such problems arise throughout science, engineering, planning and economics.

Fortunately algorithmic development and theoretical understanding generally continue to

keep apace with the needs of such applications.

Our purpose in this paper is to review recent developments, with an emphasis on

discussing state-of-the-art methods for various problem types fitting within the broad def-

inition (1). As the title indicates, we will focus on nonlinear problems, that is on problems

for which at least one of the functions involved is nonlinear—although many of the meth-

ods for linear programming are variants of those in the nonlinear case, extra efficiencies

are generally possible in this first case, and the general state-of-the-art is to be able to

solve linear problems perhaps ten times larger than nonlinear ones (Bixby, Fenlon, Gu,

Rothberg and Wunderling, 2000). We shall also mostly be concerned with large problems,

that is, at the time of writing, those involving of the order of 100,000 variables and perhaps

a similar number of constraints. However, we accept that this estimate may be too conser-

vative for some problem classes—for instance larger quadratic programs can certainly be

solved today. Moreover, structure plays an important role in the size of problems that can

be tackled: large sparse or partially separable cases are easier to handle than dense ones.

Finally, the definition of a large problem may also depend on the hardware used, although

this effect is less visible than in the past because of the remarkable evolution of personal

computers in terms of memory processing power.

We will not review the history of the field here, but refer the interested reader to Gould

and Toint (2004b) for a brief perspective and a discussion of the reasons why this mature

research domain remains so active and why this will likely continue for some time. The field

has acquired a vast literature, and there have been numerous attempts to synthesize various

aspects of it in books, such as those by Bertsekas (1995), Bonnans, Gilbert, Lemaréchal

and Sagastizábal (1997), Dennis and Schnabel (1983), Fletcher (1981), Gill, Murray and

Wright (1981), Moré and Wright (1993), Nash and Sofer (1990), Nocedal and Wright

(1999), Conn, Gould and Toint (2000a), in volumes of conference proceedings, such as

those edited by Coleman and Li (1990), Leone, Murli, Pardalos and Toraldo (1998), Di Pillo

and Gianessi (1996, 1999), Di Pillo and Murli (2003), Hager, Hearn and Pardalos (1994),

Spedicato (1994), Yuan (1998), in survey articles, like those given by Conn, Gould and

Toint (1994, 1996), Fletcher (1987b), Forsgren, Gill and Wright (2002), Gould (2003),

Marazzi and Nocedal (2001), Nash (2000b) and, in this series, by Boggs and Tolle (1995),

Lewis and Overton (1996), Nocedal (1992), Powell (1998), Todd (2001), and Wright (1992).
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The paper is structured as follows. Sections of the paper deal with problem classes:

§2 covers unconstrained problems, while bound- and linearly-constrained problems are re-

viewed in §3 and §4, respectively, and §5 considers general nonlinearly-constrained cases.

In each of these sections, subsections refer to method classes, allowing the interested reader

to focus on these across different problem types. In particular, we discuss linesearch and

trust-region methods successively. We conclude most sections with a paragraph on practi-

calities and a paragraph on software. Final comments are made in §6.

2 Large-scale unconstrained optimization

2.1 General problems

Although general unconstrained optimization problems (i.e., problems where E and I are

empty in (1)) arise relatively infrequently in practice—non-linear least-squares problems

(see §2.2) being a notable exception—a brief discussion of methods for unconstrained op-

timization is useful if only for understanding those for problems involving constraints.

For a fuller discussion see Nocedal (1992, 1997). While hybrids are possible, the essen-

tial distinction over the past 35 years has been between the linesearch and trust-region

approaches.

Given an estimate xk of an unconstrained minimizer of f(x), both paradigms rely on

simple (differentiable) models mk(d) of the objective function f(xk + d). For linesearch

methods mk will normally be convex while this is not required in the trust-region case; for

both it is usually important that mk(0) = f(xk) and ∇xmk(0) = ∇xf(xk). Given a suitable

model, a model-improving approximate minimizer dk is computed. In the trust-region case,

possible unboundedness of the model is naturally handled by the trust-region constraint

‖d‖ ≤ ∆k for some ∆k > 0. Since the model is only a local representation of the objective

function, it is possible that predicted improvements in f may not actually be realized.

Linesearch methods account for this by retracting the step along dk so that xk +αkdk gives

an improvement in f . By contrast, trust-region methods reject steps for which there is

poor agreement between the decrease in mk and f , and rely on a reduction of the radius

∆k+1, and thus a re-computation of dk+1, to ensure improvement. The mechanics of finding

the step-size αk for linesearch methods (Hager and Zhang, 2003, Moré and Thuente, 1994)

and adjusting the radius ∆k in trust-region methods (Conn et al., 2000a, §17.1) has been

much studied, and can have a significant effect on the performance of an algorithm. But

overall the dominant computational cost of both classes of algorithms is in evaluating the

values and required derivatives of f and in computing the step dk; the cost of evaluating f

often dominates in simulation-based applications or industry problems, but quite rarely in

problems defined in commonly-occurring modeling languages such as AMPL (Fourer, Gay

and Kernighan, 2003) or GAMS (Brooke, Kendrick and Meeraus, 1988).
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2.1.1 Computation of derivatives

In the early days, researchers invested much effort in finding methods with modest deriva-

tive requirements. Typically function values and, sometimes, gradients were available, but

second derivatives frowned upon. The advent of automatic differentiation (Griewank, 2000)

and (group) partial separability (Griewank and Toint, 1982b, Conn, Gould and Toint, 1990)

has somewhat altered this position at least amongst researchers, and now methods that are

designed to exploit second derivatives (or good approximations thereof) are commonplace.

But it is arguable that such new methods have not been as widely used by practitioners

as might have been hoped, often because application codes capable of computing function

values are unnameable to automatic differentiation for a variety of reasons, size and un-

availability of the source-code being two common complaints. Indeed, there are still many

practitioners who prefer methods that avoid derivatives at all (Powell, 1998), although

such methods are usually only appropriate for small-scale problems (but see Colson and

Toint, 2003, or Price and Toint, 2004, for recent attempts to extend these techniques to

large-scale cases).

Automatic differentiation offers the possibility of computing gradients and Hessian-

vector products at a few times the cost of a function value (Griewank, 2000). Tools for

automatic differentiation are available both as stand-alone software or as part of mod-

eling languages (AMPL and GAMS being good examples). Partial separability allows

the computation of finite-difference gradients at a similar cost if only function values

are available, and the same for Hessians if (structured) gradients can be found (Conn

et al., 1990). Moreover accurate structured secant approximations to second derivatives

can be computed (Griewank and Toint, 1982b), and this allows one to approximate gra-

dients (by finite-differences) and Hessians (by secant formulae) just given function values

if the problem functions are partially separable and the structure specified (Conn, Gould

and Toint, 1996).

Note that these comments on evaluating derivatives are of interest not only for un-

constrained problems, but also for most of the other problems that are discussed in this

paper. In the constrained case, the derivative of the constraint and Lagrangian functions

will also be concerned, and the techniques to compute them are similar to what we have

just mentioned.

2.1.2 Computation of the step

Even if function and derivative values are available, in general the cost of computing the

step dk may be significant if the problem involves a large number of variables. This compu-

tation often follows the following line: if Hk is a symmetric positive-definite approximation

to ∇xxf(xk), if the quasi-Newton (QN) model

mk(d) = f(xk) + dT∇xf(xk) + 1

2
dTHkd (2)



Numerical methods for large-scale nonlinear optimization 7

is used, and if the minimizer of this model is sought, the resulting step dk satisfies the QN

equations

Hkdk = −∇xf(xk). (3)

Since Hk is positive definite, realistic solution options include a (sparse) Cholesky fac-

torization of Hk or application of the (preconditioned) conjugate-gradient (CG) method

(Hestenes and Stiefel, 1952). The former may be unviable if the factors fill-in significantly,

but is capable of giving a numerical solution with small relative error. The latter is more

flexible—rather than needing Hk, it merely requires a series of products Hkp for given

vectors p (and possibly preconditioned residuals r = P−1
k g for some suitable symmetric

preconditioner Pk), and thus is better equipped for automatic differentiation or finite-

difference gradient approximations (∇xf(xk + εp)−∇xf(xk))/ε for small ε—but less likely

to be able to compute highly accurate numerical solutions of (3). When the approxima-

tion Hk is indefinite, it may be modified during factorization (Schlick, 1993) or as the CG

process proceeds (Nash, 1984) to restore definiteness. Alternatively, the CG method may

be terminated appropriately as soon as one of the products Hkp in the CG method reveals

negative curvature (Dembo and Steihaug, 1983) or even continued in the subspace of pos-

itive curvature whilst gathering negative curvature information (Gould, Lucidi, Roma and

Toint, 2000b).

A significant breakthrough for large-scale unconstrained optimization occurred in the

early 1980s with the advent of truncated-QN methods (Dembo, Eisenstat and Steihaug,

1982). Here, rather than requiring that dk satisfies (3), instead dk is asked to satisfy

‖Hkdk + ∇xf(xk)‖ ≤ ηk‖∇xf(xk)‖, (4)

where 0 < ηk < 1 and ηk → 0 if ∇xf(xk) → 0. This is helpful for use in conjunction with

CG methods, since one could anticipate being able to satisfy (4) after few CG iterations for

modest values of ηk. But more significantly—and perhaps overlooked by those who view

CG as simply a method for solving linear systems—the iterates {dk,j}j≥0 generated by the

CG method from xk have two further fundamental properties. Firstly, by construction

each successive CG step further reduces the model, that is mk(dk,j+1) < mk(dk,j) for j ≥ 0.

Secondly an appropriate norm of the CG iterates increases at each step, that is ‖dk,j+1‖ >

‖dk,j‖ for j ≥ 0 (Steihaug, 1983). This enables one to construct globally convergent

linesearch (Dembo and Steihaug, 1983) and trust-region (Steihaug, 1983, Toint, 1981)

truncated Newton methods, i.e. methods that converge to local solutions from arbitrary

starting points. In the linesearch case, dk is chosen as the first dk,j for which (4) is satisfied,

unless negative curvature is discovered when computing the required product Hkp at CG

iteration j, in which case either the steepest descent direction −∇xf(xk) (when j = 0)

or the current CG approximation dk,j−1 (when j > 0) may be used instead (Dembo and

Steihaug, 1983). For the trust-region case, such methods should be stopped on the trust-

region boundary if ‖dk,j‖ > ∆k or negative-curvature is discovered, since once the CG

iterates leave the trust-region they will not return (Steihaug, 1983). By judicious control of

ηk in (4), such methods may also be shown to be superlinearly convergent under reasonable

conditions on the approximation Hk to ∇xxf(xk).
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In the trust-region case, an accurate solution of the model problem needs to account

for the trust region constraint ‖d‖ ≤ ∆k. When Hk is positive semi-definite, the strategy

of truncating the CG iteration on the trust-region boundary (Steihaug, 1983, Toint, 1981)

ensures a model decrease which is at least half as good as the optimal decrease (Yuan, 2000).

For indefinite Hk this is not so. Although there are excellent methods for solving the

problem in the small-scale case (Moré and Sorensen, 1983), these rely on being able to

solve a (small) sequence of linear systems with coefficient matrices Hk + σk,lI for given

σk,l ≥ 0, and thus implicitly on being able to factorize each coefficient matrix. Since this

may be expensive or even impossible in the large-scale case, an alternative is to note that

the CG and Lanczos methods compute different bases for the same Krylov space, and that

after j steps of the Lanczos method, QT
k,jHkQk,j = Tk,j where the columns of the n by j

matrix Qk,j are orthonormal and Tk,j is tridiagonal. Thus if we seek an approximation to

the solution of the trust-region problem in the range of the expanding matrix Qk,j, we may

compute

dk,j = Qk,jhk,j, where hk,j = arg min
‖h‖≤∆k

eT
1Q

T
k,j∇xf(xk)e

T
1 h+ 1

2
hTTk,jh,

where e1 = [1, 0, 0, . . . , 0]T . Since Tk,j is tridiagonal, we may reasonably factorize Tk,j +

σk,j,lI, and thus the earlier Moré–Sorensen method is now applicable (Gould, Lucidi, Roma

and Toint, 1999). The Lanczos iteration may be truncated in a similar way to (4), pre-

conditioning may be readily incorporated, and the resulting so-called GLTR method has

been used as a subproblem solver in a number of large-scale optimization packages (Byrd,

Gould, Nocedal and Waltz, 2004a, Gould, Orban and Toint, 2003a). Other iterative

methods for the exact minimization of (2) within the trust-region have been proposed

(Hager, 2001, Rendl and Wolkowicz, 1997, Sorensen, 1997), but as far as we are aware

they have not been used in truncated form.

Another popular and effective method is the limited-memory secant approach (Gilbert

and Lemaréchal, 1989, Liu and Nocedal, 1989, Nocedal, 1980). Secant methods maintain

Hessian approximations by sequences of low-rank updates, each using a pair of vectors

(dk, yk), where yk = ∇xf(xk+1) −∇xf(xk), to satisfy the secant condition Hkdk = yk

(Nocedal and Wright, 1999, §2.2). Noting the success of (particularly) the BFGS secant

method for small-scale computation, and recognising that such methods are generally in-

appropriate for large problems because the generated matrices are almost invariably dense,

the idea of limited memory methods is simply to use no more thanm pairs {(dj, yj)}
k
j=k−m+1

to generate a secant approximation from a given, easily invertible initial matrix. If m is

small, application of the resulting limited-memory approximation Hk or its inverse to a

given vector may be performed extremely efficiently (Byrd, Nocedal and Schnabel, 1994).

Although this approach is perhaps most natural in a linesearch framework—because the

QN direction −H−1
k ∇xf(xk) is easy to obtain—it may also be used in a trust-region one

(Burke and Weigmann, 1997, Kaufman, 1999).

Since estimating Hk directly by secant methods is likely out of the question for large

problems, an alternative we have already briefly mentioned is to exploit problem struc-
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ture, and most especially partial separability, to obtain good Hessian approximations. By

definition, a partially separable function has the form f(x) =
∑

i f
(i)(x), where each ele-

ment f (i) has a large invariant subspace. Thus it is reasonable to approximate ∇xxf(x) by
∑

iH
(i), where each H (i) approximates the low-rank element Hessian ∇xxf

(i)(x). So-called

partitioned QN methods (Griewank and Toint, 1982c) use suitable secant formulae to build

(often highly accurate) approximations H (i). Although the resulting Hk =
∑

iH
(i)
k may

not be as easily inverted as, say, that from a limited-memory method, it often gives more

accurate approximations, and has been used with great success within a truncated CG

framework (Conn et al., 1990).

The final major class of methods are nonlinear variants of the CG method. Briefly,

these methods aim to mimic the linear CG approach, and the step dk is updated every

iteration so that

dk+1 = −∇xf(xk) + βkdk

for some appropriate scalar βk. Such methods have a long pedigree (Fletcher and Reeves,

1964, Gilbert and Nocedal, 1992, Polak and Ribiere, 1969, Powell, 1977). Early methods

chose βk using formulae derived from the linear CG method, but sometimes subsequent

steps tended to be closely dependent. A number of modifications have been proposed to

avoid this defect, many of them resorting to steps in, or close to, the steepest-descent direc-

tion. The most successful recent methods (Dai and Yuan, 2000, Hager and Zhang, 2003)

achieve this seamlessly, and additionally use linesearches with weak step-size acceptance

criteria.

2.1.3 Practicalities

Despite the large number of papers devoted to large-scale unconstrained optimization, it

is quite difficult to find comparisons between the various approaches proposed. A 1991

survey by Nash and Nocedal (1991) compares the limited-memory L-BFGS method (Liu

and Nocedal, 1989) with both the (early) Polak-Ribière nonlinear CG method (Polak and

Ribiere, 1969) and a truncated-Newton method in which Hessian-vector products are ob-

tained by differences. Although the results are mixed, the truncated-Newton approach

seems preferable for problems well-approximated by a quadratic while L-BFGS appears

best for more nonlinear problems. The nonlinear CG method is often best in terms of

time, but requires more function evaluations. A contemporary survey by Gilbert and

Nocedal (1992) which compares various nonlinear CG methods indicates there is little

to choose between various variants on the Polak-Ribière theme. However, while the test

problems might have been large by 1990 standards, they are certainly not by today’s. The

only recent comparison we are aware of is that by Hager and Zhang (2003), in which their

modern nonlinear CG method is compared with L-BFGS and Gilbert and Nocedal’s (1992)

improvement to Polak-Ribière. At least on the basis of these tests, modern nonlinear CG

appears to be the method of choice if second derivatives are unavailable. However, we

should exercise some caution as again the problems were not really large by today’s stan-

dard, nor do we know how second-derivative-based truncated-Newton fit into the picture.
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Two other issues are vital for good performance of many of the methods we have

discussed. The first is preconditioning, where beyond very simple ideas such as diagonal

or band scaling using Hessian terms (Conn et al., 1990), little has been done excepting to

use standard incomplete factorization ideas from numerical linear algebra—Lin and Moré’s

(1999a) memory-conserving incomplete factorization is widely used in optimization circles.

One interesting idea is to use a limited-memory approximation to Hk to precondition the

next subproblem Hk+1 (Morales and Nocedal, 2000), although more experience is needed

to see if this is generally applicable.

The second important advance is based on the observation that while there should

be some overall monotonically reducing trend of function values in algorithms for mini-

mization, this is not necessary for every iteration (Grippo, Lampariello and Lucidi, 1986).

Non-monotonic methods for unconstrained problems were first proposed in a linesearch

framework (Grippo, Lampariello and Lucidi, 1989), and have been observed to offer sig-

nificant gains when compared with their monotone counterparts (Toint, 1996). The same

is true in a trust-region context (Deng, Xiao and Zhou, 1993, Toint, 1997), and many

algorithms now offer non-monotonic variants (Gould et al., 2003a).

Another technique that exploits the potential benefits of non-monotonicity uses the idea

of filters. Inspired from multi-objective optimization and originally intended by Fletcher

and Leyffer (2002) for constrained problems (see §5.1 below), the aim of a filter is to allow

conflicting abstract objectives within the design of numerical algorithms. To understand

the idea, consider an abstract situation where one attempts to simultaneously reduce two

potentially conflicting objectives θ1(x) and θ2(x). A point x is then said to dominate

another point y if and only if θi(x) < θi(y) for i = 1 and 2 (this definition can obviously

be generalized to more than two conflicting objectives). Remembering a dominated y is

of little interest when aiming to reduce both θ1 and θ2 since x is at least as good as y

for each objective. Obviously, an algorithm using this selection criterion should therefore

store some or all pairs (θ1, θ2) corresponding to successful previous iterates.

It turns out that this concept allows the design of new non-monotonic techniques for

unconstrained minimization. For convex problems, we know that finding the (unique)

minimizer is equivalent to finding a zero of the gradient. This in turn may be viewed

as the (potentially conflicting) objective of zeroing each of the n gradient components

[∇xf(x)]i (i = 1, . . . , n). One may therefore decide that a new trial point xk + dk is not

acceptable as a new iterate only if it is dominated by xp, one of (a subset of) the previous

iterates, in the sense that

|[∇xf(xp)]i| < |[∇xf(xk + dk)]i| (5)

for all i = 1, . . . , n, which corresponds to the choice θi(x) = |[∇xf(xk)]i| (i = 1, . . . , n).

The subset of previous iterates xp for which the values of the gradient components are

remembered and this comparison conducted is called the “filter” and is maintained dy-

namically. If xk + dk is not acceptable according to (5), it can still be evaluated using the

more usual trust-region technique, which then guarantees that a step is eventually accept-

able and that a new iterate can be found. Unfortunately, this technique might prevent
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progress away from a saddle point for nonconvex problems, in which case an increase in the

gradient components is warranted. The filter mechanism is thus modified to dynamically

disregard the filter in these cases. The details of the resulting algorithm are described by

Gould, Sainvitu and Toint (2004b), where encouraging numerical results are also reported

on both small- and large-scale problems.

2.1.4 Software

There is a lot of easily-available software for unconstrained minimization. Here, and later,

we refer the reader to the on-line software guides

http://www-fp.mcs.anl.gov/otc/Guide/SoftwareGuide/ and

http://plato.asu.edu/guide.html,

by Moré and Wright, and Mittelmann and Spellucci, respectively. Of the methods dis-

cussed in this section, TN/TNBC (Nash, 1984) is a truncated CG method, LBFGS (Liu and

Nocedal, 1989) is a limited-memory QN method, VE08 (Griewank and Toint, 1982c) is a

partitioned QN method, and CG+ (Gilbert and Nocedal, 1992) and CG DESCENT (Hager and

Zhang, 2003) are nonlinear CG methods. In addition, software designed for more general

problems—for example IPOPT, KNITRO, LANCELOT, LOQO and TRON—is often more than

capable when applied in the unconstrained case.

2.2 Least-squares problems

Nonlinear least-squares problems, for which

f(x) =

m
∑

i=1

f 2
i (x),

are perhaps the major source of really unconstrained problems. In particular, large sets

of nonlinear equations, parameter estimation in large dynamical systems and free surface

optimization often result in sizeable and difficult instances (see Gould and Toint, 2004b,

for examples). Methods for solving problems of this type follow the general trends of §2.1,

but specifically exploit the special form of the objective function to select—sometimes

adaptively (Dennis, Gay and Welsh, 1981)—between the “full QN” model, where the

matrix Hk in (2) is chosen to approximate the Hessian

∇xxf(x) = J(x)TJ(x) +
m

∑

i=1

fi(x)∇xxfi(x)

(where J(x) is the m× n matrix whose rows are the gradients ∇xfi(x)), and the cheaper

“Gauss-Newton” model for which Hk = J(x)TJ(x). Furthermore, algorithmic stopping

criteria can be adapted to exploit the special structure of ∇xf(x) and the fact that zero

provides an obvious lower bound on the value of the objective function.
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Apart from the contributions of Al-Baali (2003) on dedicated QN updates, the work

of Lukšan (1993, 1994, 1996) on incorporating iterative linear algebra techniques in trust-

region algorithms for nonlinear least-squares and that of Gulliksson, Söderkvist and Wedin

(1997) on handling weights (and constraints), there has been little recent research in this

area. Of course, most new ideas applicable to general unconstrained optimization may also

be applied in the nonlinear least-squares case.

This is in particular the case for filter methods. In this context, the idea is to associate

one filter objective θi(x) with each residual, i.e., θi(x) = fi(x) (i = 1, . . . , m), or perhaps

with the norm of a block of residuals, i.e., θi(x) = (
∑

j∈Ji
f 2

j (x))
1

2 for some Ji ⊂ {1, . . . , m}.

Details along with proofs of convergence are given by Gould, Leyffer and Toint (2004a).

Such ideas may be trivially extended to incorporate inequality constraints, which then

provides practical means for solving the nonlinear feasibility problems (that is, to find a

solution to a set of nonlinear equality and inequality constraints in the least-squares sense).

Numerical efficiency and reliability is considered by Gould and Toint (2003a).

2.2.1 Software

The only dedicated large-scale nonlinear least-squares packages we are aware of are the

sparsity-exploiting SPRNLP (Betts and Frank, 1994), VE10 (Toint, 1987) which uses the

obvious partially-separable structure of such problems, and the filter-based code FILTRANE

from the GALAHAD library (Gould et al., 2003a). Of course much general-purpose software

is applicable to nonlinear least-squares problems.

2.3 Discretized problems

In practice, many large-scale finite-dimensional unconstrained optimization problems arise

from the discretization of those in infinite-dimensions, a primary example being least-

squares parameter identification in systems defined in terms of either ordinary or partial

differential equations. The direct solution of such problems for a given discretization yield-

ing the desired accuracy is often possible using general packages for large-scale numeri-

cal optimization (see §2.1). However, such techniques rarely make use of the underlying

infinite-dimensional nature of the problem, for which several levels of discretization are

possible, and thus such approach rapidly becomes cumbersome. Multi-scale (sometimes

known as multi-level) optimization aims at making explicit use of the problem structure

in the hope of improving efficiency and, possibly, enhancing reliability.

Using differing scales of discretization for an infinite-dimensional problem is not a new

idea. An obvious simple “mesh refinement” approach is to use coarser grids in order to com-

pute approximate solutions which can then be used as starting points for the optimization

problem on a finer grid (Griewank and Toint, 1982a, Bank, Gill and Marcia, 2003, Betts and

Erb, 2003, Benson, McInnes, Moré and Sarich, 2004). However, potentially more efficient

techniques are inspired from the multigrid paradigm in the solution of partial differen-

tial equations and associated systems of linear algebraic equations (Brandt, 1977, Bram-
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ble, 1993, Hackbusch, 1995, Briggs, Henson and McCormick, 2000), and have only been

discussed relatively recently in the optimization community. Contributions along this di-

rection include the “generalized truncated Newton algorithm” presented in Fisher (1998),

and those by Moré (2003), Nash (2000a) and Lewis and Nash (2002, 2004). The latter

three papers present the description of MG/OPT, a linesearch-based recursive algorithm, an

outline of its convergence properties and impressive numerical results. The generalized

truncated Newton algorithm and MG/OPT are very similar and, like many linesearch meth-

ods, naturally suited to convex problems, but their extension to nonconvex cases is also

possible. Very recently, Gratton, Sartenaer and Toint (2004) have proposed a recursive

multi-scale trust-region algorithm (RMTR) which fits nonconvex problems more naturally

and is backed by a strong convergence theory. The main idea of all the methods mentioned

here is to (recursively) exploit the cheaper optimization on a coarse mesh to produce steps

that significantly decrease the objective function on a finer mesh, while of course con-

tinuing to benefit from mesh refinement for obtaining good starting points. In principle,

low frequency components of the problem solution (suitably prolongated in the original

infinite-dimensional space of interest) are determined by the coarse mesh calculations, and

optimizing on the fine mesh then only fixes high frequency components.

While the idea appears to be very powerful and potentially leads to the solution of

very large-scale problems, the practical algorithms that implements them are still mostly

experimental. Preliminary numerical results are encouraging, but the true potential of

these methods will only be confirmed by continued success in the coming years.

A second interesting approach to very large problems arising from continuous applica-

tions it to look at other ways to simplify them and make them more amenable to classical

optimization techniques. For instance, Arian, Fahl and Sachs (2000) and Fahl and Sachs

(2003) investigate the use of reduced-order models (using proper orthogonal decomposi-

tion techniques) in the framework of trust-region algorithms, and apply this technique to

fluid-mechanics problems. Note that model simplification of that type can also be thought

of as a recursive process, although not immediately based on discretization. The idea is

thus close in spirit to the proposals described above. Again, the practical power of this

approach, although promising at this stage, is still the object of ongoing evaluation.

3 Large-scale bound-constrained optimization

In the simplest of constrained optimization problems, we seek the minimizer of f(x) within

a feasible box, Ω = {x | l ≤ x ≤ u} for given (possibly infinite) lower and upper bounds l

and u. Without loss of generality, we assume that li < ui for all i = 1, . . . , n. It has been

argued that all unconstrained problems should actually include simple bounds to prevent

bad effects of computer arithmetic such as overflows, and certainly many real problems

have simple bounds to prevent unreasonable or physically-impossible values.
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3.0.1 Active-set methods

Early methods for this problem tended to be of the active-set variety. The active set at

x is A(x) = L(x) ∪ U(x), where L(x) = {i | xi = li} and U(x) = {i | xi = ui}. Trivially,

if x∗ is a (local) minimizer of f within Ω, x∗ is a (local) minimizer of f(x) subject to

xi = li, i ∈ L(x∗) and xi = ui, i ∈ U(x∗). Active set methods aim to predict L(x∗) and

U(x∗) using suitably chosen disjoint sets L, U ⊆ {1, . . . , n}. Given L and U , a typical

method will aim to (approximately)

minimize f(x)

subject to xi = li, i ∈ L and xi = ui, i ∈ U ;

such a calculation is effectively an unconstrained minimization over the variables (xi), i /∈

A = L ∪ U , and thus any of the methods mentioned in §2 is appropriate. Of course the

predictions L and U may be incorrect, and the “art” of active-set methods is to adjust

the sets as the iteration proceeds either by adding variables which violate one of their

bounds or by removing those for which further progress is predicted—the same idea is

possible (and indeed used) to deal with more general inequality constraints. See Gill et al.

(1981, §5.5) or Fletcher (1987a, §10.3) for more details. Especially effective methods for

the quadratic programming case, for which f is quadratic, have been developed (Coleman

and Hulbert, 1989).

The main disadvantage of (naive) active-set methods for large-scale problems is the

potential worst-case complexity in which each of the possible 3n active sets is visited

before discovering the optimal one. Although it is possible to design active-set methods

for the simple-bound case that are capable of making rapid changes to incorrect predictions

(Facchinei, Judice and Soares, 1998), it is now more common to use gradient-projection

methods.

3.0.2 Gradient-projection methods

The simplest gradient-projection algorithm (Bertsekas, 1976, Dunn, 1981, Levitin and

Polyak, 1966) is the obvious linesearch extension of the steepest-descent method to deal

with convex constraints, and is based on the iteration

xk+1 = PΩ[xk − αk∇xf(xk)],

where PΩ(v) projects v into Ω and αk is a suitable stepsize. In the case of simple bounds,

PΩ[v] = mid(l, v, u), the (componentwise) median of v with respect to the bounds l and

u, is trivial to compute. The method possesses one extremely helpful feature: for non-

degenerate problems (i.e., those for which the removal of one or more active constraints

necessarily changes the solution) the optimal “face” of active constraints will be deter-

mined in a finite number of iterations (Bertsekas, 1976). Of course, its steepest-descent

ancestry hints that this is unlikely to be an effective method as it stands, and some form

of acceleration is warranted.
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The simplest idea exploits the finite optimal-face identification property: if the active

faces visited by consecutive iterates of the gradient-projection algorithm are identical, a

higher order (Newton-like) method should be used to investigate this face. This was first

suggested for quadratic f (Moré and Toraldo, 1991), but is now commonplace for general

objectives.

A natural question is whether there are other algorithms which have the finite optimal-

face identification property for non-degenerate problems. It turns out that the result is true

for any algorithm for convex constraints for which the projected gradient PT (x)[−∇xf(x)]

converges to zero (Burke and Moré, 1988, Calamai and Moré, 1987)—here T (x) is the

closure of the cone of all feasible directions (the tangent cone) at x. Although the (discon-

tinuous) projected gradient is often hard to compute, in the simple-bound case it is merely

(componentwise)

(

PT (x)[−∇xf(x)]
)

i
=







−min{0, (∇xf(x))i} if xi = li
−(∇xf(x))i if li < xi < ui and

−max{0, (∇xf(x))i} if xi = ui.

Its continuous variant PΩ[xk − ∇xf(xk)] − xk is sometimes preferred, and plays a similar

role in theory and algorithms.

A restricted version of the finite identification result also holds in the degenerate case,

namely that the set of strongly-active constraints (i.e., those whose removal will change

the solution) will be identified in a finite number of iterations if the projected gradient

converges to zero (Lescrenier, 1991, Burke and Moré, 1994). These finite-identification

results apply to many contemporary methods.

Trust-region methods for the problem typically consider the gradient-projection arc

d(α) = PΩ∩{y | ‖y−xk‖≤∆k}[xk − α∇xf(xk)] − xk,

from xk. Given a QN model mk(d), a so-called (generalized) Cauchy point d(αC

k) is found

by approximately minimizing mk(d) along d(α); either the first local arc minimizer (Conn,

Gould and Toint, 1988a) or a point satisfying sufficient-decrease linesearch conditions

(Burke, Moré and Toraldo, 1990, Toint, 1988) is required—the computation of a suit-

able Cauchy point may be performed very efficiently when the Hessian is sparse (Conn,

Gould and Toint, 1988b, Lin and Moré, 1999b). Thereafter a step dk is computed so that

xk + dk ∈ Ω, ‖dk‖ ≤ ∆k and mk(dk) ≤ mk(d
C

k), (6)

and the usual trust-region acceptance rules applied (e.g., Conn et al., 2000a, §6.1). Since

it has been shown that the projected gradient converges to zero for these methods, the

flexibility in (6) is typically used to accelerate convergence by allowing a truncated CG

method to explore the face of active constraints at xk + dC

k . Since the CG iterates may

try to leave Ω, early methods simply fixed variables to their bounds and restarted the CG

iteration (Conn et al., 1988a), while more modern ones allow infeasible CG iterates by

periodically projecting them back into Ω (Gould et al., 2003a, Lin and Moré, 1999b).
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If second derivatives are unavailable, they may be estimated by any of the methods

discussed in §2. A particularly appealing approach is to use a limited-memory secant

method to estimate the Hessian. Although this approximation is dense, it is so structured

that a generalized Cauchy point may still be calculated. Moreover one of the advantages of

limited memory methods, namely that the QN step may be computed directly, is retained,

despite the requirement that the QN step be restricted to the face determined by dC

k ,

by judicious use of the Sherman-Morrison-Woodbury formula. (Byrd, Lu, Nocedal and

Zhu, 1995).

Although we have only considered methods which remain feasible with respect to the

bounds, there is no theoretical reason—so long as the objective function is well-defined

outside Ω—to do so provided there is some mechanism for ensuring that the iterates

are asymptotically feasible (Facchinei, Lucidi and Palagi, 2002). It is also unsurprising

that, just as in the unconstrained case, there is no need for the objective function to

decrease monotonically so long as there is some overall monotonic trend (Facchinei et

al., 1998, Gould et al., 2003a). Efforts have also been made to embed nonlinear CG

methods within a gradient-projection framework (Pytlak, 1998). Filter ideas have also

been investigated (Gould and Toint, 2003a) that use penalty techniques (see §5) to handle

the bounds. Research is ongoing to merge filter methods with the projection methods

discussed above or the interior-point techniques discussed below.

3.0.3 Interior-point methods

Interior-point methods provide an alternative means of solving bound-constrained prob-

lems. For simplicity, consider the case where Ω = {x | x ≥ 0}, suppose that µ is a

positive—so called barrier—parameter, and let

φ(x, µ)
def
= f(x) − µ

n
∑

i=1

log(x)i

be the logarithmic barrier function for the problem, where (x)i denotes the i-th component

of x. The key idea is to trace approximate minimizers of φ(x, µ) as µ decreases to zero. Un-

der reasonable assumptions, and for sufficiently small positive values of µ, (local) minimiz-

ers of φ(x, µ) exist and describe continuous trajectories—primal central paths—converging

to (local) solutions of the required problem (Fiacco and McCormick, 1968, Wright, 1992).

Likewise, if X is the diagonal matrix whose i-th diagonal element is the i-th component of

x and e is a vector of ones, the associated (first-order) dual variables estimates

z = µX−1e, (7)

are located on trajectories enjoying similar properties and converge to Lagrange multipliers

associated with the bound constraints. The cross product of each pair of trajectories is

known as a primal-dual central path, and most barrier methods attempt to follow one with

increasing accuracy as µ decreases (Fiacco and McCormick, 1968, Wright, 1992)—for this

reason, interior-point methods are sometimes also referred to as path-following methods.



Numerical methods for large-scale nonlinear optimization 17

The unconstrained minimization of φ can be handled using the techniques described in

§2 so long as care is taken to ensure that the iterates remain within the interior of Ω. A

QN model of the form (2) might be used, and as such would be

mk(d) = φ(xk, µ) + dT (∇xf(xk) − µX−1
k e) + 1

2
dT (Hk + µX−2

k e)d, (8)

where Hk is, as before, an approximation to ∇xxf(xk). However, considerable numerical

experience has shown that it is usually preferable to replace the first-order dual variable

estimates zk = µX−1
k e in the Hessian term of (8) to obtain instead

mk(d) = φ(xk, µ) + dT (∇xf(xk) − µX−1
k e) + 1

2
dT (Hk +X−1

k Zk)d, (9)

and to compute the dual variable zk by other means. In this case, since the optimal

Lagrange multipliers for the problem are necessarily positive, it is reasonable to require

the same be so of zk. Rather than computing zk explicitly from (7), it is better to multiply

both sides of (7) by X, giving Xz = µe. Applying Newton’s method to this last system

then yields the alternative

zk+1 = µX−1
k e−X−1

k Zkdk, (10)

involving the current step dk from xk. Additional safeguards need be employed to enforce

convergence of the process (Conn et al., 2000a, Ch. 13). Methods of this latter type

are referred to as primal-dual methods because they explicitly consider both primal and

dual variables, while methods based on the model (8) (with its implicitly computed dual

variables) are called primal methods.

An approximate minimizer of the model (9) may be computed by either a direct (fac-

torization) or iterative (CG) method. If the latter is used, it is normally essential to

precondition the iteration to remove the effects of the extreme eigenvalues of X−1
k Zk

(Luenberger, 1984, Ch. 12). A preconditioner of the form Pk = Gk + X−1
k Zk for some

suitable approximation Gk of Hk is usually recommended, with Gk varying from naive

(Gk = 0) to sophisticated (Gk = Hk).

Both linesearch or trust-region globalization of interior-point methods are possible and

essentially identical to that discussed in §2. The major difference in both cases is the

addition of a so-called fraction-to-the-boundary rule, preventing iterates from prematurely

approaching the boundary of the feasible set. A trust-region algorithm will accept a step

dk from xk if

1. xk + dk ≥ γkxk holds componentwise, for some given 0 < γk < 1, and

2. there is good agreement between the changes in mk and φ(x, µ).

For most practical purposes, the fraction-to-the-boundary parameter γk is held constant,

a typical value being 0.005. It may however be permitted to converge to zero, allowing

for fast asymptotic convergence. Wächter and Biegler (2004) choose (in a more general

context) γk = max(γmin, µk), where 0 < γmin < 1 is a prescribed minimal value. The

fraction-to-the-boundary rule also applies for linesearch methods, and a (backtracking)
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linesearch is typically performed until it is satisfied. A corresponding backtracking may

then also be applied to the dual step to ensure consistency.

Although there is no difficulty in providing a strictly-interior primal-dual starting point,

(x0, z0), in the bound-constrained case, it is generally sensible to ensure that such a point

is well separated from the boundary of the feasible region; failure to do this can (and in

practice does seriously) delay convergence. Given suitable primal estimates x0, traditional

choices for dual estimates z0 include the vector of ones or those given from (7) although

there is little reason to believe that these are more than heuristics. An initial value for µ

is then typically µ0 = xT
0 z0/n, so as to obtain good centrality at the initial point.

It is well known that computing dk to be a critical point of (9) and recovering zk+1 via

(10) is equivalent to applying Newton’s method from (xk, zk) to the perturbed optimality

conditions

∇xf(x) − z = 0 and Xz = µe

for our problem. While it is tempting to try similar approaches directly with µ = 0—so-

called affine methods—these have both theoretical and practical shortcomings for general

problems (see, for example, Conn et al., 2000a, §13.11). A more promising approach is to

note that equivalent first-order optimality conditions are that

W (x)∇xf(x) = 0, (11)

where

W (x) = diag w(x) and wi(x) =

{

xi if (∇xf(x))i ≥ 0

−1 otherwise.

So long as strictly feasible iterates are generated, W (x)∇xf(x) is differentiable, and New-

ton’s method may be applied to (11). To globalize such an iteration, combined linesearch-

trust-region methods have been proposed (Coleman and Li, 1994 & 1996) and variants

which allow quadratic convergence even in the presence of degeneracy are possible (Heinkenschloss,

Ulbrich and Ulbrich, 1999).

3.0.4 Practicalities

There have been a number of comparative studies of algorithms for bound-constrained

optimization (Facchinei et al., 2002, Gould et al., 2003a, Lin and Moré, 1999b, Zhu, Byrd,

Lu and Nocedal, 1997), but we feel that none of these makes a compelling case as to

the best approach(es) for the large-scale case. In practice, both gradient projection and

interior-point methods appear to require a modest number of iterations.

3.0.5 Software

Once again there is a reasonable choice of reliable software for the bound-constrained

case. Both TRON (Lin and Moré, 1999b) and LANCELOT/SBMIN (Conn, Gould and Toint,

1992) are trust-region gradient-projection algorithms with subspace conjugate-gradient

acceleration—there is an improved version of the latter within GALAHAD (Gould et al.,
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2003a)—while L-BFGS-B (Zhu et al., 1997) is a line-search implementation of the limited-

memory approach. The Matlab function fmincon (Branch, Coleman and Li, 1999) uses

an interior-point subspace method based on (11). FILTRANE, another algorithm of the

GALAHAD library, uses a filter method combined with penalty techniques for the bounds.

As before, more general codes such as KNITRO and LOQO are also highly appropriate.

4 Large-scale linearly-constrained optimization

As the next level of generality, we now turn to problems involving general linear constraints.

4.1 Equality-constrained quadratic programming

A—some might say the—basic subproblem in constrained optimization is to

minimize
x∈IRn

q(x) = gTx + 1

2
xTHx subject to Ax = b, (12)

where H is symmetric (but possibly indefinite) and A is m by n and (without loss of gener-

ality) of full rank. Such equality-constrained quadratic programming (EQP) subproblems

arise when computing search directions for either general methods for equality-constrained

or active-set methods for inequality-constrained optimization. It is actually often more

convenient to consider the related homogeneous problem

minimize
x̄∈IRn

q̄(x̄) = ḡT x̄+ 1

2
x̄THx̄ subject to Ax̄ = 0; (13)

so long as there is some easy way to find x0 satisfying Ax0 = b, the solutions of the two

problems satisfy x = x̄ + x0 provided that ḡ = g +Hx0.

Critical points of (12) necessarily satisfy the augmented (KKT) system

(

H AT

A 0

) (

x

y

)

=

(

−g

b

)

, (14)

and solutions of (14) can only be solutions of (12) if the coefficient matrix of (14) has

precisely m negative eigenvalues (Chabrillac and Crouzeix, 1984, Gould, 1985). Thus

direct (factorization) methods for solving (14) must be capable of coping with indefinite

matrices; fortunately there is a growing number of highly capable symmetric, indefinite

linear solvers (for example BCSEXT, MA27/57, Oblio or PARDISO; see Scott, Hu and Gould,

2004, for a comparison), and in particular if H is (block) diagonal a Schur-complement

decomposition involving factorizations of H and −AH−1AT is often to be recommended.

Nevertheless, for very large problems direct methods may be unviable or too expensive,

and iterative methods may be the only alternative. Although non-symmetric or indefinite

iterative methods may be applied, we only consider CG-type methods here, since these

have the desirable property of decreasing q(x) at every iteration.
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It should be apparent that CG methods can be applied explicitly to (13) by computing

a basis N for the null-space of A, and then using the transformation x̄ = Nxn to derive

the equivalent (unconstrained) problem of minimizing qn(xn) = xT
ngn + 1

2
xT

nHnxn, where

gn = NT ḡ and Hn = NTHN are known as the reduced gradient and Hessian respectively.

Perhaps not so obvious, the same may be achieved implicitly by using the standard pre-

conditioned CG (PCG) method but using a block (so-called), constraint preconditioner of

the form
(

G AT

A 0

) (

r

w

)

= −

(

ḡ +Hx

0

)

, (15)

to obtain the “preconditioned” residual r from the “unpreconditioned” ḡ + Hx, for some

suitable G (Coleman, 1994, Gould, Hribar and Nocedal, 2001, Lukšan and Vlček, 1998,

Polyak, 1969). Various choices for G, ranging from the identity matrix to H, have been

suggested, and all require a suitable (block) factorization of the coefficient matrix K of (15);

basic requirements are that K should be non-singular and have precisely m negative eigen-

values. A further advantage of the PCG approach is that any additional (properly-scaled)

trust-region constraint may easily be incorporated using the GLTR strategy mentioned in

§2. Nevertheless, requiring a factorization of K may still be considered a disadvantage,

and methods which avoid this are urgently needed.

4.2 General quadratic programming

Another important subproblem in constrained optimization is the general quadratic pro-

gramming (QP) problem, namely to

minimize
x∈IRn

q(x) subject to AEx = bE and AIx ≥ bI . (16)

Of particular interest is the non-convex case where the symmetric H may be indefinite,

although in these circumstances we must normally be content with local solutions. The

main application area we are concerned with is in solving subproblems which arise within

sequential quadratic programming (SQP) algorithms for general nonlinear optimization

(see §5.1, but note the caveat there that expresses our concerns over the SQP approach),

although there are actually a large number of other (usually convex) applications of (16)

(Gould, and Toint, 2000a), including VLSI design, optimal control, economic dispatch

and financial planning, to mention only a few. They also constitute a class apart as their

necessary and sufficient optimality conditions coincide (Contesse, 1980, Mangasarian, 1980,

Borwein, 1982).

4.2.1 Active-set methods for general quadratic programming

As was the case for bound-constrained problems we considered in §3, QP methods may

broadly be categorized as either active-set or interior-point based. As the name suggests,

active-set methods aim to predict which of the inequality constraints AIx ≥ bI are active

at a solution to (16). At each iteration, a working set WI ⊆ I is selected so that the
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gradients of the constraints AW , W = E ∪WI , are linearly independent. For this working

set, the EQP

minimize
x∈IRn

q(x) subject to AWx = bW (17)

is solved (if possible) using one of the methods described in §4.1. There are a number

of possibilities. If (17) is unbounded from below or if the solution to (17) violates one of

the inequality constraints indexed by I −WI , one (or more) constraints should be added

to the working set. If (17) is infeasible or if the solution to (17) is not that of (16)—the

latter is true if any of the Lagrange multipliers y from (14) are negative—one (or more)

constraints should be removed from the working set. In the convex case, only when the

solution to (17) satisfies all of the constraints indexed by I \ WI and all of the Lagrange

multipliers are positive can we be certain that we have solved (16). Unfortunately, for

non-convex problems, even checking if such a critical point is a local minimizer may be

(NP) hard (Murty and Kabadi, 1987). While such a strategy is simple—it may be reduced

to the solution of a sequence of EQPs—potentially a large number of iterations may be

required. Fortunately, just as with the simplex method for linear programming (LP), the

working set usually changes very gradually, and the potentially dominant cost of matrix

factorization is lessened through updates to existing factors. Thus active-set methods for

QP usually comprise a large number of very cheap iterations—by contrast interior-point

methods require a few, more expensive ones.

There have been relatively few active-set methods for large-scale QP, especially in

the nonconvex case. The majority of these are based on the idea of inertia control

(Fletcher, 1971). Suppose that the coefficient matrix K for the optimality conditions (14)

corresponding to the current EQP (17) has the “correct” inertia, i.e., K has |W| negative

eigenvalues. If a constraint is added to the working set, the new subproblem will inherit the

correct inertia. However, if a constraint is removed from the working set, it is possible that

the resulting K may have |W| + 1 rather than |W| negative eigenvalues. If this happens,

there must be a feasible direction of negative curvature, and an inertia-controlling method

will follow this direction until it encounters a currently inactive constraint (or perhaps q

is unbounded from below on the feasible set). This new constraint will be added to the

working set, and once again the resulting K will have either |W| or |W| + 1 negative

eigenvalues. In the former case, the correct inertia has been restored, while in the latter

there is again a direction of feasible negative curvature. This process of following negative

curvature and adding currently inactive constraints must ultimately terminate (unless the

problem is unbounded below) at a vertex of the feasible region at which point the correct

inertia will have been restored. The principal differences between the inertia-controlling

methods that have been proposed are the algebraic means by which the factors are main-

tained and updated. These include using Schur-complement (Gill, Murray, Saunders and

Wright, 1990, Gill, Murray, Saunders and Wright, 1991) or linear-programming basis-type

(Gould, 1991) updates to a factorization of an initial K, or Cholesky-factor updates of

the (dense) reduced Hessian (Fletcher, 2000), the latter only really being appropriate for

problems with few degrees of freedom.
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For problems for which a direct solution of the sequence of generated EQPs is unviable

or too expensive, it is also possible to use the PCG method described in §4.1. Now rather

than controlling the inertia of the KKT matrix, inertia control is only required for the

preconditioner (15). Once again, factors of the preconditioner must adapt to changes

in the working set, but the ability to choose G gives considerable flexibility (Gould and

Toint, 2002a).

4.2.2 Interior-point methods for general quadratic programming

It is easy to generalize the interior-point methods discussed in §3.0.3 to cope with the

quadratic program (16). Denoting the i-th row of AI by ai and the i-th component of bI
by bi, typical barrier methods for such problems aim to

minimize
x∈IRn

φ(x, µ)
def
= q(x) − µ

∑

i∈I

log(aT
i x− bi)

subject to AEx = bE

(18)

as µ decreases to 0, while ensuring that x remains interior to ΩI = {x | AIx ≥ bI}. Just

as in the bound-constrained case and under reasonable conditions, the minimizers of (18)

and their dual variable (Lagrange multiplier) estimates

yI = µC−1
I (x)e, where CI(x) = diag cI(x) and cI(x) = AIx− bI ,

define continuous trajectories—primal-dual central paths—leading to (local) solutions of

(16).

For fixed µ and feasible xk, basic iterative methods might compute a suitable step dk

by building a primal QN model

mk(d) = φ(xk, µ) + dT (gk − µAT
IC

−1
Ik e) + 1

2
dT (H + µAT

IC
−2
IkAI)d, (19)

where gk
def
= Hxk + g and CIk

def
= CI(xk), and then trying to (approximately)

minimize
s∈IRn

mk(d) subject to AEs = 0 and (possibly) ‖s‖ ≤ ∆k, (20)

involving an additional trust-region constraint. To ensure feasibility of the next iterate, a

stepsize 0 < αk ≤ αmax
k should be imposed along an approximate solution dk to (20)—a

fraction-to-the-boundary rule such as

αmax
k = max {0 < α ≤ 1 | cI(xk + αdk) ≥ γkcI(xk)}

is appropriate—and to guarantee convergence it may also be necessary to linesearch along

dk or adjust ∆k in the usual manner. But as in §3.0.3, a primal-dual model

mk(d) = φ(xk, µ) + dT (gk − µAT
IC

−1
Ik e) + 1

2
dT (H + AT

IC
−1
Ik YIkAI)d (21)
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involving explicit (positive) dual variables yIk is generally preferable to (19) both in theory

and in practice (Conn, Gould, Orban and Toint, 2000b). In particular, the analog of the

Newton update (10),

yIk+1 = µC−1
Ik e− C−1

Ik YIkdk, (22)

is appropriate, so long as appropriate precautions are taken to modify (22) to ensure that

yIk+1 remains sufficiently positive (Conn et al., 2000a, Ch. 13).

The key subproblem here is (20), but this is precisely of the form discussed in §4.1.

The only significant extra issue when the objective function has the form (21) is that any

preconditioner should respect the potentially ill-conditioned Hessian term (Luenberger,

1984, Ch. 12), and thus that the leading block in (15) should be Gk + AT
IC

−1
Ik YIkAI for

some suitable approximation Gk to H. Although it might first appear that such a leading

block may be unacceptably dense, the preconditioning step (15) for the model (21) may

be trivially rearranged to give the potentially sparser





Gk AT
E AT

I

AE 0 0

AI 0 −Y −1
Ik CIk









r

wE

wI



 = −





gk +Hs

0

−µZ−1
Ik e



 (23)

for auxiliary variables wI = C−1
IkZIkAIs− µC−1

Ik e (Gould, 1986).

The method sketched above presupposes that an initial point x0 is known within the

intersection of ΩE = {x | AEx = bE} and the interior of ΩI . A suitable point may be found

by solving an auxiliary phase-I problem such as

minimize
x∈IRn, sI∈IRnI

−
∑

i∈I

log(si) subject to AEx = bE and AIx− sI = bI , (24)

where the sI are being treated as auxiliary, positive slack variables. The intention here is

to find a point which is significantly interior, and in the above case will give the analytic

center of the feasible region. Fortunately, although finding feasible points for (24) may

not be obvious, the problem is convex and may be solved using an infeasible interior-point

method, such as those discussed in the next section.

With this in mind, an equivalent formulation of (16) is to

minimize
x∈IRn, sI∈IRnI

q(x) subject to AEx = bE , AIx− sI = bI and sI ≥ 0, (25)

and an alternative barrier method for (16) might aim to

minimize
x∈IRn, sI∈IRnI

φ(x, sI , µ)
def
= q(x) − µ

∑

i∈I

log(si)

subject to AEx = bE and AIx− sI = bI

(26)

as µ decreases to 0. Although the distinction between this “slack variable” formulation

and (18) is actually very slight if the constraints AIx − sI = bI are enforced throughout,

as we shall see later the distinction is more pronounced for nonlinear constraints.
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4.2.3 Interior-point methods for convex quadratic programming

Quadratic programs are traditionally classified as convex or nonconvex, depending on

whether the Hessian matrix H is positive semidefinite or not. Simply finding a local

minimizer of a nonconvex QP is an NP-hard problem (Vavasis, 1990), as is proving that a

first-order critical point is in fact a minimizer (Murty and Kabadi, 1987)—most algorithms

for general QP are consequently only designed to locate first-order critical points.

Convex QPs are provably solvable by algorithms having polynomial complexity (Nesterov

and Nemirovskii, 1994, Vavasis, 1991). The use of a barrier function to force convergence

in the convex case is usually inefficient, and the best methods are more closely allied to

those for LP (Wright, 1997). The basis of these primal-dual path-following methods for

convex QP is to solve the perturbed optimality conditions

g +Hx− AT
E yE − AT

I yI = 0,

AEx− bE = 0,

and YI(AIx− bI) − µe = 0

(27)

for (16) or, more commonly,

g +Hx− AT
E yE − AT

I yI = 0,

yI − zI = 0,

AEx− bE = 0,

AIx− sI − bI = 0,

and ZIsI − µe = 0

(28)

for (25), using Newton’s method or a variant thereof, while maintaining strict feasibility

for sI ≥ 0 and zI ≥ 0 (or AIx ≥ bI and yI for (16)), and letting µ gradually decrease to

zero. The most popular are based on the linesearch-based predictor-corrector algorithm of

Mehrotra (1992), originally developed for LP.

A typical predictor-corrector iteration for (28) involves the solution of a pair of (sym-

metrized) linear systems of the form















G 0 AT
E AT

I 0

0 0 0 −I −I

AE 0 0 0 0

AI −I 0 0 0

0 −I 0 0 −Z−1
I SI





























dx

dsI

−dyE

−dyI

dzI















= −















g(x) − AT
E yE − AT

I yI
yI − zI
cE(x)

cI(x) − sI
−Z−1

I rC(µ)















(29)

for different values of rC(µ), where (as before) cI(x) = AIx − bI , cE(x) = AEx − bE ,

g(x) = g + Hx and G ≈ H. Note that Newton’s method for (28) results when G = H

and rC(µ) = SIzI − µe with the current value of µ. The first of the two systems uses

rC(µ) = SIzI and defines a predictor step intended to reduce primal and dual feasibility.

This step is often referred to as an affine scaling step and is denoted dAFF. A steplength

αAFF is determined to preserve positivity of zI and sI . Upon defining the duality gap after

the predictor step µAFF = (zI + αAFFdAFF

zI
)T (sI + αAFFdAFF

sI
) and the centering parameter
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σ = (µAFF/µ)τ with 2 ≤ τ ≤ 4, the second system uses rC(µ) = SIzI −σµe+DAFF

sI
dAFF

zI
and

defines a corrector step aiming to improve centrality. The final primal and dual common

steplength (Mehrotra, 1992) is determined from

α = min(1, ηαP

MAX
, ηαD

MAX
),

where η ∈ [0.9, 1.0) converges to 1 as a solution is approached, and αP

MAX
and αD

MAX
are

primal and dual steplengths enforcing a fraction-to-the-boundary rule.

The higher-order corrections scheme of Gondzio (1996), again originally developed for

LP, generalizes to convex quadratic programming. Several corrector-like steps are taken, as

long as substantial steplengths are acceptable and individual complementarity pairs cluster

around their average value. These steps aim for dynamically-computed targets (Jansen,

Roos, Terlaky and Vial, 1996) located in a loose neighbourhood of the central path. The

number of corrector steps is computed at the first iteration by balancing the cost of the

linear algebra and the expected progress towards optimality.

Just as in §4.1, (block) direct or iterative methods may be used to solve the indefinite

system (29). Further savings often result from the block elimination





G AT
E AT

I

AE 0 0

AI 0 −Z−1
I SI









dx

−yE − dyE

−yI − dyI



 = −





g(x)

cE(x)

cI(x) − Z−1
I rC(µ)



 (30)

of (29), or possibly even from

(

G+ AT
IS

−1
I ZIAI AT

E

AE 0

) (

dx

−yE − dyE

)

= −

(

g(x) + AT
IS

−1
I ZI[cI(x) − Z−1

I rC(µ)]

cE(x)

) (31)

which arises by further eliminating yI + dyI from (30)—of course (31) may be inappro-

priate if the term AT
IS

−1
I ZIAI is significantly denser than G, but has the virtue of being

considerably smaller if there are many inequality constraints. It is also worth noting that

the corresponding predictor-corrector steps for (27) satisfy





G AT
E AT

I

AE 0 0

AI 0 −Y −1
I CI









dx

−yE − dyE

−yI − dyI



 = −





g(x)

cE(x)

cI(x) − Y −1
I rC(µ)



 (32)

which is simply (30) in the special case sI = cI(x) and zI = yI—also c.f. (23). The coef-

ficient matrices from (29), (30)/(32) and (31) are appropriate preconditioners for PCG so

long as they have, respectively, rank(AE)+2|I| rank(AE)+|I| and rank(AE) negative eigen-

values (Conn et al., 2000b, with Sylvester’s law of inertia); equivalently G + AT
IS

−1
I ZIAI

should be positive definite on the null-space of AE , and this will always be the case if G is

positive definite. Any of the factorizations mentioned in (4.1) are appropriate.
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For large problems, it is vital to be able to exploit commonly-occurring sub-structure

when solving (30). Applications from multi-stage stochastic programming, network com-

munications or asset liability management give rise to matrices H and A having one of a

number of predefined block structure—examples include H and A being block diagonal,

primal or dual block angular or bordered block diagonal. Moreover, this block structure

appears recursively in the sense that the structure of the blocks is similar to that of the

matrix containing them. This nestedness is fully exploitable on observing that if matrices

H and A have compatible structures—i.e., have the same number of diagonal blocks with

matching numbers of columns—the coefficient matrix K of (30) can be reordered to have

similarly exploitable block structure (Gondzio and Grothey, 2003a).

Frequently in practice K may be very ill-conditioned or even singular, and it is common

to regularizeK to avoid such deficiencies. Typically diagonal blocks R will be added toK so

that the resulting matrix K+R is quasi-definite. Quasi-definite matrices (Vanderbei, 1995)

are strongly factorizable in the sense that, for any symmetric permutation P , there exist a

unit lower triangular matrix L and a diagonal matrix D such that P (K +R)P T = LDLT

without recourse to 2 × 2 pivoting, as is common with other popular factorizations of

indefinite matrices (see §4.1). If the system is block-structured as above, the quasi-definite

factorization may easily be parallelized, since block structure in P (K+R)P T induces block

structure in L and D (Gondzio and Grothey, 2003a).

The requirement that slack variables introduced in (25) remain strictly feasible suggests

that a steplength 0 < αk ≤ αmax
k be chosen where

αmax
k = max {0 < α ≤ 1 | sI,k + αdsI ≥ γksI,k}

to enforce a fraction-to-the-boundary rule. A similar rule applies to primal variables that

are subject to bounds and to dual variables. A strictly feasible initial point is any sI,0 > 0,

but in practice it may be prudent to initialize sI to a significantly positive value. Since

the inequality constraints also need to be satisfied, a common choice is to pick sI,0 =

max(AIx0−bI , σe) componentwise, where x0 is supplied by the user or the model, σ > 0 is a

given constant, e.g., σ = 1 and e is the vector of all ones. Often, explicit bound constraints

will be honoured by first moving x0 to satisfy them, and computing sI,0 from this perturbed

initial point. Another possibility is to compute an affine-scaling step dAFF, i.e., using µ = 0,

for the primal-dual system associated with (16). Upon defining sAFF

I = sI,0+d
AFF

sI
, an initial

sI,1 is computed based on the feasibility of sAFF

I , using a rule such as

sI,1 = max(βe, |sAFF

I |) or sI,1 = sAFF

I + γmax(0,−sAFF

I ) + βe, (33)

where the absolute values and maxima are understood elementwise and β, γ > 0 (Gertz,

Nocedal and Sartenaer, 2003).

Good general-purpose initial values for the Lagrange multipliers y in primal-dual inte-

rior methods are hard to find, and poor guesses may introduce unwarranted nonconvexity

into the model if the problem is nonconvex. Nonetheless, they are often initialized to ap-

proximate least-squares solutions for dual feasibility, i.e., values of y for which the gradient
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lies on the nullspace of the constraints at the starting point, and adjusted to ensure that

those corresponding to inequality constraints are strictly positive.

Not all path-following interior-point methods for convex QP are of the predictor-

corrector type. The simplest alternative is to solve (29) or (30) for a pre-assigned µ but to

ensure ensure strict feasibility by means of a fraction-to-the-boundary rule, in which the

stepsize α is chosen as

α = min

{

1, (1 − ε) max
[ds]i<0

si

−[ds]i
, (1 − ε) max

[dz]i<0

zi

−[dz]i

}

,

for a small ε > 0. A merit function such as

φ(x, sI , y, zI) ≡ sT
I zI + ‖∇L(x, sI, yE , yI, zI)‖2 (34)

where L(x, sI, yE , yI, zI) is the Lagrangian associated with (25), is used to assess suitability

of such a steplength. Such a fraction-to-the-boundary condition may be implicitly ensured

by Zhang’s (1994) stepsize rule, and in this case yields a global linear convergence rate and

a polynomial algorithm.

One further interesting idea in both convex and non-convex cases is to solve (16) by

a sequence of minimizations over the intersection of the interior of the feasible region

with iteratively-generated low-dimensional (typically 2- or 3-dimensional) subspaces. The

advantage here is that the resulting subproblems are small, so that global optimization

is possible. Clearly the choice of subspaces is crucial, and should include at least one

“descent” direction for whatever globalization mechanism is to be used, and others which

are geared towards fast asymptotic convergence—solutions of (29) for different rC(µ) may

be used (Boggs, Domich, Rogers and Witzgall, 1996).

4.2.4 Practicalities

The only comparison of the competing QP ideologies we are aware of is that of Gould and

Toint (2002b). As perhaps one might expect, the interior-point approach seems generally

to be preferable to the active-set especially for very large problems where the number

of active-set iterations can be enormous. For “warm-start” problems where a solution

to a small perturbation of an existing already solved problem is required, there is some

virtue in using the active-set approach as it seems better able to use good estimates of

the optimal active set. Whether this trend will continue is debatable, especially as current

research for LP indicates promise for warm-started interior-point methods (Gondzio and

Grothey, 2003b, Yildirim and Wright, 2002).

When carefully implemented, interior methods for QP scale almost perfectly with the

number of variables, and rarely do they need more than, say, 30–35 iterations. Moreover,

unlike active-set-type methods, the linear systems which arise at each iteration have iden-

tical block structure. Nonetheless, the solution of such systems may still be costly, and

implementations must pay particular attention to exploiting structure—an example of a
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disastrous situation caused by the lack of exploitation of low-rank-corrector structure is

given by Ferris and Munson (2000).

A final important idea is to simplify QPs before solution. Such “presolve” methods

have proved to be very effective for LP (Gondzio, 1997), and similar gains are also possible

for QP (Gould and Toint, 2004c).

4.2.5 Software

Currently available active-set non-convex QP codes include VE09 (Gould, 1991), bqpd

(Fletcher, 2000) and QPA (Gould and Toint, 2002a). The PRESOLVE package (Gould and

Toint, 2004c) is, as its name suggests, intended for presolving QPs.

Highly efficient commercial interior-point-based software such as CPLEX 6.0 (1998),

MOSEK (Andersen and Andersen, 2000) and XPRESS-MP (Guéret, Prins and Seveaux,

2002) is available for convex QP. These packages implement path-following algorithms

in a primal-dual setting, and are available for parallel machines as well as for personal

computers. Significantly, they may be tested online on the NEOS Server for Optimization

(Czyzyk, Mesnier and Moré, 1998, Gropp and Moré, 1997, Dolan, 2001).

The object-oriented QP package OOQP (Gertz and Wright, 2003) implements general-

izations of both Mehrotra’s (1992) predictor-corrector and Gondzio’s (1996) higher-order

correction methods. OOQP has the advantage of being customizable to various application

domains, and has been tailored to solve problems arising from support vector machines

and Huber regression. Similar features are implemented in COPLQP (Ye, 1997).

Specialized structure is exploited automatically by the object-oriented parallel solver

OOPS (Gondzio and Grothey, 2003a). Currently OOPS has been able to solve non-trivial

problems involving 52 million variables and 20 million constraints.

Although now a code for general nonlinear programming, a set of default parameter

values for convex QP and a careful implementation of a tailored LDLT factorization for the

quasidefinite systems at the heart of the algorithm make LOQO (Vanderbei, 1999) one of

the most robust predictor-corrector, primal-dual path-following convex QP solvers. Much

of this is due to the care with which the factorization is obtained. An LDLT factorization

of the regularized matrix K +R from (30) is computed using a two-stage ordering scheme

assigning priorities to pivots based on estimates of the fill-in in both AAT and ATA.

Pivots corresponding to the current priority are treated using a minimum-degree ordering

heuristic.

QPB from the GALAHAD library of Gould et al. (2003a) implements a primal-dual

interior method for general QP—for non-convex problems, QPB is only capable of identi-

fying a weak second-order critical point. The Phase-I relies on the package LSQP, itself a

primal-dual infeasible method for convex separable QP (Zhang, 1994) which is also part of

GALAHAD. Numerical tests on a monoprocessor machine on small, n+m . 104, medium,

104 . n + m . 105 and large-scale, 105 . n + m . 106, problems illustrate how well the

method scales with the dimension, and the superiority of interior-point approaches over

active-set type methods when a reliable estimate of the optimal working set is not available
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and when the number of variables and constraints are large (Conn et al., 2000b, Gould et

al., 2003a, Gould and Toint, 2002b).

4.3 General linearly-constrained optimization

When the constraints are linear but the objective neither linear nor quadratic, most al-

gorithms try to emulate the QP methods described above, by ensuring feasibility with

respect to constraints and requiring a reduction in the objective function (or perhaps

barrier function) at each iteration—if an interior-point method is used, the iterates will

remain interior to all inequality constraints. The only significant differences occur because

the Hessian of the objective function changes at each iteration and must be periodically

evaluated or estimated by some means. If the objective is close to linear, solutions (and

intermediate iterates) often have a high proportion of active constraints (|W | ≈ n) and

some methods (Murtagh and Saunders, 1982, Gill, Murray and Saunders, 2002, Friedlan-

der and Saunders, 2005) exploit this by maintaining (dense) secant approximations of the

reduced Hessian.

Interior-point methods for convex problems have received extensive attention since

the existence of self-concordant barriers lead to polynomial algorithms (Nesterov and Ne-

mirovskii, 1994, Renegar, 2001), and specialized methods have been devised for important

applications. A good example is the minimization of a nonlinear but convex, (and prefer-

ably, but not necessarily) separable objective subject to linear equalities and bounds which

arise in transportation planning, knowledge management or world-wide web traffic model-

ing (Saunders and Tomlin, 1996). The problem is stated as

minimize
x∈IRn

f(x) subject to Ax = b and l ≤ x ≤ u,

and is regularized and reformulated as

minimize
x,r

f(x) + 1

2
‖D1x‖

2 + 1

2
‖r‖2 subject to Ax +D2r = b and l ≤ x ≤ u,

for some diagonal positive-definite regularization matrices D1 and D2. A primal-dual path-

following method is then applied. The bulk of the computation involves solving systems

of the form
(

H AT

A −D2
2

) (

dx

−dy

)

= −

(

∇xf(x) − ATy − µ[(X − L)−1 + (U −X)−1]e

Ax+D2
2y − b

)

where H = ∇xxf(x) + D2
1 + (X − L)−1Zl + (U − X)−1Zu and y, zl and zu are suitable

Lagrange multiplier estimates. As the coefficient matrix here is quasi-definite, it admits an

LDLT factorization. Alternatively, eliminating dy to obtain normal equations and treating

them as a least-squares problem, a trial step (dx, dy) is computed using a least-squares

method, e.g., LSQR of Paige and Saunders (1982).

Not all proposed interior-point methods are of the path following variety. For example

it is possible to generalize the affine-scaling approach of Coleman and Li (1996) to handle

linear inequality constraints (Coleman and Li, 2000).
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4.3.1 Software

Although it is capable of handling general constraints, the venerable active-set NLP solver

MINOS (Murtagh and Saunders, 1982) is perhaps best regarded for its ability to deal with lin-

ear constraints. Likewise its successors SNOPT (Gill et al., 2002) and KNOSSOS (Friedlander

and Saunders, 2005) are both highly effective for such problems, particularly if there are

relatively few degrees of freedom. As usual, other general nonlinear programming pack-

ages, such as LOQO and KNITRO may be applied and are comfortable with such problems,

although we would not recommend LANCELOT in this case.

5 Large-scale nonlinearly-constrained optimization

Finally, we turn our attention to our most general nonlinear programming problem (1) and

the attendant difficulties of coping with constraint curvature.

5.1 Sequential linear and quadratic programming methods

The phrase “sequential quadratic programming” (SQP) seems to mean different things to

different people, but the central theme is undoubtedly to apply an iteration for which a new

iterate is generated by trying to minimize a quadratic approximation of the appropriate

Lagrangian function `(x, y)
def
= f(x) − yT

E cE(x) − yT
I cI(x) subject to linearizations of some

or all of the constraints. Here we will examine several aspects of this approach. There

have been a number of surveys of SQP methods over the past 10 years (Boggs and Tolle,

1995 & 2000, Conn, Gould and Toint, 1997, Gould and Toint, 2000) and we urge readers

to consult these for details since we do not have room to give them all here.

We start by considering problems only involving equality constraints—for some people,

for example those who work on PDE-constrained optimization (e.g., Biros and Ghattas,

2000), this is SQP—for which the central ideas are best understood. But it is in the context

of the general problem (1) which we believe that most people understand the term SQP,

and which we consider next. There is a strong distinction between linearizing a subset

of the constraints at each iteration—the EQP subproblem approach, which is strongly

influenced by methods for equality constraints—and linearizing all constraints at every

iteration—the IQP subproblem approach.

5.2 SQP methods for equality-constrained problems

We first consider SQP methods for the equality-constrained (EC) problem

minimize
x∈IRn

f(x) subject to cE(x) = 0. (35)
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SQP methods for EC problems (SQPE) aim to find a correction dk to the current solution

estimate xk so as to (approximately)

minimize
d

q(d) = dTg(xk) + 1

2
dTHkd

subject to cE(x) + JE(xk)d = 0.
(36)

Here g(x) = ∇xf(x) is the gradient of the objective, J(x) = ∇xcE(x) is the Jacobian of

the constraints, and Hk is (an approximation to) the Hessian of the Lagrangian function

`E(x, yE) = f(x) − yT
E cE(x) for given estimates yEk of the Lagrange multipliers yE at xk. If

Hk = ∇xx`E(xk, yEk) and

dTHkd > 0 for all d for which JE(xk)d = 0, (37)

the solution to (36) is identical to that obtained by applying Newton’s method to the

criticality conditions ∇(x,yE)`E(x, yE) = 0 at (xk, yEk). Aside from the fundamental issues of

how to choose Hk and yEk, SQPE methods have a number of obvious possible shortcomings.

In particular (i) the linearized constraints may be inconsistent, (ii) (37) may be violated,

and (iii) the iteration may diverge.

Possible shortcoming (i) is best dealt with in one of two, related, ways. The first is to

re-pose (1) as the related penalty problem

minimize
x∈IRn

φ(x, σ)
def
= f(x) + σ‖cE(x)‖,+σ

∑

i∈E

|ci(x)| + σ
∑

i∈I

min(−ci(x), 0) (38)

for some sufficiently large σ > 0 and given norm ‖ · ‖, and instead to minimize some model

of the (non-smooth) penalty function φ(x, σ). A typical model problem then might be to

approximately

minimize
d

q(d) + σ‖cE(x) + JE(xk)d‖; (39)

if ‖ · ‖ is polyhedral (e.g., the `1- or `∞-norm), (39) may be reformulated as a (consistent)

inequality-constrained QP, while if ‖ · ‖ is elliptical (e.g., the `2-norm) a quadratic conic-

programming reformulation is possible.

Notice that the intention here is implicitly to allow inconsistent linearized constraints

by merely reducing their infeasibility as much as is possible. A second, more direct way of

dealing with inconsistency is to aim for reduction in infeasibility rather than full satisfaction

of the constraints. A composite step dk = nk + tk may be used to achieve this. The idea

is simply that the “(quasi-)normal” step nk tries to reduce ‖cE(x) + JE(xk)n‖ while the

“tangential” step tk aims to reduce q(d) while maintaining the infeasibility at the level

achieved by nk—if nk reduces the infeasibility to zero and tk solves

minimize
t∈IRn

q(nk + t) subject to JE(xk)t = 0, (40)

dk will be the solution to (36). Although there are a number of composite-step methods

(Conn et al., 2000a, §15.4), the most appealing is the so-called Byrd-Omojokun approach
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(Byrd, Hribar and Nocedal, 1999, Lalee, Nocedal and Plantenga, 1998, Omojokun, 1989)

in which the CG method is used both to reduce ‖cE(x) + JE(xk)n‖
2
2 and subsequently to

approximately solve the EQP (40) (see §4.1).

If shortcoming (ii) occurs, q(d) will be unbounded from below on the feasible region.

Suitable remedies are just as in the unconstrained case (see §2). Linesearch-based methods

cope with such an eventuality by either obtaining a direction of feasible negative curvature

or by modifying Hk, although good methods for achieving the latter during matrix factor-

ization are still in their infancy (Forsgren, 2002, Forsgren and Murray, 1993, Gould, 1999).

Trust-region-based methods impose a constraint to stop steps to infinity, but there is the

added complication that the trust-region constraint ‖s‖ ≤ ∆k may be incompatible with

the linearizations JE(xk)d = −cE(x) if ∆k is too small. In this case, one of the remedies

proposed for shortcoming (i) may be required.

Shortcoming (iii) may be overcome in the usual way, namely by requiring descent

(monotonic or otherwise) with respect to a suitable merit function such as (38). A good

choice of σ is vital if such a method is to be efficient, and we will return to this later. An

unfortunate consequence—the Maratos (1978) “effect”—is that the SQP step may not be

acceptable to merit functions like (38), and that an auxiliary calculation (a “second-order

correction”) may be required to modify the step to allow fast convergence. Other merit

functions, such as the augmented Lagrangian function, avoid this defect and have been

used with much success (Boggs, Kearsley and Tolle, 1999a, Gill et al., 2002).

A modern alternative to merit functions, which avoids the need to compute a penalty

parameter, is to use the filter idea introduced in §2.1.3. For EC problems, we consider

the conflicting objectives θ1(x) and θ2(x) to be the objective function and the constraints

violation ‖cE(x)‖, respectively. A step d is thus accepted if either the objective function

decreases or if the constraints violation is reduced, while it is rejected if no decrease is

obtained in either. But of course many further refinements are necessary in order to devise

a workable algorithm. One is the way that filter methods deal with incompatible model

constraints. Rather than resorting to the remedies for shortcoming (i) given above, filter

trust-region algorithms switch to a “restoration phase”, i.e. to the minimization of the

constraint violation alone (the objective function is momentarily forgotten) until a model

with compatible constraints is found. Since this will be true for any feasible point for the

original problem, this restoration phase must terminate at a suitable point so long as it

is capable of finding, or indeed possible to find, one. This restoration phase may use any

suitable algorithm, including the filter method for nonlinear least-squares mentioned in

§2.2. It may also be triggered more frequently—the method of Gonzaga, Karas and Vanti

(2003) performs the equivalent of a restoration phase at every iteration.

A drawback that is common to SQPE approaches is that they all potentially suffer from

the Maratos effect and therefore may need a second-order correction step to guarantee

fast convergence. In theory this may be avoided by the filter remembering Lagrangian

rather than objective function values (Ulbrich, 2004b), but, to our knowledge, numerical

experience is not yet available to support this idea in practice.
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Rival trust-region SQPE filter methods impose different requirements on the step

computation—Fletcher, Leyffer and Toint (2002b) require the global solution of the trust-

region constrained SQPE, while others (Fletcher and Leyffer, 2002, Fletcher, Gould, Leyf-

fer, Toint and Wächter, 2002a, Gonzaga et al., 2003, Gould and Toint, 2004a, 2003b)

permit approximate local minimizers—and on the precise technique for maintaining the

filter. This technical decision is often based on the distinction between iterations whose

main effect is to reduce the objective function (f -iterations), and iterations whose main

effect is to reduce constraint violation (θ-iterations).

Linesearch variants of the filter idea are also possible. Despite using a different glob-

alization technique, the proposal of Wächter and Biegler (2003a, 2003b) remains similar

in structure to the trust-region variants, in that it also involves restorations, second-order

correction steps and similarly uses the distinction between f - and θ-iterations to manage

the filter.

For all SQPE algorithms, two other issues which are of great practical importance are

the choice of Hessian approximation Hk and Lagrange multiplier estimates yEk. Although

exact second derivatives of the Hessian of the Lagrangian are often available, the use of

approximations still persists especially for problems where |E| ≈ n. In particular, as we

noted in §4, solving (40) may be reduced to minimizing tTngn + 1

2
tTnHntn and recovering

tk = NT tn, where gn = NT (g(xk) +Hknk) and Hn = NTHkN , and the columns of N form

a basis for the null-space of JE(xk). Thus so long as |E| ≈ n, Hn will be small and it will be

feasible to maintain Hn as a dense secant approximation to NT∇xx`E(xk, yEk)N (see the

survey articles mentioned at the start of this section). If |E| 6≈ n, it may still be possible

to maintain a useful limited-memory secant approximation to the same matrix (Gill et

al., 2002). Lagrange multipliers yE k+1 are often taken as those from the approximate

solution to (38), although some form of interpolation between these values and yEk may be

necessary if the merit function, the trust-region or constraint inconsistency intervene; little

work seems to have been performed to discover the influence of such distractions which is

somewhat surprising given the influence yEk may have on Hk. As an alternative, a direct

or CG least-squares solution to JT
E (xk)y = g(xk) may be appropriate (Lalee et al., 1998).

5.3 SQP methods for the general problem

Suffice to say, as the epithet suggests, an SQP method aims to solve the general problem

(1) by solving a sequence of (cleverly) chosen QP problems. There are essentially two

classes of SQP methods.

5.3.1 Sequential equality-constrained quadratic programming (SEQP) meth-

ods

The first, which we call sequential equality-constrained QP (SEQP) methods are essentially

SQPE methods for which the set E is replaced by a (changing) estimate Ak ⊆ E∪I of (1)’s

optimal active set. All of the salient points we made about SQPE methods apply equally
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here, but now the dynamic data structures necessary to accommodate changes in Ak and,

more importantly, the choice of Ak itself introduce extra complications. Of paramount

importance is the globalization strategy, since otherwise there will be little control over

constraints not in Ak. In particular, it is vital that all constraints are represented in

whatever merit function or filter is used.

A common strategy is to use the non-differentiable penalty function

minimize
x∈IRn

φ(x, σ)
def
= f(x) + σ‖cE(x)‖ + σ‖min(−cI(x), 0)‖ (41)

as a merit function, and to use an EQP model in which a second-order approximation to

the (locally) differentiable part of φ(x, σ) is minimized subject to linearized approximations

to the (locally) non-differentiable part remaining fixed (Coleman and Conn, 1982); Ak is

thus defined by those constraints with (almost) zero values.

An alternative is to use the active set at a minimizer of a “simpler” model of (1) or

(41) to predict the active set of (1). The most obvious models are linear, and lead to linear

programming suproblems which aim to

minimize
d

l(d) = dTg(xk) subject to cE(x) + JE(xk)d = 0

and cI(x) + JI(xk)d ≥ 0.
(42)

or

minimize
d

l(d) + σ‖cE(x) + JE(xk)d‖ + σ‖min(−cI(x) − JI(xk)d, 0)‖; (43)

the advantage here is that there are excellent (simplex and interior-point) methods for

large-scale linear programming. However since the solutions to these subproblems almost

inevitably lie at vertices of their feasible regions, and as there is no reason to expect that

the solution to (1) has n active constraints, (42) or (43) alone are not sufficient to determine

Ak.

One way of remedying this is to impose artificial constraints whose role is simply to

cut off those problem constraints which are likely to be inactive at the solution to (1); if

an artificial constraint is active at the solution of (42) or (43) it will not be included in

Ak. Care must be taken, however, to ensure that the artificial constraints do not exclude

optimally active problem constraints, and the balance between these aims is quite delicate.

Early sequential linear programming (SLP) methods (Griffith and Stewart, 1961) imposed

artificial constraints of the form ‖s‖∞ ≤ ∆ in which ∆ was dynamically adjusted, but it was

Fletcher and Sainz de la Maza (1989) who first interpreted this as a trust-region constraint.

Crucially they showed that the usual trust-region acceptance and adjustment rules are

sufficient to correctly identify the optimal active set in a finite number of iterations. Both

filter- (Chin and Fletcher, 2003) and merit-function- (Fletcher and Sainz de la Maza, 1989,

Byrd et al., 2004a) based SLP variants are possible.

If the non-differentiable penalty function φ(x, σ) in (41) is used, it is important that

the penalty parameter σ be adjusted to ensure that ultimately feasible critical points of

the latter correspond to critical points of (1). Although in principle one could simply
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adjust σ once an approximate solution of (41) has been found (Mayne and Polak, 1976),

this is wasteful. It is preferable to adjust σ as soon as there is model-based evidence that

the current value is not reducing the constraints, and means for doing this while ensuring

convergence to critical points of (1) (or perhaps finding a critical point of infeasibility) are

known (Byrd, Gould, Nocedal and Waltz, 2004b).

5.3.2 Sequential inequality-constrained quadratic programming (SIQP) meth-

ods

The second class of SQP methods are those we refer to as sequential inequality-constrained

QP (SIQP) methods. In these, no a priori prediction is made about the active set, but

instead a correction dk is chosen to (approximately)

minimize
d

q(d) subject to cE(x) + JE(xk)d = 0

and cI(x) + JI(xk)d ≥ 0.
(44)

Now Hk is an approximation to the Hessian of the full Lagrangian, `(x, y) = f(x)−yT c(x),

for the problem, and linearizations of all constraints are included. Although we no longer

need to specify Ak, constraint inconsistency and iterate divergence are still serious concerns,

and now we have the added complication that (iv) (44) may have (many) local minimizers.

Given all of these potential pitfalls, why are SIQP methods so popular? One reason

is obviously their potential for fast local convergence; under reasonable assumption, the

iteration based on (44) will correctly identify the active set and thereafter converge rapidly

(Robinson, 1974). Another is favourable empirical evidence accumulated on small-scale

problems (Hock and Schittkowski, 1981). But, on this basis and given the growing number

of successful codes for large-scale QP, it might be thought surprising that there are so few

large-scale SIQP algorithms. We now believe that this is not a coincidence and most likely

an indication of the unsuitability of the SIQP paradigm for large-scale optimization. Why

do we believe this?

Our first objection to SIQP is simply that given even the most efficient QP method,

the cost of solving a large-scale inequality-constrained QP (IQP) is usually far greater

than, say, an equivalently-sized EQP or interior-point subproblem. Thus a method that

uses IQPs needs either to ensure that relatively few overall iterations are required, or have

some mechanism for stopping short of QP optimality. Although there is anecdotal evidence

that SIQP methods require few iterations for small-scale problems, we are unaware of any

proof that this will always be the case. Likewise, the methods suggested in the tiny body

of work on IQP truncation (Goldsmith, 1999, Murray and Prieto, 1995) may, in the worst

case, require the solution of n (related) EQPs per IQP.

Of more serious concern are the dangers posed by allowing indefinite Hk. This possi-

bility rarely surfaced in the small-scale case, since almost always positive-definite secant

Hessian approximations were used. But for large problems traditional secant approxima-

tions are rarely viable on sparsity grounds—limited-memory secant methods are possible
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(Gill et al., 2002) but may give inaccurate approximations, while the alternatives of us-

ing partitioned secant approximations or exact second derivatives often generate indefinite

Hessians. Indefinite Hk may cause difficulties for a number of reasons. Firstly, the possibil-

ity of moving to an unwelcome (possibly higher) local minimizer, dk, cannot be discounted,

particularly when using an interior-point QP solver. Such a dk may well be unsuitable for

use with a globalisation strategy. While this appears to be a defect specifically for interior-

point QP solvers, active-set methods may also be fooled. Consider the simple-bound QP

minimize
x∈IR2

1

2
(x2

1 + x2
2) − 3x1x2 − 5

4
x1 + 7

4
x2 subject to 0 ≤ x1, x2 ≤ 1

whose contours are illustrated in Figure 1—this is a simplified version of that given by

Goldsmith (1999). Starting from x = (0, 0), many active-set QP solvers would move
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Figure 1: Active-set QP method gives uphill step

downhill via the corner (1, 0) to the (global) minimizer at (1, 1)—both steps are along

directions of positive curvature. Unfortunately the overall step (1, 1) is an initially-uphill

direction of negative curvature, and thus again unlikely to be suitable for use with a

globalisation strategy. Of course this does not mean that the method will fail, merely that

the approach may be inefficient as extra precautions (such as reducing a trust-region radius

or modifying curvature) may have to be applied.

Whatever our reservations, SIQP methods remain popular. Linesearch, trust-region

and filter variants have been proposed. Some avoid difficulty (iv) above by insisting on

positive-definite (sometimes limited-memory) secant approximations to second derivatives

(Gill et al., 2002). Others modify true second derivatives to ensure that the reduced

Hessian is positive definite (Boggs, Kearsley and Tolle, 1999b, Boggs et al., 1999a), while
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some use the restoration-phase of the filter approach to recover from bad steps (Fletcher

and Leyffer, 2002).

5.4 Interior-point methods for nonlinear programs

As the reader might anticipate, the last decade has seen an explosion in interest in path-

following methods for the general nonlinear program (1). Amongst the large number of

papers devoted to the topic, two related approaches have emerged.

The first places all inequality constraints directly into a logarithmic barrier, leaving

only explicit equality constraints. A sequence of barrier subproblems of the form

minimize
x∈IRn

φ(x;µ)
def
= f(x) − µ

∑

i∈I

log(ci(x))

subject to cE(x) = 0,
(45)

parametrized by the scalar µ > 0, is solved for positive values of µ which eventually

decrease to zero. This approach is particularly appealing when cE(x) = 0 are sufficiently

simple to be handled directly, e.g. when they are linear (Conn et al., 2000b)—indeed,

this is simply a generalization of (18)—but does require that the inequality constraints are

strictly satisfied throughout. Since this may be difficult to achieve—even finding an initial

point for which this is true may be far from trivial—the second approach allows inequality

constraints to be violated at intermediate stages, but for each introduces a slack variable

which is treated by a barrier function. The resulting problem is thus of the form

minimize
x∈IRn, sI∈IRnI

φ(x, s;µ)
def
= f(x) − µ

∑

i∈I

log(si)

subject to cE(x) = 0 and cI(x) − sI = 0.
(46)

Clearly, the introduction of slacks sI is reminiscent of (26). Although it is vital that the

slacks remain strictly feasible throughout, not all methods of this type remain infeasible

right up to the solution (Byrd, Nocedal and Waltz, 2003).

For both approaches, the barrier subproblems are equality constrained, and the SQPE

methods described in §5.2 are appropriate (Byrd, Gilbert and Nocedal, 2000a, Vanderbei

and Shanno, 1999, Wächter and Biegler, 2004). Note however that extra precautions to

ensure that the barrier terms remain finite must be taken, and it is here that (46) has some

advantage, since in this case the barrier terms only involve (trivial) linear expressions.

Just as in the linearly-constrained case, locally convergent methods may be devised by

applying (variants of) Newton’s method to the perturbed optimality conditions

∇f(x) + JE(x)
TyE − JI(x)

T yI = 0,

cE(x) = 0,

and cI(x)yI − µe = 0,

(47)
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of (1), or

∇f(x) + JE(x)
TyE − JI(x)

T yI = 0,

yI − zI = 0,

cE(x) = 0,

cI(x) − sI = 0,

and ZIsI − µe = 0,

(48)

of

minimize
x∈IRn, sI∈IRnI

f(x) subject to cE(x) = 0, cI(x) − sI = 0 and sI ≥ 0, (49)

(c.f. (27) and (28)). The only differences between the variants on Newton’s method

described in §4.2.3 and those applicable here are that the Jacobians AE and AI in (29)–

(32) are now JE(x) and JI(x), respectively, and that G should now be an approximation to

the Hessian of the Lagrangian, ∇xx`(x, y); (direct or iterative) methods for solving these

systems are identical to those in §4.2.3.

In (46), when the constraint Jacobian

J(x) =

(

JE(x) 0

JI(x) I

)

has full rank, composite step (reduced space) variants of (29)–(32) are also possible. Just

as in §5.2, the step may be decomposed using the Byrd-Omojokun scheme (Omojokun,

1989), and least-squares estimates of the Lagrange multipliers for the equality constraints

obtained. If similar multiplier estimates for inequality constraints are found, care needs to

be taken to ensure that these remain positive (Wright, 1997) or that the quadratic model

remains convex in the slacks (Byrd et al., 1999). For problems arising from, e.g., dynamical

systems where multiplier estimates are not available, it is remarkable that schemes to

update the penalty parameter may still be derived (Wächter, 2002).

As always, it is necessary to globalize Newton’s method in some way, and both (smooth

and non-smooth) merit function- and filter-based possibilities have been proposed. Issues

that arise with the linesearch globalization of the Newton direction dx





G JT
E (x) JT

I (x)

JE(x) 0 0

JI(x) 0 −Z−1
I SI









dx

−yE − dyE

−yI − dyI



 = −





g(x)

cE(x)

cI(x) − sI + µZ−1
I e



 (50)

(or its §4.2.3 equivalents (29)–(32)) include the choices of stepsize and other (penalty and

barrier) parameters and strategies to ensure that G is chosen to guarantee that dx gives

descent for whatever merit function is used—to date, the simple expedient of adding a

diagonal matrix λI to G for suitably large λ seems to be the most sophisticated strategy

used in the large-scale case (Vanderbei and Shanno, 1999, Wächter and Biegler, 2004),

although, just as in §4.2.3, all that is actually required is that G + JT
I (x)S−1

I ZIJI(x)

should be positive definite on the null-space of JE(x). Murray and Wright (1992) devised

a linesearch procedure tailored to the logarithmic barrier function, given a search direction
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d, by identifying the closest constraint for which d is a descent direction at the current

iterate. A stepsize is computed by identifying a root of an approximation to the gradient

of the barrier along d, by linearizing f and the constraint in question and ignoring all

other constraints. Several other interpolating functions are used as approximations of the

logarithmic barrier by the same authors, so as to devise specialized linesearches. To the

best of our knowledge, these have not been incorporated into large-scale interior-point

codes.

Typical merit functions for (46) might be the non-smooth penalty-barrier function

(Yamashita, Yabe and Tanabe, 2004)

φ(x, s;µ, ν) = f(x) − µ
∑

i∈I

log(si) + ν‖cE(x)‖ + ν‖cI(x) − sI‖, (51)

the smooth variant (Gay, Overton and Wright, 1998, Vanderbei and Shanno, 1999)

ψ(x, s;µ, ν) = f(x) − µ
∑

i∈I

log(si) +
ν

2
‖cE(x)‖

2
2 +

ν

2
‖cI(x) − sI‖

2
2, (52)

or some scaled equivalents, perhaps even involving a different penalty parameter νi per con-

straint to account for poor scaling. Although these parameters should be handled globally

as described in §5.3.1, care must be taken to ensure that the direction computed from (50)

or its variants is a descent direction for the merit function. This may be guaranteed for φ

by iteratively increasing the penalty parameter until its directional derivative is negative;

only a finite number of increases are required under standard assumptions (Byrd, Gilbert

and Nocedal, 2000b).

A disadvantage of (51) and (52) is that they really only measure suitability of the

primal step dx; other means are used to compute steps in the dual variables. One function

which does not suffer from this drawback is the augmented penalty-barrier merit function

(Forsgren and Gill, 1998),

θ(x, y;µ, ν) = f(x)+ 1
2µ

∑

i∈E

{ci(x)
2 + ν(ci(x) + µyi)

2}

−µ
∑

i∈I

{

log(ci(x)) + ν

(

log

(

ci(x)yi

µ

)

+ 1 −
ci(x)yi

µ

)}

,
(53)

which allows simultaneous minimization in both the primal and dual variables. So long

as G + JT
I (x)S−1

I ZIJI(x) is positive definite on the null-space of JE(x), the primal-dual

Newton step (50) for (47) is a descent direction for θ. If not, negative-curvature descent

directions are easy to obtain.

For the most part, theoretical analyses of these techniques make relatively strong

assumptions—a linear independence qualification condition (LICQ) is often required to

establish global convergence, while fast local convergence analyses rely on strict comple-

mentarity. Because the objective function and the barrier objective function both decrease

monotonically with µ along the exact central path (Fiacco and McCormick, 1968, Wright,
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1992), path-following algorithms for nonlinear programming have a monotone flavour. This

is at variance with other methods discussed earlier.

A most disturbing aspect of linesearch-based interior-point methods which use (47) to

compute the search direction dx has recently been discovered (Wächter and Biegler, 2000).

The issue is that if there is a mixture of equality and inequality constraints, if the former are

approximated by linearizations and if feasibility of the latter are controlled by restricting

the step along the search direction, the resulting iteration may converge to a worthless

infeasible point. This surprising result has caused a reassessment of linesearch methods,

and in some cases consideration of filter methods with appropriate acceptance measures

as a replacement (Benson, Vanderbei and Shanno, 2002, Wächter and Biegler, 2004). The

natural alternative, though, is to consider trust-region-based methods, which fortunately

do not suffer from this convergence failure.

In trust-region interior methods for general nonlinear programming, any of the SQPE

approaches discussed in §5.2 are appropriate, but now extra care needs to be taken to

cope with the required feasibility of the inequality constraints in (45) or slacks in (46). In

particular, in the latter case, it is important that the slack variables do not approach their

bounds either prematurely or too rapidly. The obvious SQPE trust-region subproblem

would minimize a quadratic approximation to the Lagrangian of (46)—in which as usual

a primal-dual approximation ZIS
−1
I to the Hessian of the barrier terms rather than the

primal one µS−2
I is used—subject to linearized approximations to the constraints within

an appropriately-scaled trust region and perhaps a suitable fraction-to-the-boundary con-

straint. For example, the step (dx, ds) may be constrained so that

‖(dx, S
−1ds)‖2 ≤ ∆ and s+ ds ≥ (1 − τ)s,

with 0 < τ . 1 (Byrd, Gilbert and Nocedal, 2000a, Byrd, Hribar and Nocedal, 1999), or

the fraction-to-the-boundary rule may be imposed after the event (Conn et al., 2000b). In

general, it is especially important that the shape of the trust region mirrors that of the ill-

conditioned barrier terms (Conn et al., 2000b). As before, the issue of linearized constraint

incompatibility—particularly when there is a trust region—is present, and a composite-

step strategy as outlined in §5.3.1 is appropriate. As in the linesearch case, the penalty

parameter ν must be adjusted as the algorithm proceeds to try to ensure asymptotic

feasibility of the constraints, and rules to achieve this within a trust-region framework are

known (Byrd et al., 2000a). It is also possible to use the augmented penalty-barrier merit

function (53) within such a framework (Gertz and Gill, 2004).

Although primal-dual multiplier estimates zI are usually preferred to primal ones

µS−1
I e, it is important for global convergence that the former do not differ arbitrarily

from the latter. To ensure this property, and to encourage fast asymptotic convergence,

generated primal-dual estimates are typically projected into a box containing the primal

values. This in turn guarantees proximity of the primal-dual Hessian to the pure primal

Hessian, which is also required for fast convergence. An alternative is always to compute

least-squares multipliers from an estimate of the optimal active set (Dussault, 1995).
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Some problems may not be defined when the constraints are violated, and methods

based on (45) directly respect this requirement. Methods based on (46) may be modified

to address it by resetting slacks to ensure that all iterates are strictly feasible. This is

sometimes referred to as “feasible mode” (Byrd et al., 2003) and is often used in practice

(Byrd et al., 2000a). In a linesearch framework, as soon as an iterate xk strictly satisfies

the constraint ci, i ∈ I, i.e.,

ci(xk) ≥ ε > 0, (54)

the i-th component of the trial slack variables sT

i = ski +dsi is reset to ci(x
T) = ci(xk +dx).

Should the resulting step be rejected by the merit function, a shorter step (dx, ds) is

attempted and the process is repeated. In trust-region frameworks, the situation is more

complicated since possible successive increases in the merit function caused by this reset

might dominate decreases attempted by the step. It should also be kept in mind that (54)

might very well never happen.

In practice it is common to encounter degenerate problems, that is those for which the

set of Lagrange multipliers is unbounded or, worse, does not exist—often such problems

result from “over-modeling”. For instance, it is easily seen that

minimize
x∈IR

f(x) subject to x2 = 0, (55)

where f : IR → IR is such that f ′(0) 6= 0, admits no Lagrange multiplier. To deal with

this possibility (1) may be transformed so as to

minimize
x,s

φS(x, s; ν)
def
= f(x) + ν

∑

i∈E

[ci(x) + 2si] + ν
∑

i∈I

si

subject to ci(x) + si ≥ 0 and si ≥ 0, for all i ∈ E ∪ I,
(56)

in terms of so-called elastic variables sE ∈ IRnE and sI ∈ IRnI ; the objective φS(x, s; ν) is

simply a smooth reformulation of the exact `1-penalty function for (1). This new problem

is not only smooth but regular—it satisfies the Mangasarian-Fromovitz constraint qualifi-

cation, and thus has bounded multipliers, for all fixed ν > 0. Furthermore, the problem

only involves inequality constraints and is thus well suited to an interior-point approach

(Gould, Orban and Toint, 2003b; see also Tits, Wächter, Bakhtiari, Urban and Lawrence,

2003 for a simplified variant).

One other possibility is to balance satisfaction of centrality and feasibility against op-

timality using a filter. The central idea is to compute a primal-dual step for (49) in a

manner similar to that described in (50). But now instead of defining a new iterate by a

linesearch along the step, or by some classical trust-region scheme, a two-dimensional filter

with conflicting objectives (see §2.1.3)

θ1(x, sI, y, zI) = ‖cE(x)‖ + ‖cI(x) − sI‖ +

∥

∥

∥

∥

ZIsI −
zT
I sI
nI

e

∥

∥

∥

∥

and θ2(x, sI, y, zI) =
zT
I sI
nI

+ ‖∇(x,sI)`(x, sI, y, zI)‖
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is used to accept or reject the step; here `(x, sI, y, zI) is the Lagrangian of (49). The first

objective, θ1, measures feasibility and centrality of the vector (x, sI, y, zI) while θ2 attempts

to measure optimality. The resulting algorithm, which decomposes the primal-dual step

into normal (towards the central path) and tangential (to the central path) components

whose sizes are controlled by a trust-region scheme, is globally convergent to first-order

critical points (Ulbrich, Ulbrich and Vicente, 2004).

5.4.1 Practicalities

Many practical issues are to be considered with extreme care when implementing path-

following methods. Among those, we have already touched on the treatment of indefinite-

ness, degeneracy, unboundedness, poor scaling and handling of feasible sets with no strict

interior. We now briefly comment on two other outstanding issues, the choice of the initial

barrier parameter and its update.

The initial value of µ, although irrelevant in theory, is crucial in practice and may

determine the success of a method within the allowed limits. Most algorithms set the

initial barrier parameter to some prescribed constant value which seems to perform well

on average over a large class of problems, e.g., µ0 = 0.1.

For the formulation (46), if initial values for sI and zI are determined using (33), the

initial value µ0 = sT zI/nI is reminiscent of linear programming (Wright, 1997) to obtain

good centrality at the initial point. To take scaling into account and in an attempt to locate

nearby points on the central path, one might set µ0 = maxi ‖∇ci(x0)‖∞ and perform a

heuristic test by selecting the value of µ producing the smallest residual in the primal-

dual system among the values 0.01µ0, 0.1µ0, µ0, 10µ0 and 100µ0—this rule is used by

interior-point codes in the GALAHAD library (Gould et al., 2003a). Perhaps more usefully,

if PJE(x)(v) denotes the orthogonal projection of v onto the nullspace of JE(x) and φ(x;µ)

is the objective of (45) Gay et al. (1998) suggest computing

µLS = argminµ>0‖PJE(x0)(∇xφ(x;µ))‖,

and subsequently setting the initial barrier parameter for (45) to the value

µ0 = min(100,max(1, |µLS|));

For (46), the same recipe involving PJ(x) and the objective φ(x, s;µ) is appropriate.

In short-step, long-step or predictor-corrector methods for linear programming (Wright,

1997) and convex quadratic programming, the barrier parameter is updated using a rule

similar to µk+1 = σkx
T
k sk/nI, where 0 < σk < 1 is a centering parameter. More traditional

rules, such as µk+1 = σkµk with 0 < σk < 1 are commonplace in nonlinear programming,

given that there is no concept of duality gap, and virtually all convergence theory has been

established for such rules.

In the framework (45), Gay et al. (1998) suggest the rule

µk+1 = min

(

µk, σk

c(xk)
T zk

nI

)

where σk = min

(

0.2, 100
c(xk)

T zk

nI

)

,
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where zk are the estimates of the Lagrange multipliers associated to the inequality con-

straints of (1) at xk. This rule is clearly reminiscent of linear programming and enforces

that {µk} be decreasing. For some problems, this monotone behaviour causes difficulties

and, sometimes, failure in practice, and more dynamic rules are investigated, such as the

laxer

µk+1 = σ
c(xk)

T zk

nI
,

with 0 < σ < 1, which allows the barrier parameter to increase (Bakry, Tapia, Tsuchiya

and Zhang, 1996). Similar rules have been used in the framework of (46), using sT
IkzIk/nI

instead of c(xk)
T zk/nI.

Vanderbei and Shanno (1999) note that in practice, it is important to keep individual

complementarity pairs clustered together. Using the formulation (46), they define

ξk =
mini skizki

sT
IkzIk/nI

to measure deviation from complementarity and use the heuristic update

µk+1 = 0.1 min

(

0.05
1 − ξk
ξk

, 2

)3
sT
IkzIk

nI
.

Such rules have had some success in practice but are unfortunately not covered by conver-

gence theory and can indeed cause failure if µ becomes too small prematurely or diverges.

5.4.2 Problems with equilibrium constraints

Several formulations of mathematical programs with equilibrium constraints (MPECs)

are given in the literature. Generalizing mathematical programs with complementarity

constraints (MPCCs), their trait is the presence of a constraint of the form

0 ≤ F1(x) ⊥ F2(x) ≥ 0, (57)

where F1, F2 : IRn → IRnCC and, for x, y ∈ IRnCC , the notation x ⊥ y is understood

componentwise as meaning xiyi = 0 for all i = 1, . . . , nCC. Such a constraint might

originate, e.g. from variational inequalities, optimality conditions of the inner problem in

a bilevel setting, or from an economic equilibrium requiring that either the price or the

excess production for a product be zero. In game theory, F1 and F2 might represent the

strategy of the leader and the follower, respectively. In design problems, F1 is the design

while F2 is the response of the system. It is easily seen that problems with a constraint of

the form (57) violate the Mangasarian–Fromovitz constraint qualification at every feasible

point. Such problems thus always have unbounded sets of multipliers which typically

consist in rays. We refer the reader to the recent overview (Leyffer, 2003) for references.

Practical implementations able to reliably treat such problems remain rare and in an

active development stage and there is much room left for improvement and the advent of
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new methods. Of particular importance is the impact of the formulation of the comple-

mentarity constraints on the performance of algorithms. An additional difficulty appears

when studying interior methods for (1) with constraints of the form (57) as no central

path exists. To circumvent this issue, most practical methods consider a sequence of re-

laxed problems with nonempty strict interior (Scheel and Scholtes, 2000), and an interior

method is applied to them. A rather simple modification of the step described in the filter

linesearch interior algorithm of Wächter and Biegler (2004) is described by Raghunathan

and Biegler (2003) who perform a single interior-point iteration per relaxed problem. This

modification ensures nonsingularity of the step-defining augmented matrix and alleviates

the need for centrality conditions. Numerical difficulties may appear for in the limit, the

strict interior of the feasible set vanishes. DeMiguel, Friedlander, Nogales and Scholtes

(2004) propose an alternative where this limit is nonempty, removing the need to modify

the search directions.

Anitescu (2000) reformulates MPCCs with nonempty Lagrange multiplier sets by smooth-

ing an `∞-penalty function. The resulting nonlinear program depends on an elastic variable

and has an isolated local minimizer at a solution of the MPCC which, under a quadratic

growth condition, can be approached with a finite penalty parameter. This last problem

may be solved, e.g., using an SQP approach.

Luo, Pang and Ralph (1998) propose a disjunctive approach, in which the feasible

region is decomposed in branches, also called local pieces. A single SQP step is performed

on the nonlinear program defined by the current piece, and all pieces must be examined.

Superlinear convergence holds under uniqueness of the multipliers.

Using elastic variables in a manner similar to Anitescu (2000), Benson, Sen, Shanno

and Vanderbei (2003) reformulate the MPCC by smoothing an `∞-penalty function. Under

strict complementarity, multipliers at a solution are bounded. The algorithm of Vander-

bei and Shanno (1999) implemented in the LOQO package is used to solve the penalty

subproblems, using an ad-hoc rule to update the penalty parameter.

Convergence properties of algorithms for (57) typically rely on MPCC-specific regular-

ity conditions such as strong stationarity, the so-called MPCC-LICQ, a strong constraint

qualification, and the MPCC-SOSC, a specialized second-order condition. A form of strict

complementarity usually ensures fast local convergence. For complete details regarding

MPCCs and MPECs, we refer the reader to Luo, Pang and Ralph (1996).

Finally, filter methods can also be adapted for the solution of mixed complementarity

problems. Ulbrich (2004a) uses a reformulation of the problem into semi-smooth equations,

to which a filter method for least-squares (in a variant very close to that described in §2.2)

is then applied. Although preliminary experiments are interesting, extensive numerical

evidence is still missing and the effectiveness of the approach remains to be confirmed.

5.4.3 General convex programs

We finally consider the special case of problems of the form (1), in which f is convex and

the constraints define a convex feasible set. Interior methods for such problems inherit
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many properties of those for linear and convex quadratic programming. Algorithms for

the latter may therefore relatively painlessly be extended to the former. In particular, the

multiple target tracking strategy of Gondzio (1996) generalizes, a key being the reduction

of the Newton matrix for the primal-dual equation to a quasi-definite matrix. The method

has the particularity of defining one barrier parameter per constraint.

The fact that there is a great deal of well-understood theory covering the convex case,

and that efficient algorithms from linear programming carry over does not imply by any

means that tracking the central path is an easy task. Indeed, even for infinitely differen-

tiable convex data, the central path can exhibit an infinite number of segments of constant

length and assume the shape of an “antenna” or zigzag infinitely (Gilbert, Gonzaga and

Karas, 2002),

To control the stepsize, linesearch-based methods for general convex programming use

the `2 merit function (52). The rationale for this approach is that for sufficiently large

values of ν > 0, the direction d computed from (50) is a descent direction for (52) whenever

the problem is strictly convex. The additional difficulty introduced by the use of such a

merit function is the need to manage the penalty parameter. For most practical purposes,

simple updating rules such as νk+1 = 10νk suffice. More clever rules (approximately)

compute the smallest value νmin of ν which makes d a descent direction for the merit

function, and set νk+1 = 10νmin. The linesearch procedure next determines an appropriate

stepsize based on a fraction-to-the-boundary rule and an Armijo-type acceptance condition.

5.4.4 Software

Perhaps the most widely-known SQP method is SNOPT (Gill et al., 2002), a worthy suc-

cessor to the augmented-Lagrangian based MINOS (Murtagh and Saunders, 1982). Both

methods are especially designed for the case where there are relatively few degrees of

freedom—and most successful in this case—and neither requires second derivatives. The

augmented-Lagrangian-based LANCELOT (Conn et al., 1992) operates at the other ex-

treme, being most effective when there are relatively few general constraints, and is capa-

ble of running without gradients if necessary—(group) partial separability (Griewank and

Toint, 1982b, Conn et al., 1990) allows for the efficient estimation of derivatives. More

modern SQP interior-point hybrids like LOQO (Vanderbei and Shanno, 1999), KNITRO

(Byrd et al., 2000a) and NLPSPR (Betts and Frank, 1994) are effective regardless of the

relative number of (active) constraints. Of the filter-based methods both the trust-region

SQP-based FilterSQP (Fletcher and Leyffer, 1998) and the linesearch interior-point-based

IPOPT (Wächter and Biegler, 2004) have proved to be robust and efficient. The primal-

dual method of Forsgren and Gill (1998) is being implemented in the object-oriented code

IOTR which acts as a template for implementing interior-point algorithms. Some codes—

for example, the augmented-Lagrangian-based PENNON (Kočvara and Stingl, 2003)—have

even wider scope, permitting semi-definite matrix constraints. Others, such as CONOPT

(Drud, 1994) and LSGRG2 (Smith and Lasdon, 1992), use (generalized) reduced gradi-

ent methods not even covered in this survey. A welcome development has certainly been
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the flurry of papers—see for example those just cited—comparing and contrasting rival

nonlinear programming packages. At this stage, algorithm development is still so rapid

that it is impossible to identify the best method(s). We urge potential users to try the

award-winning NEOS server (Dolan, Fourer, Moré and Munson, 2002, Czyzyk et al., 1998)

http://www-neos.mcs.anl.gov

to compare many of the leading contenders.

Turning to convex programming, both MOSEK (Andersen and Andersen, 2000, Ander-

sen and Ye, 1998)—which is based on a homogeneous model (Andersen and Ye, 1999)—and

NLPHOPDM (Epelly, Gondzio and Vial, 2000)—which applies a multiple target tracking

strategy (Gondzio, 1996)—are designed for general problems, having evolved from lin-

ear programming beginnings. The same is true of PDCO (Saunders and Tomlin, 1996),

which implements the regularization scheme of §4.3. PDCO has been successfully used

to solve large-scale entropy maximization problems using Shannon’s entropy function

S(x) = −
∑

i xi log(xj) as objective and has proved able of solving a maximum entropy

model of web traffic with 662, 463 variables and 51, 152 sparse constraints in 12 iterations.

6 Conclusion

We have reviewed recent developments in algorithms for large-scale optimization, succes-

sively considering the unconstrained, bound-constrained, linearly-constrained and nonlin-

early constrained cases. Emphasis has been put on the underlying principles and theoretical

underpinnings of the described methods as well as on practical issues and software.

We are aware that, despite our best efforts, the picture remains incomplete and biased

by our experience. This is reflected, for instance, in our lack of cover of neighbouring

subjects like variational inequalities and nonsmooth problems, despite their intrinsic inter-

est. It is nevertheless hoped that the overview presented will make the field of nonlinear

programming and its application to solving large problems easier to understand, both for

scholars and practitioners.
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Springer.



Numerical methods for large-scale nonlinear optimization 49

J. M. Borwein (1982), ‘Necessary and sufficient conditions for quadratic minimality’,

Numerical Functional Analysis and Optimization 5, 127–140.

J. H. Bramble (1993), Multigrid Methods, Longman Scientific and Technical, New York.

M. A. Branch, T. F. Coleman and Y. Li (1999), ‘A subspace, interior and conjugate gradi-

ent method for large-scale bound-constrained minimization problems’, SIAM Journal

on Scientific Computing 21(1), 1–23.

A. Brandt (1977), ‘Multi-level adaptative solutions to boundary value problems’, Mathe-

matics of Computation 31(138), 333–390.

W. L. Briggs, V. E. Henson and S. F. McCormick (2000), A Multigrid Tutorial, 2nd edn,

SIAM, Philadelphia, USA.

A. Brooke, D. Kendrick and A. Meeraus (1988), GAMS: a User’s Guide, The Scientific

Press, Redwood City, USA.
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M. Kočvara and M. Stingl (2003), ‘PENNON, a code for nonconvex nonlinear and semidef-

inite programming’, Optimization Methods and Software 18(3), 317–333.

M. Lalee, J. Nocedal and T. D. Plantenga (1998), ‘On the implementation of an algo-

rithm for large-scale equality constrained optimization’, SIAM Journal on Optimiza-

tion 8(3), 682–706.

R. D. Leone, A. Murli, P. M. Pardalos and G. Toraldo, eds (1998), High Performance

Algorithms and Software in Nonlinear Optimization, Kluwer Academic Publishers,

Dordrecht, The Netherlands.

M. Lescrenier (1991), ‘Convergence of trust region algorithms for optimization with

bounds when strict complementarity does not hold’, SIAM Journal on Numerical

Analysis 28(2), 476–495.

E. S. Levitin and B. T. Polyak (1966), ‘Constrained minimization problems’, U.S.S.R.

Computational Mathematics and Mathematical Physics 6, 1–50.

A. S. Lewis and M. L. Overton (1996), ‘Eigenvalue optimization’, Acta Numerica 5, 149–

190.



60 Nicholas I. M. Gould, Dominique Orban and Philippe L. Toint

M. Lewis and S. G. Nash (2002), Practical aspects of multiscale optimization methods

for vlsicad, in Multiscale Optimization and VLSI/CAD (J. Cong and J. R. Shinnerl,

eds), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 265–291.

M. Lewis and S. G. Nash (2004), ‘Model problems for the multigrid optimization of

systems governed by differential equations’, SIAM Journal on Scientific Computing.

(To appear).

S. Leyffer (2003), ‘Mathematical Programs with Complementarity Constraints’,

SIAG/OPT Views-and-News 14(1), 15–18.
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