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1 Introduction

We analyse a filter algorithm for solving systems of nonlinear equations. More formally, we

consider the problem of solving

c(z) =0, (1.1)
where c is a twice continuously differentiable function from IR" into IR™. We partition the
equations of (1.1) into p (not necessarily disjoint) sets {c;(z)}iez; for j = 1,...,p, with
{1,...,n} =7 UZyU---UZ,, and define

def .
0;(z) = e, (2)|| for j=1,....p, (1.2)
where | - || is the ordinary Euclidean norm and where cz; is the vectors whose components

are the components of ¢ indexed by Z;. The point z is therefore a solution of (1.1) if and
only if @;(z) = 0 for j = 1,...,p. The quantity 6;(x) may be interpreted as the size of
the residual of the j-th set of equations at the point z. We will also use the abbreviations
0(z) = (61(z),...,0,(z)T, Ok def 0(xr) and 6, def 0j(zr). In the simplest case, that is
when p = m and Z; = {j}, we have that 0;; = |cj(z)| and [|0k|| = ||c(z)||-

We follow the classical approach for solving (1.1), which consists of minimizing a merit
function involving some norm of the residual. For simplicity, we choose to consider

min f(z) = L10()1*. (1.3)
Note that this is a least-squares formulation of (1.1), which justifies the second part of
the paper’s title. (The least squares are weighted if the subsets Z; are not disjoint.) Our
objective is therefore to find a (local) minimizer z, of f(z). If f(z.) = 0, z, is also a
solution of (1.1).

The class of algorithms that we discuss for achieving this objective belongs to the class
of trust-region methods and also to that of filter methods introduced by Fletcher and Leyffer
(2002). Although originally intended for the solution of constrained optimization problems,
we claim here that the main idea of the approach, namely that of a filter to decide on
acceptability of the successive iterates, may be extended to the context of (1.1). The
question is of interest, since most of the recent contributions to the field of filter algorithms
(see Fletcher and Leyffer, 2002, Fletcher, Leyffer and Toint, 1998, Fletcher, Leyffer and
Toint, 20025, Gould and Toint, 2001, Fletcher, Gould, Leyffer, Toint and Wéchter, 2002a,
Gould and Toint, 2003a, Wichter and Biegler, 2001, Gonzaga, Karas and Vanti, 2002 ) rely
on an external “restoration procedure” whose purpose is to reduce constraint infeasibilities
(i.e. , when only equality constraints are present, solve a problem of the type (1.1), albeit
possibly approximately). The fact that (1.1) can itself be handled by a filter algorithm,
which, as will be seen below, does not explicitly depend on any restoration procedure,
therefore significantly extends the range of applicability of the filter idea.
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The question of using filter techniques for the solution of nonlinear equations has already
been considered by Fletcher and Leyffer (2003), but their approach is very different from the
one proposed here. It indeed relies on reducing the violation of a subset of equations while
keeping the other violations within bounds, and then adaptively redefining these subsets.
By contrast, our approach takes all violations into account together and does not require
the revision of any subset during the algorithm.

We introduce our algorithm for problem (1.1) in Section 2 and discuss its convergence in
Section 3. Numerical experience is reported in Section 4 and some preliminary conclusions

are drawn in Section 5.

2 Nonlinear equations, filter and trust regions

An efficient technique for solving (1.1) is to use Newton’s or the Gauss-Newton method
(or one on their many variants like secant methods), which, from a current iterate z;, (and
possibly from information gathered at iterations preceding iteration k), computes a trial

step s, and thus yields a trial point

:v}c" = Tk + Sg-

Unfortunately, such algorithms may not be convergent from an arbitrary starting point
zp, and we may have to include it within a framework that guarantees this very desirable
property. Our proposal is to use a suitable combination of the trust-region (see Conn,
Gould and Toint, 2000) and filter techniques.

The main idea of filter algorithms for constrained optimization is that new iterates of
the underlying iterative algorithm can be accepted if they do not perform, compared to
past iterates kept in the filter, worse on both important and typically conflicting accounts
for this type of problem, namely feasibility and low objective function value. In the context
of nonlinear equations, we no longer have to consider an objective function, but still face
conflicting purposes. Indeed, we may consider driving each of the {c;(z)}i~; (or each of the
{6;(z)}’_,) to zero as an independent task, and this task is typically conflicting with that of
driving the other components of ¢ (or ) to zero. Thus we will consider a multidimensional

filter, instead of a two-dimensional one.
2.1 The multidimensional filter
In order to define our filter, we first say that a point 1 dominates a point z9 whenever

ej(.’lil) S Hj(ivg) for all ] = 1,. ..y D.

Thus, if iterate =, dominates iterate xy,, the latter is of no real interest to us since xy, is

at least as good as zy, for each of the equation sets. All we need to do now is to remember
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iterates that are not dominated by other iterates using a structure called a filter. A filter
is a list F of p-tuples of the form (01 ,...,60p k) such that

0k < 0, for at least one j € {1,...,p}

for k # £. Filter methods propose to accept a new trial iterate x; if it is not dominated by
any other iterate in the filter and z,. In the vocabulary of multi-criteria optimization, this
amounts to building elements of the efficient frontier associated with the p-criteria problem
of reducing infeasibility on each of the p sets of equations.

While the idea of not accepting dominated trial points is simple and elegant, it needs
to be refined a little in order to provide an efficient algorithmic tool. In particular, we do
not wish to accept a new point :1:;: if 0,;" def H(x;c") is arbitrarily close to being dominated
by another point already in the filter. To avoid this situation, we slighly strengthen our
acceptability condition. More formally, we say that a new trial point x; is acceptable for
the filter F if and only if

Voe F o 3je{l,...,p} 0;(xf) < 00— 705(10c], 16 11) (2.1)
where 79 € (0,1) is a small positive constant, and where §(-,-) is a one of the following:

S(1Oel1, 16711 = N6ell,— aCloel 157 1) = 116511, or 8(10ell, 116 1)) = min(|l6c], 16 11)-

2.1.1 Adding a new point to the filter

In order to avoid cycling, and assuming the trial point is acceptable in the sense of (2.1),
we may wish to add it the to the filter, so as to avoid other iterates that are worse. The

procedure is extremely simple: we simply perform the operation
F « FuU{6b}.

But this may cause an existing filter value 8y to be strongly dominated in the sense that

36, e F Vje{l,...,p} Oi0> 04— ~ol|6el-
If this happens, we simplify later comparisons by removing 6, from the filter. (Note that,
in the case where 6(||6¢||, |6} ||) = |6 ||, we may weaken the above condition to remove 6,
if simply ej,l > Hj,q.)
2.1.2 Computing a trial point

We also need to indicate how to compute the trial point :z:; = 1z + s for some step sy.

This assumes we have a model my(x) of f(x) and a trust region

B, = {J?k + s | ||S|| < Ak}.
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where we believe this model to be reasonnably accurate. The convergence analysis that
follows requires, as is common in trust-region methods, that this step provides, at iteration

k, a sufficient decrease on the model: we require that

e (26) — M@k + %) > Kol min [”Z—’;”,Ak] , (2.2)

where g = Vmy(xr) and Sy is a positive upper bound on the norm of the Hessian of my.
This is a natural requirement in the context of trust-region algorithms (see Conn et al.,
2000, p. 131, for instance), and there are efficient algorithms for achieving (2.2) in both
small- and large-scale cases.

At variance with classical trust-region methods, we do not require that
[sell < Ay (2.3)

at every iteration to obtain our most important convergence result. In particular, this means
that, whenever (2.3) is not enforced and m = n, we might use, the step s, = — k_lck, where
Jx is the Jabobian of ¢(x) at zj (assumed here to be full rank). This step that leads to the

root of the first-order model for ¢(z), which is also the global minimizer of

P
mi™(zx +5) = 4D llez, () + Jr,(ze)s])%, (2.4)

i=1
a Gauss-Newton model for f(z), where Jz, is the Jacobian of ¢z;. This model may also be
minimized if m > n and (2.3) is not enforced, or one could choose in this case to minimize

the second-order Taylor series for f(z)

P

my (zy, + 8) = miN (g +5) + 5> Y ci(ap)(s, Viej(x)s), (2.5)
i=1jeT;

which corresponds to a full Newton model, whenever this last model is convex.

2.2 The algorithm

We now combine these ideas into an algorithm. The main objective of Algorithm 2.1 is to
let the filter play the major role in ensuring global convergence, and to fall back on the
usual £o-norm reduction algorithm if things do not go well, or if convergence occurs to a

local minimizer of f which is not a zero of c.
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Algorithm 2.1: Filter-Trust-Region Algorithm

Step 0: Initialization.
An initial point zg and an initial trust-region radius Ag > 0 are given, as well as
constants 0 < v90 <71 <1<y, 79 € (0,1), 0 <1 < 12 < 1. Assume that the
sets {Ij}§:1 are also given. Compute ¢y = c¢(zy) and 6y. Set k = 0, define a flag
RESTRICT to be unset and initialize the filter to the empty set.

Step 1: Test for optimality.
If 0, =0 or ||Vf(xk)] =0, stop.

Step 2: Determine a trial step.
Compute a step s that satisfies (2.2) and that also satisfies (2.3) if RESTRICT is
set. Compute the trial point x; = Tf + Sg-

Step 3: Evaluate the residual at the trial step.
Compute c(z;') and 6;" = 6(z;"). Define

Step 4: Test to accept the trial step.

o If JZ: is acceptable for the current filter:
set Ty = x,‘c", unset RESTRICT, and add 0,;" to the filter if either pp < 11 or
(2.3) fails.

o If JZ: is not acceptable for the current filter:
If (2.3) holds and px > 71, set Tx11 = w;c" and unset RESTRICT. Else, set
ZTk+1 = Tk and set RESTRICT.

Step 5: Update the trust-region radius.
If ||sk|| < Ak, update the trust-region radius by choosing

YolAr, AR if pp <1,
Agy1 €9 1Ak, Ak] if pr € [11,792)
AVRGTYAVY if py > no;

otherwise, set A1 = Ag. Increment k£ by one and go to Step 1.




6 Nicholas I. M. Gould, Sven Leyffer and Philippe L. Toint

This algorithm only provides a canvas for a practical implementation, as we have not
fully specified each step. In particular, we have not detailed how the step s; can be
computed in practice to satisfy the sufficient decrease condition (2.2) and remain in the
trust-region when required, but the literature provides several choices of direct or iterative
techniques, see Moré and Sorensen (1983), Gould, Lucidi, Roma and Toint (1999) or Chap-
ter 7 of Conn et al. (2000) for example. Similarly, techniques to initialize and update the
trust-region radius can be found in Chapter 17 of this last reference. As is usual, we say
that iteration k is successful if pp > ;.

3 Global convergence

We now investigate the convergence properties of Algorithm 2.1, under the following set of

assumptions.

A1l : ¢(x) is twice continuously differentiable on IR™.
A2 : The iterates z; remain in a bounded domain of IR".
A3 : my(x) is twice differentiable on IR" for all k.

A4 : For all k, my(zg) = f(zg) and gx = Vmyg(zg) = Vf(xg).

Note that A1, A2 and A3 together imply that there is a constant x, > 0 such that
le@)I| < Ky IVei(2)]| < 6y and [[VPmy(2)] < &, (3.1)

for all £ and all z in the convex hull of {z;}. The second of these inequalities then ensures

that k, can also be chosen such that
IV2f (2)] < K-

We could have assumed the three conditions (3.1) independently instead of imposing A2,
but we have chosen not to do so for the sake of simplicity. Assumptions Al, A3, A4 and
(3.1) are typical of convergence theory for trust-region methods (see Chapter 6 and 16 of
Conn et al., 2000).

We first investigate what happens if infinitely many values are added to the filter in the

course of the algorithm.
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Lemma 3.1 Suppose that AS1-AS2 hold and that infinitely many values of 6 are
added to the filter by the algorithm. Then

lim [[cx|| = lim ||V f(zk)]| = 0. (3.2)
k—00 k—o00

Proof.  Let {k;} index the subsequence of iterations at which ), = 9,’;_1 is added

to the filter. Now assume, for the purpose of a contradiction, that there exists a subse-
quence {k;} C {k;} such that
10k; 1] > €1

for some €; > 0. Since our assumptions imply that {||6,||} is bounded above and below,

there must exist a further subsequence {k,} C {k;} such that
lim O, = 0 with  [[foo]l > €1. (3.3)
{—00

Moreover, by definition of {k¢}, 6, is acceptable for the filter for every £, which implies
in particular that, for each £, there exists a j € {1,...,p} such that

Oiiky = Ojkes < =700([1Ok,_, I, 10k, [])- (3-4)

But (3.3) and our assumptions on ¢ imply that there exists an ez > 0 such that
51Ok Il; [0k, ) = €2
for all ¢ sufficiently large. Hence we deduce from (3.4) that
Oy = Ojiky 1 < —V0€2
for ¢ sufficiently large. But the left-hand side of this inequality tends to zero when £
tends to infinity because of (3.3), yielding the desired contradiction. Hence

Tim [/01,]| = 0. (3.5)

Consider now any £ ¢ {k;} and let k;(4) be the last iteration before £ such that Ok;,) Was
added to the filter. Since, by construction, every successful iteration where the value of
0 at the trial point is not included in the filter must result in a decrease of the objective
function (since py > m1 on such iterations), we deduce that, for all £ ¢ {k;},

fze) < f(zry ),

and therefore that
10(ze)l] < 110(z;(e))l-
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Combining this inequality with (3.5) and the fact that k;,) € {k;}, we obtain that
lim |0k =0,
k—o0

which implies (3.2) and completes the proof. O

Let us now consider the case where only finitely many values are added to the filter in
the course of the algorithm, and examine first the case where the number of trial points
acceptable for the filter is also finite. Hence, the main test of Step 4 fails for all k£ > ky,
say, and the method is then identical to an ordinary trust-region method for minimizing
f(x), since iterations for which (2.3) fails have no effect on the current iterate nor on the
trust region radius, and may be ignored in the convergence theory. Our assumptions are
sufficient to use the results of Chapter 6 in Conn et al. (2000) and we may therefore deduce

the following two properties.

Lemma 3.2 Suppose that A1-A4 hold and that only finitely many trial points ac;c"
are acceptable for the filter. Suppose furthermore that there are only finitely many

successful iterations. Then z; = z, for all sufficiently large k, and Vf(z,) = 0.

Lemma 3.3 Suppose that A1-A4 hold, that only finitely many trial points 371:— are

acceptable for the filter, and that there are infinitely many successful iterations. Then

liminf ||V f(zy)| = 0.
k—o0

We have thus covered all cases, except that where only finitely many values are added
to the filter, but infinitely many trial points are acceptable for the filter. In this situation,

we therefore have, for sufficiently large k, three kinds of intertwined iterations.

e The first are iterations where a:,i' is not acceptable for the filter, but (2.3) fails. These

iterations have no effect, and may be ignored, as we argued above.

e The second are iterations where m}: is not acceptable for the filter, but (2.3) holds.

These are perfectly standard trust-region iterations.

e The third kind is when a:,j’ is acceptable for the filter, but 0,;" is not added to it because

pr > m and (2.3) holds. These are again standard (successful) trust-region iterations.
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The sequence of iterations can therefore be viewed as resulting from a standard trust-
region algorithm, and known convergence results are again applicable. As a consequence,

the conclusions of Lemmas 3.2 and 3.3 are also valid in this context.

We summarize our results in the next theorem.

Theorem 3.4 Suppose that A1-A4 hold. Then there exists a subsequence {k;} such
that liminf; , ||V f(zk,;)|| = 0. Moreover, if infinitely many values are added to the
filter, then limg_, ||c(zk)|| = 0.

Note that this theorem does not guarantee that a subsequence of {||ck||} converges to
zero in all cases, but only that a stationary point of f(z) is reached. This is expected because
it may happen that the equations (1.1) have no solution, or that the iterates get trapped
near a local minimum of f(x) with positive value. Such an outcome might be troublesome if
one aims at finding a root of (1.1), as opposed to a locally minimum residual, but avoiding
this situation requires global optimization techniques, which are outside the scope of this
paper.

The convergence theory of trust-region algorithms also implies (see Conn et al., 2000,

Theorem 6.4.6) that the limit inferior in Lemma 3.3 can be replaced by a true limit provided

lskll < kalyg,  for all k> ko, (3.6)

for some ky > 0 and some constant kA > 1. In the usual trust-region context, this is
automatically guaranteed since the trial point always lies within the trust region itself.
However, this property no longer holds for the algorithm described in this paper, because
unrestricted steps are possible. But we may still obtain the stronger result if we are ready
to assume that (3.6) holds for some kA possibly larger than one, which might be seen
as a reasonable implementation safeguard. The rest of the discussion above then remains

unchanged and we deduce our final convergence result.

Lemma 3.5 Suppose that A1-A4 and (3.6) hold. Then limy_, ||V f(zg)| = O.

Moreover, if infinitely many values are added to the filter, then we have that

limg 00 [lc()]| = 0.
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4 Numerical experience

We now look at the practical behaviour of the new method when applied to test problems of
the CUTEr collection (see Bongartz, Conn, Gould and Toint, 1995, and Gould, Orban and
Toint, 2002a). Table 4.1 on page 11 indicates the names and dimensions of the test problems
considered. The columns “res. size” and “ign. bnds” in this table indicate whether or not
the residual at the solution is zero and whether the original problem statement includes
bounds that are ignored here. As is apparent from this table, the test set includes a fair
mix of problems sizes and over/under-determined cases. All experiments reported in this
section were run with the current version of the Fortran 95 FILTRANE package (see Gould
and Toint, 2003b) on a Dell Latitude C840 portable computer (1.6 MHz, 1Gbyte of RAM)
under the Fujitsu frt Fortran compiler with default optimization.

In what follows, we compare several variants of the algorithm discussed above for reli-

ability and efficiency. All variants discussed use the choice
S([16e1, 165 11) = 116l

Efficiency comparisons are made using the performance profiles introduced by Dolan and
Moré (2001). Suppose that a given variant 4 from a set A reports a statistic s;; > 0 when
run on example j from our test set 7, and that the smaller this statistic the better the

algorithm is considered. Let

1 if s<os*

k(s,s*,0) =
( o) {O otherwise.

Then, the performance profile of algorithm ¢ is the function

Z' k SZ',',S*,O'
pz(o') — ]ET |(T|.7 J ) (O' Z 1)’

where s} = min;c 4 s;;. Thus pi(1) gives the fraction of the number of examples for which
algorithm ¢ was the most effective (according to statistics s;5), p;(2) gives the fraction of the
number for which algorithm 4 is within a factor of 2 of the best, and lim,_, pi(o) gives
the fraction of the examples for which the algorithm succeeded. We consider such a profile
to be a very effective means of comparing the relative merits of our algorithmic variants.
We start by examining the most obvious question, namely that of the potential added
value of the filter technique compared to the more traditional trust-region approach. We

therefore consider the following algorithmic variants.

FTR : This variant is Algorithm 2.1 where, at each iteration, the trial point is computed

by approximately minimizing m®N(z+s) using the Generalized Lanczos Trust-Region
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Problem n n free m res. | ign. | Problem n n free m res. | ign.
size | bnds size | bnds
ATRCRFTA 8 5 5 0 HEART6 6 6 6 0
ARGAUSS 3 3 15 0 HEART8 8 8 8 0
ARGLALE 200 200 | 400 | >0 HYDCAR6 29 29 29 0
ARGLBLE 200 200 | 400 | >0 HYDCAR20 99 99 99 0
ARGLCLE 200 200 399 | >0 INTEGREQ 502 500 500 0
ARGTRIG 200 200 200 0 METHANBS8 31 31 31 0
ARTIF 5002 5000 | 5000 0 METHANLS8 31 31 31 0
ARWHDNE 500 500 998 | >0 MSQRTA 1024 1024 | 1024 0
BDVALUE 102 100 100 0 MSQRTB 1024 1024 | 1024 0
BRATU2D 5184 4900 | 4000 0 NONMSQNE 49 49 49 | >0
BRATU2DT | 5184 4900 | 4000 0 NYSTROM5 18 15 20 0
BRATU3D 4913 3375 | 3375 0 PFIT1 2 2 3 0 yes
BROTDN3D | 5000 5000 | 5000 0 PFIT2 2 2 3 0 yes
BROTDNBD | 5000 5000 | 5000 0 PFIT3 2 2 3 0 yes
BROWNALE 200 200 199 0 PFIT4 2 2 3 0 yes
CBRATU2D | 3200 2888 | 2888 0 POROUS1 4096 3844 | 3884 0
CBRATU3D | 3456 2000 | 2000 0 POROUS2 4096 3844 | 3884 0
CHANDHEQ 100 100 100 0 POWELLBS 2 2 2 0
CHANNEL 9600 9598 | 9598 0 POWELLSQ 2 2 2 0
CHNRSBNE 50 50 98 0 QR3D 610 610 610 0 yes
CLUSTER 0 RECIPE 3 3 2 0
CUBENE 0 RES 20 20 14 0
DECONVNE 61 61 40 0 RSNBRNE 2 2 2 0
DRCAVTY1 | 1225 961 961 0 SEMICON2 | 5002 5000 | 5000 0 yes
EIGENA 110 110 110 0 SINVALNE 2 2 2 0
EIGENB 110 110 110 0 VANDERM1 100 100 199 | >0
EIGENC 462 462 | 462 0 VANDERM2 100 100 199 | >0
GROWTH 3 3 12 | >0 WOODSNE | 4000 4000 | 3001 | >0
HATFLDF 3 3 3 0 YFITNE 3 3 17 0
HATFLDG 25 25 25 0

Table 4.1: Test problem characteristics

algorithm of Gould et al. (1999) as implemented in the GALAHAD library (Gould et
al., 2002a). This procedure is terminated at the first s for which

IVmS (2 + s)[| < min [0-1, \/maX(éMa VN (@) )| IVmS™ () [, (4.1)

where € is the machine precision. The choice 6(z) = ¢(z) is also made, which implies
that an m-dimensional filter is used. The bound (3.6) is imposed with kA = 1000 at

all iterations following the first one at which a restricted step was taken. In addtion,
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the condition
flzr + sk) < min(10° f(zo), f(zo) + 1000)

is imposed for the trial point to be acceptable for the filter. Instead of the formal
requirement of Step 1, the algorithm stops if

IV (zi)ll <107%V/n, or [le(zk)]lo < 107°, (4.2)

or if the number of iterations exceeds 1000, or if the computing time exceeds one
hour. Other details of the implementation are discussed in Gould and Toint (2003b)

and do not matter in our comparison.

TR.: This variant is identical to FTR, except that all trial steps are considered as unaccept-
able for the filter. The resulting method is therefore nothing but a basic trust-region
algorithm (Algorithm BTR in Conn et al., 2000). Its implementation is comparable
in reliability and efficiency to LANCELOT B of GALAHAD.

FTRf : Identical to FTR, except that (4.1) is replaced by the more stringent
IV @k + 5)|| < VemlIVm™ (@), (4.3)
effectively requiring a full-accuracy subproblem solution.

TRf: Identical to TR, except that (4.1) is replaced by (4.3).

All four variants are reasonably reliable, even if they all failed (while still producing
a very good approximation of the solution) on problems ARBLBLE and ARGLCLE, two very
ill-conditioned linear least-squares problems. TRf required more than 1000 iterations for
HYDCAR20. FTR fails on PFIT2 and PFIT3 because one of the bounds on the variables (that
are ignored in our test) was violated, causing a negative argument for a logarithm. This
error is therefore attributable to our choice of test problems and not to the algorithm itself.
FTRf ran out of time on DRCAVTY1 and POROUS1 and stalled on POROUS2.

The relative efficiency of these methods are illustrated by the performance profile in
Figures 4.1 to 4.3. The overall performance of the filter variants is impressive. These
profiles show that FTR is the clear winner in both CPU-time and number of conjugate-
gradient iterations (these two measures being obviously strongly correlated): the FTR
filter variant appears to be within a factor two of the best for approximately 90% of the
test problems (it is fastest on 76%). The dominance of the FTR and FTRf variants is even
stronger if one considers the number of iterations (which, in our setting, is equivalent to
the number of constraints evaluations and globally proportional to the number of Jacobian
evaluations). The efficiency gains introduced by the new filter techniques thus appear to

be very significant.
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fraction of problems for which solver in within o of best

fraction of problems for which solver in within o of best
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We now turn our attention the effect of preconditioning on these results. We introduce
8 further variants of our algorithm, that correspond to the four previously studied variants
(FTR, FTRf, TR and TRf) where we now use a diagonal preconditioner (suffix -d), or a
preconditioner obtained by extracting a band matrix of semi-bandwidth 5 from the Hessian
JI Ji, of the Gauss-Newton model (2.4) (suffix -b5). Thus FTR-b5 is the FTR variant with
a banded preconditioner of semi-bandwidth 5 and TRf-d is the TRf variant with a diagonal
preconditioner. Moreover, the tests (4.1), (4.3) and (4.2) are no longer expressed in the
Euclidean norm, but in the preconditioned norm || -|| = y/(-, M~!.), where M is the precon-
ditioner. Direct efficiency comparisons between the preconditioned and unpreconditioned
variants are therefore inappropriate.

Of course, both reliability and efficiency of preconditioned variants strongly depend on
how suitable the preconditioner is for the test problems considered. In particular, one ex-
pects the diagonal preconditioner to improve performance on diagonally dominant problems,
and to be much less advantageous for problems whose Hessian has a significant off-diagonal
part.

We first comment on the reliabity of the diagonally preconditioned variants. The four
variants now stall on problems ARWHDNE and POWELLSQ, both of which feature strong off-
diagonal Hessian entries. In addition, TRf-d ran out of time on MSQRTA, FTRf required
more than 1000 iterations on HEART6, the same being true for FTR on problem ARTIF,
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while FTR cause an exponential to overflow in evaluating the residuals.

Relative efficiencies are illustrated in Figures 4.4 to 4.6. Again the filter variants FTR-
d and FTRf-d dominate clearly the pure trust-region variants TR-d and TRf-d. This
dominance, although slighly less marqued than in the unpreconditioned case, remains sub-

stantial.
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Figure 4.4: CPU time performance profile for TR-d, TRf-d, FTR-d and FTRf-d
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Figure 4.6: CG iterations performance profile for TR-d, TRf-d, FTR-d and FTRf-d
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The choice of a banded submatrix of the model’s Hessian as preconditioner does not
modify the conclusions reached so far. The four new variants still stall on ARWHDNE but
also on NONMSQNE. Only the pure trust-region variants TRF-b5 and TR-b5 now stall on
POWELLSQ, while FTRf-b5 stalls on HATFLDF and FTR-b5 on BROYDNBD. All four b5 variants
also fail on SEMICON2 because the violation of the problem bounds causes an arithmetic
error. Asnoted above, this is not a defect that can be attributed to the algorithm, but rather
to the use of this test problem without its associated bound constraints. The performance
profiles of Figures 4.7 to 4.9 confim the observed dominance of the filter variants over the

pure trust-region ones.
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Figure 4.7: CPU time performance profile for TR-b5, TRf-b5, FTR-b5 and FTRf-b5

We now consider the choice of the Gauss-Newton model (2.4) and compare it to the
full Newton model given by (2.5). As is well-known, this last model is typically more
efficient when the solution of the problem occurs at a point z, for which ||c(z,)|| is strictly
positive. Another important feature of (2.5) is that, in contrast with (2.4), it need no longer
be convex. While this is of no consequence in the pure trust-region context because the
trust-region boundary prevents arbitrary long steps towards unbounded minima of (2.5),
this causes a problem for Algorithm 2.1. Indeed, negative curvature of the model may be
discovered when unrestricted steps are computed. This might result in unecessarily long

steps, which have then to be cut back, generating inefficient oscillations in the step length.
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We have thus added to Algorithm 2.1 the feature that unrestricted steps for which negative
curvature is detected are automatically recomputed with RESTRICT set without even at-
tempting to compute the constraints values at the trial point. This can be done at minimal
cost by using the re-entry facility in the GLTR package, that exploits previously computed
Krylov spaces (see Gould, Orban and Toint, 20025, for details). We thus introduce two new
variants of Algorithm 2.1:

FTRN: is identical to FTR, except that the model (2.5) is used instead of (2.4) and that
unrestricted steps containing negative curvature are restricted before attempting to

compute the constraint values at the trial point;
TRN: is derived from TR in the same manner.

Comparing the reliablity of TRN, TR, FTRN and FTR, we note that, as above, all four
variants stall on ARGLBLE and ARGLCLE. TRN requires more than 1000 iterations to solve
HEART6, the same being true for FTRN on DRCAVTY1 and NYSTROM5. This last variant also
stalls on POWELLSQ.

Full Newton variants are also less efficient than the Gauss-Newton ones on our test set,
as is apparent in the performance profiles of Figures 4.10 to 4.12. But these conclusions

must be tempered by the observation that many of our test problems are actually such that
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lle(zs)|| = 0, therefore implicitly favouring the Gauss-Newton model.

Occasionaly, though, there is considerable benefit from the Newton model. The most
extreme example in this direction is that of the ARWHDNE problem, which is also the problem
for which ||c(z,)|| is largest. It is detailed in Table 4.2.

CPU(s) | iter. | CG iter.
TRN 0.1 7 12
TR 0.2 134 136
FTRN 0.1 6 9
FTR 0.3 148 252

Table 4.2: Detailed performance of the TRN, TR, FTRN and FTR variants on problem
ARWHDNE

Adaptive procedures to choose between the Gauss-Newton and the Newton model have
been studied (see Dennis, Gay and Welsh, 1981, Toint, 1987, or Luksan, 1996, for instance),
but their application to our framework is beyond the scope of this paper and is postponed
to Gould and Toint (2003b).

We finally examine the impact of varying p, the dimension of the filter space, by defining
sets of equations as explained in the introduction. We have chosen to compare our initial
FTR variant (in which every equation has its own subset) with 5 different alternative
stategies for grouping equations in k disjoint subsets: they are refered to as FTRG(k),
with & = n/2, n/10, 10, 2 and 1. (Note that, in this notation, FTR = FTRG(n).) The
variant FTRG(1) may be seen as a particular non-monotone filter-trust-region strategy, in
the spirit of the proposals by Ke and Han (1995), Xiao and Chu (1995) or Toint (1997). In
our experiments, we simply assigned the i-th equation to the subset

. ) mod(i,k) if mod(i,k) >0,
s = { k otherwise .

Not surprisingly, all FTRG variants and TR fail on the ill-conditioned problems ARGLBLE,
ARGLCLE. Failure on the PFIT* problems is more random, since it depends on violating the
problem neglected bounds, TR being the only variant without such failure due its insistance
on restricted steps. FTRG(n/10) stalls on POROUS2.

The performance profiles in Figures 4.13 to 4.15 show that the variants differ, but to a
much lesser degree than in the comparisons discussed above. For each of the three criteria,
we note that a higher number of groups (a higher value of p) seems to result in better
performance. This effect is mostly due to the fact that the set of unacceptable values in
a higher dimensional filter space is typically smaller than for a low filter dimension, which
then allows more iterates to be accepted. The best variants appear to be FTR = FTRG(n)
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and FTRG(10), the latter one being especially interesting if one measures CPU time. This
not surprising since p directly conditions the amount of necessary storage for each value
in the filter and the amount of work for verifying that a new 9: value is acceptable for
the filter or not. We also observe the good performance of FTRG(1) compared to TR,
which indicates that a unidimensional filter may provide an attractive alternative to other
non-monotone trust-region methods.

We also attempted to partition the equations in different groups such that the 6;(xo)
are balanced in size, but this only resulted in marginal differences that will not be discussed

here.
5 Further comments and perspectives

We have presented a new algorithm for nonlinear equations and nonlinear least squares, that
blends filter and trust-region ideas. We have proved, under reasonable assumptions, that it
must converge to a first-order stationary point of the Euclidean norm merit function. From
the preliminary numerical experience presented, it appears that its efficiency is remarkably
good, both in computing time and in the number of iterations and function calls. TIts
reliability is globally satisfying, but further work on the algorithmic heuristics is expected

to bring improvements. Of course, these conclusions depend on the test problem set used,
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and the authors are well aware that only continued numerical investigation can confirm the
suggested gains in the longer term. A Fortran 95 module, called FILTRANE (Gould and
Toint, 2003b), is currently under developement for the GALAHAD library of optimization
algorithms (see Gould et al., 2002b) and should facilitate a wider use of the filter-trust-region
algorithm.

While the analysis discussed above is highly encouraging, it only represents the first steps
in the area of research that is opened by the combination of classical trust-region method
and multidimensional filters. Numerous extensions and further developments are possible,
both in theory and practice. A first idea would be to consider the values of the c(xy)
themselves for inclusion in the filter, instead of their absolute values, whenever each set Z;
only contains a single index. The filter is then no longer restrained to the positive orthant
and possibly more iterates can be accepted. Interestingly, the extension of our theory to this
case is straighforward. Its efficiency is currently under investigation. Another possibility
for allowing even more iterates to be potentially acceptable is to introduce non-monotone
filter techniques similar to those discussed in Gould and Toint (2003a), or by modifying
Algorithm 2.1 to accept :v}c" at the next iterate if it produces a decrease in the merit function
which can be judged sufficient irrespective of the step size. We could for example choose

to accept ac,’: whenever
flax) — f(z) > min (e, K[f (z)]%)

for some positive €, K and a. The convergence theory presented above directly extends
to cover this additional condition, but its practical use remains to be explored in detail.
It may also be interesting to consider other norms than the Euclidean one to construct
the merit function f(z), the ¢; and £y, norms being obvious candidates. In this case, the
subproblems consists in (approximately) solving linear programs, which, although feasible
in principle, requires further research to define suitable subproblem truncation procedures.

The possibility to handle linear or nonlinear inequalities, in conjunction with equalities
or alone, also consists a natural development. Its theoretical aspects directly results from

the present paper, since it is enough to redefine

0;(z) = Il fez; (@)]+ |,

where the symbol [cx(z)]+ simply measures the violation of the k-th constraint at z. The
analysis of Section 3 applies without any modification to this more general case. Practical
aspects of this development will be described in Gould and Toint (2003b).

We conclude by noting that the ideas presented in this paper immediately suggest other
uses of the same techniques, like the introduction of multidimensional filters in nonlin-

ear programming (where current state-of-the-art methods only use a two-dimensional filter
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space), or filter techniques for the solution nonlinear equilibrium problems (where the com-

plementarity residual is a separate filter entry).
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