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1 Iterated subspace minimization

We consider the problem of minimizing the twice continuously differentiable function f :

IRn → IR. Given an estimate xk of the required solution we select

xk+1 = arg min
y∈IRnk

f(xk + Sky), (1.1)

where 1 ≤ nk ≤ n and Sk is a selected n by nk subspace matrix. The convergence of

methods based upon this simple idea is considered by [1, 4, 11, 12, 13, 14]. In particular, the

minimization in (1.1) needs only be performed approximately for the iterates to converge

to a critical point of f .

One possibility is to construct the subspace matrix Sk = (sk,1 · · · sk,nk
) as follows.

Consider the second-order model mk(s)
def
= sTgk + 1

2
sTHks, where gk

def
= g(xk) and Hk

def
=

H(xk), and where g(x) and H(x) are respectively the gradient and Hessian of f at x. Let

∆k,i > 0 for 1 ≤ i ≤ nk, and let T (∆)
def
= {s | ∥s∥2 ≤ ∆} for given ∆ > 0. Then select

sk,1 = arg min
s∈T (∆k,1)

mk(s), (1.2)

and more generally

sk,i = arg min
s
T
sk,j=0, j<i,
s∈T (∆k,i)

mk(s) (1.3)

for 2 ≤ i ≤ nk. The problem (1.2) is the well-know trust-region subproblem, and there

are many efficient methods for its solution [3, 5, 6, 7, 8, 9, 10]. The generalisation (1.3)

may also be solved using these methods by implicitly constraining the solution into the

subspace {s | sT sk,j = 0, j < i} by (for instance) projection [3, §5].

Many variants are possible. For instance the gradient direction gk may be added to the

subspace, in which case the solution to (1.1) will satisfy gTk gk+1 = 0.
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2 Convergence of iterated subspace minimization

Suppose that we have built an n by nk subspace matrix Sk, at least one of whose columns—

say the first, sk,1—has a non-trivial component in the gradient direction, in the sense that

|sTk,1gk| ≥ κg∥gk∥ (2.4)

for some κg ∈ (0, 1]. Let

f S

k (y)
def
= f(xk + Sky)

be the objective function centered at xk and restricted to the affine space xk+Sky, and let

gS

k(y)
def
= ∇yf

S

k (y) = ST
k g(xk + Sky) and HS

k(y)
def
= ∇yyf

S

k (y) = ST
k H(xk + Sky)Sk

be its gradient and Hessian respectively.

Now suppose that we generate a new iterate xk+1 = xk + Skyk, so that yk improves

f S

k (y) in as much as

f(xk+1) ≤ f(xk)− γg∥gk∥min[∥gk∥,∆g] (2.5)

for some constants γg and ∆g > 0. Then clearly we must have that limk→∞ gk = 0 provided

f is bounded below on the level set L(x0) where L(x) def
= {z ∈ IRn : f(z) ≤ f(x)}.

The requirement (2.5) is reasonable for monotonic trust-region methods under stan-

dard assumptions. In particular, suppose that we apply the “basic-trust-region” algorithm

(BTR) [2, Alg.6.1.1] to minimize f S

k (y), starting from yk,0 = 0 with trust-region radius

∆k,0 ≥ ∆g > 0 for all k ≥ 0, generating the approximations {yk,ℓ}ℓ≥0 and radii {∆k,ℓ}ℓ≥0

and terminating at iteration e with some yk
def
= yk,e ̸= 0. Furthermore suppose that

gS

k,ℓ = gS

k(yk,ℓ), that the model mS

k,ℓ(w)
def
= wTgS

k,ℓ + 1
2
wTBS

k,ℓw, and that we assume that

both the true Hessian HS

k(0) and those of models BS

k,ℓ employed at y = 0 remain bounded.

Then standard analysis [2, Cor.6.3.2] shows that the first “successful” iterate yk,s+1 ̸= 0

generated will be such that

f(xk)− f(xk+1) = f S

k (0)− f S

k (yk,e)

≥ f S

k (yk,0)− f S

k (yk,s+1)

≥ η1[m
S

k,s(0)−mS

k,s(yk,s+1)]

≥ 1
2
η1∥gS

k,s∥min

[
∥gS

k,s∥
1 + ∥BS

k,s∥
,∆k,s

]
,

(2.6)

where the value η1 ∈ (0, 1) controls the acceptance of the step. But by assumption 1 +

∥BS

k,s∥ ≤ κumh and ∥HS

k(0)∥ ≤ κufh for appropriate constants, while it can easily be shown

that

∆k,s ≥ min

[
∆k,0, ∥gS

k,s∥
γ1(1− η1)

κumh + κufh

]
, (2.7)

where γ1 is the trust-region contraction factor in the unsuccessful case [2, essentially Thm.

6.4.2]. Moreover,

gS

k,s = gS

k,0 = gS

k(0) = ST
k gk
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and thus by construction of Sk and (2.4)

∥gS

k,s∥ = ∥ST
k gk∥ ≥ |sTk,1gk| ≥ κg∥gk∥. (2.8)

The required bound (2.5) then follows from (2.6)–(2.8). Thus if the subspace spanned by

the columns of Sk contains gk, or has a substantial component of gk in the sense of (2.4),

the use of BTR ensures global convergence to a first-order critical point of bounded f .

Now let λk be the left-most eigenvalue of Hk, and suppose that one or more of the

columns of Sk—say the second, sk,2, although in principle it might be the same vector sk,1
which gave sufficient descent in (2.4)—provides a significant component of the correspond-

ing extreme eigenvector in the sense that

λk ≤ sTk,2Hksk,2 ≤ κHλk (2.9)

for some κH > 0. Furthermore, suppose that, in addition to (2.5), the new iterate xk+1

improves f in as much as

f(xk+1) ≤ f(xk) + γHλk min[λ2
k,∆H] (2.10)

for some constant γH and ∆H > 0. Then clearly we must have that limk→∞ λk ≥ 0 provided

f is once again bounded below on the level set L(x0).

Fortunately, BTR may be extended to ensure (2.10). In particular, suppose that we

now insist that BTR uses the second-order model mSS

k,ℓ(w)
def
= wTgS

k,ℓ + 1
2
wTHS

k(0)w when

employed at y = 0 whenever HS

k(0) is indefinite (actually this is only required when ∥gk∥
is small), that H(x) is Lipschitz continuous with Lipschitz constant κlch within L(x0), and

that in addition to (2.6) we require that

mSS

k,s(0)−mSS

k,s(yk,i+1) ≥ − 1
2
κHλk∆

2
k,i; (2.11)

the reduction (2.11) can be guaranteed along the second component of y because of (2.9)

[2, Thm.6.6.1]. Thus the first “successful” iterate yk,s+1 ̸= 0 generated for which (2.11) is

also required will satisfy

f(xk)− f(xk+1) ≥ f S

k (yk,0)− f S

k (yk,s+1) ≥ − 1
2
η1κHλk∆

2
k,s. (2.12)

But since it follows immediately from Taylor’s theorem and Lipschitz continuity that

|f S

k (yk,i+1) − mSS

k,s(yk,i+1)| ≤ 1
2
κlch∆

3
k,i, it is straightforward to show from (2.11) that the

trust region radius satisfies

∆k,s ≥ min

[
∆k,0, |λk|

κHγ1(1− η1)

κlch

]
(2.13)

as such a radius will ensure that yk,s+1 is successful. The required reduction (2.10) then

follows directly from (2.12) and (2.13).
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3 Subspace surrogates

Now suppose that P ∈ IRn×np is a fixed subspace-prolongation matrix, and that

Sk =

(
P

gk
∥gk∥

)
∈ IRn×np+1.

Suppose in addition that there is a suitable surrogate fP(v) of f(Pv), that is to say an

approximation of the objective function f(x) resptricted to the subspace x = Pv for given

v ∈ IRnp . Our aim is to approximately minimize f S

k (y), where y = (v, µ). Rather than

building a quadratic model of f S

k (u + s, ν + σ) as is standard in trust-region methods, it

may be more appropriate instead to consider the non-quadratic approximation

m(s, σ) = fP(v + s)− fP(u) + f S

k (v, ν) + sTP Tg(x)− sT∇fP(u)

+ σ||g(x)||+ 1
2
σ2g(x)TBg(x)

,

where B is a suitable symmetric approximation to H(x). The model m(s, σ) has the

desirable properties that m(0, 0) = f S

k (y) and ∇m(0, 0) = ∇f S

k (y), and thus approximate

minimization of m within suitably adjusted trust regions leads to critical points of f S

k .

Note, however, that the Hessians of the function and model do not agree so fast asymptotic

convergence is not assured.

4 An Enriched Recursive Multilevel Approach

Again consider the problem of minimizing the twice continuously differentiable function

f : IRn → IR. Given an estimate xk of the required solution we wish to compute a trial

step sk within a trust-region setting—let the trust region radius be ∆. We also assume

that we have (for simplicity) two levels of granularity. Therefore, we suppose we are given

R : IRn → IRnc (the restriction operator) and P : IRnc → IRn (the prolongation operator)

such that R = P T . Since we are only considering two levels, we can refer to them as the

fine level and the course level. One method for generating a trial step is to compute the

standard trust-region step given by

sk = arg min
s∈IRn

gTk s+ 1
2
sTHks, subject to ∥s∥ ≤ ∆ (4.14)

where gk and Hk are the gradient and Hessian of f evaluated at xk, respectively. However,

another option is to compute a trial step from the problem

min
y∈IRnc+1

f(xk + Sky)
def
= f S

k (y), (4.15)

where Sk =
(
P gk

)
. This problem may be solved by solving a sequence of trust region

problems of the form

min
∆y∈IRnc+1

∆yTgS

k,ℓ + 1
2
∆yTHS

k,ℓ∆y, subject to ∥∆y∥ ≤ ∆ (4.16)
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where gS

k,ℓ = gS

k(yk,ℓ) and HS

k,ℓ = HS

k(yk,ℓ) are the gradient and Hessian of f S

k evaluated at

yk,ℓ, respectively. Once a solution y∗ has been computed, then we may define the trial step

as sk = Sky
∗
k, so that the trial point is xk + Sky

∗
k.

If the gradient at the course level is “small”, then we may also try solving problem (4.14)

in the spirit of [], which was motivated by multigrid for solving positive-definite systems of

equations. Thus we could perform a cycle of coordinate searchs for problem (4.14), restrict

to the course level, perform smoothing along Sk, and then prolongate back to the fine grid,

to be followed again by smoothing.

This general idea could be applied recursively if more than two levels of coursening

exist.

4.1 Details

Suppose that m0
def
= n > m1 > . . . > mi > mi+1 > . . . > mℓ are specified dimensions of the

nested subspaces (levels), that yk,i ∈ IRmi for 1 ≤ i < ℓ are given vectors of values, and

that we define independent nested subspace vectors via

x = xk + Sk,1y1 and yi = yk,i + Sk,i+1yi+1 for 1 ≤ i < ℓ, (4.17)

where Sk,i ∈ IRmi−1×mi , 1 ≤ i < ℓ, are given subspace matrices. Now define

fk,1(y1) = f(xk + Sk,1y1) and fk,i+1(yi+1) = fk,i(yk,i + Sk,i+1yi+1) for 1 ≤ i < ℓ.

Then it follows immediately that

∇y1
fk,1(y1) = ST

k,1∇xf(xk + Sk,1y1) ≡ ST
k,1g(xk + Sk,1y1)

and ∇yi+1
fk,i+1(yi+1) = ST

k,i+1∇yi
fk,i(yk,i + Sk,i+1yi+1) for 1 ≤ i < ℓ

(4.18)

and that

∇y1y1
fk,1(y1) = ST

k,1∇xxf(xk + Sk,1y0)Sk,1 ≡ ST
k,1H(xk + Sk,1y0)Sk,1

and ∇yi+1yi+1
fk,i+1(yi+1) = ST

k,i+1∇yiyi
fk,i(yk,i + Sk,i+1yi+1)Sk,i+1 for 1 ≤ i < ℓ.

(4.19)

In particular, if we specify yℓ = ȳk,ℓ for given ȳk,ℓ and recover the corresponding yi = ȳk,i
and x = xk recursively from (4.17) via

ȳk,i = yk,i + Sk,i+1ȳk,i+1, for ℓ > i ≥ 1, and xk = xk + Sk,1ȳk,1, (4.20)

and if we define

ḡk,0 ≡ ḡk
def
= g(x̄k), H̄k,0

def
= H(x̄k), gk,i

def
= ∇yi

fk,i(yk,i) and Hk,i
def
= ∇yiyi

fk,i(yk,i),

for 1 ≤ i ≤ ℓ, gradients and Hessians for all levels may be obtained recursively from (4.18)

and (4.19) as

gk,i = ST
k,igk,i−1 and Hk,i = ST

k,iHk,i−1Sk,i
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for 1 ≤ i ≤ ℓ.

We now consider particular subspace matrices constructed by augmenting standard

multigrid prolongation matrices at each level with the corresponding gradients gk (level

0) and gk,i
def
= ∇yi

fk,i(0) for 1 ≤ i ≤ ℓ (levels 1 to ℓ). Thus if we define n0
def
= n and

ni
def
= mi−1 for 1 ≤ i ≤ ℓ, and suppose that Pi ∈ IRni×ni+1 are given prolongation matrices

for 0 ≤ i < ℓ, we consider the subspace matrices

Sk,1 =

(
P0

gk
∥gk∥

)
∈ IRn×n1+1 and

Sk,i+1 =

( (
Pi

0

)
gk,i

∥gk,i∥

)
∈ IRni+1×ni+1+1 for 1 ≤ i < ℓ.

Thus

gk,i+1 = ST
k,i+1gk,i =


(
P T
i 0

)
gTk,i

∥gk,i∥

 gk,i =


(
P T
i 0

)
gk,i

gTk,igk,i
∥gk,i∥


while

gk,i+1 = ST
k,i+1gk,i =


(
P T
i 0

)
gTk,i
∥gk,i∥

 gk,i =

( (
P T
i 0

)
gk,i

∥gk,i∥

)
.
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