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1 Introduction

In this paper, we consider algebraic issues which arise when attempting to solve
a smooth linearly-constrained, nonlinear-optimization problem,

minimize f(@) (1.1)
TR

subject to the m general, linearly-independent, linear equations
Az =b. (1.2)

Many of these issues particularly arise when f is non-convex, and thus we make

no assumption on f other than that it is twice continuously differentiable; we

denote its gradient and Hessian matrix by g(«) Ly, f(x)and H (@) A v flx)

respectively. We shall furthermore assume that H («) is available, and that we
wish to exploit this curvature information. We contend that, contrary to popular
belief, exact second derivatives are frequently available, but all too frequently
ignored.

Problems of the form (1.1)-(1.2) sometimes arise in their own right (see, for
instance, the collection by Bongartz, Conn, Gould and Toint, 1995). However, such
problems more commonly occur as subproblems within more general nonlinear
programming calculations (see, for example, Murtagh and Saunders, 1978, Gill,
Murray and Wright, 1981, and Conn, Gould, Sartenaer and Toint, 1995). Although
these latter subproblems may at first appear to have a different form from (1.1)—
(1.2), itis often possible to convert them to such a form so that algorithms discussed
in this paper are appropriate.

We shall not directly consider inequality constraints in this paper. However the
methods are still relevant in this case, as many inequality constrained problems
may be solved as a sequence of equality constrained ones. For instance, suppose
that, in addition to the linear constraints (1.2), the variables are also required to
satisfy the simple bound constraints

l<z<u (1.3)

These inequalities should be understood componentwise, and any (or all) of the
components ofl and v may be infinite. There are then two main classes of methods
for solving the problem (1.1)=(1.3): active set methods and barrier methods.

In active set methods (see, for instance, Gill et al., 1981, Section 5.2), a subset
of the simple bound constraints are treated as equations, while the remainder are
temporarily discarded. The solution to the resulting equality constrained problem
is then sought. This may lead to the solution of the original problem, or, more
frequently, to a revision of the active set. The code MINOS (see, Murtagh and
Saunders, 1987) is an archetypical example of this class of method.

In barrier methods (see, for instance, Fiacco and McCormick, 1968), problem
(1.1)-(1.3) is solved by a sequential minimization of a barrier function (BF)

n

fb(w7 w, S) = f(m) + Zﬁ(‘fh li7 Uq, w§7 35’7 ’LU?, 5?)7 (14)
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subject to the constraints (1.2), where the weights w = (w', w") and shifts s =
(s, s") are used in the definition of barrier terms, 3. Each barrier term 3 has the
form

Bl iy ui, wh, shw?, s¥) = who(a; — l; + 84) + wio(u; — x; + s) (1.5)

where ¢(a) is C? for all @ > 0 and has a singularity at the origin — examples are
the logarithmic function ¢(«) = —log(«) and the reciprocal function ¢(a) = o™ ”
for any p > 0. The shifts are all nonnegative, the weights for infinite bounds
are zero while those corresponding to finite bounds are strictly positive. Par-
ticular examples are the traditional barrier functions proposed by Frisch (1955)
and popularized by Fiacco and McCormick (1968) (s; = 0, w; = pu, for some
parameter p > 0), the modified barrier function of Jittorntrum and Osborne
(1980) (s; = 0, w; = A;, for appropriate Lagrange multiplier estimates ;) and the
shifted /modified /Lagrangian barrier functions of Gill, Murray, Saunders and
Wright (1988), Polyak (1992) and Conn, Gould and Toint (19924, 1992c) (s; > 0,
w; = \;s;, for appropriate Lagrange multiplier estimates J;). Strong convergence
results are available for general nonlinear programming problems for these meth-
ods, and, as such they are well suited for solving the inequality problem of interest
here.

Our intention here is not to analyse particular algorithms, rather to develop
good techniques for solving the inevitable systems of linear equations which
arise at each iteration. However, as the problem under consideration may not
be convex, careful attention must be paid to the model on which the iteration is
based and this clearly affects the way in which we solve it.

The inertia of the generic symmetric matrix M will be denoted by

ID(M) = (m+7m—7m0)7 (16)

where my, m_ and mg are, respectively, the numbers of positive, negative and
zero eigenvalues of M. We shall denote the n by n identity matrix by I,, or I
when the dimension is clear from the context. Finally, e; will be the i-th column
of I.

The paper is organized as follows. In Section 2, we discuss general issues
of convergence for algorithms for linearly constrained optimization, and outline
the generic systems of equations which arise. In Section 3, we review existing
direct methods for solving these systems and indicate how and why it is often
necessary to modify the relevant coefficient matrix. In Sections 4 and 5, we
describe techniques which are particularly attractive when the systems are large
and sparse, and indicate in Section 6 how the ideas presented in this paper behave
in practice, using a prototype code. We comment in Section 7 on other alternatives.
and conclude in Section 8.



2 General solution methods

We consider iterative methods for finding a local solution to the problem (1.1) sub-
ject to the linear constraints (1.2). We let @ be the current iterative approximation
and consider how an improved iterate « ™ may be found.

2.1 General considerations

Suppose that  satisfies the general constraints (1.2). A typical “linesearch” type
iteration would

e compute a search direction p for the objective function, which satisfies the
constraints
Ap=0 (2.1)

and for which p”g() is “sufficiently” negative, and;

e perform a linesearch for the objective function along the search direction to
obtain ¥ = x 4 ap, for some suitable stepsize « > 0, such that f(z™) is
“sufficiently” smaller than f(z).

The linesearch should ensure that one of the classical sets of “sufficient decrease”
conditions is satisfied at ™ (see, for instance, Dennis and Schnabel, 1983, Section
6.3). Furthermore, whenever possible, advantage should be taken of the “shape”
of the linesearch function to derive an efficient algorithm (see, for example, Las-
don, Fox and Ratner, 1973 and Murray and Wright, 1994).

If the Hessian matrix of the objective function is positive definite, a search
direction close to that given by Newton’s method is desirable. However, in
general the Hessian may be indefinite and we need to take precautions to ensure
that the search direction is a sufficiently good descent direction.

The (quasi-)Newton search direction, p,,, and the corresponding Lagrange mul-
tiplier estimates, A,,, satisfy the equations

EOE)-() e

where B is a suitable symmetric matrix. In order to provoke rapid asymptotic
convergence, it is desirable that B should be a reasonable approximation to the
Hessian, H (x).

We say that a matrix B is second-order sufficient if the condition

p'Bp > op’p for some constant o >0

and all p satisfying Ap =10 (2.3)

is satisfied. We aim to use a second-order sufficient matrix B as our Hessian ap-
proximation in (2.2). In this case, equations (2.2) are both necessary and sufficient
for the solution p,, to be the global solution of the (possibly nonconvex) equality
constrained quadratic programming problem

minimize 1p’Bp+ p'g(x) subjectto Ap =0 (24)
pex”



(see, for example, Gill et al., 1981).
So long as B is second-order sufficient and the matrix

EY¥ B_ H(x) (2.5)

is bounded, it is straightforward to show that the gradient of the Lagrangian
function, f(x) + AT(Ax — b), converges to zero, for any bounded sequence of
iterates *) generated by the search direction obtained from (2.2) and a “sufficient”
linesearch. For, picking any full-rank » by » — m matrix Z such that AZ = 0 (see,
forinstance, Gilletal., 1981), Gilland Murray (1974) show that the minimization of
(1.1) subject to (1.2) is equivalent to the unconstrained minimization of f(x+ Zp,)
with respect to the variables p, so long as x satisfies (1.2). Moreover, equations
(2.2) are equivalent to the (quasi-)Newton equations

Z"BWzp = —7zTg(x®). (2.6)

We note that Z" B Z is positive definite whenever B*¥) is second-order suffi-
cient. Typical global convergence — that is, convergence to a first-order station-
ary point — results for unconstrained optimization (see, for instance, Dennis and
Schnabel, 1983, Theorem 6.3.3), then imply that

lim Z7g(2®™) =0 (2.7)
k— o0
provided the condition number of the reduced Hessian, Z TB® 7 isbounded. This
latter condition is satisfied whenever B™* is second-order sufficientand Z7 E*) Z
is bounded. As Z is of full rank, we finally infer from (2.7) that

lim g(z®) 4+ ATA® =0 (2.8)

k— oo

for some sequence of Lagrange multipliers {A*)}.

2.2 Computing a search direction

The most obvious way of determining a search direction that is close to the Newton
direction is to use a matrix factorization (a direct method) to compute the solution
to (2.2). Such a factorization should take into account the symmetric but indefinite
structure of the coefficient matrix.

A second possibility is to observe that the reduced-variable (quasi-)Newton
equations (2.6) provide the global solution to the unconstrained quadratic mini-
mization problem

minimize ¢(p,) & 1p? Z"BZp, +p! Z"g(=) (2.9)
p.exm

whenever B is second-order sufficient. While it is certainly easy to imagine solv-
ing (2.6) using a factorization of the reduced Hessian, this may be inappropriate
if n —mislargeand Z TBZ dense. In this case, it may still be possible to calculate
an approximation to the Newton direction by applying an iterative method so



long as it is feasible to form matrix-vector products of the form Z* BZv. This
may well be the case if Z is carefully chosen to allow rapid computation of the
subsidiary products Zv, B(Zv) and Z"(BZv). Although an optimally sparse
representation of Z may be computationally expensive (see Coleman and Pothen,
1984, and Gilbert and Heath, 1987), good choices may often be obtained (see, for
instance, Murtagh and Saunders, 1978, Coleman and Pothen, 1987, and Stern and
Vavasis, 1993).

When considering iterative methods, we choose to restrict our attention to
the method of conjugate gradients. The application of the method to linearly
constrained problems has been suggested by anumber of authors (see, for instance
Gill et al., 1981, Section 5.6.2.1). Moreover, as the conjugate-gradient method
produces a monotonically decreasing sequence of values of the quadratic objective
function, ¢(p,), it is possible to truncate the conjugate gradient iteration at a sub-
optimal point for (2.9) while still maintaining a fast asymptotic convergence rate
(see, Dembo, Eisenstat and Steihaug, 1982)).

We shall concentrate on direct methods in this paper, although we shall make
comments on the obvious connections to iterative methods as we proceed. Work
is in progress on general purpose iterative methods for large-scale nonconvex
problems.

2.3 Aims of the paper
We state our aims as follows. We wish to:

e determine a matrix B = H(x) + E so that (2.3) is satisfied and such that the
perturbation E = 0 whenever H () satisfies (2.3);

e obtain F without incurring undue overheads above those normally consid-
ered acceptable when calculating the search direction;

e ensure that || E| is bounded relative to max(||A||, | H(«)||) — provided that
{x} remains bounded, this will ensure that B is uniformly bounded;

e use the sparsity and structure of (2.2) to derive a sparse factorization or
effective iterative procedure; and

e limit numerical growth to acceptable limits to ensure a stable algorithm.

In this paper, we shall show how, to a certain extent, we may achieve these aims.

For brevity, we shall write g and H for g(«) and H (x), respectively, where no
confusion can arise. We stress that, throughout the paper, the matrix B denotes a
second-order sufficient approximation to H which will actually be H whenever
the latter is itself second-order sufficient.



3 Hessian approximations

If we wish our linearly-constrained optimization algorithm to inherit the fast
asymptotic convergence rate of Newton’s method, we might try to ensure that
B converges to the true Hessian matrix of the objective function. In particular,
we may choose B to be H whenever the latter is second-order sufficient. The
difficulty is, of course, in achieving this goal in an efficient manner.

3.1 Hessian approximations and unconstrained optimization

Before considering the linearly constrained case, we first briefly review methods
which have been used successfully in unconstrained optimization. We do this for
two reasons. Firstly, such methods may be viewed as prototypes for possible
extensions to the constrained case. Secondly, as we have already mentioned in
Section 2.2, an implicit elimination of the constraints results in an unconstrained
problem.

We recall the precedent set from research in unconstrained optimization by
Greenstadt (1967), Gilland Murray (1974) and Schnabel and Eskow (1991) amongst
others, in which a modification to the exact second derivative matrix in a Newton
method is only made when the exact derivatives are insufficiently positive defi-
nite. When there are no constraints present, (2.3) is equivalent to requiring that
B be sufficiently positive definite, that is, that

p'Bp > op’p forsome constant o >0 andall p. (3.1)

In particular, Gill and Murray (1974) and Schnabel and Eskow (1991) suggest
modified-Cholesky factorization methods which decide whether, and by how much,
the diagonals of the Hessian matrix need to be modified as the Cholesky factor-
ization of the matrix proceeds. The factors are then used to solve the resulting
modified Newton equations. Both pairs of authors are very careful to ensure that
the modifications made are bounded and that no modification ensues when the
Hessian is sufficiently positive definite. Extensions to large-scale unconstrained
and bound constrained optimization, using sparse factorizations, have been pro-
posed by Gill, Murray, Ponceléon and Saunders (1992), Conn, Gould and Toint
(1992b, Chapter 3), and Schlick (1993). Iterative methods, in which modifications
to H are made during the course of the conjugate-gradient algorithm have been
proposed by Nash (1984) and Arioli, Chan, Duff, Gould and Reid (1993).

We should also mention the philosophically-different but mechanically-similar
class of /, trust-region methods (see, e.g., Hebden, 1973, Moré, 1978, Sorensen,
1980 and Gay, 1981). Here perturbations of the form E = ;I may be made to H
for some appropriate scalar x in order to make B positive semi-definite. We note
the difference of approach between these methods and the modified Cholesky
methods, in that perturbations to the Hessian may only be made in certain low-
rank subspaces with the modification methods while any perturbation in an /,
trust-region method produces a rank »n change to H.

A thorough survey of modified Newton methods for unconstrained optimiza-
tion is given by Dennis and Schnabel (1989).



3.2 Hessian approximations and constrained optimization

As far as we are aware, the only serious attempt to generalize the methods of
Section 3.1 to solve general, large-scale, linearly-constrained optimization prob-
lems is that by Forsgren and Murray (1993). All other methods we are aware of
are either only really appropriate for small-scale calculations, as they disregard
problem structure (see Fletcher, 1987, Section 11.1, or Gill et al., 1981, Section 5.1,
for example), or implicitly assume that n — m is sufficiently small that coping
with dense matrices of order n — m is practicable (see, for instance, Murtagh and
Saunders, 1978).
Firstly, note that the coefficient matrix,

wit [ B AT
cx (B4, o

of (2.2) is inevitably indefinite — it must have at least m positive and m negative
eigenvalues. Gould (1985) showed that B is a second-order sufficient matrix if and
only if K has precisely m negative and n positive eigenvalues. Thus any matrix
factorization of (3.2) must be capable of handling indefinite matrices. Moreover,
in order to be efficient, one would normally try to exploit the symmetry of K in
the factorization. The natural generalization of the Cholesky (or more precisely
LDL”) factorization in the symmetric, indefinite case is that first proposed by
Bunch and Parlett (1971) and later improved by Bunch and Kaufman (1977) and
Fletcher (1976) in the dense case and Duff, Reid, Munksgaard and Neilsen (1979)
and Duff and Reid (1983) in the sparse case. Here a symmetric matrix K is
decomposed as

K =PLDL"P?, (3.3)

where P is a permutation matrix, L unit lower triangular and D block diagonal,
with blocks of size at most two. Each diagonal block corresponds to a pivoting
operation. We shall refer to the blocks as 1 by 1 and 2 by 2 pivots. Notice that the
inertia of K is trivially obtained by summing the inertia of the pivots.

As we are particularly concerned with the large-scale case in this paper, it is
the Duff-Reid variant that is of special interest. We note that the permutation
matrices are used extensively in the factorization of sparse matrices to keep the
fill-in — that, is the introduction of extra nonzeros in the factors — at an accept-
able level. Unfortunately, the Harwell Subroutine Library (1990) implementation,
MA27, (Duff and Reid, 1982) of the Duff-Reid variant sometimes proves inefficient
when applied to matrices of the form (3.2) as the analysis phase treats the whole
diagonal of K as if it contains nonzero entries. Thus a good predicted ordering
supplied by the analyse phase is often replaced, for stability reasons, by a less
satisfactory ordering when the factorization is performed, resulting in consider-
able extra work and fill-in. Ways of avoiding these difficulties, and of taking
further advantage of the zero block in K, have been suggested by Duff, Gould,
Reid, Scott and Turner (1991), and form the basis for a recent Harwell Subroutine
Library code MA47 (Duff and Reid, 1995).

In the special case when f is separable, H will be diagonal. In particular, when
fis also convex, H will be positive definite and a block elimination of H followed
by a sparse Cholesky factorization of the (negative of the) Schur complement



AH'A" is feasible. Indeed, this approach is fundamental to many interior
point methods for linear programming (see, for example, Mehrotra, 1992, Lustig,
Marsten and Shanno, 1991, Lustig, Marsten and Shanno, 1992, or Carpenter,
Lustig, Mulvey and Shanno, 1993). However, as such an approach is merely the
restriction of a particular pivot order applied to (3.2), and as it is less appealing
when H is not diagonal, Fourer and Mehrotra (1993) have suggested methods
for solving (3.2) using more general pivot sequences for linear programming
problems and Vanderbei and Carpenter (1993) do the same for general problems.

If B is known a priori to be second-order sufficient, as for instance would be the
case if f(x) were convex, we wholeheartedly recommend the use of MA27, MA47
or the procedure within | 0qo (Vanderbei and Carpenter (1993)) to solve (2.2).
When there is a chance that B may not be second-order sufficient, alternatives to
blindly solving (2.2) must be sought.

3.3 Forsgren and Murray’s sufficient pivoting conditions

We say that the first n rows of K are B-rows, and the remaining m rows are
A-rows. Forsgren and Murray (1993) show that, if the pivots are restricted to be
of certain types until all of the A-rows of K have been eliminated, the remaining
un-eliminated (Schur-complement) matrix, S, is sufficiently positive definite if
and only if B is second-order sufficient.

Until all A-rows of K have been exhausted, Forsgren and Murray only allow
the following types of pivots:

b, pivots: strictly positive 1 by 1 pivots occurring in B-rows of K.
a_ pivots: strictly negative 1 by 1 pivots occurring in A-rows of K.

ba pivots: 2 by 2 pivots with a strictly negative determinant, one of whose
rows is an B-row and the other of whose rows is an A-row of K.

They further restrict the pivot so that the absolute value of its determinant is
greater than a small positive constant so as to bound the elements in L and
limit any growth in §. The motivation behind this choice of pivot is simply that
if 1 A-rows have been eliminated, the factorized matrix has exactly : negative
eigenvalues. Thus, when all A-rows have been eliminated, the factorized matrix
has precisely m negative eigenvalues and hence any further negative eigenvalues
in S can only occur because B is not second-order sufficient.

Once S has been determined, Forsgren and Murray form a partial LDLY
factorization of it, stopping if a pivot is insufficiently positive. If the factorization
runs to completion, B must be second-order sufficient. The (quasi-)Newton
equations (2.2) are subsequently solved using the factorization. If an insufficiently
positive pivot is encountered, a search arc is obtained as a nonlinear combination
of a search direction derived from the partial factorization and a direction of
negative curvature from the remaining unfactorized part.

An obvious variation is, instead, to form a modified Cholesky factorization
of S. If no modification is performed, the true Hessian H must be second-order
sufficient. Otherwise, a suitable perturbation E will have been produced. In either
case, the Newton equations (2.2) are solved using the complete factorization.



The main difficulty with Forsgren and Murray’s approach is that any restriction
on the pivot order can disqualify potentially advantageous sparsity orderings.
While it is always possible to choose a pivot according to the Forsgren-Murray
recipe, the available choices may all lead to considerable fill-in. Nonetheless, we
shall consider a number of variations of this scheme.

4 Methods using ba pivots

In this section, we consider a scheme which uses a restricted version of Forsgren
and Murray’s (1993) pivoting rules. Specifically, we consider what happens if we
choose the first m pivots to be ba pivots.

4.1 Algebraic considerations

Let us first suppose that we have chosen a pivot sequence so that the first m pivots
are ba pivots. Algebraically, this is equivalent to constructing a permutation P
for which
Bu A] By
PTKP=| A, 0 A, |, (4.1)
B, Al By

where B1; and A; are both square matrices of order m, A; is non-singular and
P may be partitioned as
Py 0 Py
P=| Py 0 Py |. 4.2)

0 Pxn 0

(The actual pivot sequence would interlace the :-th and m + i-th rows of P for
¢ =1,---,m). This permutation implies a corresponding partitioning

P g1
(p)P(A) and (Q)P(O) (4.3)
A 0
P> 9>
of the solution and right-hand side of (2.2). Thus, to solve (2.2), we obtain auxiliary
variables g; and A, from the equation

T
() (%) --(%) 0

and subsequently solve the equations

By AT\'( BZ
(o an (B0 ) () -

and B AT B
(% 4)(3)(5) () o

|

|

Q

N

|

o

~

b

NS
N
>
N -
~—



and therefore require decompositions of the matrix

B Af
( A 0 ) (4.7)
and its Schur-complement,
-1
_ _ v Bu Af Bj
S =By — (B Az)( A 0 A, | (4.8)

in PT K P. These decompositions would be performed implicitly if we factorized
K as (3.3) with the pivot sequence defined by P, but a number of salient points
may be made if we consider (4.7) and (4.8) explicitly.

4.2 An equivalence to reduced-variable methods

Since A; is non-singular, we have an explicit form for the inverse of (4.7),

Bll A{ _1_ 0 141_1 (49)
A 0 AT —ATTBuAT ) '

Gill, Murray, Saunders and Wright (1990, Theorem 7.2) observe that this enables
us to rewrite (4.8) as

P, P} I
_ T _ n n
S=Z"BZ, where Z = ( P, PL ) ( _A'A, ), (4.10)

and the matrix Z satisfies AZ = 0. The equations (4.4)—(4.6) are then equivalent
to the reduced (quasi-)Newton equations (2.6), together with the extra equation

AlT)‘ = —g, — Bup;, — Blepz (4.11)

for the Lagrange multipliers. Thus forcing ba pivots until we have exhausted all
the A-rows of K is equivalent to finding a representation of the null-space of A
and using the reduced-variable method described in Section 2.1. In particular, the
Schur-complement matrix, S, is a reduced Hessian matrix.

4.3 Boundedness of perturbations
Because of the relationship (4.10), the norm of S satisfies
IS1 < (1+ | AT A% B, (4.12)

and thus element growth may be controlled by using an appropriate threshold-
pivoting tolerance when factorizing A . Therefore, if one of the modified Cholesky
methods cited in Section 3.1 is subsequently employed to factorize S, the pertur-
bation matrix E will remain bounded.

10



4.4 Appropriate orderings

As the same permutation may be used at every iteration of the nonlinear program-
ming algorithm, it may be worth investing considerable effort in producing a
good ordering. As we are primarily concerned with large problems, it is essential
to try to ensure that the chosen permutation P introduces as little fill-in within
the Schur complement and the factorization of A; as possible. Notice that each ba
pivot requires that we select a row and column of A and that the selected column
of A defines the row of B used.

Without loss of generality, we describe how the first ba pivot is determined.
The same procedure may then be applied recursively to the Schur-complement

of this pivot in K to determine ba pivots 2, - - -, m. Suppose that we consider the
permutation
B a|b al
T
PTEp, - |2 04 OT : (4.13)
b . Qr B R A R
a. 0 A R 0

where o # 0 and 3 are scalars, b, and a, are n — 1-vectors, a. is an m — 1-vector,
and Br and Ag aren —1 by n —1and m — 1 by n — 1 matrices, respectively. Then,
a simple calculation reveals that the Schur-complement of the ba pivot in P K P,
is

L 1
s (B A )k e (B )@ osa (G )0 ah-s( % )@t o,
(4.14)
Notice that no fill-in occurs in the zero, bottom block of S;. We now follow
Markowitz (1957) by picking the ba pivot to modify the least number of coefficients
in the remaining » + m — 2 order block of PfK P, as the Schur complement is

formed. Thus we aim to minimize the number of nonzeros, n, in the matrix
(Jz(zc)(az 0)—|—0z(cg)(bcT a?)—ﬁ(cg’)(ag 0). (4.15)

There are two cases to consider.

Following Dulff et al. (1991), we call a ba pivot a tile pivot if 3 # 0 and an oxo
pivot when 3 = 0. We let n,(v) denote the number of nonzeros in the vector v
and n,(v, w) give the number of overlaps (the number of indices : for which both
v; and w; are nonzero) between the vectors v and w.

A simple computation reveals that, if we choose an oxo pivot, the number of
nonzeros in the matrix (4.15) is

ns = 2n.(a,)[n.(a.) + n.(b.)] — n.(a,,b.)? (4.16)
while a tile pivot yields
ne < 2n.(a)fn (@) + na(bo)] — no(ar, b + [na(a) = nu(a,,b)  (417)

(the inequality in (4.17) accounts for the possibility of exact cancellation between
the terms in (4.15)). Thus, if A has rows a,, «+ = 1,---,m and columns a.,,

11



J=1,---,nand B has columns b.;, 7 = 1,---,n, one possibility is to pick the ba
pivot for which
|am-| Z U mMaX |CL2'71| (418)
1<i<n

for some pivot tolerance 0 < v < 1 and for which

€ J—
G5 =

2(n.(ay,) — 1)(n.(a,) + n.(b,) — 2
(no(@,, be,) — 1)* + (n.(ar,) — no(ar,, he,) — 2)? when b;; #0
(4.19)
is smallest. However, as computing no(ambcj) may prove to be unacceptably
expensive, we follow Duff et al. (1991) and overestimate (4.16) and (4.17) by
assuming that, except in the pivot rows, there are no overlaps and thus pick the
pivot for which

{ 2(n.(a,,) —1)(n.(a.,) + n.(b;,) — 1) — no()a,,i,bcz.)2 when b;;, =0

U?:{ 2(n.(a,,) — 1)(n.(a.,) + n.(b.,) — 1) when b;; =0
" 2(n.(a,,) — 1)(n.(ac,) + n.(b;) —2) + (n.(a,) —1)>  when b;; #0
(4.20)

is smallest. It is relatively straightforward to compute and update the nonzero
counts required to use (4.20). Indeed, as n.(a,,) and n.(a.;) 4+ n.(b.;) are, respec-
tively, the row and column counts for the matrix

B
(A), (4.21)

the schemes described by Duff, Erisman and Reid (1986, Section 9.2) are appro-
priate.

Although this section has been concerned with direct methods of solution, we
observed in Section 4.2 that the use of m ba pivots is equivalent to calculating a
change of basis so that a reduced variable method can be used. If, after performing
such pivots, our aim is subsequently to use an iterative method to (approximately)
solve the resulting unconstrained problem (2.9), a different strategy for selecting
the ba pivots is appropriate. For then, our aim should be to obtain as sparse a
factorization of A, as possible — so that the matrix-vector product Z TBZ can
be formed as economically as possible (see Section 2.2) — and the interaction
between A and B is mostly irrelevant. A good ordering in this case may be
obtained by minimizing the Markowitz count

of; = (n.(a,) —1)(n.(a;) — 1) (4.22)

over all indices ¢ = 1,---,m and j = 1,---,n which satisfy (4.18). Alternatively,
one might select the column index j to minimize ».(a., ) and then pick any : which
satisfies (4.18).

4.5 Dense rows

The main disadvantage of the schemes described in this section is that, by re-
stricting the pivot order, the fill-in within the Schur complement may prove
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unacceptable. This will be the case if A contains dense rows since then the Schur
complement will almost certainly be completely dense.

A possible way of alleviating this difficulty is to allow all of the pivot types
suggested by Forsgren and Murray (1993) (see Section 3.3). A drawback is that,
by allowing by and a_ pivots, we may introduce fill-ins into the “zero” block
of (3.2) and, thereafter the Markowitz costs (4.19) and (4.20) are inappropriate.
Appropriate Markowitz costs in this case have been suggested by Duff et al.
(1991). Preference should still be given to pivots involving A-rowsif at all possible.

However, even if we allow all types of pivots suggested by Forsgren and Mur-
ray, there are still cases where the Schur complement becomes unacceptably dense.
In the next section, we consider methods which aim to avoid such difficulties.

5 Modified pivoting methods

Suppose that A contains m, rows with a large number of nonzeros and that the
remaining m. = m — my rows are sparse. Then it is likely that if any of the
dense A-rows is included in an early pivot, the remaining Schur complement will
substantially fill in. It therefore makes sense to avoid pivoting on these rows until
the closing stages of the elimination when the Schur complement may be treated
as a dense matrix. However, the Forsgren-Murray pivoting rules may conspire to
make this impossible.

Let us suppose that we have eliminated the sparse m. rows of A using Forsgren
and Murray’s pivoting rules and that the remaining Schur complement S is
relatively sparse excepting the m; A-rows. Thus, we may no longer use ba or
a_ pivots and are restricted to using b pivots, that is 1 by 1 pivots occurring in
B-rows of S.

We may continue the factorization of S in two ways. Firstly, we might pick
a favourable pivoting sequence for 1 by 1 pivots from the B-rows of S purely
from a sparsity (fill-in) point of view. Such an approach implicitly assumes that
the defined pivot sequence will be acceptable from a numerical viewpoint, and is
typical of the symbolic analysis phase of the sparse factorization of positive defi-
nite matrices (see, for example, George and Liu, 1981, or Duff et al., 1986). Having
determined the pivot sequence, a numerical (Cholesky or LDLT) factorization
stage proceeds either to completion or until an unacceptable numerical pivot is
encountered. In our case, we view any pivot less than a small positive threshold
as unacceptable and, slightly abusing notation, shall refer to this pivot as a b_
pivot. If a b_ pivot is encountered, a readjustment of the pivot order may allow
the factorization to proceed further but this is likely to introduce extra fill-in and
merely delays us from facing up to an unacceptable pivot.

Secondly, we might use a combined analysis-factorization strategy, more typi-
cal of unsymmetric factorizations (again, see Duff et al., 1986), in which the pivot
order is determined as the factorization proceeds and numerically unacceptable
pivots moved down the pivotorder. Ultimately, once again, if the b-rows/columns
of § are insufficiently positive definite, this process will ultimately break down
as all remaining b pivots will be b_ pivots. More fill-in may be predicted with this
strategy than with the last, and, in the worst case, restrictions on the pivot order
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may produce a unacceptable level of fill-in within B. Our preference is for the
tirst (separate analysis and factorization phases) strategy as the second strategy is
likely to prove a considerable overhead in optimization applications when many
systems with the same structure are to be solved.

Thus, our remaining concern is when the pivot we wish to use, or are forced
to use, next is a b_ pivot. We shall refer to this as a potential breakdown. At this
stage, we are no longer able to take Forsgren-Murray pivots. We now assume
that the b_ pivot would be acceptable from the point of view of fill-in. We aim to
investigate the consequences of attempting to use this pivot. Remember that our
goal is ultimately only to modify B if it fails to be second-order sufficient.

5.1 Implicit modifications

In this section, we consider always modifying b_ pivots, but with the knowledge
that we can reverse the effect of these modifications at a later stage.

5.1.1 Pseudo modification of b_ pivots

Suppose the uneliminated Schur-complement when we encounter potential break-

down is of the form
B st
s S | (5.1)

where _ < o is the candidate b_ pivot. Now suppose that
ﬁ-l— 2 max(a, ||s||oo)7 (52)

and let
BB — 5. (5.3)

Then if we could replace 5_ by 3y, the latter would be an acceptable pivot. But
this is precisely what we do, leaving the consequences for later. We call such a
modification of B a pseudo modification as it is not yet clear that such a modification
is actually required to guarantee that B is second-order sufficient.

We propose continuing such a strategy of replacing b_ pivots with acceptable
by pivots until the remaining Schur complement is sufficiently small that it may be
treated by dense factorization methods. Thereafter, the Forsgren-Murray strategy
may be applied to remove the remaining dense A-rows and a modified Cholesky
factorization then applied to whatever remains. Thus, the resulting (modified)
Hessian matrix will be second-order sufficient. However, when replacing any b_
pivots with acceptable b, pivots, we may have unnecessarily altered elements,
and must now reverse any damage caused.

Stewart (1967) suggested using pseudo modifications as an alternative to piv-
oting in Gaussian elimination, and provided a satisfactory error analysis when a
single modification is made. Such an analysis may, of course, be used recursively
to cover the scheme suggested here. He comments that this strategy may be par-
ticularly beneficial for sparse problems, where altering the pivot sequence may
lead to undesirable fill-in.
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We will have formed a stable factorization of

Nd:ef(B+AB AT)7

A ; (5.4)

where B = H + AH, the diagonal matrix AB corresponds to the m_ (say)
modified b_ pivots and the other diagonal matrix AH corresponds to those
diagonals changed using the dense modified Cholesky factorization. These later
diagonal modifications are necessary to ensure that B is second-order sufficient,
while it is not clear that the former modifications are so. Thus we investigate the
consequences of removing these modifications.

5.1.2 Countering the effects of pseudo modifications

The system we wish to solve is (2.2), while we have a factorization of (5.4).
Suppose that the i-th pseudo modification (1 < i < m_) occurred in column j; of
H and that the modification was 3;, > 0. Let

AB=V'v, (5.5)

. . def
where V7 is the n by m_ matrix whose columns are v; = ,/83;.e;,. Then, we may

write (2.2) as
B+ AB-VTv AT p.\ [ -9
(P (%) ()

or equivalently as
B+AB AT v7T P, —g
A 0 0 Ao | =10 5.7)
| %4 0 I,_ Sy 0

for some auxiliary vector s,.. A standard block-decomposition of (5.7) shows that
we may determine the solution to (2.2) by solving, in order,

B+ AB A7 4.\ [ —g
(P2 ) (=)= (V)

Gs, = Vq,, (5.9)
and ’ ’
B+ AB A p,\ ([ —g—V's,
(PSR- (e) e
where )
B B+AB A"\ (V7
G=1, —(V 0)( A 0 ) ( 0 ) (5.11)

Thus to solve (2.2) via the stable factorization (5.4), we also need to form and
factorize G. But this factorization also reveals whether or not the modification
AB is necessary. For we have
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Proposition 5.1 B is second-order sufficient if and only if G is positive definite.

Proof. The result follows from Sylvester’s law of inertia (see, e.g. Cottle, 1974)
by considering different block decompositions of

B+AB AT vT
M = A 0 0 . (5.12)

\ 4 0 I,_

Pivoting on the first two blocks of M and using the definitions (5.4) and (5.11),
reveals that
In(M)=In(N)+ In(G), (5.13)

while pivoting on the last block, and using the definition (3.2) gives that
In(M)=In (I,,_) + In(K). (5.14)

But, as I,,,_ is clearly positive definite, and IV is second-order sufficient,
In (Im_) = (m_,0,0) and In(N) = (n,m,0). (5.15)

Thus combining (5.13)—(5.15), we see that In(K) = (n,m,0) if and only if
In(G) =In (G_l) = (m_,0,0). The required result then follows as B is second-
order sufficient if and only if In (K) = (n, m, 0) (see Gould, 1985). ]

This result suggests that G' should be factorized using a modified Cholesky fac-
torization. If no modification to G is made, B is second-order sufficient. Suppose,
on the other hand, that the :-th pseudo modification involved column j; of H,
and that in the subsequent modified Cholesky factorization, the :-th diagonal of
G was increased by ;. Then, this is equivalent to actually modifying B by

Vi T
(1 n %) v, . (5.16)

Thus, modification of G gives an implicit modification of B, and the actual
modification is no larger than the pseudo modification.

5.1.3 The pseudo-modification algorithm
In summary, we propose the following algorithm:

1. Perform a symbolic/numerical analysis and factorization to obtain a good
ordering for the complete numerical factorization.

(a) Firstly, construct k, 2 by 2 ba pivots, using the strategy outlined in
Section 4.4 (This involves processing the values of A but not B). Stop
once the resulting Schur-complement has reached a specified density.

(b) Next, construct k1 1by 1 b pivots from the remaining Schur-complement
using, for instance, the minimum degree ordering (see, for example,
George and Liu, 1981, or Duff et al., 1986). Stop once the resulting
Schur-complement has reached a specified density.
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(c) The remaining Schur complement will be considered to be dense.
2. Perform the complete numerical factorization.

(a) Perform k; 2 by 2 sparse eliminations, using the pivots specified in 1(a)
above.

(b) Perform k; 1 by 1 sparse eliminations, using the pivots specified in
1(b) above. Modify any b_ pivots encountered to ensure that they are
sufficiently positive, using the scheme of, for example, Schnabel and
Eskow (1991). Record any pseudo modifications made.

(c) For the remaining dense block, factorize using the scheme of Fors-
gren and Murray (1993) until all the A-rows have been eliminated.
Thereafter, use a dense modified Cholesky factorization to eliminate
the remaining B-rows.

(d) If any pseudo modifications were made in 2(b) above, form the matrix
G. Perform a modified Cholesky factorization of G.

3. Perform any solves, using the factors obtained in 2 above, by solving the
sequence of equations (5.8)—(5.10).

One would normally anticipate only performing a single symbolic/numerical
analysis and factorization per minimization, while many complete numerical
factorizations and solves might be required. Thus, a good ordering will pay
handsome dividends, and one might be prepared to expend considerable effort
in step 1.

We should also stress that (4.14) indicates that the Schur complement of the A-
rows following the ba pivots is independent of B and thus, as A is independent
of , need only be formed once per minimization. This is the only numerical
processing involved in the symbolic/numerical analysis and factorization phase

Notice that the effectiveness of such a scheme depends upon the dimension
of G. Although the number of pseudo modifications will not be known until the
numerical factorization phase, it may be possible to influence this by over-riding
the pivot selection outlined in Section 4.4 to favour incorporating potentially small
or negative elements within the initial ba pivots. For instance, if a diagonal of B
is known to be negative, it may be worth trying to encourage this element to lie
within a ba pivot so that it will not be available for pseudo modification in Step
1(b).

5.1.4 Generalizations

When f is strictly convex, no pseudo modifications should be necessary. In
other cases, it is possible that the dimension of G’ might be unacceptably high.
However, considering (5.1), it is clear that rather in addition to just modifying
the diagonal 3_, we are free to modify as many nonzero elements of s as we like
without introducing extra fill in the factorization Thus, if the diagonal of S, in
a row in which s has a nonzero element, is also small or negative, we should
modify the corresponding element of s to increase the offending diagonal. All
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that we have said in this section about diagonal modifications equally applies
for the more general perturbation, but the the :-th column of the matrix V now
contains nonzeros in all positions for which the j;-th pivot column was modified.

None the less, we have to recognize that there are some matrices for which
this strategy is inappropriate, as the following example shows:

Example 5.1 Suppose H = —1,, and A = e”, the vector of 1s. Then a ba pivot is out of
the question as the resulting Schur complement would be completely dense. But, as each
diagonal of H is negative, and as there is no connectivity between the diagonals, n. pseudo
modifications will be required. Unfortunately, G will then be a dense n by n matrix.

Another possibility is to replace G by a simpler matrix as soon as G is found
to be indefinite. If we replaced G by G + G, it is straightforward to show that this
is equivalent to an actual modification of B by

VI (L~ (In_+ G) ) V. (5.17)

Thus, provided that G is positive semi-definite, the actual modification will again
be smaller than the pseudo modification. A simple scheme would be to replace G
by 71,,_, where 7 is chosen so large that 71,,_ — G is positive definite whenever
G is not positive definite. The advantage of this replacement is that the storage
and factorization overheads associated with G may be considerably reduced. The
disadvantages are that the size of the actual modification made may be higher
than really necessary and that it is not obvious how to choose a satisfactory value
for 7.

5.2 Explicit modifications

In the previous sections, we always chose to modify b_ pivots, with the knowledge
that we could reverse the effect of the modification at a later stage. As we have
seen, it may happen that a considerable number of pseudo modifications will
be made and this may be undesirable because of the space and effort required
to factorize G. In this section, we take the opposite point of view and consider
changing b_ pivots only when we know it is necessary to modify them. The
intention is thus to remove, or at least lessen, the need for pseudo modifications.

We now assume that a b_ pivot would be acceptable from the point of view
of fill-in and stability. This is tantamount to assuming that the pivot is negative
and of a reasonable size compared to the remaining entries in its row. We aim to
investigate the consequences of using this pivot. Remember that our goal remains
only to modify B if it fails to be second-order sufficient.

5.2.1 The condemned submatrix

Recall, that we are supposing that we have eliminated the sparse m. rows of A
using Forsgren and Murray’s pivoting rules, and that m,; = m—m. A-rows remain
within §. Suppose that we have also eliminated ». rows of B using Forsgren and
Murray’s rules.
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We pick a nonsingular, square submatrix, the condemned submatrix, C, of S,
which contains all the A-rows and perhaps some of the B-rows (but not the
b_ pivot row) of S and has precisely m, negative eigenvalues. The condemned
submatrix will be eliminated last of all and thus any B-rowsincluded in C will not
be generally available as pivots. The aim is that, when only the rows which make
up C remain to be eliminated, the uneliminated Schur complement will have
precisely m, negative eigenvalues and hence K will have exactly m negative
eigenvalues. The Schur complement S has at least m, negative eigenvalues. A
suitable C may be obtained, for instance, by picking m,_ < min (n. — m., mg)
a_ followed by my — m,_ ba pivots. We shall show how such a matrix may be
obtained in Section 5.2.4.

A factorization of the condemned submatrix should be obtained. As the
C-rows of S will ultimately invariably be dense, a full matrix factorization is
appropriate and, because we may subsequently need to modify the factors, we
recommend a QR or L() factorization. This of course limits the scope of the
current proposal because of the size of C' which can be accommodated. We note
that the dimension of C as constructed above is 2m; — m,_ and hence lies between
myq and 2md.

5.2.2 The consequences of pivoting
With this choice of C, S is a permutation of the matrix
p- si | 8]

s1 C |S% |, (5.18)
L)) 521‘522

where 3_ < 0 is the candidate b_ pivot. If we were now to pivot on C instead of

(B_, we would have eliminated all m A-rows of K and, because of the choice of
C, the factorized matrix (the submatrix of K corresponding to eliminated rows)
would have exactly m negative eigenvalues. Thus B is second-order sufficient if
and only if the matrix

f- s s{ -1 T
is sufficiently positive definite. In particular, if 3_ — sIC s is insufficiently

positive, B is not second-order sufficient and should be modified.
With this in mind, if
g —sTCcls; <o, (5.20)
we modify B by replacing 3_ by at least

3, % max (a—l—slTC_131,||s||) , (5.21)
where s = <slT szT) Conversely, if

B.—sTC™l's; >0 >0, (5.22)
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it is safe to pivot on 3_. Moreover, although this implies an increase (by one)
in the number of negative eigenvalues that have been recorded, the increase is
counteracted by a corresponding reduction in the number of available negative
eigenvalues in the Schur complement C — sys7/3_. This follows directly from
the inertial identity

In (c — 518! /5_) =In(C)+In ([3_ — 5T C_lsl) —In(B.), (5.23)

B sl
() 520
(see, e.g. Cottle, 1974). We then pivot on the possibly modified value of 3_ and
replace C by C — slslT /- — we update the matrix factorization to account for this
(see, Gill, Golub, Murray and Saunders, 1974). We repeat this procedure until we
have eliminated the remaining S, rows, at which point, the only non eliminated
portion of K is the (updated) matrix C.

Alternatively, once it has been determined that B is not second-order sufficient,
we might modify all remaining B pivots. One possibility, in the same vein as
Schnabel and Eskow (1991), is to insist that all diagonals are larger than the sum
of the absolute values of the (remaining) off diagonal terms in B-rows.

For the case of Example 5.1 in Section 5.1, the explicit modification scheme
considered here would be preferable. The condemned submatrix might be made
up from the last row of H — indeed, any row of H will do — and the single
A-row. Examining (5.20) for each diagonal pivot in turn, it follows that H is not
second-order sufficient, every pivot will be modified, but no fill-in takes place.

for block decompositions of

5.2.3 Other pivot types

If the only possible pivots in B-rows are zero or small, we may again test them

one at a time to see if they might be modified and then used as pivots. If the test

reveals that the matrix is not second-order sufficient, we may modify the tested

pivot and pivot on it. But, if the test is inconclusive, we must either add a pseudo

modification (see Section 5.1.1) or reject the potential pivot and pass to the next.
It may be better to consider 2 by 2 pivots,

B Bz
5.25
( B P2 )’ (525
arising from the B-rows of S, especially when the only possible 1 by 1 pivots are
small or zero. Then § is a permutation of the matrix

B Ba sty | sy
521 522 Ssz Ssz

s11 sz C | Sy

, (5.26)

$21 82 Su ‘ S2
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and B is second-order sufficient only if the matrix

B B sty 1
— C 5.27
( Ga1 B 51 (o o12) (6-27)
is sufficiently positive definite. Asbefore, if (5.27) is indefinite, the potential pivot
(5.25) should be modified before use. The inertial result

-1
(o= (2 2)(2))-
B u ) e e
In(C)‘FIn((ﬁ; ﬁil)‘(sii)c o s”))_ln(ﬁ; ﬂi)

once again indicates that the updated C after the pivot inherits the correct number
of negative eigenvalues.

(5.28)

5.2.4 Calculating the condemned submatrix

In this section, we consider one way in which the initial condemned submatrix,
C, may be found. We should stress that the definition of C is by no means unique.

Let the m, uneliminated A-rows in the Schur complement, S,,, following the
m. ba pivots, be Ay,. Similarly, let the n — n. uneliminated B-rows and columns
in S;, following these ba pivots be B;,. Further, let

O = {1112, ylpn_m.} (5.29)

be the ordered pivot sequence for the elimination of B;,. Now define the ordered
sets

P = {ila i2," - 7ine—me} and P, = {in—mev Un—ne—1," " 7ine—me+1} (530)
and the ordered set of preferences
P =P JPa. (5.31)

For example, suppose that B-rows 1, 6 and 4 were involved in ba pivots, that
the remaining b pivots were requested from rows 3, 7, 5, 8 and 2 in order (thus,
O = {3,7.5,8,2}), that the pivots from rows 3 and 7 were satisfactory, but that
from row 5is a b_ pivot. Then P; = {3,7}, P, = {2,8,5} and P = {3,7,2, 8, 5}.
Our intention is to find a well-conditioned, non-singular subset, C, of the
columns of A;, by pivoting. The row and column indices of the pivots would
provide satisfactory ba pivots, if such pivots had not been disqualified on sparsity
grounds, for S;,. Moreover, the submatrix, C;,, formed by taking the rows
and columns of S;, corresponding to these 2 by 2 pivots is nonsingular and has
precisely m, negative eigenvalues. If we now consider the subsets C; = CNP;
and C, = C(P,, and pivot on all B-rows of C;, whose indices occur in C;,
the remaining Schur-complement still has precisely m, negative eigenvalues and
provides us with a suitable condemned submatrix, C. This matrix has the correct
inertia as the sub-block of C}, corresponding to the C; pivots is contained within
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the sub-block of S}, corresponding to the P; pivots, and the latter sub-block is
positive definite as the first n. — m. b pivots on S;, are positive.

It remains to describe how C is calculated. We consider how the first element
is obtained, the remaining m, — 1 elements following in exactly the same way.
The set C is initially empty and the matrix A. is initialized as A;,. The columns
of A. are considered one at a time, in the order defined by P. The nonzeros in
the current column are examined one at a time. If the entry in row ¢ and column
J is that currently under examination and if the stability restriction (4.18) holds
(where here «; ; are the entries of A.), column j is added to C and removed from
P, and A, is reset to the Schur complement of A, following a pivot on a; ;. On the
other hand, if (4.18) fails to hold, attention passes to the next nonzero in column
j or, if there are no further unexamined entries in the column, to the next column
inP.

The order of the preferences P is chosen deliberately. It firstly encourages ba
pivots whose b; component has already been used — the resulting a_ pivot is
then available and reduces the possible dimension of C. If P is not entirely made
up from P, the preference secondly encourages pivots from those B-rows which
are last in the elimination ordering — the intention here is that these are unlikely
to be good pivots from a fill-in point of view and so it is better to include them in
the dense matrix C from the outset.

A disadvantage of the preceding approach is that the order of the set P depends
at which stage a b_ pivot appears. This may be significant if more than one matrix
factorization is required as changes in B may affect P. It may, therefore, be
preferable, to redefine the preference as

P ={tn-mertn-m.—1,"" ", 01} (5.32)

This will have the effect that the resulting C will generally be of dimension 2m,
but the advantage that the selection of C is made only once. As before, it will
favour including disadvantageous B-rows within the condemned submatrix.

5.3 Modifications during the ba-pivot stage

The methods we have considered so far wait until we have performed all possible
(i.e., possible given sparsity constraints) ba pivots before considering modifica-
tions to H. In this section, we comment on another alternative in which modifi-
cations are considered in the ba pivot phase. This technique has been mentioned
by others — see, for example, Hestenes (1969) and Powell (1969) — in the context
of augmented Lagrangian methods for small-scale computations. However, as
we shall see, it appears that such a technique is unlikely to offer improvements
over our previously mentioned methods in the large-scale case.

Firstly, observe that the solution, p,, and related Lagrange multipiers, A,, to

the generic system
B AT y _ ”'p
(25 )(0)=(0), 5
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also satisfy the equations

B+A"™WA AT p,\ [7,+Wr,
(P (R )= (). (53

where W is any m by m matrix. Now, consider the case where W is a positive
semi-definite diagonal matrix. Then, following (for instance) Bertsekas (1982,
Lemma 1.25), it is straightforward to see that B is second-order sufficient if and
only if B + ATW A is positive definite for some sufficiently large W. This
suggests that one might simply add large contributions A”W A to B and solve
(5.34) instead of (5.33). Solong as B is second-order sufficientand W is sufficiently
large, this strategy will then ensure that no further modification will be required
during the subsequent factorization. Such a strategy has been advocated by a
number of authors (see, for example, Gill et al., 1981, Section 5.4.2.1) as a possible
way to solve small-scale nonconvex problems.

In the large-scale case, one needs to be cautious as the matrix B + ATWwW A may
be condiderably more dense than B. Indeed, if A has any relatively dense rows,
B + A"W A will be rather dense. However, examining (4.14), it is immediately
clear that the B-rows of the Schur-complement following a ba pivot already
contains a contribution from a_a!. Thus no further fill-in will result from an
additional contribution wa, a’, for some w > 0, and one would then hope to be
able to influence future pivots by a judicious choice of w. Unfortunately, it is
straightforward to show from (4.14) that the resulting Schur complement, S, is
independent of w and thus that an additional term wa,.a’ has no effect. Thus there
is no benefit to be made from adding rank-one terms involving A-rows involved
in ba pivots. As we advocate stopping ba pivoting only when the remaining
A-rows are too dense, any additional rank-one term involving an uneliminated
A-row will cause significant fill-in and is therefore not recommended.

6 Numerical experiments

We are currently planning to implement a code to solve systems of the form (2.2)
for the Harwell Subroutine Library. A key requirement is that B should be a
second-order sufficient modification of H. In order to test the efficacy of some
of the ideas presented in this paper, we report on experiments conducted with a
prototype, KKTSQOL, of this code.

6.1 Implementation details

We have written a prototype implementation of the algorithm outlined in Sec-
tion 5.1.3. This implicit modification algorithm divides naturally into an analysis,
a factorization and a solve phase.

The analysis phase needs only be performed once for a sequence of systems
so long as the matrix A and the sparsity structure of H are unchanged. Some
numerical processing of the matrix A is performed in the analysis phase. There
are a number control parameters, in particular the pivot threshold tolerance v
(see (4.18)), the density 4, of the Schur complement of A during ba pivoting at

23



which the remaining rows of A may be treated as dense, and the density d; of
the Schur complement of B during b pivoting at which the remaining rows of B
may be treated as dense. We choose to switch to full-matrix code as soon as the
density of the Schur complement of B during b pivoting exceeds ¢,. However,
experience has shown that switching to b pivoting as soon as the density ¢, of the
Schur complement of A during ba pivoting exceeds ¢, is sometimes inappropriate
as further cheap ba pivots may be possible — remember that it helps to eliminate
as many A rows as possible before the b pivoting stage. In particular, if the matrix
A is highly structured, many essentially identical ba pivots occur and switching
solely on the basis of §, may interrupt a promising sequence of pivots. Thus, we
actually choose to switch as soon as the density has exceeded its tolerance and the
Markowitz cost (4.20) next changes. This heuristic has worked well in our tests.
Default values of v = 0.0001, §, = 0.1 and ¢, = 0.25 have proved quite reliable.
We will indicate the effect of §, on the algorithm in Section 6.3.

During the factorization phase, once a negative b pivot has been detected, any
b pivot which is smaller than the sum of absolute values of the off-diagonal terms
in its column is pseudo modified. The rows of A and H which are left over
following the sparse ba and b pivoting steps, along with the matrix G, are treated
as dense matrices. The highest appropriate levels of BLAS (see, for instance,
Dongarra, Duff, Sorensen and van der Vorst, 1991) are used to perform the dense
operations wherever possible.

In addition, we have also implemented the explicit modification scheme sug-
gested in Section 5.2. This differs from the implicit modification scheme described
above in two respects. Firstly, the ordering of the b pivots may be altered to pro-
vide a non-singular condemned matrix, if it is needed. We have implemented
the method described in Section 5.2.4 using the preference (5.32). Secondly, dur-
ing the b phase of the factorization, b; pivots are used so long as no b_ pivot is
detected. If a b_ pivot appears, the condemned matrix is formed and factorized,
and the resulting QR decomposition used to see if this pivot is acceptable or if
it should be modified. Subsequent b_ pivots are treated in the same way, except
that now the factors of the condemned matrix are obtained from its predecessor
by updating. Slightly modified LAPACK routines (see Anderson, Bai, Bischof,
Demmel, Dongarra, DuCroz, Greenbaum, Hammarling, McKenney, Ostrouchov
and Sorensen, 1995) are used to compute and update the QR factors.

All our tests were performed on an IBM RS6000 3BT workstation; the codes
are all double precision fortran 77, compiled under xIf with -O optimization, and
IBM library BLAS are used.

6.2 Test examples

We considered all of the larger quadratic programming examples in the current
CUTE test set (see Bongartz et al., 1995), excepting that we excluded those which
are minor variants (namely BLOCKQP4, BLOCKQPS, HAGER4, MOSARQP2, and
SOSQP2). The characteristics of this test set are described in Table 6.1. In order to
simulate a typical early iteration of a barrier function method, a small value (one
tenth) was added to each diagonal entry of the given Hessian. For each test, the
given matrix was factorized and modified if necessary. A right-hand-side was
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Problem n m nnzA nnzH -eval nullity convex?

AUG2DCQP 3280 1600 6400 3280 0 0 yes
AUG2DQP 3280 1600 6400 3120 0 0 yes
AUG3DCQP 3873 1000 6546 3873 0 0 yes
AUG3DQP 3873 1000 6546 2673 0 0 yes
BLOCKQP1 2006 1001 9006 1005 1000 0 no
BLOCKQP2 2006 1001 9006 1005 1 0 no
BLOCKQP3 2006 1001 9006 1005 900 1 no
GOULDQP2 699 349 1047 697 0 0 yes
GOULDQP3 699 349 1047 1395 0 0 yes
HAGER?2 2001 1000 3000 3001 0 0 yes
KSIP 1021 1001 21002 20 0 0 yes
MINC44 1113 1032 1203 0 0 0 yes
MOSARQP1 1500 600 3530 945 0 0 yes
NCVXQPr1 1000 500 1498 3984 438 0 no
NCVXQPr2 1000 500 1498 3984 320 0 no
NCVXQPr3 1000 500 1498 3984 163 0 no
NCVXQPr4 1000 250 749 3984 610 0 no
NCVXQP5 1000 250 749 3984 428 0 no
NCVXQPr6 1000 250 749 3984 224 0 no
NCVXQP7 1000 750 2247 3984 250 0 no
NCVXQP8 1000 750 2247 3984 192 0 no
NCVXQPr9 1000 750 2247 3984 127 0 no
QPCBOEI1 726 351 3827 384 0 0 yes
QPCBOEI2 305 166 1358 143 0 0 yes
QPCSTAIR 614 356 4003 467 0 0 yes
QPNBOEI1 726 351 3827 384 30 0 no
QPNBOEI2 305 166 1358 143 12 0 no
QPNSTAIR 614 356 4003 467 13 0 no
SOSQP1 2000 1001 4000 1000 0 0 no
UBHI1 909 600 2400 303 0 0 yes

Table 6.1: Problem characteristics.

Key: n = number of variables, m = number of equations, nnz A, H = number
of nonzeros in A and H(z), -eval = number of negative eiegnvalues of reduced
Hessian, nullity = nullity of K, convex? = is the Hessian H (z) positive definite?.
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then generated so that the required solution is a vector of ones.

6.3 Results

We first illustrate the effect of J,, the density of the Schur complement of A
during ba pivoting at which the remaining rows of A may be treated as dense,
on the performance of our algorithm. We consider two examples, AUG3DQP and
QPNBCEI 1, from our test set; the first is convex while the reduced Hessian of
the second has a few negative eigenvalues. The behaviour on these examples is
representative of the whole set.

AUG3 DQP:
fill-in dense rows # time
0 A H dense A H G |mod | anal. fact. solve
0.01 | 1043 16231 348195 |777 57 O 0 33 3.93 .05
0.05 | 3161 49458 144991 | 297 241 O 0 .60 2.30 .03
0.1 | 3860 67921 171991 | 198 388 0O 0 71 292 .04
0.2 | 4333 87143 180901 | 130 471 O 0 80 3.07 .04
0.5 | 4773 109644 223446 | 73 595 O 0 97 422 .04
1.0 | 5058 138324 245350 | 47 653 0 0| 1.09 5.01 .04
no dense | 5806 331483 245350 0 700 O 0| 3.99 457 .05
QPNBCEI 1:
fill-in dense rows # time
0 A H dense A H G |mod | anal. fact. solve
0.01 0 3816 73920 | 347 3 34 34 02 84 .02
0.05 4 3844 43365 | 250 13 31 33 .02 40 .01
0.1 4 5229 21115 | 147 25 33 33 .04 17 .01
0.2 4 5877 13203 | 98 38 26 33 .04 11 .00
0.5 4 6577 9180 | 63 51 21 36 .04 .08 .00
1.0 16 6574 10296 | 46 78 19 38 .05 .08 .00
nodense | 153 71225 70500 0 375 0 32 92 77 .01

Table 6.2: Dependence on the allowed density of A.

Key: d, = density of updated A at which remaining rows are treated as dense (10
dense means that no dense rows of A are allowed), fill-in A, H, dense = fill-in within
A, H and the final dense block, dense rows A, H = number of rows of A, and H
which are treated as dense, dense rows G = number of pseudo-modifications made
(dimension of 7), # mod = number of diagonals of H actually modified, anal., fact.,
solve = times for analyse, factorize and solve (cpu seconds).

We give our results in Table 6.2 on runs which used the explicit modification
algorithm; similar results were observed for the implicit modification scheme.
Examining the times taken during the analyse and factorize stages, we see that it
is important not to let §, be too large, as the remaining Schur complement of K
is then too dense. On the other hand, skipping pivoting on rows of A when J,
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MA27 MA47

Problem fill-in amal. fact. solve | fill-in anal. fact. solve
AUG2DCQP | 11038 09 .09 .01 | 36179 21 13 .04
AUG2DQP | 11198 09 .09 .01 | 36339 21 13 .03
AUG3DCQP | 10797 A1 .16 .01 | 50401 25 25 .04
AUG3DQP | 11997 0 .16 .01 | 51601 25 25 .04
BLOCKQP1 2015 126 .05 .00 | 16989 1.97 .09 .02
BLOCKQP2 2015 127 .06 .00 | 16989 1.97 .09 .02
BLOCKQP3 2015 127 .06 .01 ] 16982 1.97 .08 .02
GOULDQP2 | 1749 01 .01 .01 2927 .03 .02 .01
GOULDQP3 | 2787 02 .02 .01 3357 32 .03 .01

HAGER2 9 04 .03 .01 6004 .07 .04 .02
KSIP 3029 A3 13 01| 17860 1.94 12 .02
MINC44 2241 01 .01 .00 1548 .03 .02 .00

MOSARQP1 | 6466 04 .07 .00 | 29104 A1 .10 .01
NCVXQPr1 12539 13 1.01 02 | 273646 1.87 30.26 .06
NCVXQPr2 12539 12 1.01 .02 | 241150 1.83 29.00 .06
NCVXQPr3 12539 A3 .98 .02 1272372 1.83 31.53 .06
NCVXQPr4 8461 07 45 .01 | 110796 43 4.00 .02
NCVXQP5 8461 07 45 .01 | 104070 42 353 .03
NCVXQP6 8461 07 44 .01 | 108867 43 3.69 .02
NCVXQP7 15913 20 2.60 .02 | 404465 2.84 6143 .08
NCVXQP8 15913 19 261 .03 | 419779 289 77.55 .09
NCVXQPr9 15913 20 2.57 .03 | 406633 2.84 68.19 .09
QPCBOEI1 3886 08 .03 .00 | 13333 16 .05 .00
QPCBOEI2 941 01 .01 .00 4421 .03 .02 .00
QPCSTAIR 3318 05 .05 00 | 12444 14 .08 01
QPNBOEI1 3886 08 .04 .00 | 13333 15 .06 01
QPNBOEI2 941 01 .02 .00 4421 .03 .02 .00
QPNSTAIR 3318 05 .05 00 | 12444 14 .08 01
SOSQP1 5003 16 .04 .00 3001 1.25 .06 01
UBH1 2109 02 .01 .00 3915 .05 .02 01

Table 6.3: Performance of MA27 and MA47 (default settings).
Key: fill-in = fill-in during factorization, anal., fact., solve = times for analyse,
factorize and solve (cpu seconds).
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fill-in dense rows # time
Problem A H dense A H G | mod | anal. fact. solve
AUG2DCQP | 5369 42539 61425 | 168 182 0 0 31 58 .02
AUG2DQP | 5369 42539 61425 | 168 182 0 0 31 58 .01
AUG3DCQP | 3860 116416 61425 | 198 152 0 0 55 1.36 .03
AUG3DQP | 3860 116416 61425 | 198 152 0 0 55 1.36 .03
BLOCKQP1 0 10998 507528 1 8 998 | 1003 | 1.16 16.29 .06
BLOCKQP2 0 10998 45 1 8 0 5| 1.17 .04 .00
BLOCKQP3 0 10998 412686 1 8 899 | 904 | 1.17 1246 .06
GOULDQP2 | 348 1862 253 0 22 0 0 .03 .01 .00
GOULDQP3 | 348 3479 703 0 37 0 0 .05 .01 .00
HAGER2 0 990 66 0 11 0 0 .06 .01 .00
KSIP 0 190 210 0 20 0 0 32 .04 .00
MINC44 0 187 253 | 19 3 0 0 .01 .01 .00
MOSARQP1 0 11703 23005 0 214 0 0 13 .06 .01
NCVXQP1 1378 13940 208981 | 73 277 296 | 515 .64 285 .03
NCVXQP2 1378 13940 203841 | 73 277 288 | 507 64 278 .02
NCVXQP3 1378 13940 145530 | 73 277 189 | 400 .66 184 .02
NCVXQP4 288 8730 345696 | 49 301 481 | 771 26 537 .03
NCVXQP5 288 8730 278631 | 49 301 396 | 682 27  4.09 .03
NCVXQP6 288 8730 194376 | 49 301 273 | 556 27 268 .03
NCVXQP7 2535 16182 80200 | 75 219 106 | 259 .90 .86 .02
NCVXQP8 2535 16182 76636 | 75 219 97| 252 .89 .84 .01
NCVXQP9 2535 16182 76245 | 75 219 96| 237 .89 .82 .02
QPCBOEI1 4 5229 14878 | 147 25 0 0 .03 .08 .00
QPCBOEI2 0 1349 6903 | 110 7 0 0 .01 .02 .00
QPCSTAIR 687 10021 23653 | 186 31 0 0 .07 17 .00
QPNBOEI1 4 5229 21115147 25 33 33 .04 17 .01
QPNBOEI2 0 1349 8515 | 110 7 13 13 .01 .04 .00
QPNSTAIR 687 10021 28441 |18 31 21 21 .06 26 .01
SOSQP1 0 997 10 1 3 0 0 12 .01 .00
UBH1 1288 5066 9316 | 97 39 0 0 .06 .03 .00

Table 6.4: Performance of the implicit modification variant of KKTSCL.

Key: fill-in A, H, dense = fill-in within A, H and the final dense block, dense rows
A, H = number of rows of A, and H which are treated as dense, dense rows G
= number of pseudo-modifications made (dimension of (+), # mod = number of
diagonals of H actually modified, anal., fact., solve = times for analyse, factorize
and solve (cpu seconds).
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dense
fill-in TOWS # time
Problem A H dense A H | mod | anal. fact. solve
AUG2DCQP | 5369 56098 61425 | 168 182 0 .75 .89 .02
AUG2DQP |5369 56098 61425 | 168 182 0 .76 .89 .02
AUG3DCQP | 3860 145843 61425 | 198 152 0] 193 219 .03
AUG3DQP | 3860 145843 61425 | 198 152 0| 194 214 .04
BLOCKQP1 0 10998 45 1 811003 | 1.17 .04 .00
BLOCKQP2 0 10998 45 1 8 5| 1.17 .02 .01
BLOCKQP3 0 10998 45 1 8| 904 | 1.17 .04 .01
GOULDQP2 | 348 1862 253 0 22 0 .03 .00 .01
GOULDQP3 | 348 3479 703 0 37 0 .04 .01 .00
HAGER2 0 990 66 0 11 0 .05 .01 .00
KSIP 0 190 210 0 20 0 32 .03 .00
MINC44 0 162 741 | 19 19 0 .02 .00 .00
MOSARQP1 0 11703 23005 0 214 0 12 .07 .00
NCVXQP1 1378 13940 61425 | 73 277 | 515 66 393 .01
NCVXQP2 1378 13940 61425 | 73 277 | 507 .65  3.87 .01
NCVXQP3 1378 13940 61425 | 73 277 | 397 66 391 .01
NCVXQPr4 288 8730 61425 | 49 301 | 769 28  3.16 .01
NCVXQP5 288 8730 61425 | 49 301 | 682 27 314 .01
NCVXQP6 288 8730 61425 | 49 301 | 554 28 3.13 .01
NCVXQP7 2535 16182 43365 | 75 219 | 259 91 1.70 .01
NCVXQP8 2535 16182 43365 | 75 219 | 251 91 1.70 .00
NCVXQP9 2535 16182 43365 | 75 219 | 237 91 1.70 .01
QPCBOEI1 4 4040 43365 | 147 147 0 17 31 .01
QPCBOEI2 0 861 24310 | 110 110 0 .04 A1 .00
QPCSTAIR 687 1465 61425 | 186 164 0 .36 33 .01
QPNBOEI1 4 4040 43365 | 147 147 41 18 17.93 .01
QPNBOEI2 0 861 24310 | 110 110 24 .05 4.06 .00
QPNSTAIR 687 1465 61425 | 186 164 81 36 22.02 .01
SOSQP1 0 997 10 1 3 0 12 .01 .00
UBH1 1288 5041 18915 | 97 97 0 .10 .06 .00

Table 6.5: Performance of the explicit modification variant of KKTSCL.

Key: fill-in A, H, dense = fill-in within A, H and the final dense block, dense rows
A, H = number of rows of A, and H which are treated as dense, # mod = number
of diagonals of H actually modified, anal., fact., solve = times for analyse, factorize
and solve (cpu seconds).
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is too small is also undesirable as the dimension of the resulting dense matrix is
then large. Thus a compromise is necessary and we have found, empirically, that
a density of around 10% is reasonable.

As ayardstick, all of the test examples were factorized using the Harwell codes
MA27 and MA47, using default settings. Of course, these codes make no effort to
modify H to produce a second-order sufficient B; these results are included to
indicate the sort of times we consider acceptable for a good factorization and
thus the sort of times that we should be aiming for in our modified factorization.
The results are given in Table 6.3. We note that, although MAA7 was especially
designed to cope with augmented systems of the form (2.2), it is often less efficient
than the general purpose method MA27. In its defence, we sometimes observed
that MA47 obtained accurate solutions to (2.2) while its older sister failed to do so;
the NCVXQP problems are cases in point.

In Table 6.4, we report on the performance of the implicit modification option
from our prototype code, KKTSOL, on the test set. For these and subsequent runs,
we restrict the total number of dense rows of A and B to be at most 350 even
though this means that the target densities J, or ¢, may be exceeded. We have
found that, even though dense matrices are processed using high-performance
BLAS, this restriction often has a beneficial effect on execution times. A value of
roughly 350 has been observed empirically to give a good compromise between
increased dense storage and the advantages of direct addressing of data.

We make two observations. Firstly, at least in comparison with MA47, KKTSCL
performs acceptably well in many cases. Clearly, restricting the pivot order has
some detrimental effect on the fill-in. This is somewhat compensated by our not
requiring further pivoting during the factorization, to correct for an inappropriate
pivot sequence from the analysis phase, which sometimes hampers MA47.

Secondly, for the nonconvex problems, alarge number of pseudo-modifications
are required, but many of these later turn into actual modifications. This is es-
pecially noticeable for the BLOCK and NCVXQP problems. For many of these
problems, significantly more actual modifications are needed than are strictly
required to counter the negative eigenvalues in the reduced Hessian, but this is
difficult to avoid without having good approximations to their related eigenvec-
tors. BLOCKQP1 and BLOCKQP3 are generalizations of Example 5.1 in Section 5.1,
and, as predicted, the implicit modification scheme is slow precisely because G is
large.

In Table 6.5, we consider the performance of the explicit modification variant
on the test set. We firstly note that the alteration of the b pivot order sometimes has
a slightly detrimental effect on the analysis times, but that this is not significant.
However, the main differences are observed on the BLOCK and QPNexamples. For
the former, the explicit modification scheme clearly helps. Rather than requiring
the factorization of a large matrix G, the factorization and update of a trivial (2 by
2) condemned matrix is performed. For the QPNBCEI 1 and QPNSTAI Rexamples,
the roles are reversed. The condemned matrice are now large (of orders 292 and
372 respectively) and the updates quite inefficient. The only difference between
the QPC and QPN examples is that the former are convex. Thus, the differences
in factorization times in Table 6.5 for these examples are purely because the QPN
examples form and update their condemned submatrices, while the QPCexamples

30



do not need to.

Thus, we see that both the implicit and explicit modification schemes have
their advantages and disadvantages. In many cases, these methods are able to
compete with the non-modification methods, and of course the proposals here
have extra functionality. However, there are clearly some instances where there
is a significant overhead caused by the restriction on the allowable pivots. Thus
we must conclude that, so far, we have only been partially successful in fulfilling
our stated aims.

7 Other possibilities

7.1 Mixed direct-iterative methods

Another possibility is to combine the iterative methods of Arioli et al. (1993) with
a variation on the direct methods of Sections 4 and 5 so as to counteract the latter’s
difficulties with unacceptable fill-in.

We suppose we have started a factorization of K using Forsgren and Murray’s
(1993) pivot scheme, have eliminated all the A-rows and n. B-rows, perhaps
modifying pivots as we proceed, but that the remaining Schur complement matrix
is too large and dense to proceed further. This is equivalent to permuting the
matrix K to produce a partition (4.1), where By; and A; are now n. by n. and
m by n. matrices, respectively. As before, a similar permutation and partition of
the solution and right-hand side vectors enables us to decompose the solution
process into successively solving the three systems of equations (4.4)—(4.6). We
have been careful to arrange that the matrix (4.7) has a sparse factorization but
unfortunately the matrix (4.8) is too large and dense for us to factorize. However,
the relationship (4.8) indicates that matrix-vector products between S and a given
vector v are possible, each product requiring the solution of an intermediate linear
system, whose coefficient matrix is (4.7), sandwiched between a pair of sparse-
matrix-vector products. Thus we may contemplate solving (4.4)—(4.6) by solving
(4.4) and (4.6), using the factorization of (4.7), and (4.5), using an appropriate
iterative method.

It is convenient to view the solution of (4.5) as the solution of the related
problem

minimize }p; B.p, + p39., (7.1)
P e

where B, = Sand g, = g, + Bxg; + AZT)\Q. Then we may use any of the iterative
methods discussed by Arioli et al. (1993) to compute an appropriate, approximate
solution to (7.1), modifying B. if necessary.

7.2 A postiori modifications

A final possibility is to abandon the aim of modifying the matrix as the factoriza-
tion, and instead to try to modify the matrix after the factorization has revealed
that H is not second-order sufficient. Suppose that we initialize B = H, we form
a stable factorization of (3.2) — using for instance MA27 or MA47 — and we find
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that the inertia of K is (n — {,m +{,0), where [ > 0. Then B is not second-order
sufficient, and the reduced Hessian has [ negative eigenvalues.

The simplest remedy under these circumstances, is to perform a second fac-
torization, modifying each b pivot encountered so that it is positive. However,
this does not tally with our stated aim (Section 2.3) that the calculation of the
perturbation E should be an acceptable overhead in comparison with that of the
initial factorization. The following alternative suggests itself.

Let v be any n-vector, and consider the modified matrix B + vv?. We then
have

Proposition 7.1 Suppose that In(K) = (n — [,m + 1,0). Then

( B +vvl AT
In

) ] )z(n—l—l—l,m—l—l—l,O) (7.2)

if and only if
T -1
(o7 0)(’3 o ) (8)<—1- (7.3)

Proof. The result again follows from Sylvester’s law of inertia (see, e.g. Cottle,
1974) by considering different block decompositions of

B AT T
M=| A 0 o0 |. (7.4)
v 0 -1

Pivoting on the first two blocks of M reveals that

—1
In(M) = In(K) + In <_1_ Cal) ( i %T ) ( "6 )) : (7.5)

while pivoting on the last block, and using the definition (3.2) gives that

T AT
In(M) = In( B+ovt A ) 4 (0,1,0). (7.6)
A 0
Comparing (7.5) and (7.6) then gives the required result. ]

Proposition 7.1 may then be used recursively to produce a second-order sufficient
matrix B. Starting with By = H, the update B; = B;_; +v;v!, i =1,---,],is
performed. Each vector v; must, in turn, be chosen so that

BZ'_ AT ! vU;
(o] 0)( Al 0 ) (0)<—1. (7.7)

The required B is then B,.
There are now two important observations. Firstly, in order to satisfy (7.7), it
suffices to find a vector w; such that

BZ'_ AT ! w;
(w? 0)( Al 0 ) (0 )<o. (7.8)
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For then v; is simply a suitable scaling of w;. Secondly, letting r; and s; be the

solution of .
B, A T\ [ w;
(o)) =) 2

we see that satisfying (7.8) is equivalent to finding a vector r; for which both
Ar; = 0and r'B,_;r, < 0, ie, to finding a direction of negative curvature for
the current model problem.

Unfortunately, there does not, as yet, appear to be an inexpensive method for
tfinding such a direction, let alone the [ separate directions required here. Both
Forsgren and Murray (1993) and Forsgren, Gill and Murray (1995) suggest how
such directions may be found provided that one is prepared to form a (second)
partial factorization of K in which the pivot selection is restricted. Similarly, Conn
and Gould (1984) give a method which requires that a “triangular-like” matrix be
formed from the existing factors of K and this matrix then factorized to obtain a
direction of negative curvature. Alas, none of these options really falls within our
aim of finding a cheap modification.

Of course, if one were really able to find a good direction of negative curvature,
it might be preferable to exploit it directly (see, e.g., Goldfarb, 1980, and Moré and
Sorensen, 1979).

8 Conclusions and further comments

In this paper, we have showed that a number of modified factorization methods
forlinearly constrained optimization calculations made be derived, and have indi-
cated that these techniques hold some promise for large-scale computations. Our
next task is to complete our code for the Harwell Subroutine Library. As this code
is of general interest, we intend to release a version, KKTSCL, into the public do-
main. Our ultimate goal is to provide implementations of barrier function-based
methods for solving general quadratic programming and linearly-constrained
nonlinear optimization problems with the Harwell Subroutine Library.

We have purposely not attempted to derive directions of sufficient negative
curvature for such problems (see, for example, Forsgren and Murray, 1993, Fors-
gren et al., 1995 and the references contained therein), even though algorithms
which use them offer stronger convergence guarantees — specifically, conver-
gence to a points for which second-order necessary optimality conditions hold.
We intend to investigate this possibility for large-scale problems in future.
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