
Linear least-squares over the unit simplex

Working note RAL-NA-2023–2 — Nicholas I. M. Gould

14th March 2023

1 Introduction

We are concerned with the simplex-constrained linear least-squares problem

minimize
x∈∆

n
f(x) :=

1

2
‖Ax− b‖2, (1.1)

where the m by n matrix A and m vector b are given, the unit simplex

∆n := {x |
n
∑

i=1

xi = 1, xi ≥ 0, i = 1, . . . , n},

and ‖ · ‖ denotes the Euclidean (ℓ2) norm; extension to the weighted case in which the

objective function is instead 1
2
‖Ax− b‖2 = 1

2
(Ax− b)TW (Ax− b) for some positive definite

(diagonal) matrix W is obvious, and although we give no details here, our software copes

with this possibility. Let P (v) be the projection of a given v into the simplex ∆n; we will

return shortly to see how this may be calculated. In addition, let

A(v) := {1 ≤ i ≤ n | P (v)i = 0} (1.2)

be the set of indices of variables that are zero at P (v). We let e be the vector of ones

of appropriate length, and sI is the vector whose components are the components [s]i of

a given vector s for i ∈ I, where I ⊆ N := {1, . . . , n}. We will abuse notation slightly

in what follows: a subscript k will refer to an iterate (and may be a vector or matrix),

while other subscripts i, j, etc., will be components of vectors and higher-order tensors (if

needed the component of a vector iterate will have a subscript i, k).

To put things into perspective, problem (1.1) is a special but important instance of the

more general single-constrained quadratic program

minimize
x∈IR

n

1

2
xTHx+ cTx subject to aTx = β and xL ≤ x ≤ xU, (1.3)

for a given symmetric positive-semi-definite matrix H , vectors c, a, xL and xU and scalar β.

Methods of various types have been proposed for this, those based on active-sets, interior-

points, and gradient projection [8, 9] being the most common. The case where the feasible

1

2 Working Note RAL NA-2023-2 —- Nicholas I. M. Gould

set in (1.3) is the simplex ∆n is commonly called a standard quadratic program, although

much of the focus in that case is devoted to the nonconvex case for which H may have

negative eginvalues [1].

The specific problem (1.1) occurs naturally in multi-spectral un-mixing [2, 5, 17], while

we were drawn to it as a subproblem for alternating methods [3] that aim to fit a multilinear

form T [xi, . . . , xm] to data, in a weighted least-squares sense, from polydisperse small-angle

scattering applications, e.g., [19]. Here T is a given m-way tensor, the vectors of unknowns

xi inherit dimensions from T , and the alternating methods successively fix m− 1 of them

and find the remainder by least-sqaures fitting subject to a normalizing simplex constraint.

2 An algorithm

2.1 A basic algorithm

A basic method to find an approximate solution to (1.1) is as follows:

Algorithm 2.1: linear least-squares over the unit simplex

Step 0: Initialization. Given a convergence tolerance ǫ > 0, pick an initial estimate

x0 ∈ ∆n, and set a counter k = 0.

Step 1: Test for termination. Compute the residual rk = Axk − b and gradient

gk = AT rk. If

‖P (xk − gk)− xk‖ ≤ ǫ,

stop with the approximate solution x∗ := xk.

Step 2: Compute a Cauchy point. Compute the Cauchy direction

sC

k = arg min
s∈IR

n
gTk s subject to eT s = 0 and s ≥ −xk, (2.1)

the stepsize αC

k > 0 that sufficiently reduces f(P (xk + αsC

k)), and the Cauchy

point xC

k = P (xk + αC

ks
C

k).

Step 3: Improve on the Cauchy point. If desired, compute an approximate solu-

tion sk to the equality-constrained linear least-squares problem

minimize
s∈IR

n

1

2
‖A(xC

k + s)− b‖2 subject to eT s = 0 and s
A(x

C
k)

= 0. (2.2)

Otherwise define the next iterate xk+1 = xC

k and go to Step 5.

Working Note RAL NA2023-2 — Linear least-squares over the unit simplex 3

Step 4: Find the next iterate. Find a stepsize αk > 0 that reduces f(P (xC

k+αsk)),

and define the next iterate xk+1 = P (xk + αksk).

Step 5: Perform the next iteration. Increase k by 1 and go to Step 1.

A few comments are in order. Firstly, in Steps 2 and 4 we need to consider the least-

squares objective function f(x) along a piecewise arc x(α; x, v) = P (x + αv) emanating

from a feasible point x in the direction v but bent so as to remain feasible with respect to

∆n. We consider this further in due course. We have not specified what “approximate”

means here, but two possibilities are either to find the exact minimizer along the arc, or

to find a point that gives “sufficient” decrease to guarantee convergence.

Secondly, it is trivial to find the required Cauchy direction in (2.1). For the problem in

question is clearly a linear program, and as the feasible set is bounded, its solution must

occur at a vertex, that is a point at which n − 1 of the bounds s ≥ xk are satisfied as

equalities. Suppose that variable i is the exception. Then

sj = −xj,k for j 6= i and si = 1− xi,k (2.3)

since xk ∈ ∆n and eT s = 0. Hence, for this s, the objective

gTk s =

n
∑

j=1

gj,ksj = −
n
∑

j=1

gj,kxk,j + gi,k

using (2.3). The smallest value of gTk s over all such vertices then occurs for the index

(perhaps indices) for which gi,k is smallest, and we use such an i with (2.3) to define sC

k .

Thirdly, notice that Steps 3 and 4 are optional; the algorithm is guaranteed to converge

without them, but almost always moving beyond the Cauchy point improves performance.

From a theoretical perspective, the Cauchy point plays two roles, it guarantees convergence

and in non-degenerate cases it also ultimately predicts the optimal face on the unit simplex.

Once this happens, the exact solution xC

k + sk from (2.2) will also be that of (1.1), and

αk = 1 will result from Step 4. Steps 3 and 4 might be skipped if, for example, the set

A(xC

k) differs significantly from its immediate predecessor.

Finally, the equality-constrained linear least-squares problem (2.2) may be written more

compactly as

minimize
sIk

1

2
‖AIk

sIk − (b−AxC

k)‖
2 subject to eT sIk = 0 (2.4)

to determine the “free” components sIk of s, where Ik = N \ A(xC

k). That is, it only

involves the “free” columns AIk
of A. To solve a generic singly-constrained linear least-

squares problem

minimize
s∈IR

n
m(s) :=

1

2
‖As− b‖2 subject to eT s = 0 (2.5)

4 Working Note RAL NA-2023-2 —- Nicholas I. M. Gould

at least two possibilities are available.

The first is to note that the solution to (2.5) must satisfy the optimality conditions

AT (As− b) + λe = 0 and eT s = 0

for some scalar Lagrange multiplier λ. This then leads to the linear system
(

ATA e

eT 0

)(

s

λ

)

=

(

AT b

0

)

or, on defining r = b− As, the expanded system




I A 0

AT 0 e

0 eT 0









r

s

λ



 =





b

0

0



 .

or even its solution via
(

r

s

)

=

(

p

q

)

− λ

(

u

v

)

, where

(

I A

AT 0

)(

p u

q v

)

=

(

b 0

0 e

)

and λ =
qTe

vTe
.

Since we are primarily only interested in the s component of the solution, the latter may

be rewritten as

s = q − λv, where ATAq = AT b, ATAv = −e and λ =
qT e

vT e
. (2.6)

Each of the above systems may be solved using symmetric, indefinite factorization, and in

the special case (2.6), Cholesky factorization of ATA suffices.

A second possibility is to solve—possibly approximately—the problem using an itera-

tive method. Standard techniques such as the preconditioned conjugate-gradient normal

equation (CGNE) method may be applied so long as the preconditioning step respects

the single linear constraint. That is, given a gradient gk of m(s) at CGNE iterate sk, the

required slope gTk vk is computed to satisfy
(

P e

eT 0

)(

vk
µk

)

=

(

gk
0

)

(2.7)

for some suitable symmetric approximation P to ATA. This is a special case of the pro-

jected conjugate gradient method [13] applied to (2.5), and here as in [13, §5] it is very

important to perform at least one iterative refinement per solve (2.7) to ensure that the pro-

jected conjugate gradient iterates do not deviate significantly from the manifold eT sIk = 0.

Of course the solution to (2.7) may be expressed formally as

vk = P−1gk − µkP
−1e, where µk =

eTP−1gk

eT e

which is useful if P has a simple form, e.g., if P is diagonal with P = diag(ATA) being

a common, often effective [15] option. Constrained variants of other specialised iterative

least-squares methods such as LSQR [21], LSMR [11] or LSLQ [10] may be preferred.

Working Note RAL NA2023-2 — Linear least-squares over the unit simplex 5

2.2 Projections onto the unit simplex and projection arcs

2.2.1 Projections onto the unit simplex

Given the vector v, we let v(i), i = 1, . . . , n, be the value of its i-th largest component.

The basic O(n logn) method for finding the projection P (v) is due to [16], and has been

improved over the years, see [4, 7, 23] and the citations within. A typically efficient method

is as follows:

Algorithm 2.2: projection onto the unit simplex via heapsort [23]

1. Build a heap H with largest entry h from the components of v.

2. For j = 1,. . . ,n, do

2a. Set v(j) := h.

2b. If
(

j
∑

i=1

v(i) − 1

)

/j ≥ v(j),

exit the loop.

2c. Set jmax := j.

2d. Remove h from H, and restore the heap H with new largest entry h

3. Define

τ :=

(

jmax
∑

j=1

v(j) − 1

)

/jmax.

4. Set P (v)i := max[vi − τ, 0] for i = 1, . . . , n.

Such a method is based on satisfying the optimality conditions for the projection problem

P (v) = arg min
p∈∆

n

1

2
‖p− v‖2

by the constructive finite iteration in Step 2.

2.2.2 Projection arcs

We next consider the arc P (x + αd) from a given x ∈ ∆n in the generic direction d for

positive α. Since x lies within ∆n, the arc will be piecewise linear as α increases, and will

change direction whenever one (or more) of its components shrinks to zero (and is fixed

6 Working Note RAL NA-2023-2 —- Nicholas I. M. Gould

thereafter). We refer to the points at which the direction changes as breakpoints, and the

vectors that join adjacent breakpoints as segments.

Suppose that v is such a breakpoint, and that A := A(v) is as in (1.2). Then the next

segment s is in the direction

arg min
s∈IR

n

1

2
‖s− d‖2 subject to eT s = 0 and sA = 0,

for which the necessary optimality conditions

sI − dI + λeI = 0, eTI sI = 0, and sA = 0

give that s has components

sI = dI −
eTI dI

eTI eI
eI and sA = 0 (2.8)

where I := N \ A.

Now suppose that at the next breakpoint v+ variable i reaches zero, and thus that

I+ = I \ {i}. It then follows from (2.8) that the new segment s+ emanating from x+

satisfies

s+
I
+ = d

I
+ −

eT
I
+d

I
+

eT
I
+e

I
+

e
I
+ and s

A
+ = 0. (2.9)

In particular, if j ∈ I+ ⊂ I, it follows from (2.8) and (2.9) that

sj = dj −
eTI dI

eTI eI
and s+j = dj −

eT
I
+d

I
+

eT
I
+e

I
+

and particularly that

s+j = sj + γi, where γi =
eTI dI

eTI eI
−

eT
I
+d

I
+

eT
I
+e

I
+

=
eTI dI
|I|

−
eTI dI − di
|I| − 1

=
|I|di − eTI dI
|I|(|I| − 1)

(2.10)

since eT
I
+e

I
+ = |I+| = |I| − 1 = eTI eI − 1 and eT

I
+d

I
+ = eTI dI − di. Thus each nonzero

component of the new segment is that of the old segment shifted by the same γi. We may

also use the relationships eTI sI = 0 = eT
I
+s+

I
+ together with (2.10) to deduce that

0 =
∑

j∈I
+

s+j =
∑

j∈I
+

(sj + γi) =
∑

j∈I

sj − si + γi|I
+| = −si + γi|I

+| (2.11)

and thus we have the alternative definition

γi =
si

|I+|
. (2.12)

Since vi + αsi = 0, and vi > 0, and α > 0, we must have that si < 0 and consequently

γi < 0. Hence the nonzero components of successive segments decrease; those that start

negative stay so, while those that are initially positive move towards negativity.

Working Note RAL NA2023-2 — Linear least-squares over the unit simplex 7

We calculate breakpoints by examining the segment s emanating from v and picking

v+ = v + ts, where tmin = min
sj<0

tj , where tj = −vj/sj. (2.13)

By definition of i, we have si < 0 and tmin = ti = −vi/si. Now suppose that sj < 0 for

component j 6= i. Then, as in the previous paragraph, s+j = sj + γi, and hence s+j < 0.

Moreover

t+j − tj = −
vj + tsj
sj + γi

+
vj
sj

=
vjs

2
i /|I

+|+ vis
2
j

s+j sisj
< 0

since the numerator is positive and the denominator negative, and hence t+j < tj . It might

be tempting to hope that if tmin ≤ tj < tk for some pair j, k 6= i then t+j < t+k . For if this

were so, it would be possible to sort the indices at the beginning of the arc, and thereafter

pick breakpoints sequentially according to their sorted order; this is one of the keys to

efficiency in similar methods for the simpler box-shaped feasible domain l ≤ x ≤ u [6,

§17.3]. Unfortunately, this is not the case as the following example shows.

Consider the value v = (0.01, 0.01, 0.05, 0.93) ∈ ∆4, and the direction s = d =

(−10,−1,−10, 21) for which eT s = 0. Then tmin = t1 = 0.001 < t3 = 0.005 < t2 = 0.01,

and hence t = 0.001, giving v+ = (0, 0.009, 0.04, 0.951), s+ = (0.−4.3333,−13.3333, 17.6667)

and t+min = t+2 = 0.0020769 < t+3 = 0.003. Thus it seems likely that it is necessary to sort

indices at each breakpoint when deciding where the next segment ends—in practice, we

have observed that it is common for the order to be retained, and so the lack of a guaran-

tee is regrettable. This suggests that sorting algorithms for “mostly sorted” data, such as

insertion sort [18] or introsort [20], might be profiably employed in many cases.

2.2.3 Objective function evolution along a projection arc

Our next goal is to consider the evolution of the objective function

f(P (x+ αd)) =
1

2
‖AP (x+ αd)− b‖2

as α increases from 0 from x ∈ ∆n in the segment direction d. As we have already seen,

we may break the arc P (x+ td) into pieces, as we shall consider v+ ts from the breakpoint

v along the segment s for t ≥ 0. Thus, we are concerned with the convex quadratic

f(v + ts) =
1

2
‖r‖2 + tf ′ +

1

2
t2f ′′, where r := Av − b, p := As, f ′ := rTp and f ′′ := ‖p‖2.

There are clearly three possibilities. It might be that v is a (local) minimizer of f along

the arc; this will happen if f ′ ≥ 0. If this is not the case, either we may move to the end

of the segment as f(v + ts) continues to decrease, or we encounter a local minimizer en

route. The latter occurs when

topt := −f ′/f ′′ ≤ tmin.

8 Working Note RAL NA-2023-2 —- Nicholas I. M. Gould

Naively, one might simply evaluate these three possibilities by computing the product

p = As required by f ′ and f ′′. However, it is more efficient to recur the required quantities

as the arc search proceeds.

Suppose that the search continues to the next breakpoint, v+, and that variable i is

reduced to zero, i.e., I+ = I \ {i}. Recall from (2.8) that

p = As = AIsI = A
I
+s

I
+ + aisi,

where ai is the i-th column of A, and from (2.10) that

p+ = As+ = A
I
+s+

I
+ = A

I
+(s

I
+ + γieI+),

and hence that

p+ = p+ γiAI
+e

I
+ − siai.

But if w := AIeI , we may recur

w+ = A
I
+e

I
+ = AIeI − ai = w − ai (2.14)

and subsequently

p+ = p+ γiw
+ − siai. (2.15)

Crucially, both recurrences simply need access to a single—possibly sparse—column of A.

In addition, we may recur

r+ = Av+ − b = A(v + tmins)− b = r + tminp (2.16)

and calculate

1

2
‖r+‖2 =

1

2
‖r‖2 + tminf

′ +
1

2
t2minf

′′, f ′+ = r+Tp+ and f ′′+ = ‖p+‖2. (2.17)

The main work involved are the two potentially-sparse and two dense vector additions in

(2.14)–(2.16), and two inner products in (2.17), and avoids a more costly matrix-vector

product As. This is less efficient than projected search when the feasible region is a box

[12], but this appears to be inevitable because of the complicating constraint eTx = 1.

Another possibility is to aim for a value along the arc that provides sufficient decrease

of f(P (x + αd)) to ensure convergence rather than for the minimizer. Such a possibility

has been examined in more general contexts using Goldstein-like conditions [6, §12.2], but

we prefer a slightly simpler Armijo version such as that in [22]. Essentially, given an initial

estimate α0 of the optimal step length α, f(P (x + αd)) is computed for a sequence of

decreasing values αk = α0β
k, k ≥ 0 with β ∈ (0, 1), and the search terminated at the first

k for which

f(P (x+ αkd)) ≤ f(x) + η(∇xf(x))
T (P (x+ αkd)− x) (2.18)

for given (typically small) η ∈ (0, 1). If we write sk = P (x + αkd)− x and rk = AP (x +

αkd)− b, then rk = r+Ask, where we recall that r = Ax− b. Hence we may rewrite (2.18)

as
1

2
rTk rk ≤

1

2
rTr + η(rTrk − rT r).

Working Note RAL NA2023-2 — Linear least-squares over the unit simplex 9

Thus each k requires the computation of a projection P (x+αkd), a matrix-vector product

Ask and a pair of new inner products rT rk and rTk rk. How this compares to the earlier,

exact method depends entirely on the choice of α0, and a good choice isn’t obvious. Indeed,

a large initial α0 may result in a wasteful sequence of identical evaluation points P (x+αkd).

2.3 Regularized objective function evolution along a projection

arc

A related problem is the simplex-constrained quadratically-regularized linear least-squares

problem

minimize
x∈∆

n
r(x) := f(x) +

1

2
σ‖x‖2 ≡

1

2
‖Ax− b‖2 +

1

2
σ‖x‖2, (2.19)

for some weight σ ≥ 0. Much of what we have said so far in Section 1 holds with minor

modification—such as replacing gk by AT rk + σxk, adding the term 1
2
σ‖xC

k + s‖2 to the

objective in (2.2), and adding/subtracting the term σI from appropriaate blocks of the

systems on p.4—and the only detail we address is how the regularized objective function

r(P (x+ αd)) =
1

2
‖AP (x+ αd)− b‖2 +

1

2
σ‖P (x+ αd)‖2

evolves as α increases. We thus focus on the term ‖v + ts‖2 on the segment s emanating

from the breakpoint v, at which components indexed by I are free, as t ≥ 0 increases.

Since

‖v + ts‖2 = ρ+ 2tρ′ + t2ρ′′, where ρ := ||v||2, ρ′ := vT s and ρ′′ := ||s||2,

we need to examine how ρ and its derivatives behave along successive segments.

It follows from the discussion in Section 2.2.2 that if the segment finishes at the break-

point v+ at which the component v+i = 0, and thus I+ = I \ {i}, we have

s+j = sj + γi for j ∈ I+ and s+i = 0

from (2.10), and

v+j = vj + tisj for j ∈ I+ and v+i = 0

from (2.13), where we recall that

0 =
∑

j∈I

sj =
∑

j∈I
+

sj + si and 1 =
∑

j∈I

vj =
∑

j∈I
+

vj + vi (2.20)

because v ∈ ∆n and

γi|I
+| = si and vi + tisi = 0 (2.21)

which follow directly from (2.12) and (2.13). Thus

ρ′′
+
=
∑

j∈I
+

(sj + γi)
2 =

∑

j∈I
+

s2j + 2γi
∑

j∈I
+

sj + γ2
i |I

+| = ρ′′ − s2i − 2γisi + γ2
i |I

+|

= ρ′′ − s2i − γisi

(2.22)

10 Working Note RAL NA-2023-2 —- Nicholas I. M. Gould

using (2.20) and (2.21). Likewise

ρ′
+
=
∑

j∈I
+

(sj + γi)(vj + tisj) =
∑

j∈I
+

sjvj + ti
∑

j∈I
+

s2j + γi
∑

j∈I
+

vj + γiti
∑

j∈I
+

sj

=
∑

j∈I+

sjvj − sivi + ti

(

∑

j∈I

s2j − s2i

)

+ γi(1− vi)− γitisi

= ρ′ + tiρ
′′ − si(vi + tisi) + γi − γi(vi + tisi)

= ρ′ + tiρ
′′ + γi

(2.23)

again using (2.20) and (2.21), and of course

ρ+ = ‖v + tis‖
2 = ρ+ 2tiρ

′ + t2iρ
′′. (2.24)

Thus it is trivial to update ρ and its derivatives using (2.22)–(2.24) as the arc evolves.

Availability

The algorithms described have been implemented as the modern Fortran package sls, and

the later is available as part of the GALAHAD library [14].

References

[1] I. M. Bomze. On standard quadratic optimization problems. Journal of Global Opti-

mization, 13:369—-387, 1998.

[2] J. Chen, C. Richard, H. Lantéri, C. Theys, and P. Honeine. A gradient based method

for fully constrained least-squares unmixing of hyperspectral images. In Proc. IEEE

workshop on Statistical Signal Processing (SSP), pages 301–304, Nice, France, 2011.

[3] P. Comon, X. Luciani, and A. L. F. de Almeida. Tensor decompositions, alternating

least squares and other tales. Journal of Chemometrics, 23(7-8):393–405, 2009.

[4] L. Condat. Fast projection onto the simplex and the ℓ1 ball. Mathematical Program-

ming, 158(1–2):575—-585, 2016.

[5] L. Condat. Least-squares on the simplex for multispectral unmixing. Research report,

GIPSA-Lab, Grenoble, France, 2017.

[6] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. SIAM, Philadel-

phia, 2000.

[7] Y. Dai and C. Chen. Distributed projections onto a simplex. arXiV.2204.08153, 2022.

[8] Y.-H. Dai and R. Fletcher. New algorithms for singly linearly constrained quadratic

programs subject to lower and upper bounds. Mathematical Programming, 106(3):409–

421, 2006.

Working Note RAL NA2023-2 — Linear least-squares over the unit simplex 11

[9] D. di Serafino, G. Toraldo, M. Viola, and J. L. Barlow. A two-phase gradient method

for quadratic programming problems with a single linear constraint and bounds on

the variables. SIAM Journal on Optimization, 20(4):2809–2838, 2018.

[10] R. Estrin, D. Orban, and M. A. Saunders. LSLQ: An iterative method for linear least

squares with an error minimization propert. SIAM Journal on Matrix Analysis and

Applications, 40(1):254–275, 2019.

[11] D. C.-L. Fong and M. A. Saunders. LSMR: An iterative algorithm for sparse least-

squares problems. SIAM Journal on Scientific Computing, 33(5):2950–2971, 2011.

[12] N. I. M. Gould. A projection method for bound-constrained linear least-squares. Work-

ing Note RAL 2023-1, STFC-Rutherford Appleton Laboratory, Chilton, Oxfordshire,

England, 2023.

[13] N. I. M. Gould, M. E. Hribar, and J. Nocedal. On the solution of equality constrained

quadratic problems arising in optimization. SIAM Journal on Scientific Computing,

23(4):1375–1394, 2001.

[14] N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD—a library of thread-safe

fortran 90 packages for large-scale nonlinear optimization. ACM Transactions on

Mathematical Software, 29(4):353–372, 2003.

[15] N. I. M. Gould and J. A. Scott. The state-of-the-art of preconditioners for sparse

linear least-squares problems. ACM Transactions on Mathematical Software, 43(4),

2017. Article 36.

[16] M. Held, P. Wolfe, and H. P. Crowder. Validation of subgradient optimization. Math-

ematical Programming, 6(1):62–88, 1974.

[17] R. Heylen, D. Burazerovic, and P. Scheunders. Fully constrained least squares spec-

tral unmixing by simplex projection. IEEE Transactions on Geoscience and Remote

Sensing, 49(11):4112–4122, 2011.

[18] D. E. Knuth. The Art of Computer Programming, Volume 3, Sorting and Searching.

Addison-Wesley Publishing Company, Reading, Massachusetts, USA, 1973.

[19] K. Leng, S. King, T. Snow, S. Rogers, A. Markvardsen, S. Maheswaran, and J. Thiya-

galingam. Parameter inversion of a polydisperse system in small-angle scattering.

Journal of Applied Crystallography, 55(4):966–977, 2022.

[20] D. R. Musser. Introspective sorting and selection algorithms. Software: Practice and

Experience, 27(8):983–993, 1997.

[21] C. C. Paige and M. A. Saunders. LSQR: an algorithm for sparse linear equations and

sparse least squares. ACM Transactions on Mathematical Software, 8(1):43–71, 1982.

12 Working Note RAL NA-2023-2 —- Nicholas I. M. Gould

[22] A. Sartenaer. Armijo-type condition for the determination of a generalized Cauchy

point in trust region algorithms using exact or inexact projections on convex con-

straints. Belgian Journal of Operations Research, Statistics and Computer Science,

33(4):61–75, 1993.

[23] E. van den Berg and M. P. Friedlander. Probing the Pareto frontier for basis pursuit

solutions. SIAM Journal on Scientific Computing, 31(2):890—-912, 2008.

	Introduction
	An algorithm
	A basic algorithm
	Projections onto the unit simplex and projection arcs
	Regularized objective function evolution along a projection arc

