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1 Equivalent problems

Consider symmetric saddle-point problems of the form
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Then since Az+B"y = a and Bx—CYy = b, the solution to (1.1) also satisfies the symmetric
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for given real ¢ and arbitrary symmetric matrices D and E. We denote the coefficient
matrix of (1.2) as K(o, D, E).
We observe that this general form allows us to reproduce many existing alternatives to
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(1.1). In particular

e 0 =—1,D=A"and F = 0 gives the Schur-complement method for finding .
Note that K(—1, A", 0) is singular.

eo =—-1,D = Ay" and E = 0 for given A, gives the method of Bramble and
Pasciak [1].

e 0 =v,D =1, E=—I for given = gives Liesens’ method [3].

o= —(a+pv), D=aA;'+ 31 and E = — I gives the combination method of Stoll
and Wathen [4].

oc=1,D=0and E = (1+v)C"" for given v (and in particular v = 1) is the method
proposed by Forsgren, Gill and Griffin [2].

1Strictly o can be absorbed into D and E, but for compatibility with existing results we choose not to
do so.



2 Nicholas I. M. Gould - 14th June 2007

e 0=0,D =1, E=1 gives the method of normal equations.

eoc =0 D=A"' E=C" gives the primal-dual Schur-complement method for
simultaneously finding x and .

4

This general form (1.2) would then seem the “natural” framework in which to study alter-

natives to (1.1).
Questions:

e can one choose o, D and F so that K (o, D, E) is positive definite? In particular
what if A and C are singular? What if A is indefinite but K(1,0,0) has the “right
inertia”?

e can one analyse the spectrum of K(o, D, E)?

e if the spectrum is poor, can one precondition?

2 Extensions

Much the same can be done for the non-symmetric block system
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Then since Az + Fy = a and Bx — Cy = b, the solution to (2.1) also satisfies the block

system
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for all 0 # 0 and arbitrary matrices G, H, M and N of the correct dimension.
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