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1 Equivalent problems

Consider symmetric saddle-point problems of the form(
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)
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. (1.1)

Then since Ax+BTy = a and Bx−Cy = b, the solution to (1.1) also satisfies the symmetric

system1
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(1.2)

for given real σ and arbitrary symmetric matrices D and E. We denote the coefficient

matrix of (1.2) as K(σ,D,E).

We observe that this general form allows us to reproduce many existing alternatives to

(1.1). In particular

� σ = −1, D = A−1 and E = 0 gives the Schur-complement method for finding y.

Note that K(−1, A−1, 0) is singular.

� σ = −1, D = A−1
0 and E = 0 for given A0 gives the method of Bramble and

Pasciak [1].

� σ = γ, D = I, E = −I for given γ gives Liesens’ method [3].

� σ = −(α+βγ), D = αA−1
0 +βI and E = −βI gives the combination method of Stoll

and Wathen [4].

� σ = 1, D = 0 and E = (1+ν)C−1 for given ν (and in particular ν = 1) is the method

proposed by Forsgren, Gill and Griffin [2].

1Strictly σ can be absorbed into D and E, but for compatibility with existing results we choose not to

do so.
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� σ = 0, D = I, E = I gives the method of normal equations.

� σ = 0, D = A−1, E = C−1 gives the primal-dual Schur-complement method for

simultaneously finding x and y.

This general form (1.2) would then seem the “natural” framework in which to study alter-

natives to (1.1).

Questions:

� can one choose σ, D and E so that K(σ,D,E) is positive definite? In particular

what if A and C are singular? What if A is indefinite but K(1, 0, 0) has the “right

inertia”?

� can one analyse the spectrum of K(σ,D,E)?

� if the spectrum is poor, can one precondition?

2 Extensions

Much the same can be done for the non-symmetric block system(
A F
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)(
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)
=
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)
. (2.1)

Then since Ax + Fy = a and Bx − Cy = b, the solution to (2.1) also satisfies the block

system [
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(2.2)

for all σ ̸= 0 and arbitrary matrices G, H, M and N of the correct dimension.
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