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1 Introduction

In this paper, we consider the parametric quadratic programming problem, namely to

QP(θ) : minimize
x∈IRn

q(x, θ) = 1
2
xTHx+ xT (g + θδg)

subject to AEx = bE + θδbE
and AIx ≥ bI + θδbI

for all θ ∈ [0, θU]. Here H is symmetric, AE is full rank, E = {1, . . . ,mE} and I =

{mE + 1, . . . ,mE +mI}, and any/all of bI , δbI and θU may be infinite—for consistency we

require that each pair (bI , δbI) be finite or infinite together. Simple bound constraints

xL + θδxL ≤ x ≤ xU + θδxU

are certainly allowed, but for simplicity of exposition, these will be treated as general

constraints—well-designed software will always exploit their special Jacobian structure.

Likewise, two-sided inequality constraints

bLI + θδbLI ≤ AIx ≤ bUI + θδbUI

naturally fit into the general format given above, but would be handled specially by good

software. However, since we do not insist that H be positive definite, we will only be

concerned with parametric local solutions to QP(θ). We do not presume that QP(θ) has

a solution for all θ ∈ [0, θU], but for simplicity we will assume that it has one when θ = 0.

This work is heavily based on the algorithm proposed by Best [1]1 in the convex (that

is H positive semi-definite) case. We have already broadly described how such a method

may be extended in the non-convex case [3]), but here give the details. In particular, we

describe how we cope with degeneracies encountered as the parametric solution evolves.

Our aim is to describe the fortran 90 package PQP from the GALAHAD library [4].

1This originally appeared as a University of Waterloo technical report, CORR 82-24, in 1982.
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Notation

For any given v ∈ IRp and subset S ⊆ {1, . . . p}, we denote the sub-vector of v whose indices
lie in S by vS ; if vk is dependent on an iteration counter k, we write vk,S for the appropriate

sub-vector. Similarly, if M (or Mk) ∈ IRp×n, MS (or Mk,S) will be the sub-matrix whose

rows are indexed by S. For brevity, we write g(θ) = g + θδg and b(θ) = b + θδb, where

(b, δb) has components (bi, δbi), i ∈ E ∪ I.

2 Parametric QP

Let x(θ) be a (local) solution of QP(θ), and let

Aθ = {i ∈ I | aTi x(θ) = bi + θδbi} and Iθ = I \ Aθ

be the active and inactive sets of inequality constraints at x(θ). Suppose that a working

set Wθ ⊆ Aθ is chosen so that {ai}, i ∈ Lθ
def
= E ∪Wθ, are linearly independent, and that

x(θ) and Lagrange multipliers y(θ) satisfy the first-order optimality (KKT) conditions(
H AT

Lθ

ALθ
0

)(
x(θ)

−yLθ
(θ)

)
=

(
−g(θ)

bLθ
(θ)

)
(2.1)

along with

aTi x(θ) ≥ bi(θ) for all i ∈ Iθ and yi(θ) ≥ 0 for all i ∈ Wθ; (2.2)

the multipliers yi(θ), i ∈ I\Wθ, for the remaining inequality constraints are zero. Suppose,

furthermore that the second-order optimality condition

uTHu > 0 for all vectors u ̸= 0 such that ALθ
u = 0 (2.3)

holds.

Given a KKT pair (x(θk), y(θk)) for some θk ∈ [0, θU), we now investigate how (x(θ), y(θ))

evolves for θ > θk. For brevity, we write (xk, yk, gk, bk)
def
= (x(θk), y(θk), g(θk), b(θk)),

Ak = ALk
, Wk

def
= Wθk

, Ik
def
= Iθk

and Lk
def
= Lθk

.

We shall assume, for the time being, that

A1 aTi xk > bk,i for all i ∈ Ik and yk,i > 0 for all i ∈ Wk

and that

A2 the second-order condition (2.3) holds at θk.

Then Wθ = Wk (and consequently Lθ = Lk) and(
x(θ)

yLθ
(θ)

)
=

(
xk

yk,Lk

)
+ (θ − θk)

(
δxk

δyk,Lk

)
, (2.4)
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where (
H AT

k

Ak 0

)(
xk

−yk,Lk

)
=

(
−gk
bk,Lk

)
(2.5)

and (
H AT

k

Ak 0

)(
δxk

−δyk,Lk

)
=

(
−δg

δbLk

)
, (2.6)

so long as the primal feasibility requirements

aTi x(θ) ≥ bi(θ) for all i ∈ Ik (2.7)

and the dual ones

yi(θ) ≥ 0 for all i ∈ Wk (2.8)

all hold.

Let ∆θ = θ − θk and define

∆θi,k
def
=



bk,j − aTi xk

aTi δxk − δbi
if aTi δxk < δbi and i ∈ Ik,

− yk,i
δyk,i

if δyk,i < 0 and i ∈ Wk, and

∞ otherwise.

Then (2.7) is satisfied so long as ∆θ ≤ mini∈Ik ∆θi,k while the same is true of (2.8) provided

that ∆θ ≤ mini∈Wk
∆θi,k. It follows from A1 that

∆θk
def
= min

i∈Ik∪Wk

∆θi,k > 0

and that (2.4) provides a KKT point for QP(θ) for all θ ∈ [θk, θk+1], where θk+1 = θk+∆θk.

Our task is thus to investigate how the parametric solution changes once ∆θ exceeds ∆θk; of

course if ∆θk = ∞ or indeed θk+1 > θU we have reached the end of the required parametric

interval and need look no further.

In what follows we shall assume, at least for the time being, that

A3 j = arg min
i∈Ik∪Wk

∆θi,k is unique.

2.1 Adding a constraint to the working set

Firstly, suppose that j ∈ Ik, and thus that constraint j becomes active at θk+1, i.e.,

aTj xk+1 = bk+1,j, where we have written (xk+1, yk+1, gk+1, bk+1)
def
= (x(θk+1), y(θk+1), g(θk+1),

b(θk+1)). Since this constraint would be violated if x(θ) took the form (2.4) and θ > θk+1,

it follows that constraint j must be added to the working set.

To do so, we require that

Kk+1 =


H AT

k aj
Ak 0 0

aTj 0 0


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is invertible, or equivalently that the Schur complement

uT
kHuk ̸= 0, where

(
H AT

k

Ak 0

)(
uk

vk,Lk

)
=

(
aj
0

)
. (2.9)

But since then Akuk = 0, the second-order optimality condition (2.3) implies that Kk+1 is

invertible if and only if uk ̸= 0.

2.1.1 The case uk ̸= 0

If uk ̸= 0, constraint j may be added to the working set, and the first and second-order

optimaility conditions (2.1)–(2.3) will continue to be satisfied at θk+1. Let Wk+1 = Wk ∪
{j}, Lk+1 = Lk ∪ {j} and Ik+1 = Ik \ {j}. Then (2.4)–(2.6) (with k + 1 replacing k)

continue to hold so long as

aTi x(θ) ≥ bi(θ) for all i ∈ Ik+1 (2.10)

and

yi(θ) ≥ 0 for all i ∈ Wk+1 (2.11)

remain true. Continuity of (x(θ), y(θ)) at θk+1 and A3 imply that (2.10) holds for some

open interval containing θk+1, and that the same is true for (2.11) for i ∈ Wk. In addition,

the Lagrange multiplier for the added constraint is

yj(θ) = yj(θk+1) + (θ − θk+1)δyk+1,j = (θ − θk+1)δyk+1,j (2.12)

But subtracting (2.4) for the k + 1 case from that for the k one gives
H AT

k aj
Ak 0 0

aTj 0 0




δxk+1 − δxk

δyk,Lk
− δyk+1,Lk

−δyk+1,j

 =


0

0

δbj − aTj δxk

 ,

from which it follows that

δyk+1,j =
(δxk+1 − δxk)

TH(δxk+1 − δxk)

δbj − aTj δxk

, where Ak(δxk+1 − δxk) = 0. (2.13)

Since (2.3) ensures that (δxk+1 − δxk)
TH(δxk+1 − δxk) ≥ 0 and as δbj > aTj δxk because

∆θk < ∞, it follows from (2.13) that δyk,j > 0, and thus from (2.12) that yj(θ) > 0 for all

θ > θk+1. Thus both (2.10) and (2.11) hold for some open interval containing θk+1. Finally

A2 continues to hold at θk+1 since the null-space of Ak+1 is contained in that of Ak.

2.1.2 The case uk = 0 and vk,Wk
≤ 0

If uk = 0, aj is linearly dependent on Ak, and (2.9) gives

AT
k vk,Lk

= aj. (2.14)
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In particular, since

Ak(xk+1 + (θ − θk+1)δxk+1) = bk+1,Lk
+ (θ − θk+1)δbLk

and aTj (xk+1 + (θ − θk+1)δxk+1) < bk+1,j + (θ − θk+1)δbj

for θ > θk+1,

vTk,Lk
(bk+1,Lk

+ (θ − θk+1)δbLk
) = vTk,Lk

Ak(xk+1 + (θ − θk+1)δxk+1)

= aTj (xk+1 + (θ − θk+1)δxk+1) < bk+1,j + (θ − θk+1)δbj
(2.15)

for all such θ.

Now suppose that vk,Wk
≤ 0, and that x is a feasible point for QP(θ) for some θ > θk+1.

Then in particular

AEx = bk+1,E + (θ − θk+1)δbE and AWk
x ≥ bk+1,Wk

+ (θ − θk+1)δbWk
,

and, on multiplying by vk,Lk
,

aTj x = vTk,Lk
Akx ≤ vTk,Lk

(bk+1,Lk
+ (θ − θk+1)δbLk

).

But then (2.15) implies that

aTj x < bk+1,j + (θ − θk)δbj

which contradicts the assumption that x is feasible. Thus the parametric solution ends at

θk+1 whenever vk,Wk
≤ 0.

2.1.3 The case uk = 0 and vk,i > 0 for some i ∈ Wk

The KKT conditions at θk+1 imply that

Hxk+1 + gk+1 = AT
k yLk

(θk+1),

where A3 implies that yLk
(θk+1) > 0. But then it follows from (2.14) that

Hxk+1 + gk+1 = AT
k (yLk

(θk+1)− λvk,Lk
) + λaj.

Hence (
yLk

(θk+1)− λvk,Lk

λ

)

are valid alternative Lagrange multipliers at θk+1 for all λ ∈ [0, λk+1], where

λk+1
def
= min

i∈Wk

λi,k+1 > 0 and λi,k+1
def
=


yk+1,i

vk,i
if vk,i > 0 and i ∈ Wk, and

∞ otherwise.

To proceed, we shall assume, for the time being, that
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A4 ℓ = arg min
i∈Wk

λi,k+1 is unique.

We now show that it is possible to continue the parametric solution beyond θk+1 by selecting

Wk+1 = Wk ∪ {ℓ} \ {j}, and choosing Lagrange multipliers

yk+1,i =


yi(θk+1)− λk+1vk,i if i ∈ Wk,

λk+1 if i = j, and

0 otherwise.

(2.16)

To do so, first note that {ai}, i ∈ Lk+1, are linearly independent as vk,ℓ ̸= 0. Secondly,

(2.4)–(2.6) (with k + 1 replacing k) give valid primal-dual solutions for θ > θk+1 so long

as (2.7) and (2.8) continue to hold. Continuity of (x(θ), y(θ)) at θk+1 and A3 imply that

(2.10) automatically holds for all i ∈ Ik+1 \ {ℓ} in some open interval containing θk+1,

while A4 and (2.16) guarantees that the same is true for (2.11) for all i ∈ Wk+1. Thus it

remains to show that

aTℓ x(θ) ≥ bℓ(θ) (2.17)

in such an interval.

It follows immediately from (2.14) that

aTℓ (xk+1 + (θ − θk+1)δxk+1) =

1

vk,ℓ

aTj (xk+1 + (θ − θk+1)δxk+1)−
∑

i∈Lk\{ℓ}
vk,ia

T
i (xk+1 + (θ − θk+1)δxk+1)

 . (2.18)

Since

aTi (xk+1 + (θ − θk+1)δxk+1) = bk+1,i + (θ − θk+1)δbi for all i ∈ Lk \ {ℓ},

(2.15) and (2.18) imply that

aTℓ (xk+1 + (θ − θk+1)δxk+1) =
1

vk,ℓ

[
bk+1,j + (θ − θk+1)δbj − vTk,Lk

(bk+1,Lk
+ (θ − θk+1)δbLk

)
]
+ bk+1,ℓ + (θ − θk+1)δbℓ

> bk+1,ℓ + (θ − θk+1)δbℓ

for θ > θk+1, which gives (2.17). Finally, since Ak and Ak+1 have the same null-space, A2

continues to hold at θk+1.

2.2 Removing a constraint from the working set

Now suppose that j ∈ Wk, and thus that the Lagrange multiplier for active constraint j

becomes zero at θk+1, i.e., yj(θk+1) = 0. Since this constraint would be inactive if y(θ)

took the form (2.4) and θ > θk+1, it follows that constraint j should be removed from the

working set.
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The second-order requirement (2.3) will continue to be satisfied once constraint j is

removed if and only if

(0 eTj )

(
H AT

k

Ak 0

)−1 (
0

ej

)
< 0

[2, Lemma 7.2], or more succinctly if wk,j > 0, where(
H AT

k

Ak 0

)(
tk

wk,Lk

)
= −

(
0

ej

)
.

2.2.1 The case wk,j > 0

If wk,j > 0, constraint j may be removed from the working set—that is, Wk+1 = Wk \ {j},
Lk+1 = Lk\{j} and Ik+1 = Ik∪{j}—and the first and second-order optimaility conditions

(2.1)–(2.3) will continue to be satisfied at θk+1. Then, as before, (2.4)–(2.6) (with k + 1

replacing k) continue to hold so long as (2.10) and (2.11) remain true.

Continuity of (x(θ), y(θ)) at θk+1 and A3 imply that (2.11) holds for some open interval

containing θk+1, and that the same is true for (2.10) for i ∈ Wk. In addition

aTj x(θ)− bj(θ) = (θ − θk+1)(a
T
j δxk+1 − δbj) (2.19)

for θ ≥ θk+1. But subtracting (2.4) for the k + 1 case from that for the k one gives
H AT

k+1 aj
Ak+1 0 0

aTj 0 0




δxk − δxk+1

δyk+1,Lk
− δyk,Lk

δyk,j

 =


0

0

δbj − aTj δxk+1

 ,

from which it follows that

aTj δxk+1 − δbj =
(δxk − δxk+1)

TH(δxk − δxk+1)

(−δyk,j)
, where Ak+1(δxk − δxk+1) = 0. (2.20)

Since (2.3) ensures that (δxk−δxk+1)
TH(δxk−δxk+1) ≥ 0 and as δyk,j < 0 because ∆θk <

∞, it follows from (2.20) that aTj δxk+1 > δbj0, and thus from (2.19) that aTj x(θ) > bj(θ)

for all θ > θk+1. Thus both (2.10) and (2.11) hold for some open interval containing θk+1.

2.2.2 The case wk,j ≤ 0

In this case it is unclear whether xk + ∆θkδxk solves QP(θk+1) since the second-order

sufficiency condition (2.3) is violated. Our remedy is simply to pick a θk+2 very slightly

larger than θk+1, to resolve the problem from scratch for this parameter, and then to retrace

the parametric solution back from θk+2 to θk+1.

We note in passing that it is possible to deal more effectively with the case wk,j = 0

when H is positive semi-definite [1]. In particular, under these circumstances the analysis

in Section 2.2.1 also holds so long as wk,Lk
̸= 0. But if wk,Lk

= 0, xk + ∆θkδxk is not

the unique solution to QP(θk+1) and either a (traceable) discontinuity of the parametric

solution occurs or the problem is unbounded for all θ > θk+1.



8 Nicholas I. M. Gould - 14th December 2004

References

[1] M. J. Best. An algorithm for parametric quadratic programming. In H. Fischer,
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