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1 Introduction

We study pivoting strategies for computing the LDLT factorization of a symmetric

indefinite matrix where L is a lower triangular matrix and D is a block diagonal matrix with

1×1 and 2×2 blocks. We consider direct methods based on a multifrontal technique although

most of our comments and analysis apply to other approaches for direct factorization.

Usually the factorization is computed in two phases. The analysis phase preprocesses

the system of equations and is often based purely on matrix structure. The second

phase performs the Gaussian elimination. If the numerical tests prevent the selection

of some pivots chosen by the analysis, then the factorization can still proceed but there

will normally be an increase in both storage and work for the factorization above that

required if no pivots are delayed. This effect can be particularly significant on augmented

systems. A static pivoting scheme follows closely the pivot selection of the analysis to give

generally lower fill-in and factorization times at the potential cost of worse accuracy in the

factorization.

The originality of our approach is to mix static and numerical pivoting and to propose

a criterion to decide between small 1×1 and small 2×2 pivots. We find that delaying pivots

is dangerous in the context of static pivoting. We also propose new pivoting strategies that

are numerically robust on our representative test set and do not limit the scalability of

parallel distributed factorization. They are based on estimations of growth factors and do

not require any supplementary messages.

In Section 2, we give a brief presentation of a multifrontal solver. We also describe

an existing static pivoting strategy in the context of LU factorization and the numerical

pivoting strategies that are often used in the context of sparse direct methods. Section 3

presents our experimental environment. In Section 4, we describe a new pivoting

strategy that combines numerical and static pivoting and is well designed for sequential

factorizations. We present experimental results for this strategy. In Section 5, we show

that combining static pivoting and delayed pivots severely affects the numerical quality

of the factorization. Section 6 presents pivoting strategies that are particularly suited for

parallel distributed solvers. In Section 7, we study the influence of the preprocessings

of Duff and Pralet (2004) on our static pivoting strategies (both sequential and parallel

approaches).

We will use our pivoting strategies with a symmetric multifrontal code, MA57 Version

3.0.0 (Duff 2004, HSL 2004), on a challenging test set (see Section 3). When nothing

is mentioned we force the MeTiS ordering during the analysis. For the other control

parameters we use the default options, in particular we symmetrically scale the matrix

(see Duff and Pralet, 2004). Although MA57 is a sequential code, we will use it to simulate

the parallel behaviour of a multifrontal solver like MUMPS (Amestoy, Duff, Koster and

L’Excellent 2001, Amestoy, Duff and L’Excellent 2000).
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1.1 Notation

In the following, s will be the function for the sign of a real number:

s(x) =

{

1 if x ≥ 0

−1 if x < 0
,

ε will denote the machine precision, || ||2, || ||∞ will denote the sub-multiplicative matrix

norms, and ||A||M will denote the norm maxij |aij|.
For each matrix or submatrix A = (aij), |A| = (|aij|) and n will denote the order of A.

0 < u ≤ 1 and µ =
√

ε will denote real numbers which will be used as thresholds in our

pivoting strategies. In practice, we will use u = 0.01.

We summarize in Table 1.1 the main pivoting strategies that we develop in this paper.

Name Pivoting strategy Section

numSEQ Numerical pivoting of Duff-Reid algorithm 2.2

mixSEQ Numerical pivoting combined with static pivoting 4.1

numBPAR Basic restriction of Duff-Reid algorithm 6.2

numEPAR Adaptation of Duff-Reid algorithm that uses estimations 6.3

mixPAR Combination of numEPAR and mixSEQ 4.1 and 6.3

Table 1.1: Summary of our main pivoting strategies. The SEQ suffix means that the strategy

is designed for a sequential code. The PAR suffix means that the strategy is designed for a

parallel code.

2 Symmetric indefinite multifrontal solvers and

numerical pivoting

2.1 Multifrontal approach

For an irreducible matrix, the elimination tree (Duff and Reid 1983, Liu 1990) represents

the order in which the matrix can be factorized, that is, in which the unknowns from the

underlying linear system of equations can be eliminated. Generally, the tree yields only a

partial ordering which allows some freedom for the order in which pivots can be eliminated.

(This tree is in the most general case a forest, but we will assume in our discussions, for

the sake of clarity, that it is a connected tree. That is the matrix is irreducible).

One central concept of the multifrontal approach (Duff and Reid 1983) is to group

(or amalgamate) columns with the same sparsity structure to create supervariables or

supernodes (Duff and Reid 1983, Liu, Ng and Peyton 1993) in order to make use of efficient

dense matrix kernels. The amalgamated elimination tree is called the assembly tree.

The notion of child nodes that send their contribution blocks to their parents leads to

the following interpretation of the factorization process. When a node in the assembly tree
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is being processed, it assembles the contribution blocks from all its child nodes into its

frontal matrix (see Figure 2.1). Frontal matrices are always considered as dense matrices

and we can make use of efficient BLAS kernels and avoid indirect addressing, see for

example, Dongarra, Duff, Sorensen and van der Vorst (1998). Afterwards, the pivotal

fully summed columns partially summed columns

F

F

F

F
11

21

12

22
partially summed rows

fully summed rows

Figure 2.1: A frontal matrix.

variables from the fully summed block are eliminated and the Schur complement matrix,

F22−F21F
−1
11 F12, computed. We call this Schur complement matrix the contribution block of

the node. The contribution block is then sent to the parent node to be assembled. If some

variables are not eliminated because of numerical issues, they are moved to the contribution

block F22 and sent to the parent node. The effect of this is that the computation F ′
22 −

F ′
21F

′
11

−1F ′
12 is performed where F ′

11 is a submatrix of F11 of dimension the number of pivots

selected at this stage. If this dimension is less than the order of F11 then the difference

represents the number of pivots delayed at this stage.

In the symmetric case, F12 = F T
21, the matrices F11 and F22 are symmetric, pivots are

chosen from the diagonal as discussed in the following section, and operations and storage

are about half that of the general case.

2.2 Numerical pivoting

In the unsymmetric case, at step k of Gaussian elimination, the pivot (p, q) is selected

from the fully summed rows and columns and the entries aij of the remaining submatrix

are updated:

a
(k+1)
ij ← a

(k)
ij −

a
(k)
ip a

(k)
qj

a
(k)
pq

.

To limit the growth of the entries in the factors and thus to obtain a more accurate

factorization, a test on the magnitude of the pivot is commonly used. apq can be selected

if and only if

|apq| ≥ u max
j
|apj| (2.1)

where u is a threshold parameter between 0 and 1. This criterion will ensure that the

growth factor is limited to 1 + 1/u.

In the symmetric indefinite case, we have to perform 1×1 and 2×2 pivoting if we want

to keep the symmetry while maintaining stability. Pivot selection can be done using the

Bunch-Parlett (Bunch and Parlett 1971) or Bunch-Kaufman (Bunch and Kaufman 1977)
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algorithm or a variation proposed by Ashcraft, Grimes and Lewis (1998) that uses rook

pivoting. In the context of sparse matrices, the criterion of the Duff-Reid algorithm (Duff

and Reid 1983), as modified by Duff and Reid (1996)) can be used to ensure a growth

factor lower than 1 + 1/u at each step of Gaussian elimination. A 1×1 diagonal pivot can

be selected if and only if it satisfies the inequality (2.1). A 2×2 pivot P =

(

app apq

aqp aqq

)

can be selected if and only if it satisfies:

|P−1|
(

maxk 6=p,q |apk|
maxk 6=p,q |aqk|

)

≤
(

1/u

1/u

)

(2.2)

where u is a threshold between 0 and 1
2

(the limit 1
2

is needed to be sure that a pivot can

always be chosen when all the frontal matrix is fully summed). During the factorization, it

may be impossible to choose some fully summed variables as pivots because of the threshold

tests. Elimination of these variables must then be delayed to the parent. This has the

effect of causing extra fill-in and thus increases the memory and the number of operations.

Too many delayed pivots can severely slow down the factorization and could even prevent

the factorization because there is insufficient memory to accommodate the increased fill-in.

2.3 Static pivoting

By a static code we mean a code in which the factorization respects in some sense the

ordering of the analysis. The factorization does not necessarily follow the analysis exactly

and some slight variations are allowed. For example in a multifrontal context, it is sufficient

that the factorization decisions are compatible with the assembly tree (numerical pivoting

can be performed within a front). Here the analysis predicts exactly the memory needed

and the number of operations of the factorization because it selects pivots from the fully

summed variables for each node of the elimination tree and it does not postpone pivots. A

static approach was proposed by Li and Demmel (1998) in the context of LU factorization.

During Gaussian elimination “small perturbations” are added to limit the growth of the

factors in order to enhance the backward stability of the algorithm (see, for example,

Theorem 11.4 of Higham (2002), that gives an upper bound of the residual after one

iterative refinement). By “small perturbations” we mean that the perturbed matrix is

close enough to the original so that the factorization of the perturbed matrix is close to

the factorization of the original matrix. If this is the case, then we would hope to have a

cheap and sufficiently accurate solution using the computed factors. In the framework of

our study, we want a static approach with the following features:

(F1) It is easy to decide whether to add a perturbation or not. In particular, in a

parallel symmetric indefinite solver, this decision must not involve any limiting extra

communication cost or synchronization.

(F2) The perturbations are restricted to the block of fully summed rows/columns in each

front.
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Given a symmetric matrix A, not necessarily positive definite, approaches to compute

a modified Cholesky factorization of A + E with E as small as possible (in a modified

Cholesky ||E||2 ≥ −min λi(A)) have been developed (Cheng and Higham 1998, Eskow

and Schnabel 1991, Gill and Murray 1974). The size of this perturbation is larger than we

want so we do not use modified Cholesky approaches. Furthermore, the approach of Cheng

and Higham (1998) is not adapted for sparse matrices because the pattern of E can be

significantly different from the pattern of A.

Modifying the diagonal of the matrix instead of performing numerical pivoting was

introduced by Stewart (1974). In his approach, the magnitude of the perturbations can

be quite large. In the context of LU factorization with static pivoting, SuperLU DIST (Li

and Demmel 2003) adds small perturbations δ to the diagonal entries when the pivot aii

is too small and the inequality (2.1) is transformed into the constraint

(C1×1) : |aii + δ| ≥ µ ||A||M

At each step of Gaussian elimination, one has to solve the problem

(P1×1)

{

min |δ|
w.r.t. (C1×1)

Property 2.1 A solution of (P1×1) is given by:

δ = s(aii) max(τ − |aii|, 0)

where s is the sign function and τ = µ||A||M .

SuperLU DIST performs static pivoting using Property 2.1. Note that no pivoting is

performed within the supernodes.

More recently Schenk and Gärtner (2004) have combined static pivoting approaches

and Bunch-Kaufman pivoting strategies. Nevertheless their approach may significantly

degrade the precision of the solution and slow down the solution phase because of the

increased number of iterative refinement steps.

3 Experimental environment

Our experiments are conducted on one node of a COMPAQ Alpha Server SC45 at

CERFACS. There are 4 GBytes of memory shared between 4 EV68 processors per node

and we disable three of the processors so that we can use all the memory of the node with

the remaining single processor. We use the Fortran 90 compiler, f90 version 5.5 with the

-O option. If the factorization needs more than 4 GBytes or requires more than 30 minutes

CPU time, we consider that it is not successful.

We conduct our experiments on a number of challenging and sometimes

badly conditioned test problems. The matrices are available from
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ftp.numerical.rl.ac.uk/pub/matrices/symmetric/indef/ and most of them (all except

the cvxqp3 matrix) are a subset of the matrices collected by Gould and Scott (2004) for

testing symmetric sparse solvers. To select our matrices we ran our pivoting strategies on

the matrices from Gould and Scott (2004) and kept the difficult matrices that illustrate

the characteristics of our pivoting strategies. (We use “difficult” in the sense that they

often required iterative refinement steps to get a small residual.)

Some of the matrices come from the Maros and Meszanos quadratic programming

collection (M2) (Maros and Meszaros 1999), and the CUTEr optimization test set

(CUTEr) (Gould, Orban and Toint 2002). Some problems were generated by Andy

Wathen (AW), Mario Arioli (MA) and Miroslav Tuma (MT). These problems are described

in Table 3.2. These test matrices correspond to augmented matrices of the form

KH,A =

(

H A

AT 0

)

.

Matrix n nnz λ+ λ− Origin

BRAINPC2 27607 96601 13807 13800 Biological model (CUTEr)

BRATU3D 27792 88627 15625 12167 3D Bratu problem on the unit cube (CUTEr)

CONT-201 80595 239596 40397 40198 KKT matrix–Convex QP (M2)

CONT-300 180895 562496 90597 90298 KKT matrix–Convex QP (M2)

cvxqp3 17500 62481 10000 7500 Convex QP (CUTEr)

DTOC 24993 34986 9997 9997 Discrete-time optimal control (CUTEr)

mario001 38434 114643 23130 15304 Stokes equation (MA)

NCVXQP1 12111 40537 7111 5000 KKT matrix–nonconvex QP (CUTEr)

NCVXQP5 62500 237483 28534 33966 KKT matrix–nonconvex QP (CUTEr)

NCVXQP7 87500 312481 37500 50000 KKT matrix–nonconvex QP (CUTEr)

SIT100 10262 34094 7143 3119 Straz pod Ralskem mine model (MT)

stokes128 49666 295938 33281 16385 Stokes equation (MA)

stokes64 12546 74242 8449 4097 Stokes equation (AW)

Table 3.2: Symmetric indefinite matrices. λ+: number of positive eigenvalues. λ−:

number of negative eigenvalues.

To perform an error analysis of the solution we compute the sparse component-wise

backward error using the theory and measure developed by Arioli, Demmel and Duff (1989).

The scaled residual of the ith equation is

∆i =
|ri|

(|A||x|+ |b|)i

,

where r = b− Ax and x is the computed solution, except if the denominator is too small

(in our code the threshold for this is 1000× ε). In this case, we use

∆i =
|ri|

((|A||x|)i + ||Ai||∞||x||∞)i

,

where Ai represents the ith row of A. We apply iterative refinement in all our approaches.

At each step k of the iterative refinement, we compute the current backward error
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berr(k) = maxi ∆i. We stop if berr(k) < 10−15 or if berr(k) > 0.9 × berr(k−1) (the

convergence rate is too slow) or k = 20 (the maximum number of iterations has been

reached). We choose a minimum convergence rate of 0.9 to have a complete set of results

at each iteration. Note that this convergence rate will not change our discussion and that

our approaches are also valid with usual convergence rates (for example 0.5). We could

have decided to use other iterative methods (for example MINRES) but this is out of the

scope of this paper.

4 Mixing numerical pivoting and static pivoting

4.1 Algorithm

In this section, we present an approach which combines numerical checking for stability

with 1×1 static pivoting. We decided to use only 1×1 perturbations because they are easier

to implement and we want to clearly identify the impact of this mixed approach. Some

promising experiments with 2×2 perturbations can be found in Pralet (2004), but they were

applied in a different context; the analysis fixes the 1×1 and 2×2 pivots and appropriate

perturbations were applied during the factorization if necessary. In this present paper, the

pivots are dynamically chosen and we have found that the use of 2×2 perturbations does

not give a significant improvement. In our algorithm, we perturb the original entries only

in extreme cases where pivots are very small in magnitude. That is why the use of 2×2

perturbations as well as 1×1 perturbations does not affect the precision of the solution.

We will again mention 2×2 perturbations in our conclusions and suggest that they can be

used in a different context, in particular if we allow large perturbations.

Let us consider a frontal matrix from the elimination tree. It contains two kinds of

variables, the fully summed variables (FSV ) which correspond to the pivot block that

we want to eliminate and the partially summed variables (PSV ) on which the Schur

complement will be computed.

Our mixed approach is based on two phases. In the first phase, we perform numerical

pivoting in the block of fully summed variables until no remaining variables satisfy the

numerical criterion. In the second phase, we eliminate the remaining fully summed

variables adding 1×1 perturbations if necessary.

Moreover, we can relax the threshold tests of Section 2.2. Instead of using the

inequalities (2.1) and (2.2) for our stability criteria, we only consider entries in a subset

K, where FSV ⊂ K ⊂ FSV ∪ PSV . In Section 4.2 we perform experiments with

K = FSV ∪ PSV and we use K = FSV in Section 6. since this will allow us to design a

scalable approach for parallel computation.

Our new tests are more precisely defined as follows. First we define

g1(i) =
maxk∈K\{i} |aik|

|aii|
, (4.3)
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and

g2(i, j) =

∣

∣

∣

∣

∣

∣

∣

∣

|P−1|
(

maxk∈K\{i,j} |aik|
maxk∈K\{i,j} |ajk|

)
∣

∣

∣

∣

∣

∣

∣

∣

∞

. (4.4)

During the first phase, a 1×1 pivot aii is considered to be stable if and only if

g1(i) ≤ 1/u, (4.5)

and a 2×2 pivot P is considered to be stable if and only if

g2(i, j) ≤ 1/u. (4.6)

Algorithm 1 summarizes our static pivoting strategy.

Algorithm 1 Relaxed numerical pivot selection combined with static pivoting
Phase 1: Eliminate as many 1×1 and 2×2 pivots as possible which satisfy inequalities (4.5) and (4.6)

respectively using the Duff-Reid algorithm with threshold u.

Phase 2:

while FSV 6= ∅ do

Let i ∈ FSV .

if #FSV = 1 then

if |aii| < µ ||A||M then aii = s(aii)µ ||A||M
Perform elimination using i as a 1×1 pivot.

return

end if

Let j = arg maxk∈FSV \{i} |aik| and P be the 2×2 block associated with i and j.

Choose between 1×1 or 2×2 pivoting:

if min{g1(i), g2(i, j)} < 1/µ then /* Case 1 */

if g2 < g1 then

Perform elimination using (i, j) as a 2×2 pivot.

else

Perform elimination using i as a 1×1 pivot.

end if

else if min{1/|aii|, ||P−1||∞} < 1/(µ ||A||M ) then /* Case 2 */

if 1/|aii| > ||P−1||∞ then

Perform elimination using (i, j) as a 2×2 pivot.

else

Perform elimination using i as a 1×1 pivot.

end if

else /* Case 3 */

aii = s(aii)µ ||A||M
Perform elimination using i as a 1×1 pivot.

end if

end while

During the second phase we use the threshold µ =
√

ε. We tried different thresholds

in Pralet (2004) and compared the precision of the solution after applying iterative

refinement. We remark that choosing 10−7 ≤ µ ≤ 10−10 seems to be a good compromise

between small perturbations and small growth factors (larger values would give a more
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stable factorization). The different values of µ lead to similar behaviour in terms of number

of iterations and precision of the solution. The static phase perturbs the diagonal of the

matrix if the pivot is too small with respect to the initial values in A (smaller than µ ||A||M).

The choice between a 1×1 and a 2×2 pivot is done in three stages. Firstly (Case 1 of

Algorithm 1), if we can eliminate a pivot and ensure a growth factor lower than 1 + 1/µ

then we select the one with the lower growth factor. Secondly (Case 2 of Algorithm 1),

if we cannot ensure a growth factor lower than 1 + 1/µ then we compare the quantities

1/|aii| and ||P−1||∞. This second comparison is guided by the growth factor that would

appear if we suppose that the largest off-diagonal entry is bounded by ||A||M . Finally, if

no pivot can be chosen, a perturbed 1×1 pivot is selected (Case 3 of Algorithm 1).

We also tried to smooth the transition between the first and the second phase. Before

the second phase we performed numerical pivoting with smaller values of u. More precisely

we defined a parameter umin. While u is larger than umin, we decrease the u value (for

example u = u/10) and restart phase 1. We did not observe gains from such an approach

and thus prefer to focus on the simple version of our pivoting strategies (Algorithm 1) and

to keep u fixed at 0.01.

4.2 Experimental results

In this section we discuss the influence of static pivoting with K = FSV ∪ PSV .

Approaches with K = FSV will be discussed in Section 6.

The K = FSV ∪ PSV approach will be referred to as the mixSEQ algorithm

because checking the stability over the partially summed rows is not well designed for

existing parallel implementations (it involves a bottleneck in terms of communications or

synchronization). Hence this approach does not fully agree with the feature (F1) presented

in Section 2.3.

In the rest of the paper, numSEQ will refer to a minor modification of the numerical

pivoting strategy of Duff-Reid (Duff and Reid 1983). The only difference between our

numSEQ strategy and the Duff-Reid strategy is that, when we detect that all fully summed

rows are numerically zero (< 10−20×||A||M), we perturb the corresponding diagonal entry

and eliminate it. It does not change the rest of the factorization too much because the

magnitude of the updates is bounded by (10−20 × ||A||M)2/(µ× ||A||M) ≈ 10−32||A||M .

When we perturb a 1×1 pivot (Case 3 of Algorithm 1 and the above exception in

the Duff-Reid algorithm) this pivot is called a tiny pivot. Note we did not get any tiny

pivots with the numSEQ strategy except on the DTOC matrix. It is structurally singular

and numSEQ applies 4999 perturbations which corresponds exactly to the dimension of the

null space.

Table 4.3 compares the precision of the solution for an LDLT factorization with

numerical pivoting and an LDLT factorization with the mixSEQ pivoting strategy. Thanks

to numerical pivoting, no iterative refinement is needed for a backward error smaller than√
ε, whereas with mixSEQ the backward error without any iterative refinement is often

larger than
√

ε. Thus we advise performing one or two steps of iterative refinement when
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Matrix numSEQ pivoting strategy mixSEQ pivoting strategy

it. 0 it. 1 it. 0 it. 1 it. 2 tiny

BRAINPC2 1.6e-15 1.0e-15 2.1e-08 5.7e-15 9.8e-16 12932

BRATU3D 2.0e-09 1.7e-16 9.2e-06 2.2e-11 1.7e-16 8429

CONT-201 8.8e-11 1.6e-16 1.0e-05 9.4e-09 4.9e-09 27470

CONT-300 7.6e-11 1.9e-16 2.1e-05 2.7e-09 2.5e-09 67864

cvxqp3 5.2e-11 2.7e-16 8.5e-06 1.2e-12 3.4e-16 6277

DTOC 2.1e-16 2.7e-20 8.3e-07 2.1e-13 1.9e-15 9790

mario001 6.3e-15 1.3e-16 3.1e-08 2.5e-13 1.3e-16 10305

NCVXQP1 4.6e-14 1.7e-17 4.9e-13 3.2e-15 2.6e-17 3619

NCVXQP5 2.0e-11 2.0e-16 2.0e-08 6.7e-11 2.7e-14 8402

NCVXQP7 9.6e-10 2.2e-16 4.9e-06 1.4e-12 2.2e-16 31043

SIT100 4.4e-15 1.4e-16 2.0e-08 5.8e-15 1.5e-16 1388

stokes128 1.1e-14 5.5e-16 4.2e-14 2.0e-15 1.7e-15 12738

stokes64 4.3e-15 1.5e-15 1.6e-13 2.3e-14 2.2e-14 3106

Table 4.3: Component-wise backward error and number of tiny pivots.

using the mixSEQ strategy. This slight degradation of the precision is due to the tiny pivots.

On average, the mixSEQ strategy needs one iteration more to get the same precision as the

numSEQ strategy.

Although the number of tiny pivots can be very large (see last column of Table 4.3),

our mixSEQ approach generally succeeds in reducing the backward error. The CONT-*

matrices are the only ones for which iterative refinement does not converge to the machine

precision, even with several iterations.

Table 4.4 shows the main advantage of using static pivoting: the mixSEQ factorization

is always faster. Delaying pivots increases the number of operations and thus tends to

slow down the factorization phase. Static pivoting decreases the size of the factors and

thus decreases the time for backward and forward substitution. Nevertheless the solution

phase is often more costly with the mixSEQ strategy because it requires more iterative

refinement steps and thus more backward and forward substitutions and matrix-vector

multiplications.

Note that on the DTOC matrix numSEQ generates factors that have 25 times more

entries. This matrix is structurally singular and so the numerical pivoting approach has

to store large dense blocks (many of whose entries are zero) until the factorization detects

the singularity (it has to postpone 29478 variables). It also explains why we observe a

maximum front size of 2526 with numSEQ but only 21 with the mixSEQ strategy.

5 Combination of static pivoting and delayed pivots

A quite natural idea to improve the precision of the solution is to allow some delayed pivots

up to a certain predetermined limit. This criterion could be based on the memory increase

or on the increase in the size of the factors or on the increase in the number of operations

or on the increase in the volume of communications if the factorization is performed in a
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Number Factorization time Time for forward and MV Size of

delayed backward substitution time the factors

Matrix numSEQ numSEQ mixSEQ numSEQ mixSEQ numSEQ mixSEQ

BRAINPC2 14267 0.18 0.11 0.018 0.014 0.003 656765 322971

BRATU3D 90052 34.2 9.24 0.255 0.125 0.003 11484379 5569194

CONT-201 71296 5.51 1.94∗ 0.195 0.127∗ 0.008 8820367 4304559

CONT-300 183306 21.1 6.08∗ 0.547 0.306∗ 0.033 23838606 10714425

cvxqp3 30519 9.73 3.08 0.099 0.048 0.002 4740141 2301836

DTOC 29478 29.1 0.41 0.064 0.006 0.001 4714248 187639

mario001 15463 0.28 0.23 0.024 0.022 0.008 817056 575373

NCVXQP1 12463 2.69 1.29 0.039 0.024 0.001 2235743 1327920

NCVXQP5 16703 25.7 23.0 0.326 0.279 0.015 13365963 11205204

NCVXQP7 195973 195. 71.6 0.874 0.498 0.021 37683838 19367210

SIT100 2710 0.13 0.11 0.007 0.004 0.001 483383 417147

stokes128 18056 1.14 1.06 0.096 0.076 0.016 3437116 2753749

stokes64 4292 0.33 0.29 0.012 0.013 0.002 736428 577581

Table 4.4: Factorization and solution time (in seconds), number of delayed pivots and

size of the factors. numSEQ: Duff-Reid pivoting strategy. mixSEQ: combination of static

and numerical pivoting. ∗ means that the mixSEQ numerical quality is not similar to the

numSEQ quality. Number delayed: number of delayed pivots. MV time: matrix-vector

multiplication time (in seconds).

distributed memory environment. Algorithm 2 presents an example of combining delayed

pivots and static pivoting where we use a very simple criterion to limit the number of

delayed pivots: we do not delay more than α× n pivots where α is a parameter.

Algorithm 2 Combination of static pivoting and delayed pivots
INPUT:

α: control on number of delayed pivots

Let d = α× n be the number of delayed pivots allowed.

for each node of the assembly tree do

if less than d variables have already been delayed then

use Duff-Reid algorithm with threshold u.

else

use Algorithm 1.

end if

end for

Table 5.5 shows that combining delayed pivots and static pivoting may be dangerous.

This combination often requires more steps of iterative refinement to obtain a small

residual. For example with α = 10, MA57 requires 18 iterative refinement steps to get

a component-wise backward error smaller than
√

ε on CONT-201 and obtains a backward

error equal to 4.7 × 10−8 after 10 steps on the cvxqp3 matrix. We think that the poor

convergence of the iterative refinement process and sometimes the degradation in the

precision is due to the accumulation of both rounding errors and perturbations. When
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delayed pivots are not allowed then the static perturbations and their influence on rounding

errors are localized to the contribution blocks predicted by the analysis. If we allow delayed

pivots, some pivots can be postponed and it is possible that they remain unacceptable in

ancestor nodes because of the numerical pivoting test until we switch to static pivoting

mode. In that case after switching to static mode and when a delayed pivot (possibly

postponed over several generations) is still small, it is perturbed. Then this elimination

contaminates a larger contribution block than if it had been eliminated at an earlier node.

We tried a wide range of rules to decide how to delay the elimination of a variable and

remark that all strategies were very unstable. For example, we tried a strategy that, before

postponing the elimination of a variable i, checks to see if a large off-diagonal entry in row

i and in the fully summed variables of the parent node exists, but these strategies did not

improve our basic combination of delayed pivots and static pivoting.

Iteration 0 Iteration 1

Matrix mixSEQ α = 0.01 α = 0.1 mixSEQ α = 0.01 α = 0.1

BRAINPC2 2.1e-08 2.3e-08 2.0e-08 5.7e-15 8.7e-15 3.0e-14

BRATU3D 9.2e-06 2.9e-01 1.4e-01 2.2e-11 4.6e-07 7.1e-06

CONT-201 1.0e-05 2.2e-01 3.8e-01 9.4e-09 1.3e-03 1.4e-01

CONT-300 2.1e-05 1.8e-01 1.5e-01 2.7e-09 5.0e-02 1.7e-02

cvxqp3 8.5e-06 1.0e-05 4.6e-06 1.2e-12 1.8e-12 5.9e-10

DTOC 8.3e-07 8.3e-07 3.7e-10 2.1e-13 2.1e-13 1.3e-19

mario001 3.1e-08 2.7e-08 3.2e-08 2.5e-13 2.5e-13 2.1e-13

NCVXQP1 4.9e-13 4.6e-13 6.0e-13 3.2e-15 1.7e-14 1.4e-14

NCVXQP5 2.0e-08 1.1e-08 3.6e-08 6.7e-11 5.1e-11 6.2e-11

NCVXQP7 4.9e-06 4.1e-07 1.6e-06 1.4e-12 1.2e-07 7.1e-11

SIT100 2.0e-08 1.4e-08 8.6e-08 5.8e-15 6.4e-15 3.3e-14

stokes128 4.2e-14 4.2e-14 4.2e-14 2.0e-15 1.9e-15 3.2e-15

stokes64 1.6e-13 1.6e-13 1.6e-13 2.3e-14 1.0e-13 2.8e-14

Table 5.5: Component-wise backward error. α is the input parameter of Algorithm 2.

We show in Figure 5.2 the precision of the solution while increasing the number of

delayed pivots allowed (α parameter of Algorithm 2). This approach with α = 0 is

equivalent to the mixSEQ strategy and α = ∞ (Inf in Figure 5.2) corresponds to the

numSEQ strategy. For the same number of iterations, even for α very small, the backward

error may be larger with delayed pivots than with the mixSEQ strategy (for example see

the residual values for CONT-201).

It seems also quite difficult to predict the behaviour of the precision. For example,

there is a small window, 10 ≤ 100α ≤ 40, in which Algorithm 2 does not return an

accurate solution for cvxqp3. The failure window is completely different for CONT-201,

0.1 ≤ 100α ≤ 100. It seems that for the middle values of α, we first delay pivots and

then force static pivoting on fronts whose size has significantly increased and that contain

many small entries. The elimination of pivots is then often associated with a relatively

large growth factor and is very dangerous because their updates affect a large number
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of uneliminated variables. If they had been eliminated near the bottom of the tree in a

smaller front, they would not have degraded the quality of the factorization as much.
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Figure 5.2: Influence of the number of delayed pivots on the precision of the solution.

6 Pivoting strategies in parallel distributed

environments

6.1 Parallel distributed approaches

We first discuss the parallelism that is exploited by distributed multifrontal solvers,

focusing on the MUMPS approach and using the terminology from that work (Amestoy

et al. 2001, Amestoy et al. 2000).

A pair of nodes in the assembly tree where neither is an ancestor of the other can

be factorized independently from each other, in any order or in parallel. Consequently,

independent branches of the assembly tree can be processed in parallel, and we refer to

this as tree parallelism or type 1 parallelism. It is obvious that, in general, tree parallelism

can be exploited more efficiently in the lower part of the assembly tree than near the

root node. Additional parallelism is then created using distributed memory versions of

blocked algorithms to factorize the frontal matrices (see, for example, Amestoy et al.,

2000, Dongarra et al., 1998).

The lower triangular part of the frontal matrix is partitioned and each part of it is

assigned to a different process. The so called master process is responsible for the block of

fully summed variables and will also decide which processes (the so called slave processes)

will be involved in the parallel activity associated with this node. We refer to this as type 2

parallelism and call the nodes involved type 2 nodes.

Figure 6.3 shows an example of the parallelization of a type 2 node and the

consequent communication scheme. After eliminating a set of pivots, the master sends
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Figure 6.3: An example of parallelization of a type 2 node.

the corresponding factors to its slaves. Then the slaves have to communicate with each

other to transmit the rest of the fully summed rows. For example, Slave 2 needs to receive

L1 from Slave 1 to update the S21 block.

After computing its part of the contribution block a slave will communicate with the

master and the slaves of the parent node. Thus slaves of Figure 6.3 will send the rows and

columns that are fully summed at the parent node to the master of the parent node.

6.2 Limiting the areas for pivot checking

The diagonal block of the fully summed part of a type 2 node is stored on a single processor,

the master. Furthermore, the master does not have local access to the other rows of the

front, which are sent directly from the slaves of its child nodes to its own slaves. To avoid

extra communications and, even worse, synchronizations we set K = FSV for type 2 nodes

in Algorithm 1. This Basic PARallel strategy with NUMerical pivoting will be referred to

as numBPAR. Because the numBPAR strategy means that it is not necessary to communicate

between processes to perform the threshold tests, this strategy is more friendly for the

parallel distributed implementation of MUMPS (Amestoy et al. 2001) and more generally for

other distributed solvers, for example SuperLU DIST (Li and Demmel 2003).

Moreover, we are obliged to do some slight variations while computing the quantities

g1 and g2 of equations (4.3) and (4.4) to avoid mistakes because we do not have access to

the non fully summed part. That is why we always suppose that the largest off-diagonal

entry is greater than µ||A||M in order to avoid the selection of a pivot whose fully summed

part is small whereas its partially summed part is large. Thus for every type 2 node we

define

g1(i) =
max{maxk∈FSV \{i} |aik|, µ ||A||M}

|aii|
, (6.7)

and

g2(i, j) =

∣

∣

∣

∣

∣

∣

∣

∣

|P−1|
(

max{maxk∈FSV \{i,j} |aik|, µ ||A||M}
max{maxk∈FSV \{i,j} |ajk|, µ ||A||M}

)
∣

∣

∣

∣

∣

∣

∣

∣

∞

. (6.8)

These quantities are used in the numBPAR strategy to adapt the numerical pivoting in the

Duff-Reid algorithm on type 2 nodes to parallel distributed environments. Note that a

similar strategy is already used in the symmetric code of MUMPS in the selection of 1×1

pivots (Version 4.3 of MUMPS does not perform 2×2 pivoting), but has never been presented.
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6.3 Cheap estimation of growth factors

We will see in Section 6.4 that the numBPAR approach is not robust. In this section, we

propose an approximation of the off-diagonal information that does not limit the scalability

and that will significantly improve the numerical robustness of the factorization.

For each fully summed variable of a node p, each slave of its children sends to the

master of p the maximum entry that it has computed in its contribution block. Then the

master of the parent node will approximate the maximum entry in each column by the

maximum quantity that it has received from the slaves of its child nodes. Note that it

is only an approximation because the child contributions are summed and no account is

taken of numerical growth as the eliminations at node p are performed.

More formally, let c be a child node and p be its parent. PSVc (resp. FSVc) and PSVp

(resp. FSVp) denote the partially (resp. fully) summed variables of the child and the

parent respectively. Thus we have PSVc ⊂ (FSVp ∪ PSVp). Let CB = (cbij) be the part

of the contribution block computed by a slave s of c. If we define Rs (resp. Cs) as the

set of partially summed rows (resp. columns) that belong to s, then Rs ⊂ PSVc (resp.

Cs ⊂ PSVc). Note that Rs 6= PSVc if the child node has more than one slave.

If the slave s is in charge of a row i ∈ FSVp, it computes the entries cbik, k ∈ Cs

and k ≤ i. If it is in charge of a column i ∈ FSVp, it computes the entries cbki, k ∈ Rs

and k ≥ i. Thus slave s can compute the largest element (in magnitude) in its rows and

columns that appear in FSVp and send them to the master of node p. We set

mr
i (s) = maxk∈Cs\FSVp,k≤i |cbik|, ∀i ∈ Rs ∩ FSVp,

mr
i (s) = 0, ∀i ∈ FSVp \Rs,

(6.9)

and
mc

i(s) = maxk∈Rs\FSVp,k≥i |cbki|, ∀i ∈ Cs ∩ FSVp,

mc
i(s) = 0, ∀i ∈ FSVp \ Cs.

(6.10)

Finally we define

mi(s) = max{mr
i (s), m

c
i(s)}, for each i ∈ FSVp. (6.11)

The areas checked for the computation of these quantities are illustrated in Figure 6.4;

each slave accesses the shaded areas to compute its mi quantities and communicates them

to the father while sending the black blocks of its contributions. The other parts of the

contribution blocks (shaded and blank) are sent directly to the slaves of the parent node.

While receiving information about maximum off-diagonal entries, the master of the

parent estimates the maximum off-diagonal entry in a fully summed row i by the quantity

Mi:

Mi = max

{

max
c child of p

{ max
s slave of c

{mi(s)} } , max
k∈PSVp

|a(0)
ik |

}

(6.12)

where a(0) denote the original entries of A that are assembled at the parent node.
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Figure 6.4: Illustration of the areas accessed to estimate the mi quantities of equation (6.11)

and of the blocks that are sent from a slave of a child to the master of the parent.

For each pivoting strategy (numerical pivoting or combination of numerical and static

pivoting) the growth factor quantities of equations (6.7) and (6.8) are adapted. For type 2

nodes we define

g1(i) =
max{maxk∈FSVp

|aik|, Mi, µ ||A||M}
|aii|

, (6.13)

and

g2(i, j) =

∣

∣

∣

∣

∣

∣

∣

∣

|P−1|
(

max{maxk∈FSVp
|aik|, Mi, µ ||A||M}

max{maxk∈FSVp
|aik|, Mj, µ ||A||M}

)∣

∣

∣

∣

∣

∣

∣

∣

∞

. (6.14)

These quantities are then used to adapt the Duff-Reid algorithm on type 2 nodes to parallel

distributed environments. This NUMerical pivoting strategy based on Estimations of off-

diagonal entries in a PARallel framework will be referred to as numEPAR. We will also use

these quantities to adapt Algorithm 1 for type 2 nodes. This static pivoting strategy will

be referred to as mixPAR.

6.4 Experimental results

In our experiments, we consider that a node is a type 2 node if it is large enough (in

practice if #PSV > 400) and it is not a leaf node nor the root node.

6.4.1 Parallel approaches with numerical pivoting

Table 6.6 shows that the basic parallel adaptation of the Duff-Reid algorithm, numBPAR, is

not robust. We observe numerical failures on the CONT-201, CONT-300 and BRATU3D

matrices. Furthermore, there is a significant degradation of the precision compared to the

numSEQ approach. We see that numEPAR is robust (no numerical failures) on our challenging
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Iteration 0 Iteration 1

Matrix numSEQ numBPAR numEPAR numSEQ numBPAR numEPAR

BRAINPC2 1.6e-15 1.6e-15 1.6e-15 1.0e-15 1.0e-15 1.0e-15

BRATU3D 2.0e-09 4.8e-01 7.8e-09 1.7e-16 4.6e-01 1.7e-16

CONT-201 8.8e-11 1.3e-01 3.0e-10 1.6e-16 1.2e-01 2.3e-16

CONT-300 7.6e-11 1.3e-01 1.4e-10 1.9e-16 7.7e-02 1.7e-16

cvxqp3 5.2e-11 4.8e-06 2.2e-10 2.7e-16 2.5e-06 2.7e-16

DTOC 2.1e-16 2.1e-16 2.1e-16 2.7e-20 2.7e-20 2.7e-20

mario001 6.3e-15 6.3e-15 6.3e-15 1.3e-16 1.3e-16 1.3e-16

NCVXQP1 4.6e-14 9.2e-14 5.2e-14 1.7e-17 3.0e-17 2.7e-17

NCVXQP5 2.0e-11 2.5e-10 5.8e-11 2.0e-16 2.0e-16 2.0e-16

NCVXQP7 9.6e-10 5.9e-08 1.3e-09 2.2e-16 1.2e-07 2.2e-16

SIT100 4.4e-15 4.4e-15 4.4e-15 1.4e-16 1.4e-16 1.4e-16

stokes128 1.1e-14 1.1e-14 1.1e-14 5.5e-16 5.5e-16 5.5e-16

stokes64 4.3e-15 4.3e-15 4.3e-15 1.5e-15 1.5e-15 1.5e-15

Table 6.6: Component-wise backward error of strategies with numerical pivoting. numSEQ:

sequential approach. numBPAR: basic parallel approach. numEPAR: parallel approach using

estimations.

test set. Even if the first solution may not be as good as with the numSEQ strategy, we see

that, after one step of iterative refinement, the backward errors of numSEQ and numEPAR

are similar. That is why we recommend automatically performing one iterative refinement

step with the numEPAR strategy and then checking the accuracy of the solution.

Size of the factors Number of delayed pivots

Matrix numSEQ numBPAR numEPAR numSEQ numBPAR numEPAR

BRATU3D 11484379 9672751 11249260 90052 49205 87167

CONT-201 8820367 8918700 8829464 71296 71415 71389

CONT-300 23838606 23595744 23928663 183306 182422 183641

Table 6.7: Size of the factors and number of delayed pivots with different numerical pivoting

strategies.

Table 6.7 compares the size of the factors and the number of delayed pivots between

the numSEQ, numBPAR and numEPAR pivoting strategies. We focus on the BRATU3D and

CONT-* matrices because they reveal the weaknesses of the numBPAR strategy.

Firstly we observe that numSEQ and numEPAR have a similar number of entries in the

factors and number of delayed pivots. This supports the idea that the numEPAR strategy

takes a good numerical decision even if it only has an approximate view of the off-diagonal

entries. For each node of the assembly tree, Figures 6.5 and 6.6 represent the number of

pivots that are delayed (right-hand side) and the maximum of the quantities g1 and g2 of

equations (4.3) and (4.4) with the growth factors computed over FSV ∪ PSV (left-hand

side) on the BRATU3D and CONT-201 matrices. Thus the left-hand side figures show

the real growth factors while the pivoting strategy may take its decision according to a

different estimation (for example over FSV and estimates for entries in PSV ). With the
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numSEQ strategy the estimation and the actual values are exactly the same. That is why we

always have the actual growth factors smaller than 10−2. With numBPAR and numEPAR, the

actual value may be underestimated. That is why we observe growth factors greater than

10−2. Figures 6.5 and 6.6 confirm that the numSEQ and numEPAR strategies have a similar

behaviour, in the sense that they postpone approximately the same number of pivots at

each node. Furthermore the numEPAR strategy succeeds in bounding the growth factor by

2 × 104 and 4 × 103 at each step of Gaussian elimination on BRATU3D and CONT-201

respectively.

The behaviour of the numBPAR strategy is significantly different. We see, in Table 6.7,

that the number of delayed pivots decreases significantly on the BRATU3D matrix. A

consequence is the decrease in the number of nonzeros in the factors (9.7×106 for numBPAR

versus 11.5× 106 for numSEQ). In Figure 6.5, we observe growth factors greater than 1/
√

ε

on the BRATU3D matrix. It explains why the solution is not accurate. We also see a

similar number of delayed pivots with numSEQ and numEPAR whereas numBPAR makes bad

numerical decisions because it delays fewer pivots.

On the CONT-201 and CONT-300 matrices, numBPAR delays approximately the same

number of variables and computes factors with a similar number of nonzeros. Figure 6.6

shows that numBPAR does not guarantee a reasonable growth factor on CONT-201 (growth

factors nearly equal to 1/ε for some nodes of the assembly tree). We see also that the

number of delayed pivots are significantly different between the numBPAR strategy and the

two other strategies, numSEQ and numEPAR, for some nodes of the tree.

6.4.2 Parallel approaches combining numerical and static pivoting

Table 6.8 shows that there are no significant differences between the sequential and the

parallel version of our combination of numerical and static pivoting. We still need two

iterations to converge to the machine precision on most of the matrices.

7 Influence of preprocessing

In Duff and Pralet (2004), we presented preprocessing techniques to improve the quality

of preselected pivots. Our preprocessing uses a maximum weighted matching and sparsity

ordering techniques. Of the techniques presented, we saw that MeTiS combined with

the MC64SYM scaling was the best ordering on symmetric indefinite matrices in terms of

CPU factorization time but that it sometimes caused many pivots to be delayed. We also

proposed an ordering based on MeTiS that increases the number of nonzeros in the factors

slightly but that clearly improves the numerical stability for the preselected pivots. In this

section, we study the influence of this preprocessing in a static pivoting context. We use

these two orderings for the present experiments: the MeTiS ordering and an ordering that

we call MeTiS on the compressed graph (denoted by CMP). Our CMP ordering has four main

phases:
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(c) Growth factor on BRATU3D using

numBPAR pivoting strategy.
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BRATU3D using numBPAR pivoting
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(e) Growth factor on BRATU3D using

numEPAR pivoting strategy.
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(f) Number of delayed pivots on

BRATU3D using numEPAR pivoting

strategy.

Figure 6.5: Influence of the pivoting strategy on the growth factor and the number of

delayed pivots on BRATU3D.
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201 using numSEQ pivoting strategy.
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(c) Growth factor on CONT-201 using

numBPAR pivoting strategy.
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(d) Number of delayed pivots on CONT-

201 using numBPAR pivoting strategy.
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(e) Growth factor on CONT-201 using

numEPAR pivoting strategy.
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(f) Number of delayed pivots on CONT-

201 using numEPAR pivoting strategy.

Figure 6.6: Influence of the pivoting strategy on the growth factor and the number of

delayed pivots on CONT-201.
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Iteration 0 Iteration 1 Iteration 2

Matrix mixSEQ mixPAR mixSEQ mixPAR mixSEQ mixPAR

BRAINPC2 2.1e-08 2.1e-08 5.7e-15 5.7e-15 9.8e-16 9.8e-16

BRATU3D 9.2e-06 1.7e-05 2.2e-11 1.3e-10 1.7e-16 2.3e-16

CONT-201 1.0e-05 1.8e-05 9.4e-09 9.4e-09 4.9e-09 4.5e-09

CONT-300 2.1e-05 1.9e-05 2.7e-09 2.6e-09 2.5e-09 3.4e-09

cvxqp3 8.5e-06 8.0e-06 1.2e-12 9.3e-13 3.4e-16 2.7e-16

DTOC 8.3e-07 8.3e-07 2.1e-13 2.1e-13 1.9e-15 1.9e-15

mario001 3.1e-08 3.1e-08 2.5e-13 2.5e-13 1.3e-16 1.3e-16

NCVXQP1 4.9e-13 3.3e-13 3.2e-15 4.4e-15 2.6e-17 6.1e-17

NCVXQP5 2.0e-08 7.5e-08 6.7e-11 1.6e-11 2.7e-14 1.5e-14

NCVXQP7 4.9e-06 4.3e-06 1.4e-12 2.0e-12 2.2e-16 2.7e-16

SIT100 2.0e-08 2.0e-08 5.8e-15 5.8e-15 1.5e-16 1.5e-16

stokes128 4.2e-14 4.2e-14 2.0e-15 2.0e-15 1.7e-15 1.7e-15

stokes64 1.6e-13 1.6e-13 2.3e-14 2.3e-14 2.2e-14 2.2e-14

Table 6.8: Component-wise backward error of strategies with static pivoting. mixSEQ:

sequential approach. mixPAR: parallel approach using estimations of equation (6.12) and

pivoting Algorithm 1.

1. we compute a symmetric weighted matching to select 1×1 and 2×2 pivots,

2. we compress variables that belong to the same 2×2 pivot into a single supervariable

and merge their adjacency structures,

3. we apply MeTiS to the compressed graph and obtain a permutation,

4. we expand the permutation to the initial expanded matrix.

7.1 Sequential approaches

Table 7.9 compares our combination of static and numerical pivoting when using the above

two orderings. We see that the preselection of 2×2 pivots using a symmetric weighted

matching significantly decreases the number of tiny pivots and improves the precision

of the solution. This influence of pivot preselection using maximum weighted matching

techniques has also been observed in the context of SuperLU DIST (Li and Demmel 2003).

We see that, in most of the cases, the approach with an ordering on the compressed graph

needs one iteration fewer than an approach based on the MeTiS ordering.

Generally the approach on the compressed graph increases the number of operations

and the fill-in in the factors. Thus it increases also the factorization time (see Table 7.10).

Note that the compressed approach is better on CONT-201 and CONT-300 in terms of

fill-in in the factors and factorization time because the compression detects cliques and

then improves the quality of the fill-in reducing phase (MeTiS). The CMP approach also

significantly improves the residual for the CONT matrices.

We also compare the solution times in Table 7.10. Generally the CMP strategy increases

the size of the factors and thus increases the time for backward and forward substitution.
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Iteration 0 Iteration 1 Iteration 2 Tiny pivots

Matrix MeTiS CMP MeTiS CMP MeTiS MeTiS CMP

BRAINPC2 2.1e-08 4.3e-13 5.7e-15 9.5e-16 9.8e-16 12932 0

BRATU3D 9.2e-06 7.1e-08 2.2e-11 1.4e-15 1.7e-16 8429 284

CONT-201 1.0e-05 8.6e-14 9.4e-09 2.0e-16 4.9e-09 27470 0

CONT-300 2.1e-05 3.4e-13 2.7e-09 1.8e-16 2.5e-09 67864 0

cvxqp3 8.5e-06 5.3e-06 1.2e-12 3.2e-14 3.4e-16 6277 30

DTOC 8.3e-07 6.1e-16 2.1e-13 2.6e-20 1.9e-15 9790 4999

mario001 3.1e-08 5.9e-08 2.5e-13 3.1e-15 1.3e-16 10305 29

NCVXQP1 4.9e-13 2.1e-14 3.2e-15 6.7e-15 2.6e-17 3619 10

NCVXQP5 2.0e-08 6.4e-12 6.7e-11 2.0e-16 2.7e-14 8402 0

NCVXQP7 4.9e-06 2.1e-08 1.4e-12 1.8e-14 2.2e-16 31043 46

SIT100 2.0e-08 1.2e-07 5.8e-15 1.3e-14 1.5e-16 1388 6

stokes128 4.2e-14 5.9e-14 2.0e-15 4.9e-14 1.7e-15 12738 27

stokes64 1.6e-13 1.6e-13 2.3e-14 2.2e-13 2.2e-14 3106 5

Table 7.9: Influence of the preprocessing on the component-wise backward error and on

the number of perturbed pivots. MeTiS: mixSEQ with MeTiS ordering. CMP: mixSEQ with

a preprocessing based on symmetric weighted matching and on MeTiS.

Factorization time Time for forward and

backward substitution

Matrix MeTiS CMP MeTiS CMP

BRAINPC2 0.11 0.11 0.014 0.015

BRATU3D 9.24 8.56 0.125 0.124

CONT-201 1.94 1.44 0.127 0.121

CONT-300 6.08 4.38 0.306 0.294

cvxqp3 3.08 9.46 0.048 0.110

DTOC 0.41 62.6 0.006 0.133

mario001 0.23 0.31 0.022 0.029

NCVXQP1 1.29 5.44 0.024 0.055

NCVXQP5 23.0 39.8 0.279 0.425

NCVXQP7 71.6 199. 0.498 0.988

SIT100 0.11 0.13 0.004 0.005

stokes128 1.06 1.63 0.076 0.111

stokes64 0.29 0.38 0.013 0.017

Table 7.10: Influence of the preprocessing on the factorization and solution time (in

seconds). MeTiS: mixSEQ with MeTiS ordering. CMP: mixSEQ with a preprocessing based

on symmetric weighted matching and on MeTiS.

Nevertheless this effect is compensated by the decrease in the number of iterative refinement

steps: on average the CMP strategy requires one backward and forward substitution and

one matrix-vector multiplication fewer than the MeTiS strategy.
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7.2 Parallel approaches

In this section, we study the influence of the preprocessing on parallel approaches. As in

the sequential case, our preprocessing improves the numerical robustness and we get small

backward errors after one iterative refinement step (see Table 7.11). Our preprocessing is

beneficial for both the numerical pivoting strategies and the combination of numerical and

static pivoting in particular for the CONT matrices.

Iteration 0 Iteration 1

Matrix numEPAR mixPAR numEPAR P mixPAR P numEPAR mixPAR numEPAR P mixPAR P

BRAINPC2 1.6e-15 2.1e-08 3.4e-14 4.3e-13 1.0e-15 5.7e-15 2.3e-15 9.5e-16

BRATU3D 7.8e-09 1.7e-05 1.0e-14 6.9e-08 1.7e-16 1.3e-10 1.7e-16 1.6e-15

CONT-201 3.0e-10 1.8e-05 1.1e-13 1.2e-13 2.3e-16 9.4e-09 1.8e-16 1.7e-16

CONT-300 1.4e-10 1.9e-05 5.9e-14 2.4e-13 1.7e-16 2.6e-09 1.7e-16 1.7e-16

cvxqp3 2.2e-10 8.0e-06 1.8e-10 5.3e-06 2.7e-16 9.3e-13 2.7e-16 3.2e-14

DTOC 2.1e-16 8.3e-07 1.5e-18 6.1e-16 2.7e-20 2.1e-13 9.0e-21 2.6e-20

mario001 6.3e-15 3.1e-08 2.9e-15 5.9e-08 1.3e-16 2.5e-13 1.3e-16 3.1e-15

NCVXQP1 5.2e-14 3.3e-13 1.9e-14 1.6e-14 2.7e-17 4.4e-15 3.7e-17 6.7e-15

NCVXQP5 5.8e-11 7.5e-08 5.1e-12 6.8e-12 2.0e-16 1.6e-11 2.0e-16 2.0e-16

NCVXQP7 1.3e-09 4.3e-06 9.0e-11 1.6e-08 2.2e-16 2.0e-12 2.2e-16 2.0e-14

SIT100 4.4e-15 2.0e-08 8.4e-15 1.2e-07 1.4e-16 5.8e-15 1.7e-16 1.3e-14

stokes128 1.1e-14 4.2e-14 8.3e-15 5.9e-14 5.5e-16 2.0e-15 1.0e-14 4.9e-14

stokes64 4.3e-15 1.6e-13 5.1e-15 1.6e-13 1.5e-15 2.3e-14 3.0e-15 2.2e-13

Table 7.11: Component-wise backward error of strategies with numerical pivoting.

numEPAR: numerical pivoting strategy without preprocessing. mixPAR: static pivoting

strategy without preprocessing. numEPAR P: numerical pivoting strategy with

preprocessing. mixPAR P: static pivoting strategy with preprocessing.

8 Conclusions

We have presented different choices for static pivoting and have identified their main

characteristics. We have implemented these within the MA57 code. Our new pivoting

strategies that combine numerical and static pivoting seem to address a large class of

problems and to be significantly faster than approaches with standard numerical pivoting.

Table 8.12 summarizes our recommended default number of iterative refinement steps for

each pivoting strategy. Concerning classes of problem on which mixPAR or mixSEQ strategies

does not compute a precise enough solution, we recommend first preprocessing the matrix

using a compressed graph and a maximum weighted matching, and then if necessary using

the numerical pivoting strategies, numEPAR or numSEQ.

Our parallel approaches can easily be generalized to the unsymmetric case. It would

improve the precision of SuperLU DIST and allow 2D partitioning in MUMPS.

Even if the precision of the solution is good, further improvements can be obtained.

Firstly, there are still problems on which our combination of numerical and static pivoting
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Name numSEQ mixSEQ numEPAR mixPAR

It. Step 0/0 1/1 1/0 2/1

Table 8.12: Number of recommended iterative refinement steps before checking precision

of the solution. It. Step: number of iterative refinement steps. x/y means that we

recommend x steps if no preprocessing is used and y steps if preprocessing and an ordering

on the compressed graph is used.

is less accurate than approaches that perform standard threshold pivoting. Secondly, the

number of iterative refinement steps could be decreased. This problem becomes all the more

critical when we have many right-hand sides. In our future work, we would like to decrease

the number of iterative refinement steps by trying to include 2×2 perturbations. Hence,

it might be useful either to decide a priori where the perturbation could be applied or to

discover large entries dynamically during the factorization. More generally we would like to

try off-diagonal perturbations to prevent future numerical problems. Such decisions would

be taken in a look-ahead style as in the Schnabel-Eskow modified Cholesky factorization.

A much higher value for µ would result in a far more stable factorization but perhaps

with a modified matrix further from the original. We intend to study the trade-off whose

optimal value might well be quite different if more sophisticated iterative methods than

iterative refinement were used (for example MINRES). We think that in this framework

the use of 2×2 perturbations may have a strong influence.
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