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1 Introduction

We study techniques for scaling and choosing pivots when using multifrontal methods in

the LDLT factorization of symmetric indefinite matrices where L is a lower triangular

matrix and D is a block diagonal matrix with 1×1 and 2×2 blocks.

Our main contribution is to define a new method for scaling and a way of using an

approximation to a symmetric weighted matching to predefine 1×1 and 2×2 pivots prior to

the ordering and analysis phase. We also present new classes of orderings called “(relaxed)

constrained orderings” that select pivots during the symbolic Gaussian elimination using

two graphs: the first one contains information about the structure of the reduced matrix

and the second one gives information about the numerical values.

Prior to the LU factorization of a matrix A, the package MC64 (Duff and Koster 1999,

Duff and Koster 2001) can be used to get a maximum weighted matching so that the

corresponding permutation will place large entries on the diagonal. The matrix can then

be scaled so that diagonal entries have modulus one and off-diagonals have modulus less

than or equal to one. This has been found to greatly improve the numerical stability of

the subsequent LU factorization. If, however, MC64 is applied to a symmetric matrix the

resulting permutation will not normally preserve symmetry. In this paper, we examine

ways in which symmetric preprocessing can be applied and, in particular, how MC64 can

be used while still preserving symmetry. Our preprocessing will be followed by a standard

symmetric permutation in order to decrease the fill-in in the factors.

We will use our symmetric preprocessing with a symmetric multifrontal code MA57 (Duff

2004) to validate our heuristics on real test problems that we have divided into two sets: the

first consists of augmented matrices and the second contains general indefinite matrices.

In Section 2, we present some general characteristics of multifrontal symmetric

indefinite solvers that will be useful in understanding our preprocessing strategies and

experimental results. In Section 3, we describe our experimental environment. Section 4

shows how MC64 scaling can be used for the symmetric indefinite case and studies the

effects on the factorization of different kinds of scaling. Section 5 discusses orderings to

decrease the fill-in and to give good preselected pivots. Our experimental results are given

in Section 6 and the best strategies are discussed. Finally, in Section 7, we summarize our

results and consider future improvements.

We make extensive use of routines from HSL (HSL 2004). Any code with a name

beginning with MA or MC is from HSL or is a derivative of an HSL code, for example MC64

or MA57.
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2 Symmetric indefinite multifrontal solvers and

numerical pivoting

2.1 Multifrontal approach

Multifrontal methods (Duff and Reid 1983, Duff and Reid 1984) use an elimination tree (Liu

1990) to represent the dependencies of the computation. Each node of this tree is associated

with a frontal matrix F that is assembled (summed) by contributions from its children and

the original matrix. It is of the form:

[

F11 F12

F21 F22

]

,

where the first block of rows (columns) are fully summed rows (columns) and the second

block are partially summed rows (columns). Then elimination operations are performed

using pivots from within the fully summed block, F11, and the Schur complement or

contribution block F22 ← F22−F21F
−1
11 F12 is computed. In the symmetric case, F12 = F T

21,

the matrices F11 and F22 are symmetric, pivots are chosen from the diagonal as discussed

in the following section, and operations and storage are about half that of the general case.

2.2 Numerical pivoting

In the unsymmetric case, at step k of the Gaussian elimination, the pivot (p, q) is selected

from the fully summed rows and columns and the entries aij of the remaining submatrix

are updated:

a
(k+1)
ij ← a

(k)
ij −

a
(k)
ip a

(k)
qj

a
(k)
pq

.

To limit the growth of the entries in the factors and thus to have a more accurate

factorization, a test on the magnitude of the pivot is commonly used. apq can be selected

if and only if

|apq| ≥ u max
j
|apj| (2.1)

where u is a threshold between 0 and 1. Thanks to this criterion of selection the growth

factor is limited to 1/u.

In the symmetric indefinite case, we have to perform 1×1 and 2×2 pivoting if we want

to keep the symmetry while maintaining stability. Pivot selection can be done using the

Bunch-Parlett (Bunch and Parlett 1971) or Bunch-Kaufman (Bunch and Kaufman 1977)

algorithm. In the context of sparse matrices, the criterion of the Duff-Reid algorithm (Duff

and Reid, 1983, as modified in Duff and Reid, 1996) can be used to ensure a growth factor

lower than 1/u at each step of Gaussian elimination. A 1×1 diagonal pivot can be selected

if and only if it satisfies the inequality (2.1). A 2×2 pivot P =

(

app apq

aqp aqq

)

can be selected
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if and only if it satisfies:

|P−1|
(

maxk |apk|
maxk |aqk|

)

≤
(

1/u

1/u

)

(2.2)

where |P−1| denotes the matrix whose values are the absolute values of P−1. During the

elimination, it may not be possible to eliminate some fully summed variables. Elimination

of these variables must then be delayed to the parent. This has the effect of causing extra

fill-in and thus increases the memory and the number of operations. Too many delayed

pivots can severely slow down the factorization.

3 Experimental environment

3.1 Test machine

Our experiments are conducted on one node of a COMPAQ Alpha Server SC45 at

CERFACS. There are 4 GBytes of memory shared between 4 EV68 processors per node

and we disable three of the processors so that we can use all the memory of the node with

the remaining single processor. We use the Fortran 90 compiler, f90 version 5.5 with -O

option. Our use of integer pointers restricts our array size to 2 GBytes. If the factorization

needs to allocate an array larger than 2 GBytes or requires more than 30 minutes, we

consider that the factorization is not successful.

3.2 Matrices

We conduct our experiments on a number of test problems that we divide into two

sets. We decided to test our preprocessings on matrices of order between 10000

and 100000, and to restrict the number of matrices of the same type to 2 or 3

in each set in order to avoid class effects. The matrices have an identification

number that will be used to represent them on the x-axis of some figures. Except

for bloweybl, bloweybq and qpband that come from CUTEr, they are available from

ftp.numerical.rl.ac.uk/pub/matrices/symmetric/indef/ and correspond to a subset of

the matrices collected by (Gould and Scott 2003) for testing symmetric sparse solvers. The

matrices come from the University of Florida collection (UF) (Davis 2002), the Maros and

Meszanos quadratic programming collection (M2) (Maros and Meszaros 1999), the CUTEr

optimization test set (CUTEr) (Gould, Orban and Toint 2002) and from Kumfert and

Pothen (KP) (Kumfert and Pothen 1997). Some problems were generated by Andy Wathen

(AW), Mario Arioli (MA), and Miroslav Tuma (MT). The c-* matrices were obtained from

Olaf Schenk (OS) and are also available in Davis (2002). These problems are described in

Tables 3.1 and 3.2.

Many of the test matrices correspond to augmented matrices of the form

KH,A =

(

H A

AT 0

)

3



Matrix Id n nnz Origin

A0NSDSIL 1 80016 200021 Linear Complementarity problem (CUTEr)

A2NNSNSL 2 80016 196115 Linear Complementarity problem (CUTEr)

A5ESINDL 3 60008 145004 Linear Complementarity problem (CUTEr)

AUG3DCQP 4 35543 77829 Expanded system–3D PDE (CUTEr)

BLOCKQP1 5 60012 340022 QP with block structure (CUTEr)

BLOWEYA 6 30004 90006 Cahn-Hilliard problem (CUTEr)

BRAINPC2 7 27607 96601 Biological model (CUTEr)

BRATU3D 8 27792 88627 3D Bratu problem (CUTEr)

CONT-201 9 80595 239596 KKT matrix–Convex QP (M2)

K1 SAN 10 67759 (1) 303364 Straz pod Ralskem mine model (MT)

NCVXQP1 11 12111 40537 KKT matrix–nonconvex QP (CUTEr)

NCVXQP5 12 62500 237483 KKT matrix–nonconvex QP (CUTEr)

NCVXQP7 13 87500 312481 KKT matrix–nonconvex QP (CUTEr)

SIT100 14 10262 34094 Straz pod Ralskem mine model (MT)

bloweybl 15 30003 (1) 60000 Cahn-Hilliard problem (CUTEr)

cvxqp3 16 17500 62481 Convex QP (CUTEr)

mario001 17 38434 114021 Stokes equation (MA)

olesnik0 18 88263 402623 Straz pod Ralskem mine model (MT)

qpband 19 20000 30000 QP (CUTEr)

stokes128 20 49666 295938 Stokes equation (MA)

stokes64 21 12546 74242 Stokes equation (AW)

tuma1 22 22967 50560 Mine model (MT)

tuma2 23 12992 28440 Mine model (MT)

Table 3.1: Augmented matrices of H 6= 0 type (set 1). (x): x is the structural deficiency

of the matrix. Id: identification number.

We performed some earlier experiments (Duff and Pralet 2004) with matrices of this form

where H is the zero matrix. We note that matrices of this form are structurally singular

unless A is square nonsingular. The set of matrices described in Table 3.1 are of the above

form but with H 6= 0. The second set, in Table 3.2, corresponds to general (nonzero

diagonal) indefinite symmetric matrices. Note that we also include the BOYD1 matrix

which is an augmented system in this set because its number of constraints (order of the

zero block) is negligible.

3.3 Measures and methodology

In our earlier experiments (Duff and Pralet 2004), we clearly identified that MA57 was not

tailored to augmented matrices with a zero (1, 1) block. These were much better handled

by MA47 (Duff and Reid 1995) that respects the two zero blocks that exist when 2×2

pivots with two zero entries on the diagonal (referred to as oxo pivots) are eliminated.

This is why we have decided not to try to improve MA57 on this set of matrices and why

we will not use matrices of this type in our experiments. Gould and Scott (2003) also

reported some failures of MA57 on this class of problems. They found that MA47 and MA67

usually performed better on these problems. We ran the MA57 factorization with a pivoting
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Matrix Id n nnz Origin

BOYD1∗ 24 93279 652246 KKT matrix–Convex QP (CUTEr)

DIXMAANL 25 60000 179999 Dixon-Maany optimization example (CUTEr)

HELM3D01 26 32226 230335 Helmholtz problem (MA)

LINVERSE 27 11999 53988 Matrix inverse approximation (CUTEr)

SPMSRTLS 28 29995 129971 Sparse matrix square root (CUTEr)

bcsstk35 29 30237 740200 Stiffness matrix–automobile seat frame (UF)

bcsstk39 30 46772 1053717 Stiffness matrix–track ball (UF)

bloweybq 31 10001 30000 Cahn-Hilliard problem (CUTEr)

c-68 32 64810 315403 Optimization model (OS)

c-71 33 76638 468079 Optimization model (OS)

copter2 34 55476 407714 Helicopter rotor blade (KP)

crystk02 35 13965 491274 Stiffness matrix–crystal free vibration (UF)

crystk03 36 24696 887937 Stiffness matrix–crystal free vibration (UF)

dawson5 37 51537 531157 Aeroplane actuator system (UF)

qa8fk 38 66127 863353 FE matrix from 3D acoustics (UF)

vibrobox 39 12328 157014 Vibroacoustic problem (UF)

Table 3.2: General symmetric indefinite matrices (set 2). ∗: BOYD1 is in set 2 because

the number of constraints is negligible. Id: identification number.

threshold equal to 10−2 and obliged its analysis to merge two nodes if both require less

than 16 eliminations (ICNTL(12) = 16). We compare our codes using the performance

profiling system of Dolan and Moré (2002). In these profiles, if α is the value on the x-axis,

then the y-axis measures the fraction of times that each code is within a factor α of the

best code. Note that we do not explicitly label the axes of these profile graphs.

To compare our different approaches we will look at the factorization time, the memory

needed to complete the factorization, and the reliability of the analysis in terms of memory

forecasting. We would like to have an estimation of the required memory after the analysis

that is not too far from that actually needed by the factorization. The quality of the

analysis prediction will be assessed using the ratio between the memory actually used

during the factorization and that predicted by the analysis.

It is standard practice to increase the storage estimated by the analysis and allocate

more storage in the hope that the factorization will be successful even if some additional

numerical pivoting occurs. The percentage by which we increase the estimate from the

analysis will be called the memory relaxation. In our experiments, we use a memory

relaxation of 20% and 50%. We evaluate the analysis prediction as follows: if the memory

required by the factorization is larger than the relaxed analysis estimation, we classify the

run as a failure.

Firstly, in Section 4, we study the influence of scaling on the MA57 factorization phase.

Secondly, the effect of additional numerical and structural preprocessing are analysed when

they are combined with different orderings (AMD (Amestoy, Davis and Duff 1996) in 6.2.1,

MeTiS (Karypis and Kumar 1998) in 6.2.2 and AMF (Ng and Raghavan 1999, Rothberg and

Eisenstat 1998) in 6.2.3). The best approaches will be discussed in Sections 6.1 and 6.2.4.
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4 Scaling

In this section, we examine the effect of scaling and identify the most robust approach.

Firstly, we describe existing scaling approaches; secondly, we propose an alternative based

on the symmetrization of an unsymmetric scaling; and finally we analyse our experimental

results.

4.1 Existing symmetric scaling

Let A be a square symmetric sparse matrix. MC30 (Curtis and Reid 1972) scales A so that

the scaled matrix DAD has its nonzero entries close to 1 in absolute value. In practice, it

minimizes
∑

aij 6=0(log |aij|)2.

If A is structurally nonsingular, MC77 (Ruiz 2001) used with the p-norm, || ||p, computes

a sequence of matrices D
(k)
r AD

(k)
c that converge to a matrix that has its column and row

norms equal to 1 (which corresponds to a doubly stochastic matrix if p = 1). If p 6= ∞,

this limit is unique. If A is symmetric then this scaling is symmetric (D
(k)
r = D

(k)
c ). We

will study the effect of MC77 with p = 1 and p = ∞. These scalings will be identified by

MC77one and MC77inf, respectively. Note that, when the matrix is structurally singular, the

convergence of the algorithm is not guaranteed. Moreover, the convergence to a doubly

stochastic matrix with p = 1 is slower than with p =∞. In our experiments, we limit the

number of MC77 steps to 20.

4.2 Adaptation of MC64 scaling

4.2.1 Maximum weighted matching

It is common to represent a symmetric matrix A of order n by a weighted undirected

graph given by G = (V, E), where V = {1, 2, ...n} and each undirected edge (i, j) of E

corresponds to the off-diagonal nonzeros aij and aji of A and has a weight of 2|aij| if i 6= j.

If i = j, depending on the context we may or may not want to add a self-loop to G of

weight |aii|. The matrix can also be represented by a bipartite graph G = (R, C, E) where

(i, j) ∈ R×C belongs to E if and only if aij 6= 0 and has a weight of |aij|. In the following

we will associate a weight ω with a set of edges S, defined by:

ω(S) =
∏

(i,j)∈S

|eij|, where |eij| is the weight of the edge (i, j). (4.1)

We define a matching on the bipartite graph as a set of edges, no two of which have

the same vertex as an endpoint. A maximum matching is a matching with maximum

cardinality that will be n if the matrix is structurally nonsingular. We will later (in

Section 5.1) relate matchings on the bipartite graph to matchings on another undirected

graph that is a modified version of the undirected graph described above.
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4.2.2 Symmetrization

When MC64 is used with a product metric as in (4.1) to define the weight of a set of edges,

it also returns a row and column scaling. We now show how a symmetric scaling can be

built from the MC64 scaling. It will be called MC64SYM.

Definition 4.1 A matrix B = (bij) is said to satisfy the MC64 constraints if and only if

∃ a permutation σ, such that ∀i, |biσ(i)| = ||b.σ(i)||∞ = ||bi.||∞ = 1.

Property 4.1 Let M be the maximum matching of the symmetric matrix A returned

by MC64 and Dr = (dri
), Dc = (dci

) be the row and column scaling respectively. Let

D = (di) =
√

DrDc. Then DAD is a symmetrically scaled matrix that satisfies the MC64

constraints.

Proof: The entry of |DAD| in position (i, j) is

|didjaij| =
√

|dri
dcj

aij|
√

|drj
dci

aji| ≤ 1

because it is the square root of the product of two entries of |DrADc|. Let σ be the

column permutation associated with M. Thus, for all i, |dri
dcσ(i)

aiσ(i)| = 1. Let λi =

|dci
drσ(i)

aiσ(i)| = |dci
drσ(i)

aσ(i)i|. ∀i, λi ≤ 1 because it corresponds to an entry of |DrADc|.
Then

∏

1≤i≤n

λi =

[

∏

1≤i≤n

dri

] [

∏

1≤i≤n

dci

] [

∏

1≤i≤n

aiσ(i)

]

=
∏

1≤i≤n

(dri
dcσ(i)

aiσ(i)) = 1,

where we exchange the terms in the products to get the product of the scaled terms in the

MC64 maximum matching. That is, the product of the numbers, λi, each of which is less

than or equal to one, is one, so that λi = 1, ∀i and so

∀i, |didσ(i)aiσ(i)|2 = |dri
dcσ(i)

aiσ(i)||drσ(i)
dci

aiσ(i)| = 1× λi = 1.

�

4.2.3 Structurally singular matrices?

Structurally singular matrices are quite common in optimization. The notion of a

maximum weighted matching with the product metric is not well defined for MC64. All

the maximum matchings of MC64 will have zero weight. Moreover, it is impossible to find

scaling factors that satisfy the MC64 constraints for structurally singular matrices (it is

impossible to find a permutation σ that satisfies the relation of Definition 4.1).

Suppose that the weight of a matching on a structurally singular matrix is given by

the product of the absolute values of the matched entries (which are nonzeros). Then we

7



can define a maximum weighted matching on a structurally singular matrix as a matching

of maximum weight among the matchings of maximum size. We did not modify the MC64

code to get this kind of matching, but we used a less complicated algorithm to get an

approximation to a maximum weighted matching. We first apply MC64 to A and we get a

maximum matchingM. Then we extract a structurally nonsingular symmetric submatrix

Ã from A using Property 4.2. We then apply MC64 this time to Ã.

1 1

22

3 3

4 4

1 1

22

3 3

4 4

(a) Example of even maximum open path.

1 1

22

3 3

4 4

5 5

I I

1 1

22

3 3

4 4

5 5

J

I

(b) Example of odd maximum open path.

Figure 4.1: Maximum open paths. Bold edges are edges of the matching. Dashed lines

represent the diagonal of the matrix that may not be entries.

Property 4.2 Let A be a symmetric matrix and letM = I ⊗J be a maximum matching

of A. The restriction of A to I × I is structurally nonsingular.

Proof: We define the bipartite graph G = (R, C, E) where aij 6= 0 if and only if (iR, jC) ∈
E. The notation R (resp. C) will be added to a set of indices when we want to explicitly

mention that it refers to a set of rows (resp. columns) included in R (resp. in C). A path

in this graph from i1 to ik is defined by a sequence (i1, . . . , ik) where (iRt , iCt+1)t=1,...,k−1 ∈ E.

This path is a cycle if ik ≡ i1. By definition, the length of this path is k. We can similarly

define a path using the maximum matching M ⊂ E where (iRt , iCt+1)t=1,...,k−1 ∈ M. A

maximum open path of the matching is defined as a path (i1, . . . , ik) where there are no

v such that (vR, iC1) ∈ M or (iRk , vC) ∈ M. All matching edges are either in cycles or in

maximum open paths.

The length of a maximum open path must be odd since, if it were even the

symmetry of the matrix would allow us to extend the matching by using the edges

(iR1 , iC2), (i
R
2 , iC1), (i

R
3 , iC4), (i

R
4 , iC3) . . . , (iRk−1, i

C
k), (i

R
k , iCk−1) thus contradicting that we have a

maximum matching. Figure 4.1.a shows this extension for k = 4.

We now construct a maximum matching on IR × IC of the same cardinality as that

on IR × J C. Clearly any cycle gives corresponding matching edges in IR × IC . Consider

a maximum open path (i1, . . . , ik), i1, . . . , ik−1 ∈ I, ik ∈ J \ I. Then we can replace the

matching edges corresponding to this path by (iR1 , iC2), (i
R
2 , iC1), . . . , (i

R
k−2, i

C
k−1), (i

R
k−1, i

C
k−2)

all of whose end points are in I. It is illustrated by the example in Figure 4.1.b for k = 5.

8



This then gives us a maximum matching on I × I of cardinality |I|. �

We relax the MC64 constraints on the scaling. Let Dr and Dc be the scaling factors

returned by MC64 on Ã. We build D so that if i corresponds to an index of Ã, di =
√

dri
dci

,

otherwise

di =
1

maxk∈index(Ã) |aikdk|
with the convention

1

0
= 1.

Note that the entries of |DAD| are less than 1 and entries in the matching are 1. Moreover

the maximum entry in absolute value in each non-empty row/column is 1.

4.3 Influence of scaling

It is important to note that scaling does not change the pivot order returned by the

analysis but changes the selection of the numerically stable 1×1 and 2×2 pivots during

the factorization. Scaling can have a profound effect on the subsequent factorization. A

good scaling can avoid many numerical difficulties whereas a bad scaling can actually cause

numerical problems, can produce a lot of delayed pivots when not necessary, can increase

the memory requirements, and can consequently severely slow down the factorization.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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(a) Set 1.
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(b) Set 2.

Figure 4.2: Profile showing influence of scaling on CPU factorization time (AMD ordering).

On sets 1 and 2, the approach without any scaling (No Scaling) fails on 6 matrices,

the approaches using MC30, MC77inf, MC77one and MC64SYM fail on 3, 3, 1 and 1 matrices

respectively (see Table 4.1). The use of scaling thus improves the robustness of the MA57

factorization in terms of the number of successful computations. Table 4.1 shows that

most of the time failures are due to numerical pivoting which increases the CPU time and

memory requirement (CPU and MEM failures). It seems difficult to get a good solution

for the BRATU3D problem, except with the MC77one scaling. Figure 4.2 compares the

influence of the different scalings on the CPU factorization time of MA57 on sets 1 and 2.

On set 2 (Figure 4.2.b), the MC30 scaling degrades the MA57 performance, whereas the

other scalings have a positive effect on these general indefinite matrices. The negative
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(b) Total number of operations profile.

Figure 4.3: Profile showing influence of the scaling on memory and number of operations

for the factorization (Sets 1 and 2 together).

effect of MC30 on indefinite problems has also been observed by Gould and Scott (2003).

Contrary to the other scalings (MC64, MC77), MC30 does not take into account structural

information when doing the scaling and uniformly tries to scale all entries to be as close to

one as possible. We suspect that the structural decision of the analysis is less compatible

with the MC30 scaling. This difference can provide a partial answer about the degradation

of performance when using MC30 scaling. We recommend that the MC30 scaling is not used

on symmetric indefinite problems. Furthermore, the MC64SYM scaling seems to be the most

robust scaling on this set (the MC77inf approach is also good but only for 95% of the time,

whereas the MC64SYM scaling is within a factor of 1.17 of the best on 100% of the problems).

MC64SYM and MC77one have a similar behaviour on the augmented systems and are slightly

better than MC77inf (see Figure 4.2.a).

The CPU factorization times in Figure 4.2 are linked with the number of operations

(Figure 4.3.b), the memory used (Figure 4.3.a) and the number of delayed pivots.

Figure 4.4.a shows that the number of delayed pivots is sometimes very large when using the

MC30 scaling. The average behaviour of MA57 using the MC30 scaling is similar to applying no

scaling. We show in Figure 4.4.b the ratio between the memory used by the factorization

and the memory predicted by the analysis. This indicates that the memory predictions

of the analysis are sometimes not respected. It also indicates that most of the numerical

problems appear on set 1 (to the left of the vertical line). Indeed there are no problems in

set 2 over the 20% limit. If we allocate only 50% more memory than recommended by the

analysis instead of 4 GBytes, we would have 7 additional failures with the MC64SYM and

MC77one scalings (points above the highest horizontal dotted line in Figure 4.4.a).

Table 4.1 summarizes the MC64SYM, MC77inf or MC77one scaling impact on the

factorization of symmetric indefinite problems. Using the MC64SYM scaling, we get infinite

speedup on 5 problems, a speedup greater than 5 on 7 matrices, a speedup of between 2

and 5 on two matrices. This approach is faster than no scaling on 30 matrices and on 9
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Figure 4.4: Profile showing influence of scaling on number of delayed pivots and memory

(AMD ordering).

others it never exceeds the factorization time for no scaling by a factor of more than 1.25.

We see also that on set 2, the MC77one scaling has problems whereas MC64SYM does not (see

the c-68 and c-71 matrices). As mentioned before, on set 2, the same order of speedup is

obtained with the MC77inf scaling even if it is less robust in terms of the number of failures.

It may be interesting to use the MC77inf scaling on the set 2 and the MC77one scaling on

the set 1 because they have a comparable influence on the factorization and are less costly

to compute (see Table 4.1). Nevertheless, MC64SYM remains competitive. Firstly, because

the maximum number of iterations of MC77 has been set to 20 in our experiments and the

norms of the rows and columns may still be far from 1 (for example with MC77one on the

set 2). A safe approach with MC77 could be to check the convergence every 20 steps and

continue iterating until we are close to the limit. It would involve an additional cost that

is not included in Table 4.1. On the contrary, when MC64SYM has finished, it guarantees

that our scaled matrix satisfies Property 4.1. Secondly, because the scaling time has to

be considered relative to the factorization time, Table 4.1 shows that the MC64SYM cost is

usually compensated for by the gain in factorization time.

In the rest of this paper, we try to improve the CPU factorization time and to

obtain a better behaviour with respect to other criteria (for example, the quality of the

memory prediction). A first way of improving the MA57 factorization comes from using

other orderings (MeTiS and AMF) to decrease the fill-in, the memory and the number of

operations. A second way is to influence a priori the ordering with numerical and structural

information about the 2×2 pivots. The main goal of this approach is to preselect the

pivots that will be effectively used during the factorization and thus decrease the number

11



Matrix No Scaling MC77inf MC77one MC64SYM

Facto Facto Scal Facto Scal Facto Scal

Augmented systems (set 1)

BLOWEYA CPU 0.08 0.04 0.09 0.04 0.08 0.03

BRATU3D PREC PREC – 77.6 0.06 PREC –

NCVXQP1 108. 13.6 0.03 19.3 0.01 12.8 0.43

NCVXQP5 MEM 138. 0.19 140. 0.18 139. 2.94

NCVXQP7 MEM MEM – CPU – 1307 21.9

bloweybl CPU 0.06 0.03 0.08 0.04 0.06 0.03

cvxqp3 263. 30.6 0.03 37.0 0.04 37.0 0.94

stokes128 2.03 0.81 0.21 0.79 0.16 0.81 0.29

stokes64 0.18 0.14 0.04 0.14 0.01 0.13 0.06

tuma2 0.08 0.08 0.01 0.06 0.01 0.04 0.01

TOTAL solved 18/23 21/23 22/23 22/23

General symmetric indefinite (set 2)

BOYD1 CPU CPU – 39.9 0.44 33.9 14.8

c-68 24.5 23.1 0.29 28.5 0.21 22.2 0.13

c-71 76.4 76.2 0.48 108. 0.29 76.4 0.28

vibrobox 1.66 1.26 0.04 1.29 0.06 1.28 0.03

TOTAL solved 15/16 15/16 16/16 16/16

Table 4.1: Factorization time (columns Facto) and scaling time (columns Scal). Times

in seconds. AMD ordering used. Number of steps for MC77 set to 20. CPU: the maximum

CPU time exceeded. MEM: MA57 ran out of memory. PREC: problem in precision of the

solution.

of delayed pivots. As MC64 is used in the approach that tries to answer the second point (ie

the use of the MC64SYM scaling does not involve additional computation) and as the MC64SYM

scaling seems to be a robust approach on both sets. We will systematically use this scaling

in the remainder of this paper. From now on, A will refer to the matrix symmetrically

scaled by MC64SYM (its entries are in [−1, 1]).

5 Ordering and weighted matching

In this section, we present ordering approaches that aim at decreasing fill-in in the factors

and at preselecting good pivots during the analysis. Thus we are interested in an algorithm

that gives us a good approximation about what will happen during the factorization and

that does not generate too much fill-in in the factors. We will first discuss our choices in

Section 5.1. Then we present our different approaches.
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The matrix

A33(x) =



















0 1 1 x 0 0

1 0 1 0 0 0

1 1 0 0 0 0

x 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0



















that has two 3×3 cycles with edges of weight 1 will be used in this section to illustrate our

discussions.

5.1 Symmetric maximum weighted matching

In the unsymmetric case, a maximum weighted matching of the bipartite graph

associated with the matrix is computed to put large entries onto the diagonal of the

permuted matrix. A natural way of adapting this to the symmetric case is to search

for a symmetric maximum weighted matching, M (a maximum weighted matching

such that if (i, j) is in M then (j, i) is in M). Property 5.1 presents a method to get a

symmetric maximum weighted matching. We will then explain why we decided not to use

this method and to build only an approximation of it using the MC64 maximum weighted

matching. The fact that using MC64 may not return the optimum can be seen in the example

A33(10−1). MC64 returns the matching M = {(1, 2), (2, 3), (3, 1), (4, 5), (5, 6), (6, 4)} where

we use the convention that, on a bipartite graph, the first index of an edge corresponds to

a row vertex and the second index to a column vertex. However, the symmetric maximum

weighted matching is Mopt
s = {(1, 4), (4, 1), (2, 3), (2, 3), (6, 5), (5, 6)}. It is impossible to

build Mopt
s using only information inM because (1, 4) does not appear in it.

Property 5.1 The problem of finding a symmetric maximum weighted matching is

equivalent to the problem of finding a maximum weighted matching on an undirected graph.

Proof: Let GA = (VA, EA) be a weighted graph associated with the symmetric matrix A.

Note that it is not a bipartite graph. We first define an undirected graph G with twice the

number of vertices as GA.

1 2 3X
XX

X
X

0
0

0 0
A =

4 5 6

1 2 3

c1

r1 r2 r3

c3c2

GA G bipartite graph of A

Figure 5.1: Computation of a symmetric maximum weighted matching using a maximum

weighted matching on an undirected graph. Bold edges correspond to matching entries.
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Let

V ′
A = {i + n such that i ∈ VA},

E ′
A = {(i + n, j + n) with weight |aij| such that (i, j) ∈ EA}

and Ediag = {(i, i + n) with weight |aii| such that i ∈ VA and aii 6= 0}.

Then G = (VA∪V ′
A, EA∪E ′

A∪Ediag) is the required weighted undirected graph. Figure 5.1

illustrates this construction on a small 3×3 example. Note that although G is not bipartite,

there is a simple correspondence between this undirected graph and the bipartite graph of

A. LetM0 be a maximum weighted matching on G. M0 can be split into three parts:

S1 = M0 ∩ EA,

S2 = M0 ∩ E ′
A

and Sd = M0 ∩ Ediag.

We have ω(S1) = ω(S2) (ω as defined in Section 4.2.1), otherwise M0 would not be a

maximum weighted matching (because for example if ω(S1) > ω(S2) then the matching

M1 below has larger weight than M0). M1 = S1 ∪ S ′
1 ∪ Sd is a maximum weighted

matching on G where

S ′
1 = {(i + n, j + n) such that (i, j) ∈ S1}.

Let

Ms = {(i, j) such that (i, j) ∈ S1 or (j, i) ∈ S1 or (i = j and (i, j + n) ∈ Sd)},

be a symmetric matching on the bipartite graph of A. Suppose for the purpose of deriving

a contradiction that Ms is not a symmetric maximum weighted matching, and let Mopt

be a symmetric maximum matching on the bipartite graph such that ω(Mopt) > ω(Ms).

We can build the matching

M2 = {(i, j) such that (i, j) ∈ Mopt and i 6= j} ∪
{(i + n, j + n) such that (i, j) ∈ Mopt and i 6= j} ∪
{(i, i + n) such that (i, i) ∈ Mopt}.

so that ω(M2) > ω(M0) giving us a contradiction. Thus, Ms is a symmetric maximum

weighted matching on the bipartite graph of A and solving the problem of the maximum

weighted matching on a non-bipartite graph, enables us to solve the problem of the

symmetric maximum weighted matching.

Conversely, if we solve the problem of finding a symmetric maximum weighted

matching on the bipartite graph of A, using the same kind of transformations as before,

14



we have the solution of the problem of the maximum weighted matching on the non-

bipartite graph of A. �

Property 5.1 gives us a way of computing a symmetric maximum weighted matching

and says that the complexity of this problem is of the same order as the complexity

of the computation of the maximum weighted matching on a graph with the same

number of vertices and with the same number of edges as in the bipartite graph of A.

Solving the problem of the maximum matching on a non-bipartite graph is much more

complicated than on a bipartite one. A solution to this difficult problem has been found

by Edmonds(1965a, 1965b) and its complexity was bounded by O(n4). This complexity

bound was later decreased to O(nnz(A)n log n).

Nevertheless, we will not use Property 5.1 to find good 1×1 and 2×2 pivots. We prefer

to find an approximation to the symmetric maximum matching using information returned

by MC64 for the following reasons:

- We want a preprocessing with reasonable complexity with respect to the rest of the

analysis and the factorization.

- We do not know an efficient available code for using 5.1.

- In the unsymmetric case, MC64 has a complexity in the worst case of O(nnz(A)n)

and in practice has a better average behaviour.

- Using MC64 enables us to compute both the MC64SYM scaling and an approximation of

a symmetric maximum weighted matching in linear time. We get two complementary

preprocessings for the cost of one.

That is why we decided to have a weaker formulation of the problem – we want to find

a symmetric weighted matching that is not too far from the optimum – and to use the

maximum matching technique on weighted bipartite graphs. Pralet (2004) shows that,

on 33 matrices out of the 39 in our test set, a solution to the weak formulation leads

to a solution of the symmetric maximum weighted matching. Pralet (2004) also gives

theoretical bounds as to how far this formulation can be from the symmetric maximum

matching.

5.2 Selection of 2 x 2 pivots and symmetric weighted matchings

MC64 is first used to compute a maximum weighted matchingM. This will normally have

many entries that are not on the diagonal of A. Any diagonal entries that are in the

matching are immediately considered as potential 1×1 pivots and are held in a setM1×1.

We then build a setM2×2 of potential 2×2 pivots. We use the 2×2 pivot selection strategy

suggested by Duff and Gilbert (2002), but with a structural metric instead of a numerical

criterion. The basis for this strategy is to express the computed permutation, σ, in terms

of its component cycles. Because of the scaling, all the entries in the cycles of σ are 1 in

15



M

M

M

M

M

2nd choice of 2x2

1st choice of 2x2

matched entries

(a) Example of selection of 2×2 pivots in

an even cycle.
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(b) Example of selection of 2×2 pivots in

an odd cycle.

Figure 5.2: Selection of 2×2 pivots and cycles.

absolute value so we choose a structural criterion to select the potential 2×2 pivots. Cycles

of length 1 correspond to a matching on the diagonal. k 2×2 pivots can be extracted from

even cycles of length 2k or from odd cycles of length 2k + 1. For even cycles there are

only two possibilities of extraction (see the example in Figure 5.2.a) and for odd cycles of

length 2k + 1 there are 2k + 1 possible combinations of 2×2 pivots (see the example in

Figure 5.2.b). To resolve the ambiguity present in Figures 5.2 and particularly 5.2.b, for

each cycle in σ, we take 2×2 pivots such that the sequence of 2×2 pivots (ik, jk) maximizes
∏

metric(ik, jk) where metric(ik, jk) = |Rowik ∩ Rowjk
|/|Rowik ∪ Rowjk

|. This selection

can be done in O(cn) where O(c) bounds the computation of the metric of each 2×2 pivot

(see Pralet, 2004).
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Figure 5.3: Length of MC64 paths.

At the end of this M2×2 computation, we add to M1×1 the nonzero diagonal entries

that were not selected during the pass over odd cycles. We define Ms as M1×1 ∪M2×2

corresponding to a symmetric matching obtained fromM. We note thatM1×1∩M2×2 = ∅.
Let Mc

s be the set {(i, i) such that i does not belong to any pivots inMs}, that is the

complementary set toMs. It may be non-empty because of odd cycles with zero diagonals.
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In practice, we note that this set is small (Mc
s = ∅ on all the matrices of sets 1 and 2

except the structurally singular ones). Thus we will not investigate approaches to increase

the size ofMs further.

In practice, most of the cycles from the MC64 permutation are of length 1 or 2. On our

test matrices, 55% of the cycles are of length 1, 41% are of length 2 and less than 4% have

a length greater than 2. We illustrate this in Figure 5.3 where we show the total number

of paths of varying lengths for runs over all of our test matrices. That is why we will not

try different structural criteria to select the 2×2 pivots.

5.3 Coupling detected pivots and orderings

5.3.1 Ordering on the compressed graph

LetM be a maximum matching on A from which we have obtained a set of 1×1 and 2×2

candidate pivots, Ms. The undirected graph G associated with the matrix A has a set of

vertices VA, corresponding to the rows (and columns) of A and a set of unordered edges

EA, where the unordered pair (i, j) ∈ EA if and only if aij 6= 0.

We define R, the reduced matrix of A relative to Ms as the square matrix of

order the number of pivots in Ms whose associated undirected graph will be referred to

as the compressed graph (it is a generalization of the compressed graph of Ashcraft

(1995) who only compress indistinguishable vertices). Each of its vertices Ii is weighted

and either associated with a row/column of A corresponding to a candidate 1×1 pivot

(weight of 1) or a pair of rows/columns (ik, il) corresponding to a candidate 2×2 pivot

(weight of 2). The edge set ER consists of the unordered pairs (Ii, Ij) where there exists

an edge in EA between one of the constituent vertices of Ii and one of the constituent

vertices of Ij. In other words, the candidate 2× 2 pivots of Ms are compressed into

one vertex and the union of their adjacency defines the adjacency of the new vertex.

The weight of the vertices will be used to initialize the size of the supervariables and to

compute the appropriate metric. For example, the external degree of a supervariable i

will be initialized to ext deg(i) =
∑

j∈Adj(i) |j|, where Adj(i) is the set of vertices adjacent

to i in the compressed graph and |j| is the weight of the vertex j. Obviously, when two

supervariables i and j are merged – either in the phase of supervariable detection for a

greedy ordering or in the coarsening phase for a partitioning, they form a new supervariable

of size |i|+ |j|. Note that the rows/columns of A that are not represented in Ms will not

be represented in the reduced matrix.

Algorithm 1 Main steps of the ordering on the compressed graph.

1 Apply a symmetric MC64 scaling and getMs.

2 Compute R, a reduced matrix of A relative toMs.

3 Set Pred, the symmetric permutation returned by an ordering on R.

4 Compute Paug, an extension of Pred relative toMs.

5 Put the components ofMc
s in the last positions.
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Let Pred be a symmetric permutation on R. Then it is easy to extend Pred to a

permutation Paug on A by expanding each component corresponding to a 2×2 composite

node to the two rows/columns of A associated with that composite node and by putting

the rows/columns of A that were not represented in R (Mc
s entries) at the end of

this permutation. This ensures that zero pivots in Mc
s will be filled by the previous

eliminations if we assume that no numerical cancellation occurs and the matrix is

structurally nonsingular. Clearly this expansion can be done in a single pass through

Pred. Note that Paug is not unique: firstly, when a node corresponding to a 2×2 pivot

(i, j) is expanded, we have the choice of taking i or j first in Paug; secondly, when we visit

the entries in Mc
s, there is no a priori order for placing them in Paug. This approach

on the compressed graph generates an ordering that is expected to have preselected good

numerical pivots. Algorithm 1 summarizes the main steps of this preprocessing.

To illustrate the compression and the expansion, let us take the following matrices:

A =















2 −1 1 0 0

−1 2 0 0 0

1 0 0 2 1

0 0 2 0 1

0 0 1 1 0















and R =





1 X X

X 1 0

X 0 2



 .

In A, we detect a 2×2 pivot in rows/columns 3 and 4 and two 1x1 pivots on the diagonal.

We haveMs = {(1, 1), (2, 2), (3, 4)/(4, 3)} andMc
s = {(5, 5)}. R is a reduced matrix of A

relative toMs where row/column 3 corresponds to the 2×2 pivot. If Pred = [3, 2, 1] then

Paug = [3, 4, 2, 1, 5] or [4, 3, 2, 1, 5] is an expansion of Pred.

5.3.2 Constrained ordering

The main principle of the orderings presented in this section and Section 5.3.3 is to relax

the above preselection of the 2×2 pivots by splitting some of them into two 1×1 pivots before

the compression. Moreover, when there is a danger of making a bad numerical decision, we

will add some dependency about the precedence between some of the 1×1 pivots coming

from split 2×2 pivots. We will propose an algorithm that can be implemented in the

context of orderings based on local heuristics such as AMD or AMF.

For each 2×2 pivot, Pij =

(

aii aij

aij ajj

)

, with (i, j) ordered such that |aii| ≥ |ajj| and

with |aij| = 1, i is said to be the leading variable and j, the trailing variable. Let

θ ∈ [0, 1] be a real constant. Pij is said to be :

a locked pivot according to θ if and only if |aii| ≤ θ and |ajj| ≤ θ,

a constrained pivot if and only if |aii| > θ and |ajj| ≤ θ,

a splittable pivot if and only if |aii| > θ and |ajj| > θ.
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The set of MC64SYM detected 2×2 pivots is separated into three sets, LPθ, CPθ and SPθ,

the set of locked pivots, constrained pivots and splittable pivots respectively. Note that

when θ = 0, locked pivots correspond to oxo pivots (two zeros on the diagonal), constrained

pivots to tile pivots (one zero on the diagonal) and splittable pivots to full 2×2 pivots.

When θ = 1, none of the 2×2 pivots is split and the ordering will behave as the ordering

on the compressed graph. The more θ decreases, the more pivots are split and the more

the risks of making a bad decision increase. In the rest of our discussion, we will omit the

θ from our notation.

During the ordering, we manipulate two kinds of (super)variables, free

(super)variables and constrained (super)variables. At the beginning of the ordering,

a supervariable i is said to be a free supervariable if and only if i belongs to a splittable

pivot, or is the leading variable of a constrained pivot, or belongs to M1×1, or is a locked

pivot, and a supervariable i is said to be a constrained supervariable if and only if i appears

as the trailing variable of a constrained pivot.

During the pivot selection, there are two main rules:

(R1) a free supervariable can be eliminated whenever we want (it does not depend on the

elimination of another one),

(R2) a constrained supervariable can be eliminated if and only if a free pivot with which

it is associated has already been eliminated.

The second rule is equivalent to marking constrained supervariables as free as soon as (R2)

is satisfied. Thus, during the ordering, constrained supervariables can become free. If i

is the leading variable of a constrained 2×2 pivot, we will say that i releases j where

j is the variable associated with i in this pivot (it is a sufficient condition to make the

supervariable j free). The free supervariables that correspond to entries in M1×1 or to

locked pivots can be eliminated but do not release any constrained supervariables.

At each step of the ordering, FV and CV will be used to denote respectively the set of

supervariables that can be eliminated and the set of pivots which cannot be eliminated. For

each free supervariable i belonging to a constrained pivot, we define ass(i), its associated

constrained supervariable. For other supervariables ass(i) = ∅.

Algorithm 2 Constrained ordering scheme.

Determine free and constrained supervariables according toMs.

CV ← { constrained supervariables } and FV ← { free supervariables }.
while there are uneliminated supervariables do

i← arg minp∈FV metric(p)

Do symbolic elimination of i.

FV ← (FV ∪ {ass(i)}) \ {i}
CV ← CV \ {ass(i)}

end while
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Algorithm 2 describes our constrained ordering. At each step of the symbolic

elimination, we select the best pivot in the set FV . Moreover, when the leading

supervariable of a constrained pivot is selected, its associated constrained supervariable

is released (it is inserted in the FV set and removed from the CV set). Intuitively, if

the leading part of a constrained pivot is eliminated then it is possible that the modified

value of the trailing supervariable becomes large because our scaling ensures that apq = 1

and app ≤ 1, and thus that the corresponding entry becomes numerically acceptable.

This constrained ordering has been implemented with the AMD and AMF orderings. As in

the ordering on the compressed graph, we put the variables in Mc
s at the end of the

permutation.

5.3.3 Relaxation of constrained ordering

Algorithm 3 Relaxed constrained ordering scheme.

Define the free supervariables and the constrained supervariables according to the

constraint matrix C andMs.

CV ← { constrained supervariables } and FV ← { free supervariables }.
while there are uneliminated supervariables do

i← arg minp∈FV metric(p)

Do symbolic elimination of i

FV ← (FV ∪ Ci.) \ {i}
CV ← CV \ Ci.

end while

This approach uses the same terminology as the previous one. Here we relax the

selection of the pivots, that is we enlarge the set of free pivots. We fix a dropping threshold

θdrop ∈ [0, 1] and build a matrix C = (cij) that is called the constraint matrix. This

matrix together with Ms will be used to define the constrained and free supervariables

and the relations between them (who releases whom). Firstly the row and column of C

that correspond to indices that appear in locked pivots are set to 0. Then the rest of the

entries cij of the constrained matrix are set to 1 if and only if aij ≥ θdrop, otherwise they

are set to 0. C describes the dependency among the free and constrained supervariables:

i can release j if and only if cij 6= 0. The above construction prevents a locked pivot from

releasing a constrained supervariable.

Let Ci. be the ith row of C that intersects the current reduced matrix of the Gaussian

elimination. Each nonzero off-diagonal entry of C defines a potential 2× 2 pivot. A

supervariable i is free if and only if it appears in the indices of a potential splittable pivot

in C or it is the leading variable of a potential constrained pivot in C or it corresponds

to an entry in M1×1 or it is a locked pivot. Here again the supervariables of M1×1 and

the locked pivots are systematically included in the set of free variables. During the

ordering, a constrained pivot j can be selected if and only if it is reachable from eliminated
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supervariables in C. In other words it is possible that it has been updated by large enough

entries.

Algorithm 3 describes this approach. At each step, the entries in CV that satisfy the

above condition are added to FV . We have implemented both the constrained and the

relaxed constrained approaches with an AMD/AMF ordering, where small changes are made to

allow supervariable detection and locked pivot supervariables are initialized with a weight

of 2. The total overhead of the manipulation of these sets is O(nnz(C)) which is negligible

with respect to the total complexity of the ordering (O(n× nnz(A))).

We have presented two alternatives to the ordering based on the compressed graph:

a constrained ordering and a relaxed constrained ordering. We expect to have less fill-

in using the (relaxed) constrained ordering than using the ordering on the compressed

graph. However, we expect that the prediction of the ordering on the compressed graph

will be more exact than the prediction of the (relaxed) constrained ordering where there

is a greater risk of making a bad numerical decision. We will see in Section 6 that these

intuitions are verified and that the constrained and the relaxed constrained ordering have

a similar behaviour.

6 Experimental results

We now consider the effect of our pivoting strategies on MA57. We have four approaches

from the above strategies.

• MA57 1 refers to the approach using the MC64SYM scaling coupled with an ordering

which can be AMD, AMF or MeTiS.

• MA57 2 refers to the approach using the MC64SYM scaling, the preselection of the

2×2 pivots and the ordering (AMD, AMF or MeTiS) based on the compressed graph

(Section 5.3.1).

• MA57 3 refers to the approach using the MC64SYM scaling, the preselection of the

2×2 pivots and the constrained ordering scheme (Section 5.3.2). This strategy is

compatible with AMD or AMF.

• MA57 4 refers to the approach using the MC64SYM scaling, the preselection of the 2×2

pivots and the relaxed constrained ordering scheme (Section 5.3.3). This strategy is

compatible with AMD or AMF.

MeTiS is called using the routine METIS NodeWND in the MA57 2 approach and using the

routine METIS NodeND in the MA57 1 approach. In MA57 3 and MA57 4, a threshold of 10−2 is

used to determine if the diagonal entries correspond to free variables. We tested different

values and remark that increasing it from 10−2 degrades the fill-in returned by the ordering

(there are too many constraints and not enough free variables), and that decreasing it too

much from 10−2 degrades the memory prediction (on some matrices it did not guarantee
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good numerical pivots) and did not significantly decrease the fill-in and the number of

operations. In MA57 4, a threshold of 0.9 is used to determine the constraint matrix. Here

also, we tested different values with the same conclusions as above.

6.1 General symmetric indefinite matrices (set 2)
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Figure 6.1: AMD, AMF, MeTiS comparison (set 2). The MC64SYM scaling is used.
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Figure 6.2: CPU factorization time and memory (MeTiS, set 2).

We first determine the best approach on set 2. We will only give details about results

for the MeTiS based ordering for three reasons.

Firstly, MeTiS is clearly better than AMD and AMF in terms of CPU factorization time

(see Figure 6.1.a) and memory (see Figure 6.1.b).

Secondly, in other experiments reported in Pralet (2004), the relative behaviour between

AMD+MA57 1 and AMD+MA57 2 and between AMF+MA57 1 and AMF+MA57 2 are similar to the

relative behaviour between MeTiS+MA57 1 and MeTiS+MA57 2.
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Finally, on this set, we noticed that in early experiments (Pralet 2004) the constrained

ordering of Section 5.3.2 and the relaxed constrained ordering of Section 5.3.3 do not

significantly improve the CPU factorization time and do not decrease the size of the factors

compared with the approach on the compressed graph (Section 5.3.1). On the contrary,

we will see in the next section that they clearly improve the factorization on set 2.

Figure 6.2.a shows that MA57 1 is faster than MA57 2 on set 1. This execution time

difference is due to the fill-in and the number of operations. Indeed, the approach on the

compressed graph merges some rows of the initial matrix and the MeTiS ordering is called

on a coarsened graph. Thus, the MA57 2 pretreatment implies non-negligible constraints on

the ordering because of the a priori selection of the 2×2 pivots. These constraints severely

degrade the quality of the ordering. In particular, they increase the memory requirement

(see Figure 6.2.b).
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Figure 6.3: Quality of analysis prediction (MeTiS, set 2).

The MA57 2 analysis succeeds in selecting good pivots for the factorization and delays

fewer pivots than MA57 1 (see Figure 6.3.a). Furthermore, the memory estimation is

accurate for both approaches: the ratio between the predicted and the used memory

remains close to 1 (see Figure 6.3.b).

6.2 Augmented systems (set 1)

We will now study the behaviour of the MA57 factorization when it is coupled with the

three orderings AMD, AMF and MeTiS on set 1 of our test matrices. We will see that the

influence of our preprocessing depends on the ordering with which it is associated. We

first do relative comparisons between the four AMD based codes, between the two MeTiS
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based codes and between the four AMF based codes. Then we select the best approaches

and discuss them further.

6.2.1 AMD based approaches
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Figure 6.4: CPU factorization time and memory (AMD, set 1).

MA57 1, MA57 2 and MA57 4 fail on one matrix (they exceeded the CPU time limit

on NCVXQP7) but MA57 3 does not fail. Figure 6.4.a shows that, in terms of CPU

factorization time, MA57 1 is within a factor of 1.25 of the best 75% of the time, while

MA57 3 and MA57 4 are comparable.
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Figure 6.5: Number of floating-points operations (AMD, set 1).

MA57 2 can be far from the best ordering because of the constraints that we impose in

the analysis phase. That is why it performs more computation and needs more memory

than the other codes (see Figures 6.5.a and 6.4.b) and thus is also slower. MA57 3 and

MA57 4 do less operations than MA57 1. Thus the total number of operations cannot explain
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why MA57 1 is faster on 75% of the problems. Further examination shows that MA57 3

and MA57 4 perform more assembly operations (which are more costly than eliminations)

than MA57 1 (see Figure 6.5.b). Indeed the assembly operations involve indirect addressing

whereas elimination operations call level 3 BLAS dense kernels, so that assembly operations

are slower than eliminations, which explains why MA57 3 and MA57 4 are slower than MA57 1.
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Figure 6.6: Quality of analysis predictions (AMD, set 1).

The three new approaches clearly improve the reliability of the analysis predictions.

MA57 2 decreases the number of delayed pivots as shown in Figure 6.6.a. Moreover MA57 2,

MA57 3 and MA57 4 improve the memory estimations. If a relaxation parameter of 50% is

used between the analysis and the factorization the number of failures decreases from 8 to

1, 0 and 1 respectively. (see Figure 6.6.b).

With respect to the above aspects (CPU factorization time, memory, number of delayed

pivots and quality of the analysis prediction), MA57 3 seems to be the best if compromises

have to be done between CPU time and memory for an AMD based ordering (see Figure 6.7).

MA57 1 remains the fastest on most of the problems if a large fixed amount of memory can

be allocated for the factorization. That is why, concerning the AMD based ordering, we keep

the approach with only the MC64SYM scaling (MA57 1) and the approach with a constrained

ordering (MA57 3) for our final comparison.

6.2.2 MeTiS based approaches

When our approaches are coupled with MeTiS, we did not get any failures. Moreover,

MA57 1 is faster 85% of the time, but MA57 2 is not too far behind in terms of factorization

time and memory usage (see Figure 6.8.a and 6.8.b).

Figure 6.9 shows that MA57 1 does not give an accurate prediction for the subsequent
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Figure 6.7: CPU factorization time profile with relaxed memory (AMD, set 1).
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Figure 6.8: Influence on CPU factorization time and memory (MeTiS, set 1).

factorization. There are 10 and 6 matrices over the 20% and 50% limits respectively. This

can be explained by the huge number of delayed pivots (MA57 1 delays 10000 times more

pivots than MA57 2 in the worst cases, see Figure 6.9.a). On the contrary, MA57 2 exceeds

the 20% limit only once and otherwise the ratio between the memory predicted and the

memory needed is always close to one. This better memory estimation is clearly shown by

the profile of Figure 6.10 where MA57 2 is faster than MA57 1 with 20% memory relaxation.

With respect to the above comments, we keep the two MeTiS approaches for our final

comparison.

6.2.3 AMF based approaches

We observe a similar relative behaviour between MA57 1 and MA57 2 with an AMF based

ordering instead of an AMD based one. The main advantage of an AMF based ordering is
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Figure 6.9: Quality of analysis predictions (MeTiS, set 1).
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Figure 6.10: CPU factorization time profile with relaxed memory (MeTiS, set 1).

that MA57 3 and MA57 4 are not penalized by a large number of assembly operations. Thus

MA57 3 and MA57 4 are the fastest approaches (Figure 6.11.a) and need less memory than

the other approaches (Figures 6.11.b). Moreover they decrease the number of delayed

pivots (Figure 6.12.a) and improve the memory estimation (Figure 6.12.b). They decrease

the number of failures from seven with MA57 1 to none if 50% relaxation is used between

analysis and factorization. That is why they are also the best approaches in terms of CPU

factorization time with a fixed memory relaxation as shown in Figure 6.13. For AMF, we

keep only MA57 4 for our final comparison.
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Figure 6.11: Influence on CPU factorization time and memory (AMF, set 1).
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Figure 6.12: Quality of analysis predictions (AMF, set 1).

6.2.4 Best approaches discussion.

In this section, we discuss the best approach for the set 1. We have kept five codes for the

comparison because of the earlier discussion: MA57 1/3 with AMD, MA57 1/2 with MeTiS and

MA57 4 with AMF.

Figure 6.14 shows that the AMD based approaches are the slowest and the most memory

consuming. The pure MeTiS based approach is the best on most of the problems and

the two other approaches (MA57 2(MeTiS) and MA57 4(AMF)) are comparable. Figure 6.15

presents the factorization time if a relaxation parameter is used between analysis and

factorization. With 20% relaxation MA57 2(MeTiS) and MA57 4(AMF) are clearly the best
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Figure 6.13: CPU profile with relaxed memory (AMF, set 1).

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MA57_1(AMD)
MA57_3(AMD)
MA57_1(METIS)
MA57_2(METIS)
MA57_4(AMF)

(a) CPU factorization time profile.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MA57_1(AMD)
MA57_3(AMD)
MA57_1(METIS)
MA57_2(METIS)
MA57_4(AMF)

(b) Memory profile.

Figure 6.14: AMD/MeTiS/AMF comparison on set 1.

approaches (see Figure 6.15.a). With 50% relaxation MA57 1(MeTiS) is the fastest on many

problems and MA57 4(AMF) is the most robust (see Figure 6.15.b).

Thus, if a large amount of memory is available, the approach with only MC64SYM scaling

and MeTiS is sufficient. But, if the memory of the factorization needs to be estimated, we

recommend the use of the MA57 4+AMF approach.

7 Conclusions and future work

We have shown how MC64 can be used when the matrix is symmetric to effect a symmetric

scaling and identify potential 2×2 pivots. We have observed that the use of an appropriate

scaling (the MC64 symmetrized scaling, MC64SYM) solves many computational difficulties.

We also noticed that MC77 can sometimes be a good alternative and can benefit from its
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Figure 6.15: AMD/MeTiS/AMF comparison (set 1): CPU factorization time profile with

relaxed memory.

cheap cost. Perhaps this scaling has to be better understood before becoming a default

approach.

The performance of MA57 depends very much on the nature of the matrix, but we have

shown that it can benefit from this preprocessing, sometimes with no change, or only minor

changes to the analysis. Another benefit of our work is that the analysis phase gives a

better indication of the work and storage required by the subsequent factorization. In our

future work, we will try to answer the following questions.

How to decrease the fill-in in the MA57 2(MeTiS) analysis while keeping a stable

factorization? We have succeeded in decreasing the number of operations in AMD and

AMF with a (relaxed) constrained ordering. Fill-in may be lower if we extend this idea to

have a tighter coupling with MeTiS. It is not obvious how to do this, so this will be one of

our future research directions.

How can we adapt our approaches to a solver like MA47? Indeed, MA47 is designed for

augmented systems and will a priori do less computation, because it can better manage

the oxo and tile pivots.

How can we design a code with static 2×2 and 1×1 pivoting? Static pivoting can

address a large variety of problems in the unsymmetric case when it is coupled with MC64

preprocessing and has the advantage of giving exact memory estimation. It is also more

friendly for a parallel distributed implementation. Can we adapt the unsymmetric static

pivoting to the symmetric indefinite case and does it address a large range of symmetric

indefinite matrices?
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