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1 Introduction

In view of the other papers appearing in this volume, we will study only the solution of
linear equations

Az =b (1.1)

using direct methods based on a factorization of the coeflicient matrix A. We will consider
both the case when A is dense and when it is sparse although we will concentrate more
on the latter.

Although there are several ways to factorize a matrix, we will use the LU factorization

PAQ = LU, (1.2)

where P and Q) are permutation matrices, L is a unit lower triangular matrix, and U
is an upper triangular matrix. When A is a symmetric matrix, we use the analogous
factorization

PAPT = LDL”, (1.3)

where D is a diagonal matrix, or possibly block diagonal (with blocks of order 1 and 2) if
we want a stable factorization of an indefinite matrix [21].

We discuss the building blocks for both sparse and dense factorization in Section 2
and illustrate their use in dense factorization in Section 3. We then show how such
building blocks can be used in sparse factorization in Section 4 indicating how this has
revolutionized the performance of sparse codes. We discuss recent attempts to harness
the power of parallel computers in Section 5 before examining the current power and
limitations of direct methods in Section 6. We conclude with some remarks on the future
in Section 7.

A wide range of iterative, direct, and preconditioning techniques with an emphasis on
the exploitation of parallelism is considered at length in the recent book by Dongarra,
Duff, Sorensen, and van der Vorst [34]. A more recent bibliographic tour is presented by
Duff and van der Vorst [44].

2 Building blocks

A common feature of current high performance machines is that the main obstacle to
obtaining high performance is the bottleneck in getting data from the main memory to
the functional units. This is true whether they are built from custom-made silicon or
commodity chips and whether they are RISC processor workstations, pentium based PCs,
vector processors, or shared or distributed memory parallel computers. Most machines
use a high speed cache as a staging post. Data in this cache (many machines have multiple
caches usually organized hierarchically but here we talk about the highest level cache) can



be transferred at low latency and high bandwidth to the functional units but the amount
of data that can be stored in the cache is quite small (often less than one Mbyte).

This means that if we want to obtain high performance relative to the peak of the
machine, it is necessary to reuse data in the cache as much as possible to amortize the cost
of getting it to the cache from main memory. The most suitable and widely used kernels
for doing this are the Level 3 BLAS for O(n?) operations involving matrices of order n.
There are nine Level 3 BLAS kernels but the two that are most used in routines based on
LU factorization are the matrix-matrix multiplication routine _GEMM and the solution of a
block of right-hand sides by a triangular system, _TRSM, although the symmetric update
routine, _SYRK, can be used in a symmetric factorization.

Machine Peak _GEMM
Meiko CS2-HA 100 88
IBM SP2 266 232

Intel PARAGON 75 68
DEC Turbo Laser 600 450
CRAY C90 952 900
CRAY T3D 150 102

Table 2.1: Performance of _GEMM kernel in Mflop/s on a range of machines (single processor
performance). Matrices of order 500.

We show, in Table 2.1, the performance of the Level 3 BLAS kernel _GEMM on a range
of computers with various floating-point chips and memory organizations. In many cases,
this kernel attains about 90% or more of the peak performance of the chip and in every
case more than 66% of the peak is achieved.

These building blocks have been discussed in detail in the paper by Dongarra and
Eijkhout [32] so we do not discuss them further here other than to say that they can be
used in factorization algorithms so that asymptotically the floating-point operations are
all performed using these kernels.

3 Factorization of dense matrices

To some extent, the algorithm and code development for numerical linear algebra have
always been driven by developments in computer architectures. The first real library of
subroutines for linear algebra on dense matrices was developed in Algol by Wilkinson
and Reinsch [87]. These were used as the basis for the LINPACK project where a wide
range of software for solving dense systems of equations was developed in Fortran and

is described in the LINPACK book [30]. The LU factorization code has been used as a



basis for the benchmarking of computers with the latest results being available on the
World Wide Web [29]. The codes in the LINPACK package used Level 1 BLAS [68] and
were portable over a wide range of machines. Although the Level 1 BLAS were ostensibly
for vector operations, the LINPACK codes performed poorly on vector or cache-based
machines. This was addressed in the development of the LAPACK package for linear
algebra [14]. Codes in this package incorporated Level 2 and Level 3 BLAS ([31] and
[33] respectively) and had a much improved performance on modern architectures. Many
vendors of shared memory computers offer parallel versions of the BLAS and so, at this
level, parallelization is trivial. However, LAPACK was not designed for parallel machines
and, in particular, not for machines with distributed memory that use message passing to
communicate data. This last class of machines is targeted by the ongoing ScaLAPACK
project [19] that supports distributed computation using tools like the BLACS (Basic
Linear Algebra Communications Routines) [86].

Left-looking LU Right-looking LU Crout LU

Figure 3.1: Block variants of LU decomposition.

If we view the LU factorization in a blocked or partitioned way, it becomes relatively
simple to show how Level 3 BLAS can be used. We show a schematic of block
LU factorization in Figure 3.1. These diagrams represent a single block stage of the
factorization using three different approaches. Factorization operations are performed on
the hatched regions and access is required to the other regions shaded in the matrix. For
example, in the block right-looking LU factorization, the hatched block column is first
factorized using the Level 2 BLAS algorithm described in Figure 3.2, the hatched block
row of U is computed using the Level 3 BLAS kernel _TRSM and the shaded portion of the
matrix updated using the _GEMM kernel to multiply the hatched part of the block column
beneath the diagonal block with this newly computed block row of U. Algorithms of
this kind are the bases for the factorization routines within the LAPACK suite that are
discussed in the article by Dongarra and Eijkhout [32].

Recently, Gustavson and his collaborators [13, 58, 59] have developed a recursive way



For each column, j, of the rectangular matrix in turn do

Update the part of column j above the diagonal by solving a system
whose right-hand side is the corresponding part of the original column
and whose coefficient matrix is the lower triangular matrix from the
previously computed columns in the block, using the Level 2 BLAS
kernel _TRSV.

Update the lower part of column j by using the Level 2 BLAS kernel
_GEMV to multiply the rectangular matrix corresponding to rows j
to n and columns 1 to j — 1 with the newly computed vector (and
subtract this from the lower part of column j).

Choose the pivot from this newly computed lower part of column j,
swop its row with row j and scale the column below the diagonal.

enddo

Figure 3.2: Level 2 factorization of rectangular block

of looking at the factorizations which has the effect of increasing the proportion of Level
3 operations and avoids the necessity for choosing block sizes as in the abovementioned
block algorithms. The recursive approach can be thought of by looking at the factorization
at the halfway point so that the matrix can be partitioned as

A A
A =
l A A ]

where matrices Aj; and Agy are factorized. At this stage, a Level 3 type algorithm can
be used to update the blocks A1 and Ags, and Asg can then be factorized using a similar
recursive algorithm. Of course, the first block columns were also factorized recursively in
similar fashion. An added bonus of the recursive algorithm is that access to the blocks for
the Level 3 computations can be organized on contiguous data. For the earlier algorithms,
the leading dimension of the arrays corresponding to the blocks is not equal to the block
size. This is more noticeable in the recursive form of the Cholesky factorization.

4 Factorization of sparse matrices

The two main books discussing the direct solution of sparse linear equations are those
by George and Liu [50] and by Duff, Erisman, and Reid [39]. The former restricts



its discussion to symmetric positive definite systems and emphasizes graph theoretic
aspects, while the latter considers both symmetric and unsymmetric systems and includes
a discussion of some of the algorithms used in the Harwell Subroutine Library (HSL) [64].
The HSL has arguably the largest number of direct sparse codes in a single library and
has a few codes for iterative solution also. Information on this Library can be found in the
Web pages http://www.cse.clrc.ac.uk/Activity/HSL. A subset of HSL is marketed by
NAG as the Harwell Sparse Matrix Library (HSML). Other sparse direct software can be
found through the netlib repository http://wuw.netlib.org.

When factorizing sparse matrices, it is crucial that the permutation matrices of (1.2)
and (1.3) are chosen to preserve sparsity in the factors as well as to maintain stability
and many algorithms have been developed to achieve this. In the general unsymmetric
case, this leads to a need to compromise the numerical pivoting strategy in order to choose
pivots to limit the fill-in. A common strategy for limiting fill-in, due to Markowitz [72],
chooses entries so that the product of the number of other entries in the row and column
of the candidate pivot is minimized. An entry is accepted as a pivot only if it is within a
threshold of the largest in its column. The threshold is often an input parameter and a
typical value for it is 0.1. This Markowitz-threshold strategy and a range of other similar
possibilities are discussed in detail in [39]. Data structures are designed so that only the
nonzero entries of the matrix and of the factors need to be held. This, coupled with
the fact that it is often non-trivial to determine what part of the matrix is updated at
each pivot step, has led to complicated algorithms and codes that are hard to implement
efficiently on modern architectures [39].

In the symmetric case, the Markowitz analogue is minimum degree where one chooses
as pivot a diagonal entry with the least number of entries in its row. This criterion was
first proposed in 1967 [84] and has stood the test of time well. George [48] proposed
a different class of orderings based on a non-local strategy of dissection. In his nested
dissection approach, a set of nodes is selected to partition the graph, and this set is placed
at the end of the pivotal sequence. The subgraphs corresponding to the partitions are
themselves similarly partitioned and this process is nested with pivots being identified in
reverse order. Minimum degree, nested dissection and several other symmetric orderings
were included in the SPARSPAK package [49, 51]. Many experiments were performed
using the orderings in SPARSPAK and elsewhere, and the empirical experience at the
beginning of the 1990s indicated that minimum degree was the best ordering method for
general symmetric problems. We will return to this issue of ordering when we consider
parallelism in Section 5.

It is not immediately or intuitively apparent that the kernels discussed in Section 2 can
be used in the factorization of sparse matrices and indeed much of the work and heuristics
developed in the 1970s attempted to do just the opposite, namely to perform the basic
elimination operations on as sparse vectors as possible.

The most obvious way of using dense kernels in sparse factorization is to order the



sparse matrix so that its nonzero entries are clustered near the diagonal (called bandwidth
minimization) and then regard the matrix as banded, since zeros within the band soon
fill-in. However, this is normally too wasteful as even the high computational rate of the
Level 3 BLAS does not compensate for the extra work. A variable band format is used to
extend the range of applicability of this technique. A related, but more flexible scheme, is
the frontal method (for example, [36]) which owes its origin to computations using finite
elements. However, all these techniques require that the matrix can be ordered to obtain a
narrow band or frontwidth. Duff [35] gives several instances of how dense techniques can be
used in sparse factorizations including the then newly developed multifrontal techniques.
The principal advantage of multifrontal techniques over a (uni)frontal approach is that they
can be used in conjunction with any ordering scheme so that sparsity can be preserved.

A fundamental concept in sparse matrix factorization is an elitmination tree. The
elimination tree is defined for any sparse matrix whose sparsity pattern is symmetric. For
a sparse matrix of order n, the elimination tree is a tree on n nodes such that node j is
the father of node ¢ if entry (7,7), j > 4 is the first entry below the diagonal in column 7
of the lower triangular factor. An analogous graph for an unsymmetric patterned sparse
matrix is the directed acyclic graph [24, 54].

Sparse Cholesky factorization by columns can be represented by an elimination tree.
This can either be a left-looking (or fan-in) algorithm, where updates are performed on
each column in turn by all the previous columns that contribute to it, then the pivot
is chosen in that column and the multipliers calculated; or a right-looking (or fan-out)
algorithm where, as soon as the pivot is selected and multipliers calculated, that column
is immediately used to update all future columns that it modifies. The terms left-looking
and right-looking are discussed in detail in the book [34]. Either way, the dependency
of which columns update which columns is determined by the elimination tree. If each
node of the tree is associated with a column, a column can only be modified by columns
corresponding to nodes that are descendants of the corresponding node in the elimination
tree.

One approach to using higher level BLAS in sparse direct solvers is a generalization of
a sparse column factorization. Higher level BLAS can be used if columns with a common
sparsity pattern are considered together as a single block or supernode and algorithms
are termed column-supernode, supernode-column, and supernode-supernode depending
on whether target, source, or both are supernodes (for example, [27]).

An alternative to the supernodal approach for utilizing Level 3 BLAS within a sparse
direct code is a multifrontal technique [43]. In this approach, the nonzero entries of the
pivot row and column are held in the first row and column of a dense array and the outer-
product computation at that pivot step is computed within that dense submatrix. The
dense submatrix is called a frontal matriz. Now, if a second pivot can be chosen from
within this dense matrix (that is there are no nonzero entries in its row and column in
the sparse matrix that lie outside this frontal matrix), then the operations for this pivot



can again be performed within the frontal matrix. In order to facilitate this multiple
elimination within a frontal matrix, an assembly tree is preferred to an elimination tree
where, for example, chains of nodes are collapsed into a single node so that each node
can represent several eliminations. Indeed sometimes we artificially enlarge the frontal
matrices so that more pivots are chosen at each node and the Level 3 BLAS component is
higher. Thus the kernel of the multifrontal scheme can be represented by the computations

Fy1=L1U; (4.4)

and
Fég — Fo — F21U171L171F12. (4.5)

performed within the dense frontal matrix

Fi11 Fia
Fo1 Fpy |

The Schur complement, Fj, (4.5), is then sent to the parent node in the tree where it
is summed with contributions from the original matrix and the other children to form
another dense submatrix on which similar operations are performed at the father node.
The effectiveness of this approach on RISC based machines can be seen from the results
in Table 4.2 where the code MA41 is a multifrontal code in the HSL [8]. Here the overall
performance of the sparse code is always more than half that of the DGEMM kernel.

Computer Peak DGEMM MA41
DEC 3000/400 AXP 133 49 34
HP 715/64 128 55 30
IBM RS6000/750 125 101 64
IBM SP2 (Thin node) | 266 213 122
MEIKO CS2-HA 100 43 31

Table 4.2: Performance in Mflop/s of multifrontal code MA41 on matrix BCSSTK15, from
the Rutherford-Boeing Collection [40], on a single processor of a range of RISC processors.
For comparison, the performance of DGEMM on a matrix of order 500 is given.

Several authors have experimented with these different algorithms (right-looking, left-
looking, and multifrontal) and different blockings. Ng and Peyton [74] favour the left-
looking approach and Amestoy and Duff [8] show the benefits of Level 3 BLAS within
a multifrontal code on vector processors. Rothberg and Gupta [81] find that, on cache-
based machines, it is the blocking that affects the efficiency (by a factor of 2 to 3) and the
algorithm that is used has a much less significant effect. Demmel, Eisenstat, Gilbert, Li,



and Liu [27] have extended the supernodal concept to unsymmetric systems although, for
general unstructured matrices, they cannot use regular supernodes for the target columns
and so they resort to Level 2.5 BLAS, which is defined as the multiplication of a set of
vectors by a matrix where the vectors cannot be stored in a two-dimensional array. By
doing this, the source supernode can be held in cache and applied to the target columns
or blocks of columns of the “irregular” supernode, thus getting a high degree of reuse of
data and a performance similar to the Level 3 BLAS.

It is very common to solve sparse least-squares problems by forming the normal

equations
AT Az = ATp (4.6)

and to use a sparse solution scheme for symmetric positive definite systems on these
resulting equations. There are, however, other methods for solving the least-squares
problem. The most robust uses a QR factorization of the coefficient matrix. This
factorization can also be implemented as a multifrontal method and codes have been

developed by [1, 12, 73].

5 Parallel computation

In contrast to the situation with iterative methods where, in addition to vector operations,
often only matrix-vector products are required, the kernel computations for sparse direct
methods are far more complicated. Nevertheless, the benefits that can be obtained from
successful parallelization can be much greater. Indeed, Duff and van der Vorst [44] claim
that the ratio of this benefit is in proportion to 1:5:10 for iterative methods, direct sparse
factorizations, and direct dense factorizations respectively. That is, we might expect gains
five times as great due to the parallelization of a direct sparse code than an iterative one.
The reason for this is similar to the reason why direct methods, when properly formulated,
can be so efficient on RISC based or vector machines. This is due to the kernel (as we
discussed in the last three sections) being a dense matrix - dense matrix multiply. We
saw the benefit of using Level 3 BLAS in sparse factorization for RISC based machines
in Section 4. It is also of benefit in a parallel setting to combine pivot steps and to work
not with rows and columns but with block rows and columns. Clearly, the use of such
block techniques and higher level BLAS allow us to obtain parallelism at the level of the
elimination operations themselves.

There is also a very coarse level at which parallelism can be exploited. At this coarsest
level, which is similar to the subdivision of a problem by domain decomposition, we use
techniques for partitioning the matrix. These are often designed for parallel computing
and are particularly appropriate for distributed memory computers. Indeed, partitioning
methods are often only competitive when parallelism is considered. The PARASPAR
package [88] uses a preordering to partition the original problem. The MCSPARSE package



[47, 53] similarly uses a coarse matrix decomposition to obtain an ordering to bordered
block triangular form.

However, the main level of parallelism that we wish to discuss here is at a level
intermediate between these two and is due to the sparsity of the matrix being factorized.
Clearly, there can be substantial independence between pivot steps in sparse elimination.
For example, if the matrix were a permutation of a diagonal matrix all operations could be
performed in parallel. Two matrix entries a;; and a,, can be used as pivots simultaneously
if a;s and a,; are zero. These pivots are termed compatible. This observation [22] has been
the basis for several algorithms and parallel codes for general matrices. When a pivot is
chosen all rows with entries in the pivot column and all columns with entries in the pivot
row are marked as ineligible and a subsequent pivot can only be chosen from the eligible
rows and columns. In this way, a set of say k independent pivots is chosen. If the pivots
were permuted to the beginning of the matrix, this k X k pivot block would be diagonal.
The resulting elimination operations are performed in parallel using a rank k update. The
procedure is repeated on the reduced matrix. The algorithms differ in how the pivots are
selected (clearly one must compromise criteria for reducing fill-in in order to get a large
compatible pivot set) and in how the update is performed.

Alaghband [2] uses compatibility tables to assist in the pivot search. She uses a two-
stage implementation where first pivots are chosen in parallel from the diagonal and then
off-diagonal pivots are chosen sequentially for stability reasons. She sets thresholds for
both sparsity and stability when choosing pivots. Davis and Yew [25] perform their pivot
selection in parallel, which results in the nondeterministic nature of their algorithm because
the compatible set will be determined by the order in which potential compatible pivots
are found. Their algorithm, D2, was designed for shared-memory machines and was tested
extensively on an Alliant FX/8.

The Y12M algorithm [89] extends the notion of compatible pivots by permitting the
pivot block to be upper triangular rather than diagonal, which allows them to obtain a
larger number of pivots, although the update is more complicated. For distributed memory
architectures, van der Stappen, Bisseling, and van de Vorst [85] distribute the matrix over
the processors in a grid fashion, perform a parallel search for compatible pivots, choosing
entries of low Markowitz cost that satisfy a pivot threshold, and perform a parallel rank-k
update of the reduced matrix, where k is the number of compatible pivots chosen. They
show high speedups (about 100 on 400 processors of a PARSYTEC SuperCluster FT-400)
although the slow processor speed masks the communication costs on this machine. Their
code was originally written in OCCAM, but they have since developed a version using
PVM [67].

In the context of reduced stability of the factorization due to the need to preserve
sparsity and exploit parallelism, it is important that sparse codes offer the possibility of
iterative refinement both to obtain a more accurate answer and to provide a measure of
the backward error. Demmel and Li [69] try to avoid the dynamic data structures required



by numerical pivoting by using the algorithm of Duff and Koster [41, 42] to permute large
entries to the diagonal prior to starting the factorization. They also suggest computing
in increased precision to avoid some of the problems from this compromise to stability
pivoting.

An important aspect of these approaches is that the parallelism is obtained directly
because of the sparsity in the system. In general, we exhibit this form of parallelism
through the assembly tree of Section 4 where operations at nodes which are not on the same
(unique) path to the root (that is none is a descendant of another) are independent and can
be executed in parallel (see, for example, [37, 70]). The set of pivots discussed above could
correspond to leaf nodes of such a tree. The tree can be used to schedule parallel tasks.
For shared memory machines, this can be accomplished through a shared pool of work
with fairly simple synchronizations that can be controlled using locks protecting critical
sections of the code [6, 37, 38]. One of the main issues for an efficient implementation on
shared memory machines concerns the management of data, which must be organized so
that book-keeping operations such as garbage collection do not cause too much interference
with the parallel processing.

A problem with the minimum degree ordering is that it tends to give elimination trees
that are not well balanced and so not ideal for use as a computational graph for driving a
parallel algorithm. The elimination tree can be massaged [71] so that it is more suitable for
parallel computation but the effect of this is fairly limited for general matrices. The beauty
of dissection orderings is that they take a global view of the problem; their difficulty until
recently has been the problem of extending them to unstructured problems. Recently,
there have been several tools and approaches that make this extension more realistic [76].
The essence of a dissection technique is a bisection algorithm that divides the graph of the
matrix into two partitions. If node separators are used, a third set will correspond to the
node separators. Recently, there has been much work on obtaining better bisections even
for irregular graphs. Perhaps the bisection technique that has achieved the most fame has
been spectral bisection [76]. In this approach, use is made of the Laplacian matrix that
is defined as a symmetric matrix whose diagonal entries are the degrees of the nodes and
whose off-diagonals are —1 if and only if the corresponding entry in the matrix is nonzero.
This matrix is singular because its row sums are all zero but, if the matrix is irreducible,
it is positive semidefinite with only one zero eigenvalue. Often the same software is used
for the dissection orderings as for graph partitioning. Two of the major software efforts
in this area are CHACO [62] and METIS [66].

A currently favoured approach is for the dissection technique to be used only for the
top levels and the resulting subgraphs to be ordered by a minimum degree scheme. This
hybrid technique was described some time ago [52] but was discredited because of the poor
performance of nested dissection techniques on irregular graphs at that time. However,
because of the much better implementations of dissection orderings as discussed above,
this hybrid technique is included in many current implementations (for example, [17, 63]).
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Current empirical evidence would suggest that these schemes are at least competitive
with minimum degree on some large problems from structural analysis [17, 79] and from
financial modelling [18]. In these studies, dissection techniques outperform minimum
degree by on average about 15% in terms of floating-point operations for Cholesky
factorization using the resulting ordering, although the cost of these orderings can be
several times that of minimum degree and may be a significant proportion of the total
solution time [17]. We show, in Table 5.3 the effect of the hybrid ordering within the
MUMPS code (see Section 6) on one of the PARASOL test examples. AMD is an ordering
produced by the Approximate Minimum Degree code of [7], and HYBRID is an ordering
from METIS that combines nested dissection and minimum degree. We see that the gains
from the HYBRID ordering are even more dramatic than those mentioned above with
about half the number of operations required for factorization with the HYBRID ordering
than with AMD. We also note, from the results in Table 5.3, that the parallelism is better
for the HYBRID ordering.

Analysis Phase

Entries in factors | Operations
AMD 1.13 x 10° | 1.28 x 101!
HYBRID 8.53 x 107 | 6.72 x 101°
Factorization Solve
No. procs AMD | HYBRID AMD | HYBRID
1 687 307 12.0 10.1

2 408(1.7) | 178(1.7) | 7.5(1.6) 5.4(1.9)

4 236(2.9) 82(3.7) | 6.7(1.8) 4.2(2.4)

8 143(4.8) 58(5.3) | 4.2(2.9) 2.6(3.9)

16 112(6.1) 36(8.5) | 2.9(4.1) 1.9(5.3)

Table 5.3: Effect of ordering on Problem BMWCRA_1 from the PARASOL test set.
Matrix of order 148,770 with 5,396,386 entries in the lower triangle. Elapsed times in
seconds on an ORIGIN 2000. Speedups in parentheses.

In recent years, the performance of sparse direct codes has increased considerably.
The improvement is not from the approach used (fan-in, fan-out, multifrontal) but rather
because of the use of blocking techniques and two-dimensional mappings. The benefit
of using higher level BLAS kernels, coupled with increases in local memory and the
communication speed of parallel processors, have at last made the solution of large sparse
systems feasible on such architectures. We now review some of the recent performance
figures from several different implementations. Dumitrescu et al. [45] record a performance
of over 360 Mflop/s on 32 nodes of an IBM SP1 using a two-dimensional block fan-

11



in algorithm. Rothberg [80] has implemented a block fan-out algorithm using two-
dimensional blocking and obtains a performance of over 1.7 Gflop/s on 128 nodes of an
Intel Paragon, which is about 40% of the performance of the GEMM kernel on that machine.
A 2-D block fan-out algorithm has been coupled with some block mapping heuristics to
obtain a performance of over 3 Gflop/s for a 3-D grid problem on a 196-node Intel Paragon
[82]. A similar type of 2-dimensional mapping is used [57] in an implementation of a
multifrontal method, where much of the high performance is obtained through balancing
the tree near its root and using a highly tuned mapping of the dense matrices near the
root to allow a high level of parallelism to be maintained. Although the headline figure
of nearly 20 Gflop/s on the CRAY T3D was obtained on a fairly artificial and essentially
dense problem, large sparse problems from structural analysis were factorized at between
8 and 15 Gflop/s on the same machine for which a tuned _GEMM code will execute at
around 50 Gflop/s. This code is available in compiled form on an IBM SP2 [56] and
source code versions of a portable implementation are available from the authors [55].
More recently, Li and Demmel [69] have been developing a version of the SuperLU code
[26] for distributed memory machines and the MUMPS multifrontal code [10], developed
within the EU PARASOL Project, also targets message passing architectures.

Partly because of the success of fast and parallel methods for performing the numerical
factorization, other phases of the solution are now becoming more critical on parallel
computers. The package [61] executes all phases in parallel, and there has been much recent
work in finding parallel methods for performing the reordering. This has been another
reason for the growth in dissection approaches (for example, see [65, 77]). Parallelism
in the triangular solve can be obtained either using the identical tree to the numerical
factorization [12] or by generating a tree from the sparsity pattern of the triangular factor
[15]. However, in order to avoid the intrinsically sequential nature of a sparse triangular
solve, it is possible to hold the denser but still sparse L™, or better a partitioned form
of this to avoid some of the fill-in that would be associated with forming L~! explicitly
[5]. Various schemes for this partitioning have been proposed to balance the parallelism
(limited by the number of partitions) with the fill-in (for example, [3, 4, 75]) and, more
recently, the selective inversion of submatrices produced by a multifrontal factorization
algorithm has been proposed [78].

6 Current situation

There is no question that direct sparse matrix algorithms and codes based on them
have “come of age”. Gone are the days when the only sparse codes that were generally
available could be found in the HSL. We have already remarked on the PSPASES code for
symmetric positive definite systems by Gupta and others [56, 55] and the SuperLU code
for general unsymmetric sparse systems by Demmel and Li [27, 69]. Both these projects
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have developed code for distributed memory computers.

The MUMPS code [9, 11] implements a parallel multifrontal technique for distributed
memory computers and is part of the EU PARASOL Project! whose goal was to build
and test a portable library for solving large sparse systems of equations on distributed
memory systems. The PARASOL software is written in Fortran 90, uses MPI for message
passing, and is available from teh Web page http://www.pallas.de/parasol/. The
solvers developed in this Project are two domain decomposition codes by Bergen and
ONERA, a multigrid code by GMD, and the MUMPS code.

Dobrian, Kumfert, and Pothen [28] have studied the use of an object oriented approach
to design sparse direct solvers and O-O is used by Ashcraft in his SPOOLES package [16].
Yang and his co-workers have developed a sparse direct package S* for distributed memory
computers [46] and there are a number of commercial offerings that can be found through

Web searches.

7 Future trends

There seems a never ending demand for the solution of larger and larger problems. For
example, some problems from the ASCI program in the United States have dimensions of
several million and animal breeders are now solving systems of 20 to 30 million degrees of
freedom.

Clearly the size of problem that can be solved by a direct method is very dependent
on the matrix structure. For example, a diagonal or tridiagonal system pose no problems
when the dimension increases and indeed, if fill-in can be kept low, it is usually possible to
solve very large problems by sparse direct factorization. However, for the discretization of
three-dimensional partial differential equations, the limitations of direct methods become
all too apparent. Although problems from finite-element discretizations of order nearly
one million have been solved by MUMPS [11], in my opinion, the most promising set of
techniques for the solution of really large problems are those that combine both direct and
iterative methods. This can be viewed as a sophisticated preconditioning for an iterative
method and is discussed in greater length in the article by Saad and van der Vorst [83].

One of the most promising techniques uses graph partitioning to subdivide the problem,
solves the local subproblems by direct methods and uses an iterative method to couple
the blocks in the partitioning. This approach is very similar to methods used in the
solution of problems from discretizations of PDEs using domain decomposition which can
be viewed as permuting the matrix to bordered block diagonal form. However additional
preconditioners are used both for the Schur complement and also a coarse preconditioner

'For more information on the PARASOL  project, see the web site  at
http://wuw.genias.de/projects/parasol/index.html.
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for the overall problem. A good discussion of these preconditioners can be found in the
thesis of Luiz Carvalho [23].

It is interesting to surmise what the trends will be. Personally I feel that languages
like Fortran 90 combine sufficient object orientation with clarity and efficiency although
there is certainly an increasing population who find the lure of novel object oriented
languages irresistible. Old techniques continue to be rediscovered as in the revamping of
interpretative code approaches, originally developed in the 1970s [60], by Grund [20] who
has had some success in solving problems from chemical engineering. The exploitation of
sparsity in the right-hand side, for some time pursued in the context of electronic circuit
applications and power systems, is now becoming a very powerful tool in the rehabilitation
of simplex methods for linear programming.
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