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ABSTRACT

We study methods for the numerical solution of the Helmholtz equation for two-

dimensional applications in geophysics. The common framework of the iterative

methods in our study is a combination of an inner iteration with a geometric

multigrid method used as a preconditioner and an outer iteration with a Krylov

subspace method. The preconditioning system is based on either a pure or shifted

Helmholtz operator. A multigrid iteration is used to approximate the inverse of this

operator. The proposed solution methods are evaluated on a complex benchmark in

geophysics involving highly variable coefficients and high wavenumbers. We compare

this preconditioned iterative method with a direct method and a hybrid method that

combines our iterative approach with a direct method on a reduced problem. We

see that the hybrid method outperforms both the iterative and the direct approach.
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1 Introduction

The target application of this study is a frequency-domain migration in seismics (Claerbout

1985). At a given frequency, a source is triggered at a certain position on the Earth’s

surface. As a consequence, a pressure wave propagates from the source. When a wave

encounters discontinuities of elastic or density moduli between layers, it is scattered and

propagated back to the surface. The pressure field is then recorded at several receiver

locations located on the Earth’s surface. This experimental process is repeated over

a given range of frequencies. The main target of the numerical simulation is thus to

reproduce these wave propagation phenomena occurring in the heterogeneous medium.

This leads to an interpretative map of the subsoil that helps to detect both the location

and the thickness of the reflecting layers. The resulting frequency-domain problem is then

solved using, for example, techniques similar to those discussed in this paper. After that

is done, a fast Fourier transformation is employed to deduce the time-domain solution

from the frequency-domain solutions. This time-domain solution is of great importance

in oil exploration for predicting correctly the structure of the subsurface. For practical

applications, this requires the accurate computation of the wave propagation in an

inhomogeneous medium. The wave propagation is modelled by the Helmholtz equation

with absorbing boundary conditions. A key point for an efficient migration is thus a

robust and fast solution method for the Helmholtz problem described in this paper both

for large wavenumbers and for highly variable coefficients due to strong variations in

velocities in the inhomogeneous medium.

The finite-difference discretization of the Helmholtz problem at high wavenumbers

leads to a linear system Ax = b where A is a large sparse matrix. This matrix is

complex symmetric, indefinite, and generally ill-conditioned. For some years there has

been considerable interest in multigrid methods (Brandt 1977, Trottenberg, Oosterlee

and Schüller 2000) for Helmholtz problems (see for example, Elman, Ernst and O’Leary,

2001, Kim and Kim, 2002 and the references therein). Nevertheless the indefiniteness of

the Helmholtz problem has prevented multigrid methods from being as efficient as for

symmetric positive-definite problems. Multigrid methods encounter difficulties both in

the smoothing procedure and in the coarse grid correction. On the one hand, standard

smoothers become unstable for indefinite problems due to amplification of smooth error

components. On the other hand, on coarse or very coarse meshes, the approximation

of the discrete Helmholtz operator is relatively poor and this creates a difficulty for the

coarse grid correction. Remedies have been proposed and analysed for homogeneous

problems (Elman et al. 2001, Kim and Kim 2002). Recently a novel multigrid method has

been proposed for the numerical solution of the Helmholtz equation (Erlangga, Oosterlee

and Vuik 2006). The multigrid method is not directly applied to the discrete Helmholtz

operator but to a complex shifted one. This shift avoids both the indefiniteness and the

coarse grid correction problems (Erlangga et al. 2006). Thus it is possible to build a robust

multigrid method with standard multigrid components that is used as a preconditioner
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for a Krylov subspace method. This solution method has been evaluated on model and

realistic geophysical applications involving highly variable coefficients and relatively high

wavenumbers. Nevertheless the complexity of the solution method for pure Helmholtz

problems was found to be relatively high, see for example the recent analysis of a realistic

dataset in geophysics (Riyanti, Erlangga, Plessix, Mulder, Vuik and Oosterlee 2006).

Direct methods have also been considered for the numerical solution of the Helmholtz

equation in geophysics (Hustedt, Operto and Virieux 2004). They are currently limited

by memory requirements especially for three-dimensional applications, although current

algorithmic developments (use of out-of-core techniques) will soon extend such methods to

much larger problems. The main idea of our work is to propose an algorithm where direct

and iterative methods can be combined to solve the large sparse linear systems coming

from geophysical applications. A combination that will be specifically considered is the

use of a Krylov method preconditioned by a two-grid cycle involving a direct method.

This two-grid cycle will approximate the inverse of the original unshifted Helmholtz

operator. Our intention is to use a two-level hierarchy to avoid both smoothing and

coarse grid correction difficulties and simultaneously to benefit from the robustness and

computational efficiency of modern sparse direct solvers.

The goal of this paper is thus to present a numerical comparison between the robust

multigrid method proposed in (Erlangga et al. 2006) and a hybrid approach of a direct-

iterative procedure on a complex dataset in geophysics. The outline of the paper is

as follows. In Section 2, the Helmholtz problem is introduced. We then describe the

iterative solution methods: the multigrid method used as a preconditioner proposed by

Erlangga et al. (2006) and the two-level hybrid preconditioner. Numerical experiments

on a two-dimensional heterogeneous problem are presented in Section 3. Conclusions and

perspectives are presented in Section 4.

2 Solution of the Helmholtz equation for seismic wave

propagation

2.1 Problem setting

We consider the Helmholtz equation for a wave propagation problem in a two-dimensional

region Ω:

−∆u− (1 − i α) k2u = f in Ω (2.1)

satisfying either the first-order radiation condition:

∂u

∂n
− iku = 0 on δΩ (2.2)
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or the second-order radiation condition:

∂u

∂n
− iku−

i

2k

∂2u

∂2τ
= 0 on δΩ (2.3)

with u the pressure wavefield, f the source term, n the unit outward normal to δΩ, τ the

unit tangent to δΩ and i the imaginary unit (i2 = −1). The wavenumber is defined as k =
2πf

c
where f is the frequency and c is the speed of sound. Note that for an inhomogeneous

medium c is space-dependent (for example, Figure 3.1). Thus the wavenumber k is also

space-dependent. The positive real coefficient α corresponds to the fraction of damping in

the medium. For geophysical applications, α can be as large as 0.05. The wavelength l is

defined as l =
c

f
.

We consider a standard finite-difference discretization of the Helmholtz equation (2.1)

using an O(h2) 5-point discretization scheme (Cohen 2002). The resulting matrix A has

complex entries due to the discrete boundary operator (2.2) or (2.3) and the damping

mechanism in (2.1), if any. This leads to a sparse complex symmetric matrix, whose order

is large for high wavenumbers. This large order is mainly due to an accuracy requirement

for standard second order discretizations; for example, the number of points per wavelength

nw =
c

h f
should be at least 10 to 12 (Harari and Turkel 1995, Cohen 2002) where h denotes

the stepsize. Using the lowest value for the speed of sound c = 1500m/s from the Marmousi

problem presented in Section 3.1 (see also Figure 3.1 for the velocity profile) the condition

nw > 12 is fulfilled when the product of the dimensional stepsize h and the frequency f is

equal to 120. This would give a value of 4 m for h if f was 30 Hz which is small relative to

the domain dimensions of 9192 m by 2904 m.

2.2 Iterative Solution methods

The general framework for both iterative solution methods is first introduced. Then we

present the robust multigrid method introduced by Erlangga et al. (2006) and a two-grid

procedure combining iterative and direct methods.

2.2.1 General framework: multigrid used as a preconditioner

Our common framework for the iterative methods is a Krylov subspace approach. We

will use preconditioning from the right. Each preconditioning step implies the solution

of the preconditioning system M ψ = d where M is an approximation to the discrete

Helmholtz operator A. One cycle of a geometric multigrid method is used to approximate

the inverse of M . Let C−1 denote this approximation. The convergence of the Krylov

subspace method is thus related to the spectrum of the matrix AC−1. If only one cycle

of multigrid is performed, the iteration matrix of the preconditioning phase is equal to the

iteration matrix of the multigrid procedure, that is:

T = (I − C−1M) or C−1M = I − T (2.4)
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where T denotes the multigrid iteration matrix (Trottenberg et al. 2000). When only two

levels are used for the multigrid, it is possible to write T as:

T = Sν2 (I − P M
−1
RM)Sν1 (2.5)

where S denotes the iteration matrix of the smoothing procedure on the fine grid, ν1 and

ν2 the number of pre- and post-relaxations, P , R and M the prolongation from the coarse

to the fine grid, the restriction from the fine to coarse grid and the coarse grid operator

respectively. The multigrid iteration matrix for a hierarchy with more than two levels can

be deduced recursively from the relation (2.5) (Trottenberg et al. 2000). From equation

(2.4) the following relation can be deduced:

AC−1 = A (I − T )M−1 . (2.6)

2.2.2 Multigrid method for complex shifted Helmholtz

Recently a robust geometric multigrid preconditioned Krylov subspace method was

proposed for the solution of the two-dimensional Helmholtz problem for geophysical

applications (Erlangga et al. 2006, Riyanti et al. 2006). The resulting method is a

combination of an inner iteration involving a geometric multigrid method with an outer

iteration involving a Krylov subspace method, namely BiCGSTAB. The key point of

this novel solution method lies in the choice of the operator M that is used for the

preconditioning. It is not chosen as the discrete Helmholtz operator but rather as the

following complex operator (called a complex shifted Helmholtz operator):

−∆u− (β1 − iβ2) k
2u = f in Ω (2.7)

with real-valued β1 and β2 parameters. Boundary conditions for the preconditioning

operator are set to either (2.2) or (2.3). The choice (β1, β2) = (1., 0.5) ensures that the

spectrum of AC−1 is a favourably clustered for the convergence of the Krylov subspace

method as was shown empirically by Erlangga et al. (2006) on model problems. Due to the

complex shift, it is possible to avoid both smoothing and coarse grid correction difficulties

as shown by Erlangga et al. (2006) who design a convergent multigrid method even at high

wavenumbers for problems with homogeneous or heterogeneous coefficients. For problems

with heterogeneous coefficients, a Galerkin coarse grid discretization is used to build the

coarse grid operators of the multigrid hierarchy recursively. The coarse grid operator M

is defined as:

M = RM P. (2.8)

Operator-dependent prolongation of de Zeeuw (1990) and Dendy Jr. (1983) will be used

here, whereas full-weighting is used as a restriction operator for the Galerkin coarse grid

discretization. Note that R and P are not adjoint to each other. As a consequence, the

coarse grid operator is no longer complex symmetric. With this coarse grid construction it

is still possible to use point relaxation methods to obtain a convergent geometric multigrid
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based method when dealing with variable coefficients. As advocated by Erlangga et

al. (2006), the following choice of multigrid components leads to a robust multigrid

preconditioner: a Galerkin coarse grid discretization with operator-dependent prolongation

and full weighting restriction operators, with the smoothing procedure being based on

damped Jacobi relaxation (with underrelaxation parameter ω = 0.5). As a preconditioning

step, one F-cycle of multigrid with ν1 = 1 and ν2 = 1 pre- and postrelaxations (noted

F(1,1)) is used. This combination leads to a fixed preconditioner and BiCGSTAB (van der

Vorst 1992) was used by Erlangga et al. (2006). As stated by Riyanti et al. (2006) this

combination of multigrid used as a preconditioner allowed convergence for complex models

with relatively high frequencies.

2.2.3 Hybrid two-level preconditioner

If the preconditioning operator M corresponds to the original Helmholtz operator A, it can

be deduced from relation (2.6) that the spectrum of AC−1 is the same as that of I − T .

An obvious idea would be to choose the multigrid components (smoothers on all levels,

restriction and prolongation, number of relaxations) to minimize the spectral radius of

the multigrid method. The immediate consequence would be a highly clustered spectrum

around (1., 0.) in the complex plane that is favourable for a Krylov subspace acceleration.

The simplest strategy is adopted here: a two-grid procedure is presented where a direct

solution method is used to solve the coarse problems. Both smoothing and coarse grid

correction difficulties are avoided since the coarse grid is fine enough to represent the

solution well.

The next question is how to choose the appropriate components of the two-grid

procedure. For model problems with constant coefficients a local Fourier analysis

(Trottenberg et al. 2000) can help to obtain estimates of this spectral radius and choose

the right components of the two-grid cycle. However, for problems with strongly variable

coefficients one must resort to numerical experiments to evaluate the potential effectiveness.

This will be described and analysed in Section 3.

3 Applications

Two right preconditioned Krylov subspace methods for the solution of the Helmholtz

problem are evaluated on a complex geophysical problem that we will present in Section 3.1.

This application involves relatively large wavenumbers and heterogeneous velocities. We

considered both BiCGSTAB and restarted GMRES (Saad and Schultz 1986). The

implementation of GMRES presented by Frayssé, Giraud, Gratton and Langou (2005) has

been used1. A restart value of 5 was chosen empirically. A larger value did not improve

the convergence of GMRES significantly. Note that the memory cost of GMRES(5) is less

than that of BiCGSTAB. A zero initial guess was used in all cases. Finally, the iterations

1Software available at http://www.cerfacs.fr/algor/Softs/GMRES/index.html
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Figure 3.1: Velocity profile for the Marmousi dataset.

are terminated as soon as the norm of the residual at iteration k, r(k) = b − Ax(k), is

reduced by 6 orders of magnitude in the L2 discrete norm that is:

‖r(k)‖2,h

‖r(0)‖2,h

≤ 10−6 . (3.9)

3.1 Presentation of the Marmousi problem

The Marmousi dataset is a two-dimensional synthetic dataset generated by the Institut

Français du Pétrole (IFP) (Bourgeois, Bourget, Lailly, Poulet, Ricarte and Versteeg 1991).

The geometry and velocity models were created to produce complex seismic data which

requires advanced processing techniques to obtain a correct earth image. The domain is

rectangular of size 9192× 2904m2. A point source is located at x = 6000m and 12 metres

below the upper surface. The speed of sound is very inhomogeneous over the domain;

see Figure 3.1. The velocities range from 1500 m/s to 5500 m/s. In this study, we will

consider three different frequencies: 10, 20 and 30 Hz. The gridsize has been chosen such

that the minimum number of points per wavelength nw is greater than 12. This yields

regular grids with stepsizes, h, of 12, 6, and 4 for frequencies 10, 20 and 30 Hz respectively.

The resulting dimensions for the grids are thus 767 × 243, 1533 × 485 and 2299 × 727.

Figure 3.2 depicts the real and imaginary part of the pressure wavefield for a given

frequency equal to 30Hz without any damping.

3.2 Numerical results

Sequential computations have been performed on a IBM pSeries 550Q machine (Power

5+ processor, 1.9 Ghz with 4 GB of RAM). All calculations have been performed on one

processor with 64-bit floating-point arithmetic. Before presenting the numerical results of

the iterative solution methods, we show the results when a direct solver is used to solve

the Helmholtz problem.
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Figure 3.2: Real and imaginary parts of the wavefield at 30 Hz for the Marmousi

model. No damping is considered. On the left real part, on the right, imaginary part.

3.2.1 Direct solver

Direct solver

f Grid α Memf Mem Ta Tf Ts Time

10 767 × 243 0.0% 292 318 1.87 2.68 0.29 4.84

20 1533 × 485 0.0% 1355 1462 8.38 19.74 1.25 29.37

30 2299 × 727 0.0% 3206 3448 20.20 55.68 2.86 78.74

10 767 × 243 2.5% 292 318 1.88 2.81 0.30 4.99

20 1533 × 485 2.5% 1355 1462 8.37 20.38 1.29 30.04

30 2299 × 727 2.5% 3206 3448 20.21 57.17 2.88 80.26

10 767 × 243 5.0% 292 318 1.87 2.80 0.30 4.97

20 1533 × 485 5.0% 1355 1462 8.38 20.48 1.30 30.16

30 2299 × 727 5.0% 3206 3448 20.19 57.31 2.88 80.38

Table 3.1: Numerical results for the Marmousi problem with the MUMPS direct

solver. Memf : amount of memory in Megabytes needed during factorization, Mem:

total amount of memory in Megabytes, Ta, Tf , Ts: computational times in seconds

for the analysis, factorization and solution phases respectively. Time is the overall

computational time in seconds.

Table 3.1 shows the numerical results when a sparse direct solver is used to solve the

original Helmholtz problem (2.1). The finite-difference discretization used leads to complex

symmetric sparse matrices that are band structured with five bands of entries. The
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order of the matrices are 186 381, 743 505, 1 671 373 for frequencies equal to 10, 20, 30

respectively. The corresponding number of nonzero entries is 929 885, 3 713 489, 8 350 813

respectively. We have used the multifrontal sparse direct solver MUMPS 2 (Amestoy, Duff

and L’Excellent 2000, Amestoy, Duff, Koster and L’Excellent 2001, Amestoy, Guermouche,

L’Excellent and Pralet 2006) as the direct solver. The solution has three distinct phases:

• an analysis phase which computes both a reordering of the matrix to reduce the

fill-in during factorization [the nested-dissection algorithm from Metis (Karypis and

Kumar, 1998) has been chosen here] and a symbolic factorization

• the numerical factorization based on a multifrontal method (Duff and Reid 1983).

• the solution phase for a single right-hand side.

The computational times for these three phases are shown in Table 3.1 as well as the

memory needed for the numerical factorization (Memf ) and the total memory required

(Mem). The total memory Mem corresponds to Memf and the memory required for storing

both the Helmholtz operator triplet (i, j, aij) and the right-hand side of the problem. The

use of damping in the original Helmholtz problem (2.1) does not change the structure of the

matrix. Consequently, it does not modify the behaviour of the numerical factorization and

solution phases. This is clear from the fact that both the time and memory requirements are

very similar for the three different values of the damping coefficient α. The memory needed

for the factorization (Memf ) is found to grow as n1.0905 where n denotes the dimension of

the matrix. The total memory required by the direct solution method is approximately

equal to 3.4 Gb for the 30 Hz frequency.

3.2.2 Complex shifted multigrid as a preconditioner

The results for the shifted multigrid preconditioner are displayed in Table 3.2 for frequencies

ranging from 10 to 30 Hz on corresponding grid sizes. One multigrid preconditioning

iteration consists of one F (1, 1) cycle with point lexicographic Jacobi as a smoother, full-

weighting as restriction, de Zeeuw’s operator-dependent prolongation and Galerkin coarse

grid discretization. The number of grids of the hierarchy is kept fixed to 9 whatever the

frequency. The order of the coarsest matrix is thus 3, 12, and 27 respectively. A direct

solver is used on the coarsest grid. As a consequence, both memory and computing times

for the analysis and numerical factorization of the coarsest matrix are negligible and thus

are not reported here. The total number of iterations to satisfy the stopping criterion

(3.9), the computational time, and the overall memory needed by the solution method are

given both for BiCGSTAB and GMRES(5). The overall memory includes storage required

for the preconditioning operator M on all the grids, the original operator A on the finest

grid only, the weights for the operator-dependent prolongation, the factorization on the

coarsest level and additional vectors for the chosen Krylov subspace method. As expected,

2Software available at http://mumps.enseeiht.fr/
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the required memory (Mem) for the multigrid preconditioned Krylov subspace method is

found to grow linearly with n where n denotes the dimension of the matrix.

The behaviour of the complex shifted preconditioner on this realistic test problem is

found to be in agreement with previous numerical experiments on heterogeneous problems

(Erlangga et al. 2006, Riyanti et al. 2006). When damping is present (for example when

α = 5.0%) the number of iterations increases only very slowly for increasing frequencies.

In this case, the use of GMRES(5) as a Krylov subspace method leads to a reduction in

both time and memory requirements with respect to BiCGSTAB. However, this property

is lost for the pure Helmholtz problem (α = 0.0%). The number of iterations grows almost

linearly with the frequency for both Krylov subspace methods. This is a major drawback

of the complex shifted preconditioner for pure Helmholtz problems. However, since the

damping mechanism is present in actual geophysical applications, the complex shifted

multigrid preconditioner is still attractive.

Complex shifted multigrid as a preconditioner

BiCGSTAB GMRES(5)

f Grid α It Time Mem It Time Mem

10 767 × 243 0.0% 75 15.77 141 153 16.34 136

20 1533 × 485 0.0% 156 164.77 563 307 165.02 540

30 2299 × 727 0.0% 224 493.63 1265 533 624.23 1214

10 767 × 243 2.5% 48 10.18 141 80 8.53 136

20 1533 × 485 2.5% 54 57.00 563 96 52.60 540

30 2299 × 727 2.5% 58 127.75 1265 109 127.74 1214

10 767 × 243 5.0% 31 6.58 141 54 5.71 136

20 1533 × 485 5.0% 39 41.76 563 59 31.95 540

30 2299 × 727 5.0% 33 73.94 1265 61 70.65 1214

Table 3.2: Numerical results for the Marmousi problem with the complex shifted

multigrid as a preconditioner for two Krylov subspace methods. The number of

iterations (It), the computational times in seconds (Time) and the overall amount of

memory in Megabytes are shown for BiCGSTAB and GMRES(5).

3.2.3 Hybrid two-level preconditioner

Rather than considering the complex shifted operator, we focus on the unshifted Helmholtz

operator and try to build effective multilevel preconditioners. Here we present numerical

results when only two levels of grids are used. We study the combination of a mixed

direct-iterative preconditioner for both BiCGSTAB and GMRES(5). The hybrid two-

level preconditioning operation now consists of one V(1,1) cycle with red-black Jacobi

as a smoother, full-weighting as the restriction operator, de Zeeuw’s or Dendy’s operator-

dependent prolongation operator and Galerkin coarse grid discretization to build the coarse
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grid operator. The MUMPS direct solver is used on the coarse grid. Table 3.3 gives

some statistics on the direct factorization for the two operator-dependent prolongations.

Computational times and memory requirements are essentially the same since both coarse

grid operators have the same sparsity and structure. The memory required for the

factorization (Memf ) is found to grow as n1.112 where n denotes the dimension of the

coarse grid matrix whereas the time for the factorization, Tf , grows as n1.3282. Note that

the Galerkin coarse grid discretization leads to a nine-point stencil.

Coarsest matrix factorization

De Zeeuw’s operator Dendy’s operator

f Grid α Size Memf Tf Size Memf Tf

10 767 × 243 0.0% 46848 93 0.59 46848 93 0.58

20 1533 × 485 0.0% 186381 444 3.82 186381 444 3.84

30 2299 × 727 0.0% 418600 1062 10.98 418600 1062 10.97

10 767 × 243 2.5% 46848 93 0.62 46848 93 0.63

20 1533 × 485 2.5% 186381 444 4.05 186381 444 4.02

30 2299 × 727 2.5% 418600 1062 11.57 418600 1062 11.53

10 767 × 243 5.0% 46848 93 0.62 46848 93 0.62

20 1533 × 485 5.0% 186381 444 4.03 186381 444 4.00

30 2299 × 727 5.0% 418600 1062 11.48 418600 1062 11.50

Table 3.3: Coarse problem informations for the Marmousi problem at various

frequencies: size of the matrix, memory in Megabytes required during factorization

and computational time in seconds needed for the factorization for two different

operator-dependent prolongations.

Table 3.4 shows the numerical results when the De Zeeuw’s operator-dependent

prolongation is used. We only give the times for the Krylov subspace method in this

table. The change in the preconditioning operator and the use of a two-level strategy lead

to remarkable improvements both in terms of number of iterations and time compared

with the complex shifted multigrid preconditioner used for the runs in Table 3.2. This is

true whatever the frequency and the damping parameter α. Indeed, considering the largest

grid size (for f = 30 Hz) and the total solution time including the computational cost for

the numerical factorization on the coarse grid, the new solution method is 5.20, 3.21, 2.56

times faster than the complex shifted solution multigrid method for damping parameters

0.0%, 2.5%, 5.0% respectively.

Table 3.5 shows the numerical results when the Dendy’s operator-dependent

prolongation is used. This choice defines a new approximation of the coarse grid operator

and does affect the convergence rate of the two-level procedure significantly as we can verify
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Hybrid two-level preconditioner with De Zeeuw’s prolongation

BiCGSTAB GMRES(5)

f Grid α It Time Mem It Time Mem

10 767 × 243 0.0% 18 4.85 226 30 4.34 220

20 1533 × 485 0.0% 25 32.10 976 42 28.46 953

30 2299 × 727 0.0% 39 115.21 2258 69 108.96 2208

10 767 × 243 2.5% 14 3.79 226 23 3.30 220

20 1533 × 485 2.5% 11 14.47 976 21 14.12 953

30 2299 × 727 2.5% 10 30.16 2258 18 28.20 2208

10 767 × 243 5.0% 9 2.50 226 18 2.56 220

20 1533 × 485 5.0% 7 9.21 976 12 8.13 953

30 2299 × 727 5.0% 6 18.24 2258 10 16.13 2208

Table 3.4: Numerical results for the Marmousi problem with the hybrid two-level

preconditioner for two Krylov subspace methods. The number of iterations (It),

the computational times in seconds (Time) and the overall amount of memory in

Megabytes are shown for BiCGSTAB and GMRES(5).

for a model problem through a local Fourier analysis. A reduction in terms of number of

iterations and time is observed for all the cases with respect to the results in Table 3.4. In

eight cases out of nine GMRES(5) is the faster Krylov subspace method.

Hybrid two-level preconditioner with Dendy’s prolongation

BiCGSTAB GMRES(5)

f Grid α It Time Mem It Time Mem

10 767 × 243 0.0% 16 4.37 226 27 3.87 220

20 1533 × 485 0.0% 16 20.99 976 29 19.73 953

30 2299 × 727 0.0% 19 57.41 2258 32 50.14 2208

10 767 × 243 2.5% 12 3.22 226 22 3.15 220

20 1533 × 485 2.5% 11 14.32 976 18 12.23 953

30 2299 × 727 2.5% 9 26.80 2258 14 22.02 2208

10 767 × 243 5.0% 9 2.47 226 18 2.56 220

20 1533 × 485 5.0% 7 9.19 976 10 6.88 953

30 2299 × 727 5.0% 6 18.10 2258 7 11.54 2208

Table 3.5: Numerical results for the Marmousi problem with the hybrid two-level

preconditioner for two Krylov subspace methods. The number of iterations (It),

the computational times in seconds (Time) and the overall amount of memory in

Megabytes are shown for BiCGSTAB and GMRES(5).
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3.3 Summary

Scaled Memory Requirement (SMR) and Scaled Timing (ST)

Direct Multigrid Two-level

f Grid α SMR ST SMR ST SMR ST

10 767 × 243 0.0% 22.36 0.26 9.56 0.87 15.47 0.24

20 1533 × 485 0.0% 25.77 0.39 9.52 2.21 16.80 0.32

30 2299 × 727 0.0% 27.04 0.47 9.52 3.73 17.31 0.37

10 767 × 243 2.5% 22.36 0.27 9.56 0.45 15.47 0.20

20 1533 × 485 2.5% 25.77 0.40 9.52 0.71 16.80 0.22

30 2299 × 727 2.5% 27.04 0.48 9.52 0.76 17.31 0.20

10 767 × 243 5.0% 22.36 0.26 9.56 0.31 15.47 0.17

20 1533 × 485 5.0% 25.77 0.40 9.52 0.43 16.80 0.17

30 2299 × 727 5.0% 27.04 0.48 9.52 0.43 17.31 0.14

Table 3.6: Numerical results for the Marmousi problem. Comparison between three

solution methods. The overall amount of memory in Megabytes divided by the

amount of memory required to store the matrix (SMR) and the computational times

in seconds divided by the number of unknowns multiplied by 104 (ST) are shown.

Table 3.6 summarizes the numerical results for the Marmousi problem by comparing

memory requirements and computational times for the three solution methods that we

have investigated. In this table, we show scaled quantities: the total memory divided by

the memory required to store the matrix for the finest grid and the computational times

divided by the number of unknowns on the finest grid. For the two-level procedure, the

results corresponding to the GMRES(5) Krylov subspace method from Table 3.5 have

been used.

From these results it is possible to draw the following conclusions:

• The memory requirements for the complete LU factorization grow only modestly with

the problem size. This is due to the quality of the reordering (nested dissection) that

reduces the fill-in for this band-structured matrix. For the analysis and solution

phases, the complexity in time and memory is nearly independent of the damping

coefficient. This independence is clearly an advantage that both iterative methods

do not have.

• The memory requirements for the multigrid preconditioned Krylov subspace method

is directly proportional to the number of unknowns. The memory required on the

largest problem is approximately a factor of three less than for the direct solver. The

robustness of this multigrid based solution method has been verified on this complex
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dataset. Nevertheless its complexity is quite high especially when damping is not

considered.

• The use of the two-level method brings spectacular improvements for the undamped

case (α = 0.0%) compared to the shifted multigrid preconditioned Krylov subspace

method. Clearly designing a two-grid method that tries to approximate the inverse

of the original unshifted Helmholtz operator is a good strategy. When damping is

present, the solution time is much better than for the iterative scheme. Although

the accuracy of the solution is different, this leads to a solution method that is

competitive with the direct solver. One drawback is of course the increase in memory

due to the use of a direct solver on a coarse grid. Nevertheless memory requirements

grow only modestly with the problem size. A reduction in memory requirement can

be obtained if a three-level hierarchy is used. This is reported in Table 3.7 that shows

numerical results for the case of the damping coefficient set to α = 5.0%. Note that

the use of a three-level preconditioner slightly improves the computational times for

this case although, in other experiments, we found no further improvement if we went

to four levels. An analysis and a full set of numerical experiments will be reported

elsewhere.

Hybrid preconditioner with Dendy’s prolongation

Two-level Three-level

f Grid α Time Memf Mem Time Memf Mem

10 767 × 243 5.0% 3.18 93 220 1.88 21 154

20 1533 × 485 5.0% 12.88 444 953 9.92 93 624

30 2299 × 727 5.0% 23.04 1062 2208 21.62 233 1430

Table 3.7: Numerical results for the Marmousi problem with the hybrid two- and

three-level preconditioner for the GMRES(5) subspace method for damping coefficient

set to 5.0%. The total computational times (including factorization and solution

phases) in seconds (Time), the memory required for the factorization of the coarsest

grid matrix (Memf ) and the overall amount of memory in Megabytes (Mem) are

shown.

• The solution of Helmholtz problems with multiple sources is frequently required

in geophysical applications. As this corresponds to a multiple right-hand sides

problem, it is clear that direct methods should be preferred due to the inexpensive

solution phases (see Table 3.1 column Ts). For single right-hand sides, however,

if high accuracy on the physical solution is not required, the hybrid direct-iterative

preconditioner can be competitive both in terms of memory and computational time.
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4 Conclusions and perspectives

Iterative methods have been numerically investigated on a complex benchmark problem

in geophysics: the Marmousi problem. A two-grid hybrid procedure has been proposed to

solve the Helmholtz equation in two dimensions. A comparison with both a direct solution

method and a robust multigrid method used as a preconditioner has been also presented.

The combination of direct and iterative methods in the two-grid procedure has been shown

to be robust and computationally efficient.

Realistic applications in geophysics require extensions of this work to three dimensional

problems. Due to the large size of the linear systems, a parallel implementation of these

algorithms must be considered. It could be noticed that the components of the two-level

procedure (smoother, restriction, prolongation, coarse grid solver) have been chosen so

that the global solution method is easily parallelizable. We will be investigating this in the

near future.
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