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Bjarne Andersen) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Iterative methods 18

3.1 Backward error analysis and stopping criteria for Krylov space methods (M.

Arioli, D Loghin, and A. Wathen) . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 A Chebyshev-based two-stage iterative method (M. Arioli and D. Ruiz) . . 20

3.3 Underground 3-D flow modelling and HSL routines (M. Arioli and G. Manzini) 22

3.4 Efficient parallel iterative solvers for the solution of large dense linear

systems arising from the boundary element method in electromagnetism
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1 Introduction (I. S. Duff)

This report covers the period from January 2002 to December 2003 and describes work

performed by the Numerical Analysis Group within the Computational Science and

Engineering Department at the CLRC Rutherford Appleton Laboratory. This work was

supported by EPSRC grant R46441 until October 2003 and grant S42170 thereafter.

The details of our activities are documented in the following pages. These words of

introduction are intended merely to provide additional information on activities that are

not appropriate for the detailed reports.

Perhaps the most exciting event during the last two years has been the renewal of

our main EPSRC research grant from October 2003 for a period of four years. The

responsive mode panel recommended that we were inspected by a visiting panel and this

duly happened on 17th June 2003. The good immediate feedback was later confirmed in

writing and the EPSRC were commendably swift in issuing our new grant after receipt of

this positive report.

We were very pleased to organize a celebration in Oxford in December 2002 to

commemorate the 80th birthday of Alan Curtis. Alan had been the Group Leader of

Applied Mathematics at Harwell for many years and it was great to see both himself and

so many of his contemporaries at the birthday celebrations.

There were no staff changes in the period of the report although Mario was promoted

to Band 3 and both Jennifer Scott and Kath Vann increased their hours slightly after the

award of the new Grant.

The support and development of HSL (formerly the Harwell Subroutine Library)

continues to be one of our major activities. There was a release of HSL at the beginning of

2002 and another is scheduled for the summer of 2004. The HSL marketing effort continues

to be supported by Lawrence Daniels and his team from Hyprotech, even though they have

now left AEA and are owned by AspenTech Inc. We are still able to employ John Reid as

a consultant using HSL funds. We also benefit from the consultancy of Mike Hopper who

helps us both in typesetting and the ongoing commitment to higher software standards.

We maintain our close links with the academic community in Britain and abroad.

Iain and Nick continue as Visiting Professors at Strathclyde University and Edinburgh

University, respectively. Most members of the Group gave presentations at the Dundee

Numerical Analysis meeting in 2003, with Mario giving an invited talk. We had several

visitors during the period, including Andy Conn, Michal Kočvara, Gianmarco Manzini,

Jorge Nocedal and Philippe Toint, whose visit was supported by an EPSRC Grant. Our

CASE student with Dundee, Bob Gate, successfully defended his PhD. Iain was on the

jury for the PhD theses of Bruno Carpentieri, Jean Christophe Rioual, Christof Vömel,

and Julien Langou in Toulouse, and was a joint supervisor of Bruno and Christof. Bruno

was awarded the Léopold Escande Prize for the best thesis at ENSEEIHT. Jennifer was

the external examiner for the PhD thesis of Amanda Cooper of the University of Ulster.

Nick gave a series of lectures in the LMS-EPSRC Numerical Analysis Summer School in

Durham in 2002, and his lecture notes were published by Springer Verlag. In addition,
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he continues to act as external course assessor and examiner for the Open University’s

optimization module and is on the advisory board for the MSc in Bath. Iain and Nick

are both on the Mathematics College of the EPSRC. Nick was a co-producer of 2003’s UK

Landscape document on Numerical Analysis, with Nick Higham and Endre Süli.

We continue our close association with Oxford University through the Joint

Computational Mathematics and Applications Seminar series and have hosted several

talks at RAL through that programme (see Section 7). Nick Trefethen, the professor

of Numerical Analysis at Oxford University, has made an office available to the Group

that has been used for visits by all Group members, significantly by Nick who visits on a

regular basis. Nick taught an MSc course on nonlinear optimization at Oxford in Trinity

term of 2002. Iain and Jennifer gave an MSc course at Oxford on Direct Methods for

Sparse Matrices in the Michaelmas term of 2002.

Nick’s collaboration with Toint and others continues to expand the theory and practice

of large-scale optimization. He has developed new algorithms and codes for nonlinear

feasibility problems and general nonlinear programming. The resulting packages have

been, or will be, added to the nonlinearly constrained optimization library GALAHAD,

which was first released in April 2002. He is also collaborating on algorithms for a rival

nonlinear programming package KNITRO. Nick was an invited speaker at conferences in

Leipzig, Toronto and Minneapolis, and gave seminars at the Universities of Bath, Dundee,

Essex and Edinburgh. He has been involved in educating both students and users of the

benefits of using optimization techniques, and has written a number of lecture notes/survey

articles with this in mind. In addition to his Oxford MSc course, he taught a similar

one in Edinburgh in 2003. Nick joined the editorial board of the ACM Transactions

on Mathematical Software in 2002. He was a member of the Beale-Orchard-Hays prize

committee for the Mathematical Programming Society in 2003. Nick is co-organiser of a

series of annual joint Numerical Analysis Days with the University of Bath, which first

met in Bath in 2002 and subsequently at RAL in 2003.

Jennifer has continued with her national and international collaborations. Although

she has continued her short-hours working, she remains so productive that it is easy to

forget this fact. She has spent a significant amount of her time in this period designing

and developing a coarse-grained parallel solver for large sparse highly unsymmetric linear

systems. She has developed efficient techniques for preordering matrices to the form

required for using this solver. She has also worked with Nick on an extensive exercise to

compare the performance of direct solvers on large sparse symmetric linear systems. This

study has encompassed both HSL and non-HSL solvers and should prove an invaluable

guide to those who need to solve such systems. Jennifer presented invited talks at

AspenWorld 2002, Bath, Daresbury and Kingston, and continues to coordinate our joint

seminar series with Oxford University.

Mario was successful in a review promotion to Band 3 in 2003 and complements well

the skills of other team members, particularly with his knowledge of partial differential

equations and his enthusiasm for the minutiae of error analysis. He gave invited talks at
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conferences in Dundee and Bari. He gave seminars at Bath, Strathclyde, and CERFACS.

The ERCIM Working Group Applications of Numerical Mathematics in Science, of which

Mario has been chairman from 2002, asked Mario to be the co-ordinator and person

responsible for the Marie-Curie RTN proposal Applications of Computational Mathematics

and Statistics in Science and Technology (NUMAS). This proposal is discussed in

Section 5.2.

Iain still leads a project at the European Centre for Research and Advanced Training in

Scientific Computation (CERFACS) at Toulouse in France (see Section 5.3). His research

interests continue to be in all aspects of sparse matrices, including more recently iterative

methods as well as direct methods, and in the exploitation of parallel computers. He is

an Editor of the IMA Journal of Numerical Analysis, the Vice-President of the IMA for

learned society affairs, editor of the IMANA Newsletter, and IMA representative on the

International Committee that oversees the ICIAM international conferences on applied

mathematics. He was elected to the Board of Trustees of SIAM in the USA. He gave

lectures at summer schools in Canberra, Kentucky, and Neuchatel and was workshop

coordinator for a meeting in Copper Mountain, Colorado. He has been on the Programme

and Organizing Committee for several international meetings. He gave a plenary invited

talk at the Householder meeting in Peebles and has given invited talks at meetings in

Calais, Canberra, Milovy, Neuchatel, Oxford and Vancouver and has presented seminars

in Argonne, Brisbane, Dublin, Knoxville, LBNL, Liverpool, and Thailand. The work on

the book with John Reid also progressed well during this period, and it is hoped to have

a draft with OUP during 2004.

We have tried to subdivide our activities to facilitate the reading of this report. This is

to some extent an arbitrary subdivision since much of our work spans these subdivisions.

Our main research areas and interests lie in numerical linear algebra, and nonlinear systems

and optimization. We are particularly concerned with large-scale systems when the matrix

or system is sparse or structured. We discuss the solution of linear systems by direct

methods in Section 2 and by iterative techniques in Section 3. Work on optimization is

considered in Section 4. We group some miscellaneous topics in Section 5. Much of our

research and development results in high quality advanced mathematical software, and we

report on developments with HSL in Section 6. Lists of seminars (in the joint series with

Oxford), technical reports, and publications are given in Sections 7, 8, and 9, respectively.

Current information on the activities of the Group and on Group members can be found

through page http://www.cse.clrc.ac.uk/nag of the World Wide Web.
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2 Direct methods

2.1 A numerical evaluation of sparse direct symmetric solvers.

Part I: HSL solvers. N. I. M. Gould and J. A. Scott

In recent years a number of new direct solvers for the solution of large sparse, symmetric

linear systems of equations have been added to the mathematical software library HSL.

These include solvers that are designed for the solution of positive-definite systems as well

as those that are principally intended for solving indefinite problems. The available choice

can make it difficult for users to know which solver is the most appropriate for their use.

This study aimed to compare the alternatives (see Table 2.1.1) on a significant set of large

test examples from many different application areas and, as far as is possible, to make

recommendations concerning the efficacy of the various packages.

Code Description

MA27 Sparse symmetric linear solver.

Multifrontal algorithm. Minimum degree ordering.

MA47 Sparse symmetric indefinite linear solver.

MA55 Variable band symmetric positive-definite linear solver.

MA57 Sparse symmetric linear solver.

Multifrontal algorithm. Approximate minimum degree ordering.

MA62 Sparse symmetric positive-definite linear solver for equations in elemental

form. (Uni)frontal algorithm.

MA67 Sparse symmetric indefinite linear solver. Analyse-factorize code.

Table 2.1.1: HSL codes used in our numerical experiments.

In collecting test data we imposed only two conditions: each matrix had to be of

order greater than 10, 000 and to be available to other users. We included all matrices

of which we are aware that satisfy these conditions and are in publicly available sparse

matrix test collections. The final test set T comprised 88 positive-definite problems

and 61 numerically indefinite problems and included problems from linear programming,

structural engineering, computational fluid dynamics, acoustics, and financial modelling.

Performance profiles were used to evaluate and compare the performance of the set S

of HSL solvers on the test set T . Suppose that a given code i ∈ S reports a statistic sij ≥ 0

when run on example j ∈ T , and that the smaller this statistic the better the software

is considered to be. For example, sij might be the CPU time required to solve problem j

using code i. For all problems j ∈ T , we wanted to compare the performance of code i

with the performance of the best solver in the set S.

For j ∈ T , let ŝj = min{sij; i ∈ S}. Then for α ≥ 1 and each i ∈ S we define

k(sij, ŝj, α) =

{
1 if sij ≤ αŝj

0 otherwise.

4



The performance profile (see Dolan and Moré, 2002) of code i is the function

pi(α) =

∑
j∈T k(sij, ŝj, α)

|T |
, α ≥ 1.

Thus pi(1) gives the fraction of the examples in the test set for which code i is the most

effective (according to the statistic sij), pi(2) gives the fraction for which it is within a

factor of 2 of the best, and limα−→∞ pi(α) gives the fraction for which the solver succeeded.

In this study, the statistics used were the CPU times required by the different phases

of the solver, the number of nonzero entries in the matrix factor, and the total memory

used by the solver. Our findings are presented in detail in Gould and Scott (2003a) and

Gould and Scott (2003b). The broad conclusions were that the best general-purpose HSL

package for solving sparse symmetric systems is currently MA57, particularly for very large

problems. The approximate minimum-degree ordering proved to be more effective than

the traditional minimum-degree algorithm but for large, positive-definite problems, it was

generally advantageous to use a nested dissection ordering (which is not currently offered

as part of the MA57 package). A weakness of MA57 is that it offers no out-of-core working.

We feel that this should be an important future development.

For indefinite problems, we found that a tiny pivot tolerance can often be better than

the default (reducing factorization and solve times and producing sparser factors). In

addition, scaling can offer significant improvements. However, the robustness of the solvers

for the large, indefinite case is a cause for concern. Four of the 61 indefinite problems were

not solved by any HSL code.

References

E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance profiles.

Mathematical Programming, 91(2), 201–213, 2002.

N.I.M. Gould and J.A. Scott. Complete results for a numerical evaluation of HSL

packages for the direct solution of large sparse, symmetric linear systems of equations.

Numerical Analysis Internal Report 2003-2, Rutherford Appleton Laboratory, 2003a.

Available from www.numerical.rl.ac.uk/reports/reports.shtml.

N.I.M. Gould and J.A. Scott. A numerical evaluation of HSL packages for the direct

solution of large sparse, symmetric linear systems of equations. Technical Report

RAL-TR-2003-019, Rutherford Appleton Laboratory, 2003b.

2.2 A numerical evaluation of sparse direct symmetric solvers.

Part II: all solvers. N. I. M. Gould, Y. Hu, and J. A. Scott

This study is an extension of the comparison of the sparse symmetric direct HSL solvers

reported on in Section 2.1. Our aim was to compare the best general-purpose HSL solver

MA57 with as many other sparse symmetric solvers as possible. The solvers are listed in
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Table 2.2.1. A number have parallel versions (and may even have been written primarily

as parallel codes); this study considered only serial codes and serial versions of parallel

solvers.

Code Date/version Authors

BCSLIB-EXT 11.2001, v4.1 The Boeing Company

MA57 03.2003 I.S. Duff, HSL

MUMPS 11.2003, v4.3.2 P.R. Amestoy, I.S. Duff,

J.-Y. L’Excellent, and J. Koster

Oblio 12.2003, v0.7 F. Dobrian and A. Pothen

PARDISO 12.2003 O. Schenk and K. Gärtner

SPOOLES 1999, v2.2 C. Ashcraft and R. Grimes

SPRSBLKLLT 1997, v0.5 E.G. Ng and B.W. Peyton

TAUCS 08.2003, v2.2 S. Toledo

UMFPACK 04.2003, v4.1 T. Davis

WSMP 2003, v1.9.8 A. Gupta and M. Joshi, IBM

Table 2.2.1: Solvers used in our numerical experiments.

As in the first study, performance profiles were used to evaluate the performance of

the solvers. Additionally, the same large set of test problems and the same statistics were

used. Reports on this study and its findings will appear shortly.

2.3 Task scheduling for the MUMPS package (P. R. Amestoy,

I. S. Duff, S. Pralet, and C. Vömel)

MUMPS, a MUltifrontal Massively Parallel Solver (Amestoy, Duff, Koster and L’Excellent,

2001) was originally developed with the support of the EU LTR project PARASOL

and continues to be maintained and developed with Version 4.3 being released

in July 2003. This includes a code for complex systems and for sequential

operation. MUMPS is distributed on almost a daily basis from its main web site at

http://www.enseeiht.fr/lima/apo/MUMPS. The main research work done on MUMPS over
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this reporting period was on task scheduling and task assignment.

The asynchronous distributed memory multifrontal solver MUMPS exploits two kinds of

parallelism when a sparse matrix is factorized. A first natural source of parallelism is

established by independent branches of the assembly tree. Furthermore, tree nodes with a

large enough block to update can be updated in parallel by splitting the update between

several slaves of the master that is factorizing the block of fully summed variables, and

the root node can be treated in parallel if it is big enough. MUMPS uses dynamic data

structures and dynamic scheduling of computational tasks to accommodate extra fill-in in

the factors due to numerical considerations (not taken into account during the analysis

step). This dynamic approach also allows the parallel code to cope with load variations

on the processors and we have investigated and developed this over the last two years.

While the master processor of each node in the tree is chosen during the analysis phase,

the slaves for the parallel update of large contribution blocks are only chosen during the

factorization phase. This dynamic task scheduling takes place in order to balance the work

load of the processors at run-time. Problems arise from offering too much freedom to the

dynamic scheduling. If every processor is a candidate for a slave then, on each processor,

enough workspace has to be reserved during the analysis phase for the corresponding

computational tasks. However, during the factorization, typically not all processors are

actually needed as slaves (and, on a large number of processors, only a very few are needed),

so the prediction of the required workspace will be overestimated. Thus the size of the

problems that can be solved is reduced unnecessarily because of this difference between

the prediction and allocation of memory in the analysis phase and the memory actually

used during the factorization.

With the concept of candidate processors it is possible to address this issue. The concept

originates in an algorithm presented by Pothen and Sun (1993) and extends efficiently to

MUMPS. For each node that requires slaves to be chosen dynamically during the factorization

because of the size of its contribution block, we introduce a limited set of processors from

which the slaves can be selected. While the master previously chose slaves from among all

less loaded processors, the freedom of the dynamic scheduling can be reduced so that the

slaves are only chosen from the candidates. This effectively allows us to exclude all non-

candidates from the estimation of workspace during the analysis phase and leads to a more

realistic prediction of workspace needed. Furthermore, the candidate concept allows us to

structure the computation better since we can explicitly restrict the choice of the slaves to

a certain group of processors and enforce a ‘subtree-to-subcube’ mapping principle.

Our new approach significantly improves the scalability of the solver in terms of

execution time and storage. By comparison with the previous version of MUMPS, we

demonstrate the efficiency and the scalability of the new algorithm on up to 512 processors.

Our test cases include matrices from regular 3D grids and irregular ones from real-life

applications (Amestoy, Duff and Vömel, 2002). We show some of the results of our new

strategy in Table 2.3.1 where the problem size scales with the number of processors and

the new code is clearly far more scalable than the old.
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Cubic grids (ND) Rectangular grids (ND)

Processors flops old new flops old new

1 3.6e+09 19.1 18.7 2.2e+09 13.5 13.1

16 5.9e+10 18.8 19.8 3.6e+10 13.8 13.2

32 1.1e+11 25.8 22.2 6.8e+10 15.5 15.3

48 1.8e+11 28.7 30.4 9.0e+10 14.2 14.8

64 2.2e+11 30.7 25.6 1.2e+11 17.6 16.8

128 4.4e+11 45.6 33.0 2.4e+11 33.5 20.3

256 9.1e+11 109.1 43.0 3.8e+11 45.2 18.4

512 1.7e+12 421.9 64.0 7.1e+11 195.5 24.3

Table 2.3.1: Performance of old and new versions of the LDLT MUMPS factorization (time

in seconds on a CRAY T3E).

We have also extended this task scheduling to exploit clusters of SMPs. Our main

target type of computer architecture can be defined as a two-level architecture where a

number of nodes are connected by a network and each node is composed of a number

of identical processors sharing a common memory (that is, is an SMP node). The work

in Amestoy et al. (2002) implicitly assumed that our target computer was a distributed

memory computer with uniform memory access and uniform cost of communication. We

showed the limitations of this approach on a machine with a two-level architecture and

we indicated how we can remedy these limitations in Amestoy, Duff, Pralet and Vömel

(2003 ). Our modifications of the algorithms affect both the symbolic factorization and the

numerical factorization phase. Our experiments on the IBM SP from CINES (Montpellier)

with 16 processors per SMP node and up to 128 processors show that we can significantly

reduce both the amount of inter-node communication and the factorization time. For

example, on 3D cubic grid problems we can reduce the factorization time on 64 processors

from 204 seconds to 145 seconds. The algorithms have been integrated into Version 4.3 of

MUMPS.

Correspondence or enquiries about MUMPS can be conducted using the email address

mumps@cerfacs.fr.
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2.4 Symmetric weighted matching and preselection of 2×2 pivots

in indefinite multifrontal solvers (I. S. Duff, J. R. Gilbert,

and S. Pralet)

We have studied techniques for scaling and choosing pivots when using multifrontal

methods in the LDLT factorization of symmetric indefinite matrices, where L is a lower

triangular matrix and D is a block diagonal matrix with 1×1 and 2×2 blocks.

For the LU factorization of a matrix A, MC64 (Duff and Koster, 1999, Duff and

Koster, 2001) can be used to get a maximum weighted matching so that the corresponding

permutation will place large entries on the diagonal. The matrix can then be scaled so

that diagonal entries have modulus one and off-diagonals have modulus less than or equal

to one. This has been found to greatly improve the numerical stability of the subsequent

LU factorization.

If, however, MC64 is applied to a symmetric matrix the resulting permutation will not

normally preserve symmetry. We examined ways in which MC64 can be used while still

preserving symmetry. Then an ordering, for example, AMD (Amestoy, Davis and Duff,

1996), can be computed on the permuted matrix to get a symmetric permutation in

order to decrease the fill-in in the factors. We have also experimented with using MC64

to predetermine suitable 2 × 2 pivots and using AMD on a reduced graph where nodes

correspond to the 1 × 1 and 2 × 2 preselected pivots.

We have used these techniques with two symmetric multifrontal codes MA47 (Duff and

Reid, 1996) and MA57 (Duff, 2002) and our initial results have been very encouraging.

We plan to present our preliminary results at a meeting in San Francisco in February

2004. A technical report of our results will be available shortly.
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2.5 Ordering techniques for stable block diagonal forms for

unsymmetric parallel sparse solvers (I. S. Duff, Y. Hu, and

J. A. Scott)

One approach to efficiently solving very large sparse linear systems of equations Ax = b is

to reorder the system matrix to bordered block diagonal form and then to solve the block

system in parallel. We are interested in developing new algorithms for rapidly ordering

unsymmetric systems to singly bordered block diagonal (SBBD) form. That is, we want

to order A to the form

PAQ = ASB =




A11 C1

A22 C2

... .

ANN CN


 , (2.5.1)

where the rectangular blocks on the diagonal All are ml × nl matrices with ml ≥ nl and∑N
k=1 ml = n (the order of A), and the border blocks Cl are ml × k with k � nl. The

block diagonals lead to subproblems that can be solved independently, leaving an interface

problem that links the subproblems to be solved to complete the solution of the original

problem. For the method to work well in parallel, the interface problem needs to be small

compared with n so that communication between the blocks is minimized. Recently, a

number of solvers that implement direct algorithms based on this coarse-grained parallel

approach have been developed for HSL. These include HSL MP43 (Scott, 2001) and HSL MP48

(Duff and Scott, 2002) (see Section 6).

The MONET algorithm (Hu, Maguire and Blake, 2000) is designed for ordering

highly unsymmetric chemical process engineering problems to SBBD form. HSL offers

a Fortran 95 implementation of the MONET algorithm as routine HSL MC66. For highly

unsymmetric problems and N ≤ 32, HSL MC66 produces well-balanced SBBD forms with

narrow borders. However, when compared with the total time required to solve the linear

system, HSL MC66 is relatively expensive. This prompted us to try and develop alternative

algorithms. The algorithms of Hu and Scott are based on computing either a vertex

separator or a wide separator of the symmetrized matrix AT + A. A graph partitioning

tool such as the well-known METIS package is used to partition the graph of AT + A. A
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vertex separator is extracted from the output; it is optionally widened to a wide separator

and then used to partition the matrix. Hu and Scott report on a number of variants of this

separator approach and compare their performance with that of MONET (Hu and Scott,

2003).

Identifier n n̂

bayer01 57735 57916 (0.31)

lhr71c 70304 70764 (0.65)

10cols 29496 29602 (0.36)

circuit 4 80209 80924 (0.89)

scircuit 170998 171327 (0.19)

venkat50 62424 63544 (1.79)

Table 2.5.1: The order of the stretched matrix ÂSB (N = 8). The figures in parentheses

are the percentage increases in the order of the system.

More recently, we have considered a two-phase approach. In the first phase, A is ordered

to doubly bordered block diagonal (DBBD) form ADB and then in the second phase, row

stretching is used to obtain an SBBD form ÂSB of order n̂. Stretching is a sparse matrix

preprocessing technique that makes matrices sparser but, at the same time, larger (Grcar,

1990). In Table 2.5.1, n is compared with n̂ for a number of test examples (N = 8). The

results are encouraging since the small increase in the order of the system is unlikely to

add a significant overhead to the time needed to solve the system.

Identifier n SEP VS(ND) MONET Two-phase

bayer01 57735 458 254 431

lhr71c 70304 883 990 1163

10cols 29496 313 279 263

circuit 4 80209 19305 16417 1107

scircuit 170998 1274 4353 581

venkat50 62424 2492 2536 2232

Table 2.5.2: The size of the border in the 8-block SBBD form computed by the different

algorithms.

In Table 2.5.2, border sizes for the two-phase approach are compared with those

obtained using MONET and the separator method of Hu and Scott (denoted by

SEP VS(ND)). The narrowest borders and those that are within 5 percent of the best

are highlighted in bold. The results show that no one approach always gives the narrowest

borders. However, for (nearly) symmetric problems (including scircuit and venkat50)

the two-phase approach outperforms the SEP VS(ND) method and we found that MONET

only produces significantly smaller borders for a subset of our highly unsymmetric test

problems. Further results will shortly be available (Duff and Scott, 2004).
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2.6 A parallel direct solver for large sparse highly unsymmetric

linear systems (I. S. Duff and J. A. Scott)

The HSL code MA48 was developed in the early 1990s by Duff and Reid (1996) for solving

unsymmetric sparse linear systems Ax = b. The code has been highly successful and

has been incorporated into a number of commercial software packages. However, the

size of problem MA48 can solve is limited by the amount of computer memory available

for holding the matrix A and its factors. To solve larger problems, as well as to solve

problems more quickly, our aim was to develop a parallel version of MA48. Because MA48 is

a well-established code that represents substantial programming effort and expertise, we

were anxious to exploit the existing code as far as possible in developing a parallel version.

The idea behind our parallel approach was to preorder the matrix A to SBBD form (2.5.1)

and then apply a direct solver to each of the diagonal blocks in parallel. Solving the

interface problem that links the subproblems completes the solution. We have already

used this approach in the development of the parallel frontal solvers HSL MP42, HSL MP43,

and HSL MP62, and the experienced gained from these codes has been used in developing

our new general-purpose parallel direct solver, HSL MP48.

For portability, HSL MP48 is written in Fortran 90 and uses MPI for message passing.

It may be used on shared or distributed memory machines and may be run on a single

process or on up to N processes, where N is the number of blocks in the SBBD form. In

practice, we have found that N ≤ 16 generally gives the best results; for larger N solving

the interface problem (which is currently performed on a single process using MA48) can
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become a bottleneck and limit the speedup that is achieved. HSL MP48 allows the matrix

data to be “shared” between the processes, with each process only requiring access to the

submatrices assigned to it. Furthermore, at the end of the submatrix factorization, the

user may optionally choose to write the matrix factors to unformatted sequential files.

This increases the size of problem that can be solved.

On each of the diagonal blocks, HSL MP48 uses a modified version of MA50, the code that

lies at the heart of MA48, to perform the partial factorization. The main change we needed

to make to MA50 was to prevent pivoting on columns with entries belonging to more than

one block. In addition, the Schur complement remaining at the end of the factorization

of the diagonal blocks had to be extracted from the data structures and passed to the

processor responsible for the interface problem. Although implementing the changes was

non-trivial, most of the MA50 code was unaltered. The modified routines are presently

internal to the HSL MP48 package but may later form the basis for a user-callable package.

Identifier Order MA48 HSL MP48 (N = 8)

Number of processors

1 2 4 8

4cols 11770 2.47 0.67 0.41 1.63 0.29 2.31 0.23 2.91

lhr14c 14270 7.23 8.87 4.88 1.82 2.87 3.09 1.74 5.09

10cols 29496 16.4 2.75 1.60 1.72 0.93 2.96 0.65 4.23

lhr34c 35152 24.2 30.1 16.2 1.85 9.80 3.07 5.89 5.11

bayer01 57735 6.37 4.23 2.39 1.77 1.48 2.86 0.97 4.36

lhr71c 70304 50.6 71.2 39.8 1.79 22.3 3.19 12.4 5.74

Table 2.6.1: Timings for HSL MP48 for chemical process engineering test problems.

In Table 2.6.1, wallclock timings (in seconds) for HSL MP48 run on up to 8 processors of

an SGI Origin 2000 are presented, together with timings for MA48 run on a single processor.

The timings are for factorizing the matrix and then solving for a single right-hand side. The

numbers in italics are the speedups for HSL MP48 compared with using a single processor.

We see that good speedups are achieved and, for some problems, HSL MP48 on a single

processor is sometimes faster than MA48. Further results are given in Duff and Scott

(2002). The package HSL MP48 is available now and will be included in HSL 2004.
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2.7 HSL MC73: A fast multilevel spectral and profile reduction

code (Y. Hu and J. A. Scott)

In recent years there has been considerable interest in spectral orderings for use in

graph partitioning, image analysis, profile and wavefront reduction algorithms for sparse

symmetric matrices, and the study of range-dependent random graphs. Spectral orderings

are dependent upon the computation of the eigenvector corresponding to the smallest non-

zero eigenvalue of the Laplacian matrix associated with the graph of the problem, the

so-called Fiedler vector. If the original problem is sparse then the Laplacian matrix is

sparse, symmetric positive-semidefinite, and of the same order as the problem. Computing

the Fiedler vector using a Lanczos algorithm is expensive for large problems; an alternative

is a multilevel approach (Barnard and Simon, 1994).

Even with a multilevel implementation, computing a spectral ordering for use as

a profile reduction ordering is still significantly more expensive than using a heuristic

algorithm such as Reverse Cuthill-McKee or the Sloan method. This motivated the

development by Hu and Scott (2001) of an efficient multilevel algorithm for profile and

wavefront reduction that in terms of quality is competitive with the hybrid Sloan algorithm

of Kumfert and Pothen (1997) but is faster since it avoids the need for any spectral

information.

We have designed and developed a new flexible software package that implements both

the multilevel spectral algorithm and the multilevel profile reduction algorithm. Both

algorithms are included in a single package because they employ similar techniques and

the software needed to implement them contains common elements; it is thus efficient for

software development and maintenance to incorporate both within a single package. The

new code, HSL MC73, is written in Fortran 95 and will be included in HSL 2004. Full details

of the code, together with numerical results that illustrate its performance when used to

compute spectral reorderings for undirected range-dependent random graphs, are given in

the report by Hu and Scott (2003).
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2.8 Cholesky factorization of a dense matrix with high

performance in packed storage (John Reid, Fred Gustavson,

Jerzy Waśniewski, John Gunnels, and Bjarne Andersen)

In designing the Level 3 BLAS, Dongarra, Du Croz, Duff and Hammarling (1990) chose not

to address packed storage schemes for symmetric matrices because ‘such storage schemes

do not seem to lend themselves to partitioning into blocks ... Also packed storage is

required much less with large memory machines available today’. The aim of this work

was to investigate whether packing is possible without substantial loss of performance.

We took the same starting point as that of LINPACK and LAPACK, with the upper

(or lower) triangular part of the matrix being stored by columns. Following LINPACK

and LAPACK, we overwrite the given matrix by its Cholesky factor.

2.8.1a. Lower Packed Format
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2.8.1b. Lower Blocked Hybrid Format

0

1 2

3 4 5

6 7 8

9 10 11

12 13 14

∣∣∣∣∣∣∣

27

28 29

30 31 32

15 16 17

18 19 20

21 22 23

∣∣∣∣∣∣∣

33 34 35

36 37 38

39 40 41

∣∣∣∣∣∣∣

45

46 47

48 49 50

24 25 26
∣∣∣42 43 44

∣∣∣51 52 53
∣∣∣54

Figure 2.8.1: Lower Packed and Blocked Hybrid Formats.

In the lower packed form, the lower-triangular part of the matrix is held by columns, as

illustrated on the left of Figure 2.8.1. After careful consideration of alternatives, we have

chosen to sort each block column to be ordered by rows. This is illustrated for block size

nb = 3 on the right of Figure 2.8.1. The sort can be performed efficiently with the help of

a buffer of size n × nb when the order is n and the block size is nb.

We use the notation Aij and Lij for the blocks of the given matrix and its Cholesky

factor. The key calculation, performed by the BLAS routine GEMM, is

Aij = Aij − LikL
T
jk.

This will be efficient if the block size is chosen so that the blocks fit comfortably in Level-1

cache.

If the number of blocks is not very large, that is, if n is not much larger than nb, the

factorization of the diagonal blocks is also important. By making temporary copies in full

format, we can use the LAPACK routine POTRF, but this is unsatisfactory since it itself is
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a block algorithm and calls POTF2 for its diagonal blocks and this employs Level 2 BLAS.

We have therefore written our own ‘kernel’ Cholesky code that uses a block size kb designed

to fit in registers and have found that the block size kb = 2 is suitable. This code, written

in Standard Fortran has proved to be remarkably fast on all six of our test platforms. It

significantly outperforms the vendors’ codes on all but the IBM Power4, where it is only

marginally slower.

n 40 100 250 640 1600 4000

Packed LAPACK 747 1043 1059 1037 638 635

Vendor Packed LAPACK 1750 2658 3107 3773 3969 3836

Full LAPACK 440 1390 2562 3495 3901 4010

Vendor Full LAPACK 1492 2486 3454 3832 4162 4327

Packed Recursive+ 170 593 1586 2621 3434 3943

Packed Recursive 181 618 1652 2700 3523 3980

Packed Hybrid+ 878 2085 3211 3974 4188 4275

Packed Hybrid 1006 2334 3441 4149 4266 4309

Table 2.8.1: Mflops, Cholesky factorizations, nb = 100, IBM Power4.

For our main performance tests we varied n between 40 and 4000 and ran on six

platforms that are in wide use. In Table 2.8.1, we show some factorization speeds on

the IBM Power4 computer. The first row shows the performance of the LAPACK code

PPTRF when compiled with full optimization and calling the vendor-supplied BLAS. This

performance deteriorates markedly as n increases beyond 640. We believe that this is

because Level 2 BLAS are being used. None of the other codes have this defect. The ESSL

library contains an equivalent code for the lower packed format and we show its speed in

the second line of the table.

The next two lines show the speeds of comparable codes for the full format and provide

our benchmark. We note that the vendor codes are much faster for small n, which is

probably because the LAPACK code uses Level 2 BLAS ( POTF2) to factorize the blocks

on the diagonal, but are only slightly faster for n ≥ 1000 where the speed of GEMM is of

prime importance.

There are two rows for each of the recursive (Andersen, Gustavson and Waśniewski,

2001) and hybrid formats, according to whether the overheads of rearrangement to this

format are included. We do not include rearrangement of the factor back to ordinary

packed format since the recursive or hybid format is more suitable for forward and back

substitution.

The recursive algorithms achieve performance that approaches that of the

LAPACK full codes when the order is large. This is because both are then doing most

of their work in significant calls of the Level 3 BLAS GEMM. However, for smaller n, their

performance is poor, probably because of the larger ratio of procedure calls to actual

computation.
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The hybrid algorithm is much faster than the recursive algorithm for small n, is

significantly faster for medium n, and is slightly faster for large n.

If we compare the packed hybrid code with the compiled full LAPACK code, we see

that it is always faster, and significantly so for small n. We see this as very encouraging.

Furthermore, it is slightly faster than the vendor packed code except for small n. It is

sometimes faster than the vendor full code and would have been faster for all n≥1600 if

we had switched to nb=200 at n=1600.

A RAL report will shortly be available that describes this work in more detail.
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3 Iterative methods

3.1 Backward error analysis and stopping criteria for Krylov

space methods (M. Arioli, D Loghin, and A. Wathen)

The finite-element method approximates the weak form of a coercive elliptic partial

differential equation defined within a Hilbert space by a linear system of equations

Au = b (3.1.1)

where A is an N × N positive definite (not necessarily symmetric) matrix.

We denote by H the space IRN with the scalar product based on a symmetric and

positive-definite matrix H ∈ IRN×N :

(x,y)H = xT Hy.

The Krylov methods approximate iteratively the solution u of (3.1.1) by u(k) computed

by minimizing either a norm of the residual b−Au(k) or a suitable norm of the error u−u(k)

on a Krylov space. When using an iterative method, we normally incorporate a stopping

criterion based on the a posteriori component-wise or norm-wise backward error theory of

Arioli, Duff and Ruiz (1992).

Owing to the special structure of the space H, we must modify the usual backward

error analysis taking into account the norm in H. On the basis of the backward error

analyses presented in Rigal and Gaches (1967), for the finite-dimensional case, and in

Arioli, Noulard and Russo (2001) for a general Banach space, a good candidate stopping

criterion could be

IF ‖Au(k) − b‖H−1 ≤ η‖b‖H−1 THEN STOP , (3.1.2)

with η < 1 an a priori threshold fixed by the user.

For the conjugate gradient method, we assume A is symmetric and positive definite,

and that H = A. Using this equality, it follows that (3.1.2) is equivalent to the stopping

criteria:

IF ‖u(k) − u‖H ≤ η‖u‖H THEN STOP . (3.1.3)

We need to add, within the conjugate gradient algorithm, some tool for estimating the

value e
(k)
A

= (u − u(k))TA(u − u(k)) = r(k)TA−1r(k) at each step k and we must also

estimate bTA−1b = uTAu.

Arioli (2003), Meurant (1999b), and Strakoš and Tichý (2002) presented several

techniques that can be used to estimate e
(k)
A

and bT A−1b. In particular, the value of

e
(k)
A

can be estimated using the rule of Hestenes and Stiefel (1952). The Hestenes and

Stiefel rule computes a lower bound ξk for e
(k)
A

that is equal to the bound computed by

the Gauss rule proposed by Golub and Meurant (1997). Moreover, Strakoš and Tichý
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(2002) proved that the Hestenes and Stiefel rule is numerically stable when finite-precision

arithmetic is used.

Under the assumption that e
(k+d)
A

<< e
(k)
A

, where the integer d denotes a suitable

delay, the Hestenes and Stiefel estimate ξk can then be computed very cheaply using the

information computed during the conjugate gradient method.

Moreover, Arioli (2003) and Meurant (1999b) proved that, introducing a preconditioner,

the energy norm of the preconditioned problem is equal to e
(k)
A

.

Finally, the choice of η will depend on the properties of the problem that we want to

solve, and, in practical cases, η can frequently be much larger than ε, the roundoff unit of

the computer’s finite-precision arithmetic. Arioli (2003) suggested that a reasonable choice

for η, when (3.1.1) is obtained from a finite-element approximation of a two dimensional

partial differential equation, could be η ≈ h, where h is the maximum diameter of an

element in Th of the given mesh. Arioli (2003) has also proved that using this choice for

η within (3.1.2), the error between the exact solution of the partial differential equation

and the function built using u(k) and the basis functions of the finite elements used to

approximate the problem, measured with the continuous norm, is of order O(h).

Arioli, Loghin and Wathen (2003) have analysed the non-symmetric case where A = H

is no longer true. In this case, (3.1.2) cannot be seen as a straightforward relation among

the errors and their measure in the norm of H. However, the norm of the symmetric part

of A−1 and the dual norm are equivalent with constants independent of the dimension of

the discrete problem (Arioli et al., 2003).

The stopping criteria (3.1.2) can be then replaced with:

IF ‖b − u(k)‖A−1 ≤ η‖u‖H

√
C2 THEN STOP . (3.1.4)

Arioli et al. (2003) proved that choosing η = O(h) within (3.1.4), the error between

the exact solution of a partial differential equation and the function built using u(k) and

the basis functions of the finite elements used to approximate the continuous problem,

measured with the continuous norm, is of order O(h).
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3.2 A Chebyshev-based two-stage iterative method (M. Arioli

and D. Ruiz)

Arioli and Ruiz (2002) analyse the solution of large, sparse, and ill-conditioned linear

systems of equations,

Ax = b , (3.2.1)

by an iterative method based on a two-phase approach. Analogously to direct methods,

the method includes a preliminary “factorisation” phase followed by a “cheap” solution

phase, both based only on numerical tools that are usually exploited in iterative methods

and which, in addition, offer the possibility of keeping the matrix in implicit form only

requiring matrix-vector products.

Let Â = QA, where Q is a given preconditioner, be the spd iteration matrix.

Unfortunately, several of the most commonly used preconditioners transform the matrix

A to a matrix whose eigenvalues are in a relatively small number of clusters but which is

still ill-conditioned.

During the first phase, Arioli and Ruiz (2002) start with an initial set of s randomly

generated vectors (s is the block-size), and use Chebyshev polynomials (Hageman and

Young, 1981) in Â to “damp” within these vectors the eigenfrequencies associated with all

the eigenvalues in some predetermined range. They fix a positive number λmin(Â) < µ <

λmax(Â), and decide to compute all the eigenvectors associated with all the eigenvalues

in the range [λmin(Â), µ]. The computation of λmax(Â) is usually not too difficult, and in

some cases a sharp upper-bound may be already available through some a priori knowledge

of the numerical properties of Â. If the eigenvalues are well clustered, the number of

remaining eigenvalues in the interval [λmin(Â), µ], with reasonable µ (for example λmax/100,

or λmax/10), should be small compared to the size of the linear system.
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The use of Chebyshev polynomials can be interpreted as a filtering tool that increases

the degree of collinearity with some selected eigenvectors. Then, after “filtering” the initial

starting vectors, a set of s vectors with eigencomponents below a certain level ε for those

eigenvalues in the range [µ, λmax(Â)], and relatively much bigger eigencomponents linked

with the smallest eigenvalues in Â, is obtained.

Of course, the a priori choice of the block-size s may not correspond to or at least be

greater than, the number k of remaining eigenvalues outside the interval [µ, λmax(Â)].

To overcome the difficulties related to the case k > s, Arioli and Ruiz (2002) propose

using a Block-Lanczos type of approach to build a Krylov basis starting with these

filtered vectors and to stop when appropriate. One of the main drawbacks with a

Lanczos/Block-Lanczos algorithm is that it does not maintain the nice property of the

filtered vectors, and gradually (and rather quickly, indeed) the Lanczos vectors may again

have eigencomponents all about the same level.

To maintain the level of the unwanted eigenfrequencies in the orthonormal block Krylov

basis under ε, Arioli and Ruiz (2002) propose to perform, at each Block-Lanczos iteration,

a few extra Chebyshev iterations on the newly generated Block Lanczos vectors V(k+1). In

this way, “near” invariance can be maintained.

It must be mentioned, beforehand, that the nice property of the block-Krylov spaces,

which makes the projected matrix VT ÂV block-tridiagonal, is lost after re-filtering the

current block V(k+1). Therefore, it is necessary to orthogonalize the filtered vectors against

all the previously constructed ones at each iteration, as for example in an Orthodir process.

Once the near-invariant subspace linked to the smallest eigenvalues is obtained, it can

be used for the computation of further solutions. First, one performs an oblique projection

of the initial residual (r̂0 = b̂− Âx0) onto this near invariant subspace in order to get the

eigencomponents in the solution corresponding to the smallest eigenvalues. To compute the

remaining part of the solution vector Âx2 = r̂1, one can then use the classical Chebyshev

algorithm with eigenvalue bounds given by µ and λmax(Â) as explained by Hageman and

Young (1981, Chapter 4).

It is also possible to iterate on that solution phase, and improve the solution with

iterative refinement in the usual way.

In Arioli and Ruiz (2002) the authors extensively discuss the choice of the filtering level

ε, the block size s, and the cut-off parameter µ as a function of the eigenvalue distribution

of Â.

Table 3.2.1 summarizes the results of the comparison of the number of Chebyshev

filtering steps for different values of ε and µ obtained on a numerical test based on the

Rutherford-Boeing collection. The rapid change in the Chebyshev rate of convergence with

smaller values of µ induces much more Chebyshev filtering steps at each iteration, and this

could only be counterbalanced by a very strong reduction in the total number of iterations

in the first phase of the algorithm. In other words, it is worth reducing the value of µ only

if there is a very strong clustering of eigenvalues in the spectrum of the iteration matrix

Â and if the change in µ helps to reduce by a large amount the dimension of the invariant
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subspace that will be approximated.

Number of Chebyshev Iterations

µ = λmax/5 µ = λmax/10 µ = λmax/100

Block Krylov Value of ε Value of ε Value of ε

Iteration 10−14 10−8 10−14 10−8 10−14 10−8

Start

1

2

3

4

5

35 + 2

10

11

16

25

35

20 + 3

9

11

15

20

20

51 + 4

15

20

32

43

-

30 + 3

15

18

30

30

-

165 + 14

59

88

165

-

-

96 + 14

56

90

96

-

-

In the case µ = λmax/5, there are 33 eigenvectors to capture.

In the case µ = λmax/10, there are 26 eigenvectors to capture.

In the case µ = λmax/100, there are 19 eigenvectors to capture.

Table 3.2.1: Comparison of the number of Chebyshev filtering steps for

different values of the filtering level and different bounds for the damping

interval. (Block Lanczos/Orthodir with block size 6).
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3.3 Underground 3-D flow modelling and HSL routines (M.

Arioli and G. Manzini)

Underground 3-D flow modelling plays a key role in several physical phenomena

and engineering processes including oil reservoir exploitation and underground water

remediation. One application is the simulation of the decontamination process around the

Stráz pod Ralskem uranium mine in the Czech Republic. Several algorithms are compared

on a set of 3-D test problems arising from this problem (Arioli, Maryška, Rozložńık and

Tůma, 2001).

Darcy’s law describes the relationship between the pressure p(x) (the “total head”) and

the velocity field u(x) (the “visible effect”) in ground-water flow. In particular, Darcy’s
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law relates the vector field u to the scalar field p via the permeability tensor K(x) which

accounts for the soil characteristics, and the divergence of u to the source-sink term f(x).

Let Ω be a simply connected, bounded, polygonal domain in IR2, defined by a closed

piecewise linear connected curve Γ = ΓD ∪ΓN , and n be the external normal to Γ. Darcy’s

equations are given by

{
u(x) = −K(x)grad p(x), x ∈ Ω,

divu(x) = f(x), x ∈ Ω,
(3.3.1)

with boundary conditions

p(x) = gD(x), x ∈ ΓD,

u · n = gN(x), x ∈ ΓN .
(3.3.2)

The vector field u and the scalar field p are unknown in the interior part of Ω. In order to

solve Darcy’s law, mixed finite-element approximation techniques are used. This leads to

the solution of an augmented, nonsingular, and sparse system of linear equations

[
M A

AT 0

] [
u

p

]
=

[
q

b

]
, (3.3.3)

where M is a n × n symmetric and positive definite matrix, and AT the m × n full rank

divergence matrix with entries equal to either 1, −1, or 0.

The HSL codes MA47 and MA57 are two efficient and robust direct packages designed for

solving symmetric sparse systems. Table 3.3.1 shows the number of nonzero entries required

to store the matrix factors and the CPU times required to solve the augmented system for

both MA57 and MA47 on test problems related to the Stráz pod Ralskem uranium mine. For

very large problems, the augmented systems may involve several million unknowns. In such

cases, the memory requirements of direct solvers can be prohibitive. For these systems,

it is preferable instead to apply a specialized version of the classical null space algorithm

for the minimisation of linearly constrained quadratic forms. This has the advantage of

preserving the physical meaning of the computed velocity field u because it naturally

conserves flux. Null space algorithms compute bases of the null space defined by the flow

conservation equation. Given such a basis, a reduced linear system in the null space may

be solved using the conjugate gradient algorithm, in which required matrix-vector products

are computed implicitly.

The HSL package MA49 can be used to compute an orthogonal null-space basis. In

particular, MA49 avoids the explicit computation of the full orthogonal matrix H, storing

the information necessary to compute it as a product of sparse elementary matrices, and

thus all the matrix-vector products required by the algorithm can be computed implicitly.

Importantly, in this case the number of steps performed by the conjugate gradient method

is independent of the mesh size used for the discretization (Arioli and Manzini, 2002).

This approach may also be useful and efficient for nonlinear variants of Darcy’s equation

in which the permeability tensor depends on the velocity field u; in this case, MA49 is
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employed only once and the factors are used within a nonlinear conjugate gradient method

applied to the problem. However, for very large problems, the storage of the sparse factor

matrices necessary to compute the orthogonal null-space basis can again be prohibitive. For

this reason, Arioli and Manzini (2001) have proposed a novel approach based on network

programming techniques. Arioli and Manzini (2002) analyse the use of shortest path tree

algorithms to identify a basis of the null space using simple permutation matrices. Because

negligible additional storage is required, the resulting code is extremely competitive for very

large problems. In particular, when the test problem has a unit square domain and K(x)

has a random distribution with its values ranging from 1 to 10−12, the proposed approach

is competitive in terms of CPU time with MA47. In particular, on a mesh with 155746

triangles (389874 degrees of freedom) MA47 requires 35 seconds to solve the problem, MA57

requires 20 seconds, and our approach requires 36 seconds. When the mesh was refined

taking the number of triangles up to 1002499 and the number of degrees of freedom up to

2507711, both MA47 and MA57 were unable to solve the system because they required more

than 1Gbyte (the size of the RAM memory on the computer used for the experiments) to

store the matrix factors. Our approach solved the problem in 732 seconds.
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3.4 Efficient parallel iterative solvers for the solution of large

dense linear systems arising from the boundary element

method in electromagnetism (G. Alléon, B. Carpentieri,

I. S. Duff, L. Giraud, J. Langou, E. Martin, and G. Sylvand)

In recent years, there has been a significant amount of work on the simulation of

electromagnetic wave propagation phenomena, addressing various topics ranging from
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Name
m + n MA47 MA57

# nonzeros # entries CPU Time # entries CPU Time

SIT100
10262

1467237 2.6 sec 821500 0.7 sec
34094

K1 SAN
67759

7104285 14 sec 6567837 9 sec
303364

OLESNIK0
88263

9356219 23 sec 8427827 12 sec
402623

D PRETOK
182730

40182401 257 sec 33700651 87 sec
885416

TURON M
189924

42586618 277 sec 31248608 71 sec
912345

Table 3.3.1: Comparison of MA47 and MA57.

radar cross section to electromagnetic compatibility, to absorbing materials, and antenna

design. To address these problems the Maxwell equations are often solved in the frequency

domain leading to singular integral equations of the first kind. The discretization by the

boundary element method (BEM) results in linear systems with dense complex matrices

which are very challenging to solve. In this project we propose preconditioning strategies

for the iterative solution of these systems.

3.4.1 Combining fast multipole techniques and approximate inverse

preconditioners for large calculations in electromagnetism

(B. Carpentieri, I. S. Duff, L. Giraud and G. Sylvand)

Our primary focus is on the design of an efficient parallelizable preconditioner for solving

the dense complex systems arising in electromagnetic calculations using preconditioned

Krylov methods. In that respect, we consider an approximate inverse method based

on the Frobenius-norm minimization. The preconditioner is constructed from a sparse

approximation of the dense coefficient matrix, and the patterns both for the preconditioner

and for the coefficient matrix are computed a priori using geometric information from the

mesh. We describe how such a preconditioner can be naturally implemented in a parallel

code that implements the multipole technique for the matrix-vector product calculation.

We investigate the numerical scalability of our preconditioner on realistic industrial test

problems and show that it exhibits some limitations on very large problems of size close

to one million unknowns. To improve its robustness on those large problems we propose

an embedded iterative scheme that combines nested GMRES solvers with different fast

multipole computations. We show through extensive numerical experiments that this new

scheme is extremely robust at affordable memory and CPU costs for the solution of very

large and challenging problems. We show a summary of our results in Table 3.4.1 on a set

of standard test problems. These clearly show the benefit of using the embedded scheme.

The Compaq Alpha server on which these runs were made is a cluster of Symmetric Multi-

Processors, each node of which consists of four DEC Alpha processors (EV 6, 1.3 GFlops

peak) that share 512 MB of memory. More details can be found in Carpentieri, Duff,

Giraud and Sylvand (2003) from which this table is taken.
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3.4.2 Using spectral low rank preconditioners for large electromagnetic

calculations (I. S. Duff, L. Giraud, J. Langou, and E. Martin)

For solving large dense complex linear systems that arise in electromagnetic calculations,

we perform experiments using a general purpose spectral low rank update preconditioner

(Carpentieri, Duff and Giraud, 2003) in the context of the GMRES method preconditioned

by an approximate inverse preconditioner. The goal of the spectral preconditioner is to

improve the convergence properties by shifting by one the smallest eigenvalues of the

original preconditioned system.

Numerical experiments have been performed on parallel distributed memory computers,

using a Fast Multipole code (Sylvand, 2002), to illustrate the efficiency of this technique

on large and challenging real–life industrial problems. We show the results for a complete

monostatic calculation for our four main test problems in Table 3.4.2 where the advantage

of using the spectral low rank correction (MSLRU(k)) compared to the Frobenius norm

preconditioning (MFrob) is clearly seen. More details on this work are available in Duff,

Giraud, Langou and Martin (2003) from which this table is taken.

Aircraft

Size
GMRES(∞) FGMRES(∞,60)

Iter Time Iter Time

94704 746 2h 9m 23+1320 2h 30m

213084 973 7h 19m 30+1740 6h 11m

591900 1461 16h 42m(64) 43+2520 12h∗

1160124 M.L.E.(64) > 1d 43+2520 14 h 28m∗∗

Cobra

Size
GMRES(∞) FGMRES(∞,60)

Iter Time Iter Time

60695 369 26m 21+600 17m

179460 353 1h 11m 18+510 38m

Table 3.4.1: Number of matrix-vector products and elapsed time required to converge. The

tests were run on 8 processors of the Compaq machine, except those marked with (k), that

were run on k processors. GMRES(∞) is the GMRES algorithm without any restarting

and FGMRES(∞,60) is the FGMRES algorithm with a restart of 60 in the inner loop but

no restarting in the outer.
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MFrob MSLRU(k)

Geometry Order # procs. # iter times # iter times

Cetaf 8 5 391 16 391 1 h 40 m 5 349 47 m

Airbus 32 23 676 87 121 46 h 47 385 18h 40 m

Cobra 32 60 695 29 777 21 h 16 921 8h 30 m

Almond 32 104 793 34 375 25 h 30 m 21 273 14h 40 m

Table 3.4.2: Cost for a complete monostatic calculation.
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3.5 The Sparse BLAS (I. S. Duff, M. Heroux, R. Pozo, and

C. Vömel)

We are delighted to report the release, during this reporting period, of the new Basic

Linear Algebra Subprogram (BLAS) Standard developed and defined by the BLAS

Technical Forum (2002). This involved many extensions to the earlier standards, including

new functionalities, mixed precision BLAS, and sparse BLAS. A technical description

of these can be found in Blackford, Demmel, Dongarra, Duff, Hammarling, Henry,

Heroux, Kaufman, Lumsdaine, Petitet, Pozo, Remington and Whaley (2002). Our main

contribution to this effort was in the design, implementation, and testing of the sparse

BLAS.

The design of the sparse BLAS is discussed in the paper by Duff, Heroux and Pozo

(2002). This consists of a set of kernels providing basic operations for sparse matrices and

vectors, including the multiplication of a dense vector or a set of dense vectors by a sparse

matrix. A principal goal of the Sparse BLAS standard is to aid in the development of

iterative solvers for large sparse linear systems by specifying interfaces for a high-level

description of vector and matrix operations for the algorithm developer while leaving
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enough freedom for vendors to provide the most efficient implementation of the underlying

algorithms for their specific architectures.

The Sparse BLAS standard defines interfaces and bindings for the three target

languages: C, Fortran 77 and Fortran 95. Our Fortran 95 implementation is intended

as a reference model for the Sparse BLAS. The design is based on the idea of matrix

handles so that the user need not be concerned with the details of the underlying storage

schemes. The software implementation has been published as a TOMS algorithm (Duff

and Vömel, 2002).
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4 Optimization

4.1 GALAHAD (N. I. M. Gould, D. Orban and Ph. L. Toint)

We have long been known for our nonlinear optimization package, LANCELOT (Conn,

Gould and Toint, 1992). Since this was definitely showing its age, we have now replaced this

by a library of freely-available Fortran 90 optimization packages. Rather than providing

a single nonlinear programming package, we have decided instead to produce a library,

GALAHAD (Gould, Orban and Toint, 2003), of optimization-related packages. The first

release of the library occurred in April 2002, and key components included

• QPA, an working-set method for finding a critical point of a (nonconvex) quadratic

function over a polyhedral region, (see Gould and Toint, 2002),

• QPB, a usually-superior interior-point method for the same problem (see Conn, Gould,

Orban and Toint, 2000, and Gould and Toint, 2002b),

• LSQP, an interior-point method for minimizing a linear or separable convex quadratic

function over a polyhedral region,

• PRESOLVE, a presolve utility for simplifying linear and quadratic programming (see

Gould and Toint, 2002b),

• LANCELOT B, an updated version of the old package,

• GLTR, a method for minimizing a quadratic function within or on a (scaled) ball (the

`2-trust-region subproblem) based on Gould, Lucidi, Roma and Toint (1999), and

• a variety of sparse-matrix manipulation tools.

A subsequent sub-release (July 2003) added the FILTRANE package for solving nonlinear

feasibility problems, described in Section 4.5, to the library.

LANCELOT B offers a number of improvements over its predecessor, but is still far from

state-of-the-art. New features include

• the automatic allocation of workspace,

• a non-monotone descent strategy to be used by default (a variety of non-monotone

history lengths are possible),

• the optional use of Moré and Toraldo (1991)-type projections during the subproblem

solution phase,

• an interface to Lin and Moré’s (1999) public domain incomplete Cholesky

factorization package ICFS for use as a preconditioner, and

• the optional use of structured trust regions to better model structured problems (see

Conn, Gould, Sartenaer and Toint, 1996).
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The main reason for extending LANCELOT’s life is as a prototype for what may be achieved

using Fortran 90 in preparation for future replacement GALAHAD SQP or interior-point

solvers, since the problem data structure is unlikely to change. However, as can be seen

from Figure 4.1.1, some of the new options mentioned above perform favourably compared

to the earlier A version of the code.

1 1.5 2 2.5 3 3.5 4 4.5 5
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Figure 4.1.1: CPU time performance profile (Dolan and Moré, 2002) for LANCELOT B

options. The horizontal axis gives the argument α, while the vertical axis records pi(α),

the percentage of times option i is within a fraction α of the best option on each test

problem in the CUTEr test set, for each of the competing options, i.

The GALAHAD library is coded entirely in Fortran 90, and is thread-safe. It is fully

documented, and capable of supporting multi-platform, simultaneous use (within a Unix-

like environment). GALAHAD is downloadable without-charge from its Web page,

http://galahad.rl.ac.uk/galahad-www .

The full scope of the package(s) is described in Gould et al. (2003). GALAHAD has been

downloaded roughly 200 times since its release in April 2002.
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4.2 CUTEr, an Optimization Testing Environment (N. I. M.

Gould, D. Orban and Ph. L. Toint)

Our other freely-available optimization package CUTE (see Bongartz, Conn, Gould and

Toint, 1995) metamorphosed into CUTEr during 2002. We gave a full synopsis of the scope

and design of CUTEr in the last progress report, and merely summarise recent developments

here.

CUTEr provides subroutine-level interfaces between a large collection of optimization

test problems and a variety of optimization solvers, both ours and others. This new release

is characterized by
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• a set of new tools, including a unified facility to report the performance of the various

optimization packages being tested,

• a set of new interfaces to additional optimization packages,

• extra, larger test examples,

• some Fortran 90/95 and C/C++ support, and

• AMPL and Matlab interfaces.

In addition the package has the following features;

• a complete redesign of organization of the various files that make up the environment,

now allowing concurrent installations on a single machine and shared installations

on a network, and

• a new simplified and automated installation procedure, but

• the restriction of the environment to unix systems.

CUTEr is freely downloadable from its Web page,

http://cuter.rl.ac.uk/cuter-www .

The full scope of the package(s) is described in Gould, Orban and Toint (2003).
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4.3 An interior-point `1-penalty method for nonlinear

optimization (N. I. M. Gould, D. Orban and Ph. L.

Toint)

While an updated version of LANCELOT appears in GALAHAD, our longer-term goal is

to replace this by a more powerful interior-point or SQP approach. We have reservations

about the applicability of the latter for large-scale problems (see Gould, 2003), but are

very enthusiastic about the former.
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A typical nonlinear programming problem is to

minimize
x∈R

n

f(x) (4.3.1a)

such that cE(x) = 0 and cI(x) ≥ 0, (4.3.1b)

involving a mixture of smooth, general, possibly nonlinear and nonconvex, equality and

inequality constraints. Although we had originally thought that the basic S`1QP approach

would be easy to develop once we had good quadratic programming codes—these had

arisen as part of the initial release of GALAHAD, see Section 4.1—we soon became more

sceptical once we appreciated the difficulties caused by the convergence of the latter to

local rather than global solutions. We thus rapidly changed tack, and now consider the

alternative described in this section to be more promising.

Our main idea is to embed (4.3.1) into a higher dimensional subspace such that its

feasible set has a non-empty interior, allowing the use of interior-point methods for its

numerical solution. The reformulation that we use is to

minimize
x,s

φsS(x, s; ν)
def
= f(x) + ν

∑

i∈E

[ci(x) + 2si] + ν
∑

i∈I

si

subject to ci(x) + si ≥ 0 and si ≥ 0, for all i ∈ E ∪ I,

(4.3.2)

involving so-called “elastic” variables s and a penalty parameter ν. This problem has only

inequality constraints, and it is trivial to pick s sufficiently large so that (x, s) is strictly

feasible for (4.3.2), which is a distinguishing advantage of the formulation. A further

advantage is that the reformulation (4.3.2) is surprisingly regular in the sense that the well

known Mangasarian-Fromowitz constraint qualification condition holds at feasible pairs

(x, s), and not just at local solutions. We also note that the reformulation relaxes the

shape of the constraints, promoting larger steps and easing the nonlinearity of the strictly

feasible set in the neighbourhood of a solution—other reformulations have been suggested

by Armand (2002), Mayne and Polak (1976) and Tits, Wächter, Bakhtiari, Urban, and

Lawrence (2002).

Problem (4.3.2) may then be tackled using interior-point techniques, (approximately)

minimizing a sequence of logarithmic barrier functions

φsS(x, s; ν) − µ
∑

i∈E∪I

log(ci(x) + si) − µ
∑

i∈E∪I

log si,

for a decreasing sequence {µk} of positive barrier parameters whose limit is zero and a

possibly increasing sequence {νk} of positive penalty parameters. Exactness of the penalty

function eliminates the need to drive this last sequence to infinity. Global and fast local

convergence of the proposed scheme have been established, based on previous analysis of

interior-point methods for nonconvex problems (see, Conn, Gould, Orban and Toint, 2000,

Gould, Orban, Sartenaer and Toint, 2001, and Gould, Orban, Sartenaer and Toint, 2002).

Further improvements of the resulting algorithm include making the elastic variables s

implicit and other numerically helpful heuristics. Theoretical aspects of this approach are

fully described in Gould, Orban and Toint (2003c), although this work is still on-going and

the resulting code is not yet ready for GALAHAD.
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4.4 Filter Methods (N. I. M. Gould and Ph. L. Toint)

Another class of modern techniques for nonlinear optimization are the so-called “filter”

methods, Such methods were first proposed by Fletcher and Leyffer (2002) as a means of

assessing the suitability of steps computed by sequential-quadratic-programming (SQP)

methods. Their primary aim is to avoid the use of merit functions, since it is far from

obvious how best to combine the objective and constraints. Filter methods instead treat

the objective and constraints as independent objects, and essentially assess the suitability

of an SQP step by rejecting it only if neither the objective nor constraint violation improves

following the step. Although a general purpose SQP Filter method is necessarily far more
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complicated than this simple idea, there is strong evidence that the approach is worthwhile,

and offers more flexibility than other merit-function based approaches.

Unfortunately, convergence of the basic SQP Filter method depends upon being able

to solve the step-finding quadratic programming (QP) subproblem. Since in general this

is a non-convex optimization problem, it is unreasonable in practice to hope to be able to

do so in every case. Thus our research was based on alternatives that do not require the

exact solution of the QP subproblem.

One way to do this is to relax the requirements on the step, but to insist that the

step is constructed as the sum of two components, one of which aims towards (linearized)

feasibility, and the other towards objective-function decrease. Both components have to

be chosen to ensure “Cauchy-like” decrease conditions so familiar in trust-region methods,

but fortunately there are good methods to guarantee this. The global convergence of just

such a scheme was established in Fletcher, Gould, Leyffer, Toint and Wächter (2002).

An alternative in which the SQP step is attempted first, but in which the Fletcher et

al. (2002) method is used as a fall-back is also possible, and has been analysed by Gould

and Toint (2001). Another possibility is to weaken further the requirement that the filter

points be themselves monotonically improving so long as there is an overall monotonic

trend. Again such a framework is amenable to global convergence analysis (see, Gould and

Toint, 2001).
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4.5 Nonlinear feasibility problems and FILTRANE (N. I. M. Gould,

S. Leyffer and Ph. L. Toint)

In this project, we considered the solution of the general smooth feasibility problem, that

is the problem of finding a vector x satisfying the constraints

cE(x) = 0 and cI(x) ≥ 0.
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If such a point cannot be found, it is at least desirable to find a local minimizer of the

constraint violation. We choose here to consider the Euclidean norm of these violations,

that is to find a local minimizer of the function minx f(x) = 1

2
‖θ(x)‖2, where we define

θ(x)
def
=

(
cE(x)

[cI(x)]−

)
,

with [cI(x)]− = min[0, cI(x)], the minimum being taken componentwise. An important

special case of this problem is when I = ∅, which reduces to a system of smooth nonlinear

equations. This problem is therefore not only fairly general, but also practically important

because a large number of applications can be cast in this form. Moreover, solving the

feasibility problem may also occur as a subproblem within more complicated contexts,

such as the “restoration” phase in the solution of the nonlinear programming problem

using filter methods (see, for example, Fletcher and Leyffer, 2002).

For simplicity of exposition, we assume that the problem only contains nonlinear

equations. In this case, we may build two distinct local quadratic models of f(x) in the

neighbourhood of a given iterate xk: the Gauss-Newton model and the full second-order

Newton model which includes an additional term involving the curvature of the equality

constraints.

In our method, we have chosen to compute the step sk by minimizing one of these models

in some region surrounding the current iterate xk, defined by the constraint ‖sk‖ ≤ τk∆k,

where ∆k is a trust-region radius which is updated in the usual trust-region manner. The

parameter τk ≥ 1 allows for steps that potentially extend much beyond the limit of the

trust region itself, in the case where convergence seems satisfactory. The solution of the

subproblem of minimizing the model subject to the trust-region constraint is computed

approximately using the Generalized Lanczos Trust-Region method (Gould, Lucidi, Roma

and Toint, 1999) as implemented in the GLTR module of GALAHAD. Once the step sk has

been computed, we define the trial point x+
k = xk+sk and consider the question of deciding

whether or not it is acceptable as our next iterate xk+1. The filter is used to answer this

question. In order to define what we mean, we first say that a point x1 dominates a point

x2 whenever |θi(x1)| ≤ |θi(x2)| for all i ∈ E . Thus, if iterate xk1
dominates iterate xk2

,

the latter is of no real interest to us since xk1
is at least as good as xk2

for each i. All we

need to do now is to remember iterates that are not dominated by other iterates using a

structure called a filter. A filter is a list F of m-tuples of the form (|θ1,k|, . . . , |θm,k|) such

that, broadly speaking, for k 6= `, |θi,k| < |θi,`| for at least one i. Filter methods then accept

the new trial iterate x+
k if it is not dominated by any other iterate in the filter. In order

to avoid cycling, and assuming the trial point is acceptable in that sense, we may wish to

add it to the filter, so as to avoid other iterates that are worse. This may however cause

an existing filter value θ` to be dominated. If this happens, we simplify later comparisons

by removing θ` from the filter.

If the trial point is not acceptable for the filter, it may nevertheless be acceptable for

the usual trust-region mechanism. Our algorithm therefore attempts to combine the filter

and trust-region acceptability criteria to allow a potentially larger set of trial points to be
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accepted. Overall the method appears to be both theoretically sound and practically an

improvement over existing methods. See Gould, Leyffer and Toint (2003) and Gould and

Toint (2003b, 2003c) for more details.

The resulting Fortran 90 module FILTRANE (see Gould and Toint, 2003) was added to

GALAHAD in June 2003.

References

R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function.

Mathematical Programming, 91(2), 239–269, 2002.

N. I. M. Gould, S. Leyffer and Ph. L. Toint. A multidimensional filter algorithm for

nonlinear equations and nonlinear least-squares. Technical Report RAL-TR-2003-004,

Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 2003. To appear,

SIAM Journal on Optimization.

N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint. Solving the trust-region subproblem

using the Lanczos method. SIAM Journal on Optimization, 9(2):504–525, 1999.

N. I. M. Gould and Ph. L. Toint. FILTRANE, a Fortran 95 filter-trust-region package

for solving systems of nonlinear equalities, nonlinear inequalities and nonlinear

least-squares problems. Technical Report RAL-TR-2003-017, Rutherford Appleton

Laboratory, Chilton, Oxfordshire, England, 2003.

N. I. M. Gould and Ph. L. Toint. The filter idea and its application to the nonlinear

feasibility problem. In D. Griffiths and A. Watson, editors, Proceedings 20th Biennial

Conference on Numerical Analysis, 73-79, University of Dundee, Scotland, 2003b.

N. I. M. Gould and Ph. L. Toint. How mature is nonlinear optimization? In J. Hall, editor,

ICIAM 2003 Proceedings, Sydney, (to appear), Philadelphia, USA, 2003. SIAM.

4.6 The asymptotic convergence of interior-point and other

related methods (N. I. M. Gould, D. Orban, A. Sartenaer

and Ph. L. Toint)

While the global convergence of a class of interior-point methods that includes QPB from

GALAHAD had already been established by Conn et al. (2000), its asymptotic convergence

behaviour was unknown, although presumed, from practical experience, to be fast.

In Gould et al. (2001), we formally established the superlinear convergence of the

iterates to a critical point of the underlying nonlinear program under standard assumptions.

Most interestingly, not only was it possible to show a normwise superlinear (and effectively

quadratic) rate, but that the same rate was almost always achievable for each primal-dual

component of the solution. This resolved a long standing open question as to whether

there were methods for which this were possible, especially since this is not always the case
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for standard SQP methods. The result is of some importance since in some applications

only a subset of the minimization variables are of interest, and it might be wasteful to wait

for the convergence of the uninteresting ones.

While we originally derived these results for interior-point methods, they actually apply

in much more general contexts. For example, suppose we wish to solve a system of nonlinear

equations

F (x) = 0 (4.6.1)

by instead solving a related parameterized system

F (x) = uk (4.6.2)

for a sequence of vectors {uk} converging to zero—the particular case of interior-point

methods is when F represents the first-order optimality (KKT) conditions and each

component (uk)i = µk for some sequence of decreasing barrier parameters {µk}.

Suppose that xk is an approximate root of (4.6.2) in the sense that F (xk) − uk is

“reasonably small” relative to uk. In this case, under reasonable assumptions on the

derivatives of F , if {uk} is reduced superlinearly to zero, a single Newton step from xk

will result in a point xk+1 for which F (xk+1) − uk+1 is also “reasonably small”. Thus

reducing uk in this way, pulls the iterates towards a root of (4.6.1), and the fact that we

are using Newton’s method—albeit on (4.6.2) rather than (4.6.1)—leads to the superlinear

convergence of the {xk}. Moreover the convergence is actually componentwise since the

iterates approach their limit along a well defined trajectory rather than “randomly” as

would result if Newton’s method were applied directly to (4.6.1). Such an approach is

made rigorous by Gould et al. (2002).
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4.7 Sequential linear-quadratic programming for huge

optimization problems (R. H. Byrd, N. I. M. Gould,

J. Nocedal and R. Waltz)

While conventional SQP and interior-point methods have proved to be most effective at

solving medium- to large-scale nonlinear optimization problems—say those involving up

to 105 variables and/or constraints—it is difficult to imagine at this stage how they will

generally cope with huge examples (say with 107 or more variables/constraints). The

difficulty is simply that a (non-convex) quadratic program is too complicated a subproblem

for huge problems. Such a restriction is not present for linear programs (LPs) of the same

size, problems involving 107 unknowns are routinely solved by both simplex and interior-

point methods. While this suggests that a more naive sequential linear programming (SLP)

approach may be possible, SLP is notoriously slow.

We are most attracted to an idea of Fletcher and Sainz de la Maza (1989) in which the

SLP iteration is accelerated by solving an equality-constrained quadratic program (EQP)

whose constraints are determined from a prediction of the optimal active ones from the LP.

The advantage is that the combinatorially “hard” QP is replaced by the easier LP-EQP

combination. While this is a simple and elegant idea, this begs such questions as what to

do if the LP is infeasible or unbounded, or if the same is true for the EQP.

We have recently been considering just such an SLP-EQP approach in which a linear

approximation to an `1-exact penalty function is minimized within a (polyhedral) trust-

region, and in which the resulting EQP is approximately minimized within a second

(elliptical) trust-region. The advantages here are that both subproblems are feasible, and

both have bounded solutions. The “art” is in devising a mechanism to adjust the two

trust-region radii to ensure both global and fast local convergence.

As a first stage, we have developed a general two-trust-region framework for which we

have established global convergence (see Byrd, Gould, Nocedal and Waltz, 2003). Our

next goal is to investigate the local convergence of such methods, and we are heartened

by numerical experience (see Byrd, Gould, Nocedal and Waltz, 2002) which suggests that

fast local convergence is possible with just such a framework.

Full details of the implementation of our software package SLIQUE, along with

comparative tests on the CUTEr test set are given by Byrd et al. (2002). Although there

are still many outstanding practical issues, such as how to manage the penalty parameter

in the `1-penalty function, how to solve and truncate the EQP, and even how accurately

to solve the LP, we believe that our approach will be capable of solving huge problems.

Since we believe that collaboration is the best way to tackle huge problems, the project

also acts as a friendly and useful bridge between the competing GALAHAD and KNITRO

software development teams.
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5 Miscellaneous Activities

5.1 The computing environment within the Group

(N. I. M. Gould)

Our policy of upgrading the Group’s workstations has continued over the past two years.

Although the Group’s “high-performance” machine remains a Compaq Alpha DS20 dual

EV6-processor server, we have taken the opportunity to replace all of our aging Sun

equipment by Linux-based Dell PCs. In particular, a dual-processor Precision 460 with

4Gbytes of RAM now acts both as our Web, ftp and file server and as a general-purpose

machine for running larger jobs. Group members each have Dimension 2650s with large

disks for local work. Our dependence on BITD central file servers has been severed, and we

now back up files automatically each night to the RAL E-science tape store. The transition

from Solaris to Linux has been, in the main, straightforward, although there have been

hardware teething troubles with both the fileserver and one of the smaller machines. We

plan to keep at least one of our old Suns simply so that we can verify HSL codes on a Sun

compiler and operating systems.

We still benefit from other public CCLRC machines, in particular the HPCx IBM

Regatta multiprocessor system. We continue to have access to a number of Fortran 95

compilers, mostly on our own machines. We have also made use of MPI, and associated

parallel language support systems, on both our own machines and on those provided by

HPCx. In combination with our Grant application, we obtained computing time on other

national facilities, specifically the CSAR machines (SGI Origin 2000 and CRAY T3E) at

Manchester.

5.2 ERCIM (M. Arioli)

As stated in each ERCIM News, The European Research Consortium for Informatics and

Mathematics (ERCIM) is an organisation dedicated to the advancement of European

research and development, in information technology and applied mathematics. Its

national member institutions aim to foster collaborative work within the European research

community and to increase co-operation with European industry.

ERCIM started in 1989 with the three Laboratories CWI (Amsterdam), GMD

(Germany), and INRIA (France) and were joined by RAL in the following year. There are

now members from 13 countries in the EU and Eastern Europe.

In the early days there were quite active groups and ERCIM meetings in mathematics,

but we have been concerned in recent years that the M of ERCIM was becoming neglected.

Thus there were two initiatives launched in 2001 to rectify this.

One was an ERCIM Working Group on Numerical Linear Algebra and Statistics

coordinated by Erricos Kontoghiorghes (Université de Neuchatel, Switzerland) and

Bernard Philippe (IRISA, France) to which both Mario and Iain belong and which has

had two meetings in 2001, one of which was attended by Mario.
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Nation Organizations

Austria University of Salzburg

Belgium KU Leuven, University of Namur

Czech Rep. ICS-AS CR

Denmark Royal Veterinary and Agricultural University

France INRIA/IRISA, CERFACS, INPT/IRIT

Germany University of Erfurt, University of Dortmund

Greece University of Patras

Italy IMATI-CNR, IMATI-CNR,IAC-CNR, University La Sapienza Roma

Luxembourg Centre Henri Tudor

Norway University of Bergen

Slovakia Slovak Academy of Sciences

Sweden Linkoping University

Switzerland ETH Zurich, University of Basel

Cyprus University of Cyprus

UK RAL and Universities of Cardiff, Manchester, Oxford, and Strathclyde

Table 5.2.1: NUMAS Participants (administrative manager is ERCIM)

The other ERCIM Group is coordinated by Mario and has a wider mathematical remit

involving several ERCIM institutions interested in Applications of Numerical Mathematics

in Science (ANMS). Although we anticipate that many application areas will benefit from

the results and activities of the working group, it will focus on the following four areas:

• Numerical Linear Algebra.

• Numerical Solution of Differential Equations.

• Continuous Optimization and Optimal Control.

• Large Scale Scientific Computing.

As chairman of the ANMS working group, Mario co-ordinates its activities for the

ERCIM fellowship programme (advertisement on the web, selection of the topics), he

maintains the home page of the group and stimulates the participants to propose common

projects within the European Framework Programme 6 (FP6). In this respect, his role

as chairman enhances the European visibility of CCLRC and improves relations with

other numerical analysis groups in other ERCIM organizations. This activity and the

possibility in the close future of hosting ERCIM fellowships could be beneficial to the HPCx

programme run by the Computational Science and Engineering Department in terms of

its European image and could attract more co-operation between European partners and

CSE groups in the field of computational science.
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Within this framework, the ANMS working group asked Mario to be the co-ordinator

and person responsible for the Marie-Curie RTN proposal entitled Applications of

Computational Mathematics and Statistics in Science and Technology (NUMAS). This

proposal aims at extending the activities of the ANMS working group and of the Matrix

Computations and Statistics (MCS) ERCIM working group, to other British and European

Universities and Institutions not participating in ERCIM.

The several European institutions that are participating in this proposal are given in

Table 5.2.1.

The web site for the Working Group is

http://www.numerical.rl.ac.uk/ercim/WGanms.html

5.3 CERFACS (I. S. Duff)

Iain has continued to lead a project at CERFACS on Parallel Algorithms and several of

the contributions to this report reflect interactions with that team.

The main areas of research in the Parallel Algorithms Project are the development

and tuning of kernels for numerical linear algebra, the solution of sparse systems using

direct methods or iterative methods or a combination of the two, heterogeneous computing

including the use of PVM and MPI, large least-squares calculations with applications

to data assimilation, large eigensystem calculations, optimization, and the reliability of

computations. Other activities of the Project include advanced training by both courses

and research. Two short international meetings were hosted by the Parallel Algorithms

Project during the period of this report and were attended by members of the Group.

The home page for CERFACS is http://www.cerfacs.fr and current information on

the Parallel Algorithms Project can be found on page http://www.cerfacs.fr/algor/.

Full details on the activities of the Parallel Algorithms Team for the last two years can be

found in the reports referenced below.
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5.4 The Grid-TLSE project (I. S. Duff)

In the context of large sparse calculations, the Parallel Algorithms Group at CERFACS

is involved as one of the leading partners of a ACI-Grid project (funded by the French

Ministry of Research from December 2002 until November 2005). The main scientists

involved in this project are: P. Amestoy (ENSEEIHT-IRIT), M. Buvry (ENSEEIHT-

IRIT), M. Daydé (ENSEEIHT-IRIT) who is the project coordinator, I.S. Duff, L. Giraud
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(CERFACS), J.Y. L’Excellent (INRIA-ENSL), M. Pantel (ENSEEIHT-IRIT), and

C. Puglisi (ENSEEIHT-IRIT).

This project will use the grid at several levels and is called Grid-TLSE, for Test for Large

Systems of Equations. It will add new services to the Grid and use the grid capabilities to

implement these services. The main services will be mainly to:

• provide the users with automatic expertise on sparse direct solvers using matrices

either from the data base or provided by the user (a natural follow up step will be

to extend this to iterative solvers).

• make available to the scientific community a set of test problems through a data

base. The set of examples will grow dynamically as users submit new problems that

are integrated within the data set.

A prototype was developed in 2003 and was made available to the industrial partners that

are the end-users (CEA, CNES, EADS, EDF, IFP). The specification phase is still ongoing,

it is conducted by CERFACS and ENSEEIHT and involves other academic Labs (LABRI,

Bordeaux; INRIA-ENS, Lyon) as well as industrial partners. More information on the

project can be found from the URL http://www.enseeiht.fr/lima/tlse

An agreement is being prepared between CCLRC and this project so that HSL routines

will form the backbone of the direct codes that can be accessed and experimented on within

this project.
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6 HSL (Harwell Subroutine Library) (J. K. Reid)

6.1 Collaboration with Hyprotech and AspenTech

The collaboration with Lawrence Daniels, Iain Strachan and Pascale Hicklin was stable

and happy throughout the period, though in the meantime their company was acquired

by AspenTech Inc., so the time has been stressful for them.

The fixed annual fee for rights to incorporate HSL software in their packages continues

and this is enough to support John Reid’s consultancy.

In collaboration with our former colleague Alan Curtis, Lawrence has been working on

a much improved version of the solver for stiff ordinary differential equations or differential

algebraic equations. More details are given in Section 6.3.1.

6.2 HSL 2002 and HSL Archive

HSL 2002 and the accompanying HSL Archive was released at the start of the period and

remained current through the rest of it.

HSL 2002 is our fully-supported main library. While this is a commercial product,

it is also available without charge to UK academics for teaching and academic research

purposes. This is a direct result of much of our core funding being provided by grants from

the Engineering and Physical Science Research Council (R46441 and S42170).

The HSL Archive comprises older packages that were part of previous releases of HSL,

many of which have been superseded by more modern codes. The HSL Archive packages

are not completely frozen since we aim to correct any errors that come to light, but it is

not our intention to develop any of its packages further. The split allows us to focus our

attention in the packages of HSL 2002.

Access to both HSL 2002 and the HSL Archive is available through the HSL web page

http://www.cse.clrc.ac.uk/Activity/HSL

6.3 HSL 2004

The next release of HSL is planned for Summer 2004 and will be called HSL 2004.

Significant work on the following new packages was performed during the reporting period.

6.3.1 HSL DC05 (Lawrence Daniels)

HSL DC05 is a suite of Fortran 95 procedures for the solution of a system of ordinary

differential equations (ODE) or differential algebraic equations (DAE) of index 1:

F(t,Y,Y′) = 0, (6.3.1)

where Y′ = dY/dt. It provides a powerful optional method of avoiding the incorrect

occurrence of negative values for solution components that should remain positive
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throughout. Some of the components of F and Y are purely algebraic. If there are

Nalg such algebraic equations and variables, we can split Y into two vectors: Y1 of length

Nalg and Y2 of length (Neq − Nalg), where Neq is the total number of equations (algebraic

and differential) in equation (6.3.1). In turn, equation (6.3.1) can be written as:

F1(t,Y1,Y2) = 0, (6.3.2)

F2(t,Y1,Y2,Y
′

2) = 0, (6.3.3)

where F1 and F2 are vectors of length Nalg and (Neq − Nalg), respectively. Components

Y1 of Y are purely algebraic, their derivatives Y′
1 being absent from equations (6.3.2) and

(6.3.3). The system must be of index no higher than 1, i.e. it must be nonsingular in

the sense that equation (6.3.2) can in principle be solved for Y1 and equation (6.3.3) for

Y′
2. HSL DC05 cannot solve DAE systems of index greater than 1, which present added

difficulties not present in those of index 1.

The solution starts from given initial values of Y2 at t = T , using a variable order

Backward Differentiation Formula (BDF) method, also known as Gear’s method (Gear,

1970) of order 1 to 5. The method automatically chooses step-size and order of integration

formulae, and is especially efficient on stiff systems in particular those arising from mass

action kinetics. HSL DC05 has been designed to handle DAE problems, which can be

regarded in some sense as limiting cases of ODE problems of infinite stiffness. The methods

used in HSL DC05 are not too inefficient to be acceptable on many non-stiff problems.

Function evaluation and linear algebra are carried out in the calling program by using

reverse communication, which gives the user full flexibility over access to the problem data

and choice of method for solving the linear equations.

6.3.2 MA51 extension for the determinant of a sparse matrix (John Reid)

MA51 is an auxiliary package for use following a call to MA48 or MA50 that performed an

LU factorization of a general sparse matrix. It was originally designed for the singular or

rectangular case to identify which rows and which columns are treated specially. It may

now also be asked to compute the determinant of a square matrix. It finds the parity

of the permutations that have been applied and hence the sign of the determinant. To

avoid overflow or underflow, the logarithm of the determinant is found as the sum of the

logarithms of the absolute values of the diagonal entries of the triangular factors.

6.3.3 MC67 Hager’s algorithms for reducing the profile of a symmetric matrix

(John Reid and Jennifer Scott)

Given the sparsity pattern of an n× n symmetric matrix A and a symmetric permutation

that reduces the profile of A, this routine computes a new symmetric permutation with a

smaller profile.

The down exchange algorithm of Hager (2002) involves cyclic permutations that

correspond to the successive exchange of rows (k, k + 1), (k + 1, k + 2), . . . , (l − 1, l)
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of the permuted matrix and interchanging the corresponding columns. For a given k, the

value of l that most reduces the profile is found. A pass over the matrix with k taking the

values n − 1, n − 2, ..., 1 is performed; l is calculated for each k and, if this gives a profile

reduction, the corresponding permutation is applied. MC67B/BD performs one or more such

passes, stopping if there is no improvement in the profile or if the improvement is small.

Hager’s up exchange is similar, with the direction reversed. For a given k, rows and

columns (k, k − 1), (k − 1, k − 2), . . . , (l + 1, l), are exchanged, again with the value of

l that most reduces the profile. A pass over the matrix is performed with k taking the

values 2, 3, ..., n. MC67C/CD performs one or more such passes, again stopping if there is

no improvement in the profile or if the improvement is small.

Hager’s recommendation is to perform a sequence of pairs of down then up passes until

a given number has been performed or a pair yields no further improvement. The given

number is under the user’s control. We found that it was rare in test cases for there to

be much improvement after 5 passes, so we have set the default value to 5. We also offer

facilities to perform up then down pairs or passes of one kind only.

6.3.4 HSL MC73 Fiedler vector and profile reduction of a symmetric sparse

matrix (Yifan Hu and Jennifer Scott)

Let A be an n × n matrix with a symmetric sparsity pattern. HSL MC73 has entries to

compute the (approximate) Fiedler vector of the unweighted or weighted Laplacian matrix

of A and to compute a symmetric permutation that reduces the profile and wavefront of

A by using a multilevel algorithm. A number of profile reduction algorithms are offered:

(1) The multilevel algorithm of Hu and Scott (2001) (referred to here as the multilevel

Sloan algorithm),

(2) A multilevel spectral ordering algorithm, and

(3) A hybrid algorithm that refines the multilevel spectral ordering (2) using MC60.

In each case, an option exists to refine the computed ordering using the Hager exchange

algorithm (MC67).

If Hager exchanges are not employed, the orderings computed using (1) and (3) generally

yield smaller profiles and wavefronts than the spectral ordering (2). For some problems,

(1) yields smaller profiles and wavefronts than (3), but for others the converse is true.

Algorithm (1) is faster than (3). Using Hager exchanges can substantially increase the

ordering cost but can give worthwhile reductions in the profile and wavefront.

6.3.5 MI27 Preconditioned conjugate gradients for a sparse symmetric

positive-definite linear system (Mario Arioli and Gianmarco Manzini)

This package uses the conjugate gradient method to solve the n × n symmetric positive

definite linear system Au = b, optionally using a preconditioning matrix supplied by
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the user. If M = UTU is the preconditioning matrix, the routine actually solves the

preconditioned system

Ay = b, (6.3.4)

with A = U−TAU−1 and b = U−Tb and recovers the solution u = U−1y.

The novel feature of this code is that several different stopping criteria are provided,

including one based on the norm

‖r‖A−1 = (rTA−1r)1/2

of the residual

r = Au(k) − b.

Reverse communication is used for preconditioning operations and the products of A

with a vector z.

6.3.6 HSL MP48 Parallel code to solve a general sparse set of equations (Iain

Duff and Jennifer Scott)

The module HSL MP48 solves sets of n×n unsymmetric linear systems of equations Ax = b,

in parallel using Gaussian elimination. The matrix A must have been preordered to singly-

bordered block-diagonal form



A11 C1

A22 C2

. . . .

ANN CN


 .

MPI is used for message passing.

A partial LU decomposition is performed on each of the submatrices (All Cl)

separately. Once all possible eliminations have been performed, for each submatrix there

remains a Schur complement matrix Fl. The variables that remain are called interface

variables and the interface matrix F is formed by summing the matrices Fl. Gaussian

elimination is used to factorize F, using the HSL sparse direct solver MA48. Block forward

elimination and back substitution completes the solution.

The user’s matrix data may optionally be held in unformatted sequential files. In

addition, L and U factors for the submatrices may optionally be written to sequential

files. This reduces main memory requirements when the number N of submatrices is

greater than the number of processes used.

The HSL package HSL MC66 may be used for preordering the matrix to singly-bordered

block-diagonal form.
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7 Seminars

31 January 2002 Dr Ivan Graham (Bath) Iterative methods for PDE eigenproblems.

21 February 2002 Dr Alexander Meeraus (GAMS Development Corporation) Algebraic

modelling systems and mathematical programming.

25 April 2002 Dr Stefano Salvini (NAG Ltd) SMP parallelism: current achievements,

future challenges.

13 June 2002 Professor Arne Drud (ARKI Consulting and Development) Some

complexity issues in sparse LU factorisation.

14 November 2002 Dr Andrew Cliffe (Serco) Computation of periodic orbits for the Navier

Stokes equations.

5 December 2002 Alan Curtis Day in Oxford.

13 February 2003 Dr Tony Garratt (AspenTech) Numerical issues arising in dynamic

optimisation of process modelling applications.

13 March 2003 Dr Stefan Scholtes (Cambridge) Combinatorial structures in nonlinear

programming.

8 May 2003 Dr Shaun Forth (Shrivenham) Elimination automatic differentiation

for Jacobian calculation.

19 June 2003 Professor Philippe Toint (Namur) A filter method for the nonlinear

feasibility problem.

26 September 2003 Bath-RAL Numerical Analysis Day at RAL.

6 November 2003 Dr Eric Fraga (UCL) Robust numerical methods for computer aided

process plant design.

13 November 2003 Dr Patrick Bosander (COMSOL Ltd) Multiphysics modelling in

FEMLAB.
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8 Reports issued in 2002-2003

We give a full listing of Rutherford Technical Reports issued during the period of this

Progress Report. The other report listings, from organizations with which we collaborate,

only include reports not already included as RAL reports. All of our current technical

reports are publicly accessible via the internet from

http://www.numerical.rl.ac.uk/reports/reports.html.
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large-scale nonlinear optimization. N.I.M. Gould, D. Orban,
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Magolu monga Made.
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RAL-TR-2002-020 A class of spectral two-level preconditioners. B. Carpentieri, I.S.
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RAL-TR-2002-021 A Chebyshev-based two-stage iterative method as an alternative

to the direct solution of linear systems. M. Arioli and D. Ruiz.

RAL-TR-2002-024 MA57 - A new code for the solution of sparse symmetric definite

and indefinite systems. I.S. Duff.
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RAL-TR-2002-026 Null space algorithm and spanning trees in solving Darcy’s

equation. M. Arioli and G. Manzini.

RAL-TR-2002-028 Task scheduling in an asynchronous distributed memory

multifrontal solver. P.R. Amestoy, I.S. Duff, and C. Voemel.
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systems. I.S. Duff and J.A. Scott.

RAL-TR-2002-034 A stopping criterion for the conjugate gradient algorithm in a
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RAL-TR-2003-013 On the convergence of successive linear programming

algorithms. R.H. Byrd, N.I.M. Gould, J. Nocedal, and

R.A. Waltz.

RAL-TR-2003-017 FILTRANE, a Fortran 95 filter-trust-region package for solving

nonlinear feasibility problems. N.I.M. Gould and Ph. L. Toint.

RAL-TR-2003-019 A numerical evaluation of HSL packages for the direct solution

of large sparse, symmetric linear systems of equations. N.I.M.

Gould and J.A. Scott.

RAL-TR-2003-021 A Chebyshev-based two-stage iterative method as an alternative

to the direct solution of linear systems. M. Arioli and D. Ruiz.

RAL-TR-2003-020 Ordering techniques for singly bordered block diagonal forms for

unsymmetric parallel direct solvers. Y. Hu and J.A. Scott.

52



RAL-TR-2003-022 An interior-point l1-penalty method for nonlinear optimization.

N.I.M. Gould, D. Orban, and Ph. L. Toint.

RAL-TR-2003-023 Using spectral low rank preconditioners for large

electromagnetic calculations. I.S. Duff, L. Giraud, J. Langou,

and E. Martin.
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Carpentieri, I.S. Duff, L. Giraud, and G. Sylvand.
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TR/PA/02/14 General SifDec documentation. N.I.M. Gould, D. Orban, and
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TR/PA/03/05 Adapting a parallel sparse direct solver to SMP architectures.

P. Amestoy, I.S. Duff, S. Pralet, and C. Vömel.

TR/PA/03/14 Impact of the implementation of MPI point-to-point

communications on the performance of two general sparse
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TR/PA/03/65 Efficient parallel iterative solvers for the solution of large dense

linear systems arising from the boundary element method in

electromagnetism. G. Alléon, B. Carpentieri, I. S. Duff, L.

Giraud, J. Langou, E. Martin, and G. Sylvand.

53



9 External Publications in 2002-2003

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and Xiaoye S. Li. Impact of the implementation

of MPI point-to-point communications on the performance of two general sparse

solvers. Parallel Computing, 29(7), 833–849, 2003.

P. R. Amestoy, I. S. Duff, S. Pralet, and C. Vömel. Adapting a parallel sparse direct solver
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