RAL-TR-2000-001

Numerical Analysis Group Progress Report
January 1998 - December 1999

[ain S. Duff (Editor)

ABSTRACT

We discuss the research activities of the Numerical Analysis Group in the Computational
Science and Engineering Department at the Rutherford Appleton Laboratory of CLRC for
the period January 1998 to December 1999.

Keywords: sparse matrices, frontal and multifrontal methods, numerical linear algebra,

large-scale eigenvalue computations, large-scale optimization, Fortran, Harwell
Subroutine Library, HSL

AMS(MOS) subject classifications: 65F05, 65F50.

Current reports available by anonymous ftp to ftp.numerical.rl.ac.uk in directory pub/reports.
This report is in file duffRAL2000001.ps.gz. Report also available through URL
http://www.numerical.rl.ac.uk/reports/reports.html.

Computational Science and Engineering Department
Atlas Centre

Rutherford Appleton Laboratory

Oxon OX11 0QX

February 14, 2000



Contents

1 Introduction (I. S. Duff) 1
2 Frontal and multifrontal methods 6
2.1 MUMPS - a distributed memory multifrontal solver (P. R. Amestoy,

I. S. Duff, J.-Y. L’Excellent and J. Koster) . . . .. ... .. ........

2.2 Ordering algorithms for the MUMPS solver (P. Plechac) .. ... ... ..
2.3 Element resequencing for frontal solvers (J. A. Scott) . . . ... ... ... 10
2.4 Row ordering for frontal solvers (J. A. Scott) . . . . ... ... .. ... .. 12
2.5 Further developments for the frontal solver MA62 (I. S. Duff and J. A. Scott) 14
2.6 The design and development of two parallel frontal solvers (J. A. Scott) . . 15
2.7 The use of MA27 in a domain decomposition context (I. S. Duff, J. Koster

and J. A. Scott) . . . ..o 17
2.8 A multifrontal approach for shared memory computers for sparse QR

factorization. (P. R. Amestoy, I. S. Duff and C. Puglisi) . . . . . . ... .. 18

3 Other numerical linear algebra 19

3.1 Development of kernels for dense and sparse numerical linear algebra (I. S.

Duff) . . . o 19
3.2 Permuting large entries to the diagonal (I. S. Duff and J. Koster) . . . . . 20
3.3 Linear systems and optimization (N. I. M. Gould, M. E. Hribar, C. Keller,

J. Nocedal and A. J. Wathen) . . . . . ... .. .. ... 21
3.4 Incomplete QR factorizations (Z.-Z. Bai, I. S. Duff and A. J. Wathen) . . . 23
3.5 Locking and restarting quadratic eigenvalue solvers

(K. Meerbergen) . . . . . ... ... 23
3.6 Dangers in changing poles in the rational Lanczos method for the Hermitian

eigenvalue problem (K. Meerbergen) . . . . .. ... ... ... ...... 25
3.7 Application of a domain decomposition method with Lagrange multipliers

to acoustic problems arising from the automotive industry. (K. Meerbergen) 28
3.8 The design of a block Lanczos and rational Lanczos code for the symmetric

eigenvalue problem (K. Meerbergen and J.A. Scott) . . . .. ... ... .. 30
3.9 The computation of the right-most eigenvalues of the linearized and

discretized Navier-Stokes equations

(K. Meerbergen and J.A. Scott) . . . . ... ... ... L. 32
3.10 Techniques for the solution of sparse equations on high performance

computers (I. S. Duff) . . ... ... 34
3.11 The dissemination of good practices in sparse equation solution (I. S. Duff

and J. A. Scott) . . . .. 35



4 Optimization 37

4.1 GALAHAD (N.I. M. Gould and Ph. L. Toint) . . . ... .. ... ..... 37

4.2 Trust-region methods (A. R. Conn, N. I. M. Gould and Ph. L. Toint) . .. 38

4.3 Quadratic Programming (N. I. M. Gould and Ph. L. Toint) . . . . . . . .. 40

4.4  Steepest-edge simplex code LA04 for linear programming (J. K. Reid) . . . 41

5 Fortran 43
5.1 Co-Array Fortran, a simple parallel extension to Fortran 90 (R. W. Numrich

and J. K. Reid) . . . . . o oo 43

6 Miscellaneous Activities 44

6.1 CERFACS (I.S.Duff) . . ... .. .. . 44
6.2 Kuropean project PARASOL, an integrated programming environment for

PARAllel sparse matrix SOLvers (I. S. Duff) . . . . .. ... ... ... .. 45

7 Computing and mathematical software 47

7.1 The computing environment within the Group . . . . . . . ... . ... .. 47

7.2 Software packages . . . . . . . .. L 47

8 Seminars 55

9 Reports issued in 1998-1999 56

10 External Publications in 1998-1999 59

i



Personnel in Numerical Analysis Group

Staff
Iain Duff.

Group Leader. Sparse matrices and vector and parallel computers and computing.

Nick Gould.

Optimization and nonlinear equations particularly for large systems.

Jacko Koster (February 1998 until June 30th 1999).
PARASOL Project.

Jean-Yves L'Excellent (May 1999).
PARASOL Project.

Karl Meerbergen (from May 1st 1998).

Large-scale eigenvalue problems.

Petr Plecha¢ (until August 31st 1998).
PARASOL Project.

John Reid (until August 31st 1998, then consultant for HSL).

Sparse matrices and development of the Fortran programming language.

Jennifer Scott.

Sparse linear systems and sparse eigenvalue problems.

Kath Vann (from November 1999).

Administrative and secretarial support.

Visitors and Attached Staff

Mike Hopper (Consultant) Support for Harwell Subroutine Library and for T'SSD.
Andy Conn (IBM Yorktown Heights) Optimization.

Andreas Findling (NEC Stuttgart) Software tuning.

Yifan Hu (CLRC Daresbury) Sparse linear systems.

Rich Lehoucq (SANDIA National Laboratories) Numerical linear algebra.
Frédéric Magoules (ONERA)  Domain decomposition.

Jorge Nocedal (Northwestern University) Optimization.

Philippe Toint (University of Namur) Optimization.

il



1 Introduction (I. S. Duff)

This report covers the period from January 1998 to December 1999 and describes work
performed by the Numerical Analysis Group within the Computational Science and

Engineering Department at the CLRC Rutherford Appleton Laboratory.

The details of our activities are documented in the following pages. These words of
introduction are intended merely to provide additional information on activities that are

not appropriate for the detailed reports.

Two years ago, we reported that the past period had seen substantial organizational
changes and this has remained true throughout the period of this report. This time
the Department not only changed its name but split into the Information Technology
Department and the Computational Science and Engineering Department with our Group
being included in the latter. Since Paul Durham is the Director of the Department this
has strengthened even further our links with the Daresbury Laboratory campus of CLRC.
We have recently established links with the ISIS people at Rutherford and have discussed
their use of HSL codes. In the reorganization, we lost the secretarial support of Linda
Miles, who left CLRC for a career break, and had no secretarial support for nearly half of

this year until Kath Vann joined us in November 1999.

However, perhaps the most dramatic aspect of our life in this period has been our
happily successful efforts at establishing a more stable funding regime for the Group.
The complications of doing this have seemed to us often artificial and we are becoming
quite accomplished at jumping through the variety of hoops presented to us. Towards
the end of 1998, we prepared for a renewal of our Grant from the Cross Programmes
Group of the EPSRC only to learn when it was too late to submit a further application
that this was now deemed inappropriate and we should have to apply directly to the
Mathematics Programme. A Grant extension application to Cross Programmes was then
hastily prepared and, after appropriate review, continued our funding until September 30th
1999. We would like to acknowledge the help of Alasdair Rose and Vanessa Johnson of the
Mathematics Programme and Maggie Wilson of the Cross Programmes Group for their
help in negotiating these minefields. This then enabled us to prepare an application for
a Programme Grant for four years which was submitted to the Mathematics Programme
but was reviewed also by other Programmes and by a panel that visited us on site at
Rutherford. Both the Visiting Panel and the Mathematics responsive mode panel gave us
very favourable reviews and our Grant was awarded, although we have some conditions
on dissemination to be satisfied before it is extended from two to four years ... yet more

hoops.
The support and development of the Harwell Subroutine Library (HSL) is one of our

major activities. There have been no releases of either HSL or the NAg-marketed Harwell



Sparse Matrix Library during the period of this report. The HSL marketing effort from
AEA Technology PLC has again seen changes of personnel and has moved into the care of
Nick Brealey of the Electromagnetics Department at Culham Laboratory. Since we now
employ John Reid as a consultant using HSL funds, the continued sales of the Library are
even more important to us than formerly. We have benefited greatly from the consultancy
of Mike Hopper who helped us both in typesetting and the ongoing commitment to higher

software standards.

We maintain our close links with the academic community in Britain and abroad. lain
and John continue as Visiting Professors at Strathclyde University and RMCS Shrivenham,
respectively, and Nick was recently appointed a Visiting Professor at the University of
Edinburgh. All members of the Group gave contributed talks at the Dundee Numerical
Analysis meeting in 1999, lain co-hosted a visitor from China (Zhong-Zhi Bai) with Andy
Wathen from Oxford on an EPSRC grant, and Nick and lain are supervising a CASE
student (Carsten Keller), again with Andy Wathen. Jennifer and Karl co-hosted a visitor
from USA (Rich Lehoucq), again with Andy. lain was on the jury for the PhD thesis of
Serge Gratton and for the habilitation theses of Patrick Amestoy and of Annick Sartenaer
in Toulouse, Jennifer was the external examiner for the PhD thesis of Stuart Hawkins at
Bath, Karl was on the jury for the PhD thesis of Gorik De Samblanx in K.U. Leuven in
Belgium, and Nick was the external examiner for the PhD thesis of Bobby Cheng from

Manchester.

Most of our visitors stayed only for a short time although the interaction with them
has been quite intense. We continue our close association with Oxford University through
the Joint Computational Mathematics and Applications Seminar series and have hosted

several talks at RAL through that programme (see Section 8).

John has continued to combine his interests in Fortran and sparse matrices giving
several talks on these topics during the last two years. He completed his work on scaling in
least-squares problems, worked with Jennifer on frontwidth minimization, developed the
sparse linear programming driver LA04, and spoke on the PARASOL interface at a meeting
in Greenwich. He attended and spoke at the ISO WG5 meeting in Trollatten (Sweden).
John has developed his work with Numrich on co-array Fortran and spoke about this at
meetings at Heathrow and Oxford. He has given courses on Fortran 90 at RAL and RMCS
Shrivenham. He has continued with his collaboration on automatic differentiation with
groups at Shrivenham, the University of Hertfordshire, and NAg Ltd. John was obliged
to retire on age grounds in August 1998 but happily we have been able to retain his
partial services through the use of HSL funds so he continues as an active Group member,

naturally focussed primarily on issues relating to HSL.

Nick’s collaboration with Conn and Toint continues to expand the theory and practice

of large-scale optimization and, during the period of this report, they completed their



magnum opus, a 966 page book on trust-region methods that will be published by SIAM
next year. Nick was also appointed as a Visiting Professor of Mathematics at the University
of Edinburgh in November 1998 and has already had a visit there in that capacity. In
addition to the book and closely related research, he has developed algorithms and codes
for the solution of large-scale quadratic programming problems both using barrier-function
methods and active-set techniques. Both approaches are likely to be used in his new
nonlinearly constrained optimization package GALAHAD that will eventually supersede
the well known and highly successful augmented Lagrangian package LANCELOT. His
work with Conn and Toint has occasioned visits to CERFACS in Toulouse and Namur in
Belgium. Nick was an invited speaker at conferences at Erice and Cambridge, gave seminars
in Dundee, Edinburgh, and Oxford, and was an organizer and speaker at the Foundations
of Computational Mathematics Meeting (FoCM 99) at Oxford. We are delighted to record
his Individual Merit promotion to Band 2 this June.

Jennifer has continued with her national and international collaborations and her
qualities were well recognized by promotion to Band 3 in July 1998. Although she has
continued her short-hours working, she remains so productive that it is easy to forget this
fact. Much of her work in this period has been on enhancing the performance of frontal
solvers and using them in practical industrial problems. She has developed very effective
ordering techniques for use with frontal methods both when the matrix is assembled and
when it is held as a set of element matrices. She has completed an MPI harness for
using the frontal code on distributed memory machines that has proven very effective
on small numbers of processors and has collaborated with AEA Technology, NEC, WS
Atkins, and chemical engineers in using frontal methods to great effect on their practical
industrial problems. Jennifer continues to coordinate our joint seminar series with Oxford
University. She was a coordinator for the EPSRC Summer School in Leicester, gave an
invited talk at a workshop of physicists in Strasbourg, and visited Stuttgart as part of
a collaboration with NEC (see Section 2.7). She spoke at an ERCIM Executive meeting
at RAL and the Householder XIV Symposium in Canada. She presented seminars at
Oxford and Portsmouth, and has attended meetings in Edinburgh, London, Manchester,
and Oxford.

Karl joined us from Leuven in Belgium at the beginning of May 1998 and has been
very active in establishing contacts with collaborators in Europe and local universities and
pursuing research on eigensystem problems. He was also involved in an industrial contract
with his previous employers in using domain decomposition techniques within frequency
response calculations for acoustic modelling in car interiors. His main efforts have been on
the solution of quadratic eigenproblems and the development of a rational Lanczos method.
He has co-authored a chapter in a forthcoming book on eigensystem templates that will be
published by SIAM. He has established collaborations with De Samblanx at KU Leuven,



Magoules at ONERA, and Spence at Bath. He was an invited speaker at the Eighth
EPSRC Summer School at Leicester, presented a talk at the Householder XIV Symposium
in Whistler, and gave seminars at Bath, Daresbury, Oxford, Utrecht, and Warwick. He
was awarded an honorary mention in the Householder Prize for the best thesis in numerical
linear algebra from 1996 to 1999.

The EU LTR Project PARASOL (see Section 6.2) finished on June 30th 1999 and, as
one might expect, its last year saw much activity. In the context of this Project, we had
three people working at Rutherford during the period. Petr Plecha¢ worked on ordering
schemes, including the graph partitioning packages METIS and RALPAR, until he left for
an assistant professorship at the University of Delaware in August 1998. Petr attended
meetings in Greenwich and Manchester to give talks on the Project and presented an invited
talk at the GAMM meeting in Kiel and a seminar at Imperial College. He also was an
invited speaker at the EPSRC Summer School in Leicester and visited CERFACS to work
with Patrick Amestoy and Jean-Yves L’Excellent on MUMPS. Jacko Koster joined us from
CERFACS where he had already spent two months as a postdoc on the PARASOL Project.
He took the lead role in package integration and design of the test driver and stayed with
us until the end of the Project. He attended all of the PARASOL working meetings and
is now working as a postdoc at Parallab in Bergen, where he is primarily concerned with
using MUMPS within the Parallab domain decomposition code DDM. While at RAL,
Jacko was also involved in further work on matrix preprocessing (Section 3.2) and in the
project with NEC (Section 2.7). Jean-Yves L’Excellent, who was working for CERFACS
in a subcontract with Patrick Amestoy at ENSEEIHT-IRIT, visited us for the month of
May 1999 and worked closely with Jacko. After the end of the Project, Jean-Yves got a
job at NAg Ltd in Oxford.

lain still leads a project at the European Centre for Research and Advanced Training
in Scientific Computation (CERFACS) at Toulouse in France (see Section 6.1). Iain
is an Editor of the IMA Journal of Numerical Analysis, an Honorary Secretary of the
IMA, editor of the IMANA Newsletter, chairman of the IMA Programme Committee,
was chairman of the Adjudicating Committee for the Fox Prize Meeting in June 1999,
IMA representative on the CCIAM International Committee that oversees the ICIAM
international conferences on applied mathematics, a member of the International Scientific
Programme Committee for ICTAM ’99, and is on the Mathematics College of the EPSRC.
He has a Grant to work with Xiaoye Li at NERSC, Berkeley on sparse solution techniques.
In high performance computing, he has given tutorials at SC’98 (Orlando, Florida) and
EuroPar’99 (Toulouse) and gave lectures at summer schools at Orsay in Paris and in
Natal, Brazil and was workshop coordinator for a meeting in Copper Mountain, Colorado.
He completed his book with Dongarra, Sorensen, and van der Vorst on numerical linear

algebra on high performance computers that was published by STAM in 1998. lain was the
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general chairman for the EuroPar’99 meeting that attracted over 400 people to Toulouse
in September 1999 and has been on the Programme and Organizing Committee for several
international meetings including the SIAM Parallel Processing Conference in San Antonio
and an IMA meeting in Oxford. He has given invited talks at meetings in Belfast, Dalian
(China), Edinburgh, Glasgow, Helsinki, Plovdiv (Bulgaria), Toulouse, and Umea. He was
a guest of the Chinese Academy of Sciences in Beijing. He has presented contributed talks
and seminars in Gainesville (Florida), Gothenberg, ICIAM’99 (Edinburgh), Knoxville,
Lexington, Minneapolis, NAg Ltd, NERSC, San Antonio, Strathclyde, and Whistler
(Canada), and gave some postgraduate lectures at Strathclyde.

We have tried to subdivide our activities to facilitate the reading of this report.
This is to some extent an arbitrary subdivision since much of our work spans these
subdivisions. Our main research areas and interests lie in numerical linear algebra,
and nonlinear systems and optimization. We are particularly concerned with large-scale
systems when the matrix or system is sparse or structured. We discuss the solution
of linear systems by frontal or multifrontal methods in Section 2 and other numerical
linear algebra activities in Section 3. Work on optimization is considered in Section 4
and activities on the Fortran programming language in Section 5. We group some
miscellaneous topics in Section 6. Much of our research and development results in high
quality advanced mathematical software, and we report on our computer infrastructure and
software developments in Section 7. Lists of seminars (in the joint series with Oxford),
technical reports, and publications are given in Sections 8, 9, and 10, respectively. Current
information on the activities of the Group and on Group members can be found through
page http://www.cse.clrc.ac.uk/Group/CSENAG of the World Wide Web.



2 Frontal and multifrontal methods

2.1 MUMPS - a distributed memory multifrontal solver
(P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent and J. Koster)

The European project PARASOL (see Section 6.2) had as its main goal the design
and development of a library of scalable sparse matrix solvers for distributed memory
computers. The CLRC Rutherford Appleton Laboratory, CERFACS, and ENSEEIHT
(both Toulouse, France), were responsible for the direct solvers. In this context, we have
developed a MUltifrontal Massively Parallel Solver (MUMPS) (Amestoy, Duff, L’Excellent
and Koster, 1999, Amestoy, Duff and L’Excellent, 2000).

MUMPS has been designed to solve symmetric positive definite, general symmetric,
and unsymmetric linear systems whose coefficient matrices are possibly rank deficient.
The MUMPS package uses a multifrontal approach to factorise the matrix (Duff and Reid,
1983, Duff and Reid, 1984). Similar to serial HSL solvers, the parallel MUMPS package

solves in three main steps: an analysis step, a factorization step and a solution step.

MUMPS achieves high performance by exploiting two kinds of parallelism: tree
parallelism that comes from the sparsity of the problem and node parallelism from
dense matrix kernels. MUMPS uses dynamic data structures and dynamic scheduling
of computational tasks to accommodate extra fill-in in the factors due to numerical
considerations (not taken into account during the analysis step). This dynamic approach
also allows the parallel code to cope with load variations on the processors. MUMPS

overlaps computation with communication by using asynchronous communication.

In the years 1998 and 1999, there were several important upgrades to the MUMPS
package. Figure 2.1 lists the major releases of the package for partners in the PARASOL
project. The continuous development and incorporation of new features requested by the
partners over the past two years has resulted in a software package (currently MUMPS

version 4.1.1) that is unique amongst sparse direct solvers.

So far, the MUMPS software has mainly been used for solving problems from the
industrial partners in the PARASOL project. Typical PARASOL test cases are from
application areas such as computational fluid dynamics, structural mechanics, modelling
compound devices, modelling ships and mobile offshore platforms, industrial processing of
complex non-Newtonian liquids, and modelling car bodies and engine components. Table
2.2 shows the performance of the MUMPS factorization and solution phases on a symmetric
positive definite matrix (provided by MSC) that comes from the modelling of an inline
skater. The matrix is of order 503, 712 and has 18.7 million nonzeros in its lower triangular
part. The factorization requires 1.4 x 10! floating-point operations and the factors contain

175 million entries. The largest problem we have solved to date is a model of an AUDI
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Version Important new features Release month
1.0 MPI version using only tree parallelism. 5/97
2.0 Uses both node and tree parallelism. 2/98

Uses ScaLAPACK at root node of elimination tree.
Better data management enables solution of larger problems.
Uses PARASOL interface (host-node paradigm).
2.1 Version for symmetric positive definite matrices 5/98
2.2 Available with Fortran 90 interface: 9/98
Ability to handle general symmetric matrices.
Hybrid host version (including serial code).
Basic version of rank estimate and null-space.
2.2 Available with PARASOL interface: 10/98
Includes orderings based on METIS and other graph
partitioning strategies.
3.1 Version with entry for unassembled matrices. 1/99
Improved strategies for rank estimation and null-space.
3.2 Capability of handling distributed matrix input. 2/99
4.0 Final code for PARASOL partners. 4/99
Better tuned/interface for other PARASOL codes.
Ability to return a Schur complement matrix.
4.1.1  Current version. 12/99

Table 2.1: The versions of MUMPS in 1998/1999.



crankshaft. The corresponding linear system is symmetric positive definite and of order
943,695 with more than 39 million entries in its lower triangular part. With the best
ordering of the unknowns that we tried, MUMPS created 1.4 billion entries in the factors

and required 5.9 x 10'? floating-point operations for the factorization.

number of elapsed time
processors | factorization | solution
1 723 18.5
2 385 10.7
4 222 8.8
8 151 5.0
12 97 4.4
16 68 4.2
32 62 4.4

Table 2.2: Factorisation and solution time (in seconds) for MUMPS on the INLINE500K
test case (503,712 unknowns) on an SGI Origin 2000 (195Mhz) machine.

The MUMPS software is written in Fortran 90. It requires MPI for message passing
and makes use of BLAS, LAPACK, BLACS, and ScalLAPACK subroutines. MUMPS was
developed and tested on an IBM SP2, an SGI Power Challenge, and an SGI Origin 2000.
The software has recently been ported to a Cray T3E.
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2.2 Ordering algorithms for the MUMPS solver (P. Plechac)

Within the PARASOL project, Petr worked on the implementation of new ordering
strategies for the MUMPS solver. In collaboration with Iain and Ron Fowler (RAL), he
developed six ordering strategies which have been implemented in the PARASOL interface.

The package of ordering algorithms provides strategies based on local heuristics
(minimum degree and its modifications), on global heuristics (nested dissection and
multilevel spectral methods), and combinations of these two approaches. The new ordering
algorithms include the HALO-AMD ordering and dynamic control of the subgraph size in
the graph partitioning phase. These have been designed in collaboration with lain and
Patrick Amestoy and their efficiency was tested on many examples. Petr also developed
and implemented a general test deck (GPMAT) that allows the testing of different ordering
strategies for large sparse matrices on different platforms. The PARASOL interface was
extended to include the library of ordering algorithms so that they can be used by the
MUMPS solver in the PARASOL library.

The ordering algorithms included in the PARASOL library and accessible through the
PARASOL interface are:

1. approximate minimum degree [AMD],

2. multilevel bisection and multiple minimum degree on subgraphs [OEQ],

3. multilevel bisection and approximate minimum degree on subgraphs [OE1],
4. multilevel bisection and HALO-AMD on subgraphs [OE2],

5. multilevel bisection, vertex separator and AMD on subgraphs [ON0],

6. multilevel bisection, multi-sector and HALO-AMD on subgraphs [RL0],

7. multilevel bisection, refinement and HALO-AMD on subgraphs [RL1].

The implementation of algorithms of the [OEx] family is based on the METIS library
(Karypis and Kumar, 1997) while the algorithms denoted as [RLx| were developed in
collaboration with Ron Fowler and are based on the RALPAR package (Fowler and
Greenough, 1998).

The PARASOL version of the GPMAT library has been successfully tested on
PARASOL test problems. In particular, the algorithm [ONO] was found to be extremely
efficient for large test cases and significantly reduced both the number of floating-point
operations and the fill-in for the MUMPS solver.
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2.3 Element resequencing for frontal solvers (J. A. Scott)

A key feature of the frontal method is that, in the innermost loop of the computation,
dense linear algebra kernels can be exploited. These are straightforward to vectorize and
parallelize and are able to exploit high level BLAS kernels. This makes the method
attractive for a wide range of modern computer architectures, including RISC based
processors and shared memory parallel processors. However, the performance of the
frontal method, in terms of both memory requirements and the number of floating-point
operations, is highly dependent on the order in which the elements (or rows, if the matrix
is in assembled form) are added into the frontal matrix. The elements (or rows) need to
be added in an order that keeps the size of the frontal matrix small. In this section we
consider element ordering algorithms and, in the next section, we look at algorithms for
ordering rows for a frontal solver.

Element ordering algorithms may be divided into direct and indirect algorithms. Direct
algorithms order the elements directly while indirect algorithms use a two-step approach
in which the variables are first relabelled and used to resequence the elements; the new
variable indices are subsequently discarded. The Harwell Subroutine Library code MC43
implements both a direct and an indirect ordering algorithm, based on variants of the
profile reduction algorithm of Sloan (1986). The code has been in satisfactory use for a
decade. Motivated by the findings of Kumfert and Pothen (1997), we considered a number
of ways of improving the performance and efficiency of Sloan’s algorithm (Reid and Scott,
1999). This work led to improved codes for profile reduction (the Harwell Subroutine
Library package MC60 together with a driver MC61) and prompted us to look at revising
MC43 in a similar way. The new element ordering code is called MC63. The main differences
between MC43 and MC63 are:

¢ The handling of the priority queue. In MC63, a switch to a binary heap search is made
once the length of the queue exceeds a given threshold. For large problems, this can
significantly reduce the time needed to reorder the elements. This is illustrated in
Table 2.3.
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Table 2.3: A comparison of CPU times for MC43 and MC63 (Sun Ultra).

Identifier | Order | Elements | MC43 | MC63
cham 12834 11070 | 1.34 | 0.79
fullb 199187 59738 | 5.45 | 2.55
mt1 97578 5328 | 7.55 | 3.61
shipsecl | 140874 41037 | 16.1 | 5.72
thread 29736 2176 | 1.94 [ 0.83
tubu 26573 23446 | 3.22 | 1.62

e MC63 includes an option for the user to supply the weights in the priority function.
Experiments showed that, for some problems, the weights used by Duff, Reid and
Scott (1989) in MC43 are far from optimal.

e A further option in MC63 permits users to provide a global priority vector. Kumfert
and Pothen (1997) report that the final ordering can be significantly better if a hybrid
algorithm that combines a spectral ordering with the Sloan algorithm is used. Our
numerical experiments showed that the hybrid method generally gives smaller profiles

than the Sloan algorithm. Some examples illustrating this are given in Table 2.4.

Table 2.4: Root-mean-square wavefronts for the Sloan and hybrid algorithms

Identifier | Order | Elements | Sloan | Hybrid
crplat2 18010 3152 359 242
fullb 199187 59738 | 2021 1866
lock3491 3416 684 135 104
shipsecl | 140874 41037 | 2494 1555
thread 29736 2176 | 1962 1858
tubu 26573 23446 447 393
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2.4 Row ordering for frontal solvers (J. A. Scott)

A number of algorithms have recently been proposed for ordering the rows of unsymmetric
matrices for the row-by-row frontal method. These include the RCMD and NMNC
algorithms (Camarda, 1997). However, numerical experiments have shown that although
the cost of reordering with the RCMD algorithm is negligible compared with the time
required by the subsequent numerical factorization of the matrix, for many problems it
performs poorly and frequently yields orderings that are worse than the original. The
NMNC algorithm is more consistent, but is generally only able to achieve relatively
modest improvements. This led us to look at designing and developing new row ordering
algorithms, building on the expertise and experience we already have for ordering elements.

Our new algorithm is called the MSRO algorithm. It uses the row graph of the matrix
A, which is defined to be the undirected graph of the symmetric matrix B = A % AT,
where % denotes matrix multiplication without taking cancellations into account. The
nodes of the row graph are the rows of A and two nodes 7 and j (i # j) are adjacent if and
only if there is at least one column £ of A for which a;;, and a;; are both nonzero. Row
permutations of A correspond to relabelling the nodes of the row graph.

The MSRO algorithm comprises two distinct phases: the selection of a global ordering
and then a local row reordering. The global ordering defines the global priority of each
row. The row with the lowest global priority is chosen as the start row (that is, the row
that is first in the global ordering is ordered first in the new ordering). In the second phase
of the algorithm, the global ordering is used to guide the reordering. Rows with a high
global priority are chosen towards the end of the ordering. The global ordering methods
we have used are the pseudodiameter of the row graph, the spectral ordering of the row
graph, and the NMNC ordering.

The local ordering is based on a priority function. The basic idea is to select the next
row in the ordering by choosing, from a set of eligible rows, a row with minimum priority.
Eligible rows are those that are adjacent to a row that has already been ordered together
with their neighbours in the row graph. The priority of a row is the weighted average of its

global priority and its local priority, which is based on the increases in the row and column
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frontsizes resulting from ordering the row next. Thus, the MSRO algorithm attempts to
maintain a balance between having only a small number of rows and columns in the front
and including rows that have a low global priority.

The MSRO algorithm has been tested and compared with the RCMD and NMNC
algorithms on a range of practical problems. Some results are given in Tables 2.5 and 2.6.

Our main conclusion is that the MSRO algorithms generally perform significantly better

Table 2.5: The mean frontal matrix size for the different reordering algorithms. f denotes

spectral ordering not available.

Identifier Order Original RMCD NMNC MSRO+ MSRO+ MSRO+
pseudo  spectral NMNC
diameter
4cols 2218 11770 361 982 30 45 61
10cols 7091 29496 448 2422 39 1 87
bayer04 1911 20545 4162 1683 334 59 972
bayer09 249 3083 152 230 20 12 178
ethylene-1 1452 10673 11249 573 3910 2449 213
extrl 49 2837 486 34 4 3 18
1lhr34c 1499 35152 48940 1499 283 172 472

Table 2.6: The factorization times (in seconds) for the frontal solver MA42 before and after

reordering with the MSRO algorithm (Sun Ultra).

Identifier Before After || Identifier || Before After
4cols 17.8 2.8 || 10cols 84.4 7.6
bayer04 21.8 5.0 || bayer09 0.9 0.4
ethylene-1 7.5 5.1 || extrl 0.5 0.3
lhr34c 214 158

than existing algorithms and, when used with the frontal solver MA42, can achieve CPU
savings of up to 90 per cent compared with the original ordering. Looking at using the
different global orderings with the MSRO algorithm we found that, for most problems,
the pseudodiameter gives better results than using the NMNC ordering, while in turn the
spectral ordering is better than the pseudodiameter. The only problems for which the
MSRO algorithm with the pseudodiameter or spectral ordering does not appear to work

well are those which have a large average number of neighbours for each row and, compared
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with the order of the matrix, the pseudodiameter is small. Full results are given in Scott
(1999a, 1999b).

A code, MC62, that implements the MSRO algorithm and optionally allows the user
to supply a global ordering, has been designed and developed for the Harwell Subroutine
Library. While performing numerical experiments, we observed that it can be advantageous
to reverse a given row ordering. We investigated this and were able to prove a number of

results on the invariance of the column frontsize (Reid and Scott, 1999).
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2.5 Further developments for the frontal solver MA62 (I. S. Duff
and J. A. Scott)

We have developed a new frontal solver MA62 (Duff and Scott, 1997, Duff and Scott, 1999)
for the Harwell Subroutine Library. MA62 is designed specifically for the efficient solution
of sparse positive-definite symmetric systems from finite-element applications with the
coefficient matrix A in element form A = Y1, AY. The code has been available for the
past two years and has been used under licence by W.S. Atkins, who have incorporated the
code within their finite-element analysis package, ASAS, and have achieved some impressive
results with it. In an extreme case recently, Paul Schofield from W.S. Atkins told us of
an analysis requiring 6 hours with their original solver that took only 5 minutes using the
new MA62-based solver. Partly in response to the findings of W.S. Atkins and partly from
our own extensive testing of the code, a number of minor modifications have recently been
made to MA62. The most significant of these reduces memory requirements by overwriting
the right-hand side array with the solution vector.

A major deficiency of the frontal solution scheme is the lack of scope for parallelism
other than that which can be obtained within the high-level BLAS. In a multiple front

algorithm, the finite-element domain is partitioned into non-overlapping subdomains and
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a frontal decomposition is performed on each subdomain separately. To enable MA62 to
be used for this, we have developed MA72. MA72 provides routines for generating lists of
interface variables, for preserving the partial factorization of a matrix when the sequence
of calls to the factorization routine MA62B is incomplete, and for performing forward
elimination or backsubstitution on a subdomain. MA62 and MA72 will be included in a

forthcoming release of the Harwell Subroutine Library.
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2.6 The design and development of two parallel frontal solvers

(J. A. Scott)

We have designed and developed two parallel frontal solvers: MP42 is for unsymmetric
finite-element problems and is based upon MA42 and MA52, while MP62 is for symmetric
positive definite problems and uses MA62 and MA72. A major difficulty in developing parallel
software is enabling it to be used on a wide range of architectures. To overcome portability
problems, the codes MP42 and MP62 are written in Fortran 90 and use MPI for message
passing. Additionally, the codes do not assume that there is a single file system that can
be accessed by all the process. This allows them to be used on distributed memory parallel
computers as well as on shared memory machines.

A key design feature of MP42 and MP62 is a straightforward user interface, with the
user required to specify only a few parameters. Essentially, the user need only provide the
division of the finite-element domain into subdomains and to input the element data in
a suitable format. All allocation of workspace, division of work between processors, and
ordering of elements is done automatically. However, for flexibility, control parameters
allow the user to select a number of different options. For example, the matrix factors
may optionally be held in files, enabling large problems to be solved using relatively
small amounts of main memory. Additionally, the user may choose how to partition the
subdomains between processors and how to order the elements. The wide range of options
makes the code suitable for use both by those with minimal knowledge of the multiple

front method and by expert users with specific requirements.
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Experiments have been performed on a model finite-element problem and on
groundwater flow problems supplied by AEA Technology. The experiments were performed
on an SGI Origin 2000 (a shared memory machine) and on a Cray T3E. Results for the
groundwater flow problems on an Origin 2000 are presented in Table 2.7. The first problem
is a 2 dimensional problem with 40000 square elements; problems 2 and 3 are 3 dimensional
with 27000 and 125000 8-noded cubic elements, respectively. In the reported experiments,
4 subdomains were used. In all our numerical experiments, we achieved good speedups
although, because the number of interface variables is proportionally higher for the 3
dimensional problems, the speedups for the factor times for these problems was not quite

as good as for 2 dimensional problems.

Table 2.7: Wall clock timings (in seconds) for MP42 on 1, 2, and 4 for three groundwater

flow problems.

Problem Number of Number of No. of Factor+ Speedup || Solve Speedup
variables elements  processes Solve

1 159999 40000 1 138 - 11.3 -
2 77 1.8 6.2 1.8

4 42 3.3 3.6 3.1

2 29785 27000 1 204 - 3.2 -
2 125 1.6 2.0 1.6

4 85 2.4 1.2 2.6

4 132651 125000 1 5823 - 48 -
2 3560 1.6 28 1.7

4 2050 2.8 15 3.2

A limitation of our new codes is that the interface problem is currently solved by a
frontal scheme on a single process. As the number of subdomains increases so does the
number of interface variables and the solution of the interface problem can become a
serious bottleneck. In the future, we plan to look at solving the interface problem using
other sparse direct solvers (such as the Harwell Subroutine Library multifrontal code MA41).
An alternative approach is to assemble the local Schur complements and treat the resulting
system as a dense system that can be solved using (for example) ScaLAPACK routines
(see http://www.netlib.org/scalapack/). The design of MP42 and MP62 using library
subroutines as building blocks should allow us to try different solvers for the interface

problem within the existing code.

16



References

J. A. Scott. The design of a parallel frontal solver. Technical Report RAL-TR-99-075,
Rutherford Appleton Laboratory, 1999.

2.7 The use of MA27 in a domain decomposition context

(I. S. Duff, J. Koster and J. A. Scott)

In this study, we considered the use of the sparse direct HSL code MA27 in the solution
of large positive definite systems that are subdivided into several ‘subdomains’. This is
an extension to our work on implementing MA42 in parallel (Duff and Scott, 1994). In
this domain decomposition approach, the overall matrix can be ordered into bordered
block diagonal form where the diagonal blocks (except the last) correspond to the internal
variables of the local subproblems, the border columns to the boundary variables of the
local subproblems and the last diagonal block to the reduced problem on these interface
variables.

This work was carried out partly at the request of NEC in Stuttgart, who had bought
a licence for MA27 but wanted to make a version available that could utilize the parallelism
of their NEC SX-4 supercomputer. In particular, they had some applications in the
automotive industry on which they wanted to test this approach.

The submatrices on the diagonal (except the last) corresponding to the local problems
on the subdomains are factorized using MA27. Of course, these factorizations can be
performed in parallel and require no communication. The factors are then used to update
the contribution of this subdomain to the Schur complement matrix, which is the coefficient
matrix for the interface problem. We also use MA27 to factor the block sparse matrix
corresponding to the interface problem and to obtain the solution for the interface variables.
These are then substituted into the boundary values of the local problems, and finally the
solution to the overall problem is obtained by backsubstitution within the local subdomain
problems. A test code was written using MPI for message passing.

A crucial part of this approach and one for which modifications to MA27 are needed is
in the update of the Schur complement matrix. One approach would be to provide MA27
with a 2 by 2 block matrix with the off-diagonal block corresponding to border columns
and the (2,2) block to the contributions to the Schur complement from this local problem.
This would involve changing the interface to MA27 to prevent pivoting on the boundary
variables, and we chose not to do this at this stage although it would preserve sparsity in
the boder columns and the Schur complement. Another approach would be to pass only
the diagonal block and develop a solution routine for a sparse right-hand side (in fact a
sparse forward substitution) but this was not possible within the time scales demanded

by our collaborator. Instead, we removed some of the worst inefficiencies and increased
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greatly the parallelism of the method by designing a code for MA27 to perform forward and
back substitutions on several right-hand sides at once by parallelizing across the right-hand

sides.
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2.8 A multifrontal approach for shared memory computers for
sparse QR factorization. (P. R. Amestoy, I. S. Duff and C.
Puglisi)

We have designed and implemented a parallel QR decomposition algorithm for a large
sparse matrix A. The algorithm is based on the multifrontal approach and makes use of
Householder transformations. The tasks are distributed among processors according to an
assembly tree which is built from the symbolic factorization of the matrix A” A (Amestoy,
Duff and Puglisi, 1996).

We first addressed uniprocessor issues and then considered the multiprocessor
implementation of the method. We considered the parallelization of both the factorization
phase and the solve phase. We used relaxation of the sparsity structure of both the original
matrix and the frontal matrices to improve the performance. We found that, in this case,
the use of Level 3 BLAS led to very significant gains in performance.

We have written a code MA49 implementing this algorithm. We have tested the code
extensively on the CRAY J90 and the SGI Origin, including runs on large test problems
from animal breeding. A version of the code has been developed that uses Open-MP, and
early tests with this have indicated that we can have good portability and efficiency over

a range of shared memory computers.
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3 Other numerical linear algebra

3.1 Development of kernels for dense and sparse numerical linear
algebra (I. S. Duff)

Matrix-matrix multiplication (of dense matrices) can be performed at often close to peak
rates on a wide range of computers although a highly tuned code is sometimes required.
This is because the regular structures involved allow various forms of partitioning and
blocking that can be used to exploit caches, vector registers, or parallelism to ensure
that the normal bottleneck of high performance computing, namely access to memory, is
avoided. Daydé and Duff have designed versions of the Level 3 BLAS kernel for matrix-
matrix multiply (GEMM), using only Fortran, so that it performs well on RISC based
computers. They have also designed the other Level 3 BLAS routines so that they can
use either this GEMM kernel or one supplied by the computer vendor. Their paper on
this work has recently been accepted for publication in ACM Trans Math Software (Daydé
and Duff, 2000). Their intention is to develop these codes further when new architectures
appear. The current codes are freely available from the anonymous ftp site ftp.enseeiht.fr
in directory pub/numerique/BLAS/RISC.

Duff has also been involved in discussions on the design of basic Linear Algebra
Subprograms for Level 2 and Level 3 kernels for sparse matrices. A paper on
User Level codes has appeared in ACM Trans Math Software (Duff, Marrone,
Radicati and Vittoli, 1997) and ideas from this paper have influenced the design
of the kernels within the BLAS being developed by the BLAS Technical forum
http://www.netlib.org/cgi-bin/checkout/blast/blast.pl. A key part of this design
is the idea of matrix handles so that the user need not be concerned with the details of
the storage schemes for the sparse matrix. It is envisaged that these kernels will be widely
used in the solution of sparse equations by iterative methods. In collaboration with a
summer student at CERFACS, Laurent Sutra, and a PhD student, Christof Voemel, lain
has developed a Fortran 95 instantiation of the sparse BLAS for the BLAS Technical forum

project.
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3.2 Permuting large entries to the diagonal (I. S. Duff and
J. Koster)

We have continued the development of several algorithms based on bipartite weighted
matching algorithms for permuting a matrix so that the entries on the diagonal of the
permuted matrix are large relative to the off-diagonal entries. We have also implemented
a scaling with one of the options which gives a unit diagonal with no off-diagonal entries
larger than one. This work is based on earlier work reported in Duff and Koster (1999q)
and is described in detail in Duff and Koster (19995). A highly efficient Fortran code MC64
has been written to implement this algorithm.

We have experimented with using these algorithms to preorder matrices prior to
using various factorization and solution schemes and have sometimes found a dramatic
effect. For example, when used with the MA41 multifrontal code, far fewer operations and
considerably less storage are needed for the factorization of unsymmetric systems because
the multifrontal factorization does not perturb the initial selection of pivots by so much.
Other researchers, for example Li and Demmel (1998), have used our code so that they
can predetermine a pivot sequence and avoid subsequent dynamic scheduling in a parallel
implementation of their supernodal factorization.

We have also found that the robustness and performance of preconditioned iterative
solvers can be greatly improved by using MC64 as a preprocessing step. For example,
the scaling option in the code has a profound influence on the convergence of the Block
Cimmino iterative scheme. Some problems do not converge without the reordering and
scaling but require only a few iterations if such preprocessing is performed. Benzi (Los
Alamos National Laboratory), Haws (LANL) and Tuma (Czech Academy of Sciences)
have experimented with our orderings as a preprocessing step in the solution of indefinite
and nonsymmetric linear systems. They confirmed our findings that the convergence of
Krylov subspace methods preconditioned with standard incomplete factorizations can be
greatly improved. They observed similar gains for other preconditioning techniques such

as factored sparse approximate inverses.
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3.3 Linear systems and optimization (N. I. M. Gould, M. E.
Hribar, C. Keller, J. Nocedal and A. J. Wathen)

The approximate minimization of a quadratic function i(z, Hz) — (c,z) subject to a set
of linear constraints Az = 0 is a key computation in the numerical solution of general

nonlinear programming problems. As a critical point for this problem must satisfy the

5)G)- ()

for some multipliers y, much of our recent work has been on the solution of symmetric

Lagrange equations

linear systems whose coefficient matrix involves a diagonal zero block. In addition, since
we are interested in solving large problems for which a direct matrix factorization may be
too expensive, and since it is often not necessary to obtain a highly accurate solution to
the system, we have concentrated on preconditioned iterative methods.

We have considered applying the conjugate gradient method to the solution of these
structured problems. We have shown that, so long as one is prepared to precondition each

iteration by solving an auxiliary linear system of the form

) ()-6)

it is as if the conjugate gradient method had been applied in the null-space of the constraints
Az = 0, and thus we could appeal to existing convergence estimates to show that this is
a viable approach. Traditionally, the conjugate gradient method is only appropriate if
the coefficient matrix is definite, while here it is the use of an indefinite preconditioner
which leads us to the same conclusions for our indefinite system. There is considerable
flexibility in choices for M. At one extreme, picking M as the identity matrix leads to
a preconditioning system of the form usual when solving least-squares problems (and for
which there are often good direct solvers), while at the other, picking M = H leads to
convergence in a single iteration (since the preconditioning system is then identical to the
original). In Keller, Gould and Wathen (1999), we examined the spectrum and form of the
eigenvectors of the preconditioned matrix and its minimum polynomial, and indicated how
the choice of M affects these values. However, in Gould, Hribar and Nocedal (1998), we
observed that in practice the conjugate-gradient iterates sometimes wander away from the
constraints Az = 0 unless care is taken. To combat this possibility, we proposed iterative

refinement techniques, as well as an adaptive reformulation of the quadratic problem, that
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can greatly reduce these errors without incurring a high computational overhead. These
techniques have subsequently proved to be most effective in practice.

A similar approach has been considered by Gould (1999) for the related problem of
minimizing the penalty function 1(z, Hz) — (c, z) + 1||Az||3/p, for some small scalar p > 0.

In this case, a critical point must satisfy

() ()= (0)

which may be regarded as a small perturbation of the system considered earlier, and

conjugate gradient methods using preconditioners of the form

(5 5)6)-6)

are both appropriate and have the beneficial effect of removing the dominant form of
ill-conditioning associated with penalty-function methods. As before, these methods are
made more stable using a restricted form of iterative refinement, and numerical results
have indicated the effectiveness of such an approach.

Of course, neither of these approaches are appropriate if the objective functions are
unbounded from below (on their constraint sets). In this case, it is now traditional to
impose a normalization constraint of the form ||z|| < A, for some appropriate A > 0. In
Gould, Lucidi, Roma and Toint (1999), we investigated conjugate gradient-like methods for
solving these problems when the /5 norm is used for the normalization, but in the absence
of the linear constraints Az = 0. Fortunately, by combining these methods with the
abovementioned preconditioners, it is now possible to handle the linearly constrained case
as well, and this has important, positive repercussions for our new quadratic programming
code HSL_VE12.
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3.4 Incomplete QR factorizations (Z.-Z. Bai, I. S. Duff and A. J.
Wathen)

We have studied a class of incomplete orthogonal factorization methods based upon Givens
rotations for the solution of large sparse nonsingular and unsymmetric systems of linear
equations. These methods include: Incomplete Givens Orthogonalization (IGO-method)
and Generalized Incomplete Givens Orthogonalization (GIGO-method), which drop entries
from the incomplete orthogonal and upper triangular factors by position; Threshold
Incomplete Givens Orthogonalization (TIGO(7)-method), which drops entries dynamically
by their magnitudes; and Generalized Threshold Incomplete Givens Orthogonalization
(GTIGO(T, p)-method), which drops entries dynamically by both their magnitudes and
positions. Theoretical analyses show that these methods can produce a nonsingular sparse
incomplete upper triangular factor and either a complete orthogonal factor or a sparse
nonsingular incomplete orthogonal factor for a general nonsingular matrix. Therefore,
these methods can potentially generate efficient preconditioners for Krylov subspace
iterations for solving large sparse systems of linear equations. Moreover, the upper
triangular factor is an incomplete Cholesky factorization preconditioner for the normal
equations from least-squares problems. We study incomplete Givens orthogonalization
methods in detail for a tridiagonal matrix to illustrate more clearly the behaviour of our
new methods.

Full details of this work are given in the technical report by Bai, Duff and Wathen
(1999).
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3.5 Locking and restarting quadratic eigenvalue solvers

(K. Meerbergen)

The quadratic eigenvalue problem
Ku+ iwCu — w*Mu = 0
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arises in the simulation of acoustic cavities with acoustic damping material. The real part
of the eigenvalue w is the eigenfrequency and the imaginary part represents the amount
of damping of the corresponding mode u. This enables engineers to study the acoustic

properties of cavities with damping material. The traditional approach is to apply Arnoldi’s
method to the linearized problem

o)) ()

which we also denote as Az = wBz, but this doubles the size of the problem and does not

—iC M
M 0

use its special structure. Methods such as residual iteration (Neumaier, 1998), rational
Krylov (Huitfeldt and Ruhe, 1990) and Jacobi-Davidson (Sleijpen, van der Vorst and van
Gijzen, 1996) solve the quadratic eigenvalue problem without linearization. The major
difficulty here is how to compute more than one eigenvalue, since the quadratic Schur form
is not guaranteed to exist. In Meerbergen (1999), we propose building a subspace using
quadratic residual iteration, and use this subspace to build a partial Schur factorization
of the linearized problem. Quadratic residual iteration builds a basis Vj, = [vy,...,v;] by
repeatedly applying for j = 1,...,k — 1 the transform

y; = (K +i0;C — U?M)_I(K + iw;C — w?M)uj

to an approximate eigenvector u;, which we call a Ritz vector, with corresponding Ritz
value w;. The result y; is added to V; to construct V;,;. We use this subspace to form
an approximate partial Schur form for the linearized problem, that is we compute U}, €

Range(V}) and an upper triangular matrix Sy with the eigenvalues on the main diagonal

Uk —iC M U, Fy,
— W Sk =
UrSk M 0 U Sk 0

where V*F;, = 0. We use this Schur form for locking, purging and restarting quadratic

K 0
0 M

residual iteration.

We now compare several methods on an application related to the acoustic simulation
of a 0.4m x 0.4m x 0.06m sample made of a poro-elastic material. A full description of the
problem can be found in Meerbergen (1999). The finite-element mesh has 324 nodes and
192 HEXAS elements. The total number of degrees of freedom is 1944.

We performed 30 steps of the shift-invert Arnoldi method starting with a random initial
vector and pole (or shift) o = 300. After 18 iterations, Arnoldi’s method computed six
Ritz values with residual norm p; = || Ku; + iw;Cu; — w7 Mu;|| smaller than 10~* and after
20 iterations, six Ritz values had p; smaller than 1077. When we use quadratic residual
iteration with ¢ = 300, we need only 14 iterations for computing six eigenvalues with

residual norms smaller than 107*, which is faster than the shift-invert Arnoldi method,
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but we need 30 iterations to compute six eigenvalues with residual norm smaller than 10~
which is slower than Arnoldi’s method. So it is difficult to say which method is best.
We noticed that the convergence of Ritz values in the quadratic residual iteration method
is less smooth than in Arnoldi’s method, which may lead to slower convergence when a
number of eigenvalues with small residual norms are wanted. In addition, the method
focuses convergence on one eigenvalue at a time. This may lead to some minor gain in
convergence speed when one eigenvalue is of interest. The major interest of the method is
the gain in storage of the iteration vectors.

The Jacobi-Davidson method for the quadratic eigenvalue problem can also be
combined with the computation of the Schur form of the linearized problem. The major
difference is that y; is now computed from the correction equation
( (iCuj — 2wjMuj)u;

uj (iCu; — 2w; Mu;

) (K + iw;C — w; M) (1 B A

i

) y; = Kuj +ww;Cu; —wJZ.Mu]» .

For our example, we solved the correction equation with GMRES preconditioned with
K +i0C — 0?>M with ¢ = 300 in order to make a fair comparison with the shift-invert
Arnoldi method and quadratic residual iteration. In this case, it took Jacobi-Davidson
only 13 iterations to compute six eigenvalues with residual norms smaller than 10~7, but
the total number of linear solves with K +i0C — 0?M is 118, which is far higher than for
the other methods.
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3.6 Dangers in changing poles in the rational Lanczos method

for the Hermitian eigenvalue problem (K. Meerbergen)

The spectral transformation Lanczos method (Ericsson and Ruhe, 1980) is very popular

for solving the eigenvalue problem Az = ABx where A and B are n X n symmetric matrices
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and B is positive (semi) definite. This method builds a Krylov space
K, = spanf{vy, Svy, S%vy, . .. ,Sk_lvl}

for the spectral transformation S = (A — uB) ! B. Typically, the eigenvalues near the pole
1 € R converge very quickly. It may happen that some wanted eigenvalues are far away
from p and converge very slowly. Hence it may be advantageous to alter p from time to
time. However, this requires building a new subspace with a new spectral transformation
(A—vB) 1B and the old Krylov subspace is entirely thrown away. When the rational
Krylov method (Ruhe, 1998) is used, i can change at any time without throwing away the
Krylov subspace. Unfortunately, the rational Krylov method does not use the symmetry of

the eigenvalue problem. Therefore, we propose the following method (Meerbergen, 1999).

1. Choose a pole i € R and perform k iterations of the Lanczos method. This produces
a tridiagonal matrix T}, € C*** and a set of k basis vectors V}, = [v1,...,v] € Crxk

from which the eigenvalues and eigenvectors are computed.

2. Choose a new pole v € R. Compute two k X k matrices () and M so that QM =
I + (p — v)T}, where Q is unitary and K; = Q*T;M ™! is tridiagonal. Perform a
change of basis Wy, = [wy, ..., w;] = V},Q. The new basis W}, and tridiagonal matrix

K}, correspond to a Lanczos process for (A — vB)~! B with starting vector w;.

3. Continue the Lanczos method with pole v with k£ additional iterations to obtain Wy,
and Ko.

We call this algorithm the rational Lanczos method since it is a combination of the
Lanczos method and the rational Krylov method. The only difference with the Lanczos
method lies in the change of pole, so we can inherit all Lanczos technology including partial
reorthogonalization (Grimes, Lewis and Simon, 1994), implicit restarting (Sorensen, 1992),
locking and purging (Lehoucq and Sorensen, 1996).

An important caveat is in order. It is essential not to pick the pole very close to an
eigenvalue. (In practice, we pick the pole in between clusters of computed eigenvalues.)

The reasons are the following:

e The spectral transformation (A — uB)~'B is applied to a sequence of vectors v; for
j = 1,...,k and requires the solution of the linear system (A — uB)y, = Bv, for
y;. Usually, A — puB is factorized once and the linear systems are solved using
backtransformations. The solution y; becomes less accurate when g is close to
an eigenvalue since the condition number becomes extremely large and only the

eigenvalues very close to p will be computed.
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100 1381 1764 1953

Figure 3.1: Eigenvalues computed via the rational Lanczos method. The vertical lines

denote the positions of the poles.

¢ Changing the pole or locking converged eigenvectors may multiply the rounding errors
in the Lanczos method by the factor (maxyex(a,p) |A — p|/|A — v|)?, which is large

when v is close to an eigenvalue A.

We now illustrate the method for an application coming from acoustics. For a complete
description of the problem we refer to Meerbergen (1999). This example is related to the
acoustic simulation of a 0.4m x 0.4m x 0.06m sample made of a poro-elastic material. The
finite-element mesh has 324 nodes and 192 HEXAS elements. The total number of degrees
of freedom is n = 1944.

We have experimented with a prototype of the new Lanczos routine EA16. We computed
25 eigenvalues to the right of 100. Figure 3.1 shows the computed eigenvalues and the
different poles. The pole was changed every 25 iterations, except for the first change of
pole, where 50 iterations were performed. The new poles are chosen so that maxyexr,) |A—
u|/|A — v| < 50. At each change of pole, the converged eigenvectors were locked and the
Lanczos basis was reduced to dimension 25 by an implicit restart. All the computed Ritz
pairs (6, z) had residual norms
(A —vB)™'Bz — 0z||p < 107".
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3.7 Application of a domain decomposition method with
Lagrange multipliers to acoustic problems arising from the

automotive industry. (K. Meerbergen)

This work was carried out in the framework of a consultancy for LMS International
(Belgium). The purpose was to apply the FETI-H2LM domain decomposition method
(Magoules, Roux and de La Bourdonnaye, 1998) to industrial problems. The motivation
was to enable the solution of large problems arising from the finite-element discretization
of acoustic cavities, decoupled from their surrounding structure. The main unknown
is the acoustic pressure field while boundary conditions are related to (Dirichlet)
pressure constraints, (Neumann) normal pressure gradient constraints, and (Robin) normal
admittance constraints.

One approach, called domain decomposition, relies on the decomposition of the entire
domain into subdomains, so that the global problem is decomposed in a number of
local problems, that can be solved independently. Because of this property, domain
decomposition is well suited for parallel computing.

The general Helmholtz problem for the acoustic pressure u, in a bounded domain €2
with boundary conditions on 9 can be written as follows: for f € L?(Q2) and g € L?*(9Q),
find u € H(2) such that

—Vu—k*u=f in Q
g—u+au:g on 02
v

where k denotes the wave number, v the unit outward normal on 0f2, and « is a scalar.
The FETI-H2LM method can be defined for two subdomains as follows. Let the domain

2 be decomposed into two non-overlapping subdomains €2,, s = 1,2 ; let I'; denote the

interface 'y = 9Q; N Q. Then for f € L*(Q) and g € L*(99), find u, € H'(,) so that

—V?u, — k*u, = f, in
Ou,

Ov,
Ou,

Ov,

+ au, = g, on 09, N 0N

+ tkus = A, on 'y
under the global constraints

>\1+A2—2ik‘U2 =0
A1—|—)\2—2’L.]€U1 =0
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where f, (resp. g,) denotes the restriction of the function f (resp. g) in subdomain €,
(resp. 99, N OQ), and v, the external normal vector of Q,, for s = 1,2. The \’s are called
Lagrange multipliers and are also unknown. The elimination of the unknowns w; and us
leads to an interface system in A; and A,, that is solved with an iterative method. The
elimination of u, requires the solution of a local Helmholtz problem on each subdomain,
which is done using a direct sparse linear solver.

The example is related to a car compartment, generated by the simulation software
SYSNOISE (LMS, Belgium). The main objective of this evaluation is the synthesis of
the frequency response function at the driver’s and passenger’s ears, subject to velocity
boundary conditions along the firewall. This example is representative of a wider class
of problems where the acoustic response within a cavity, induced by vibrating panels,
is evaluated. The evaluation of the acoustic response is performed using a three-
dimensional finite-element model as presented in Figure 3.2. The discrete model involves
6448 hexahedral elements, 544 pentahedral elements, and 8417 nodes. See Magoules,
Meerbergen and Coyette (1999) for the details. The first mesh partitioning consists of two
subdomains (N, = 2) each with 4429 degrees of freedom (dofs) and the interface with 441
dofs. The second partition into four subdomains (N; = 4) consists of two subdomains with
2443 dofs and two with 2229 dofs; the interface has 955 dofs. The order of the interface
problem for the FETI-H2LM method is double the size of the interface, because of the use
of two Lagrange multipliers. This leads to an interface problem of order 882 for the first

partition and to one of order 1910 for the second.
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Figure 3.2: Car compartment — domain decompositions

The convergence curves obtained for the two partitions for 100 Hz are shown in
Figure 3.3. The curves show the scaled interface residual norm versus the iteration
number. For all cases, GMRES(50) is the fastest in terms of iterations. Note that
the figures do not represent the cost per iteration. Indeed, GMRES(m) requires more
(parallel) inner products than BiCGStab(2), which can be a significant overhead. However,
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GMRES(m) requires only one matrix-vector product per iteration while BiCGStab(2)
requires two. Another difference between GMRES(m) and BiCGStab(2) is the convergence
behaviour: GMRES(m) converges smoothly, while BICGStab(2) has a somewhat irregular
behaviour. It can be seen that the decomposition into four domains leads to a more difficult
problem, since each of the methods requires more iterations. This is very pronounced for
GMRES(20), which requires more than 2000 iterations.

Ng =2 N, =14

»-
5
residual norm

L L L i
500 1000 1500 2000 2500
iteration iteration

method = GMRES(20) (- - -), GMRES(50) (- -) and BiCGStab(2) ( )

Figure 3.3: Car compartment — convergence history for 100 Hz
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3.8 The design of a block Lanczos and rational Lanczos code for
the symmetric eigenvalue problem (K. Meerbergen and J.A.
Scott)

We are developing a Fortran code for the block Lanczos method and the rational Lanczos

method for the solution of large-scale real symmetric eigenvalue problems. The code is
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designed for the computation of a selected number of eigenvalues and the corresponding

eigenvectors for the following applications :
e the standard eigenvalue problem Az = Az, with A symmetric ;

e the generalized eigenvalue problem Az = AMz, with A and M symmetric and M

positive (semi) definite ;

e the generalized eigenvalue problem Ax = AMz, with A and M symmetric and A

positive semi-definite, referred to as the buckling problem.

We allow the computation of a number of eigenvalues nearest a point, furthest from a
point, inside an interval, to the right or the left of a point, the left-most or right-most
eigenvalues, or the eigenvalues on both ends of the spectrum. The new code is called EA16.

The code can be used in regular, shift-invert, or buckling modes. In regular mode, a
Krylov subspace with A (or M~ A) is built; in shift-invert mode, the code builds a Krylov
subspace with (A — o)™t (or (A — ocM)~1M), where o is the pole; and in buckling mode,
it builds a Krylov subspace with (A — cM)~'A. The major computations are matrix-
vector operations with A, (A —ol)™!, M7'A, (A — oM) M, or (A — ocM)™'A. These
are performed by the user through a reverse communication interface. The pole may be
chosen either by the code or by the user. For greater flexibility, the user can start the
computation using the regular mode then, once a few approximate eigenvalues have been
found that enable a suitable o to be chosen, the user may switch to shift-invert mode to
speed up the convergence.

We have spent some effort to understand partial reorthogonalization (Grimes et al.
1994) in combination with an implicit restart and change of pole (rational Lanczos).

When there is no storage left to expand the Lanczos basis, the code uses an implicit
restart to reduce the subspace dimension. We have adopted a number of different shift
choices proposed in the literature, including exact shifts (Sorensen, 1992), Leja shifts
(Baglama, Calvetti and Reichel, 1998), Chebyshev shifts and purging (Lehoucq and
Sorensen, 1996).

The major differences between EA16 and other symmetric eigenvalue codes are

summarised in the following table.

code cheap implicit blocking rational  automatic
orthogonalization restart Krylov  pole selection

EA15 X

ARPACK X

BLZPACK

Boeing

EA16 X X X X
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Hence we are providing a state-of-the-art code by employing the latest research on the
Lanczos method and the rational Krylov method.

In addition, we have included a number of options to improve the reliability of the code
when used for the solution of the Stokes and buckling problems. These include starting
the Lanczos method with a pre-filtered initial vector, the computation of purified Ritz
vectors (Meerbergen and Spence, 1997), and the implicit filtering of unwanted subspaces
(Meerbergen and Spence, 1997).
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3.9 The computation of the right-most eigenvalues of the

linearized and discretized Navier-Stokes equations

(K. Meerbergen and J.A. Scott)

The determination of the stability of steady state solutions and the detection of Hopf
bifurcations of the Navier-Stokes equations is a challenging problem. In a classical analysis,
time integration is used: a random perturbation of the steady-state solution is used as the
initial value and the solution after a large number of time steps is compared with the steady
state. If this solution is close to the steady state, the latter is stable, otherwise it is unstable.
Because the Navier-Stokes equations form a system of differential-algebraic equations (an
index 2 DAE), special techniques are required to ensure stable integration. An alternative
approach is to compute the right-most eigenvalues of Az = ABz, where A is the Jacobian

matrix of the discretized Navier-Stokes equations and B is the mass matrix. When an
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eigenvalue crosses the imaginary axis, the solution becomes unstable. If the right-most
eigenvalues form a complex conjugate imaginary pair, then we have a Hopf bifurcation.
It is thus sufficient to monitor the sign of the right-most eigenvalue of Az = ABz for a
branch of steady-state solutions. Lehoucq (Sandia Laboratories, USA), Meerbergen, and
Scott have considerable experience of computing right-most eigenvalues (Meerbergen and
Roose, 1996, Lehoucq and Scott, 1997) while Wathen (Oxford University) has experience
of preconditioning the linear systems that arise from the discretization of the Navier-Stokes
equations (Golub and Wathen, 1998, Keller, Gould and Wathen, 1999). We have embarked
on a collaborative project, partially funded by the EPSRC Grant GR/M74542. At this
stage, we have made an inventory of existing techniques and exchanged experience. We

plan to investigate two topics.

e The costs (in terms of CPU time and memory requirements) of direct linear solvers
and iterative methods for solving the linear systems that arise in the eigenvalue
computations will be analysed and compared for a model problem. This will enable
us to give guidelines on which method to choose for the Navier-Stokes problem in 2

and 3 dimensions.

e The computation of the right-most eigenvalue of the Navier-Stokes equations is

related to time-integration of DAE’s. We can show that the eigenvalue solvers

developed in Cliffe, Garratt and Spence (1994) and Meerbergen and Spence (1997)
correspond to the solution of an index 1 DAE. We will consider other DAE

formulations and investigate whether these offer good alternatives.

Finally, Lehoucq has access to real large-scale applications. We plan to apply the

conclusions of this work to these applications.

References

K. Cliffe, T. Garratt, and A. Spence. Eigenvalues of block matrices arising from problems
in fluid mechanics, STAM J. Matriz Anal. Applic. 15, 1310-1318, 1994.

G. H. Golub and A. J. Wathen. An iteration for indefinite systems and its application to
the Navier-Stokes equations, SIAM J. Sci. Comput. 19(2), 530-539, 1998.

C. Keller, N. I. M. Gould, and A. J. Wathen. Constraint preconditioning for indefinite linear
systems, Technical Report RAL-TR-1999-016, Rutherford Appleton Laboratory, 1999.

R. B. Lehoucq and J. A. Scott. Implicitly restarted Arnoldi methods and eigenvalues of the
discretized Navier-Stokes equations, Technical Report RAL-TR-97-058, Rutherford
Appleton Laboratory, 1997.

33



K. Meerbergen and D. Roose. Matrix transformations for computing rightmost eigenvalues
of real nonsymmetric matrices. IMA J. Numerical Analysis, 16, 297-346, 1996.

K. Meerbergen and A. Spence. Implicitly restarted Arnoldi and purification for the shift-
invert transformation, Math. Comp., 66, 667-689, 1997.

3.10 Techniques for the solution of sparse equations on high

performance computers (I. S. Duff)

The energy of computer architects and the strength of the marketplace for high performance
computers ensure that the goal posts for designing and implementing algorithms to exploit
these computers keep moving.

It was thus the case that our book (Dongarra, Duff, Sorensen and van der Vorst, 1991)
was becoming quite out of date, addressing high performance of a bygone era. Although
many of the principles described at that time, for example the use of tuned high level
Basic Linear Algebra Subprograms, still apply, it was felt that a completely new book
rather than a revision was required.

Thus in Dongarra, Duff, Sorensen and van der Vorst (1998), which was published by
SIAM Press in November 1998, we have not only rewritten the chapters concerned with
dense and sparse equation solution but have also included new chapters on eigensolutions
and on preconditioning. We now include the design of algorithms for computers with
distributed memory. The book is already a best seller. A draft copy was used in a tutorial
by the authors at the SIAM Annual Meeting in Stanford (July 1998) and the launch was
timed to provide copies of the book to attendees at a similar tutorial in the SC’98 meeting
at Orlando in November 1998. Draft versions of two chapters of the book have appeared
as RAL reports (Duff, 1998, Duff and van der Vorst, 1998).

Since then, Duff and van der Vorst have developed some of the discussion on
preconditioning, including many more references and historical detail, and have written a
report intended for a more numerically sophisticated audience (Duff and van der Vorst,

1999). This will appear in a special millennium issue of the Journal Parallel Computing.
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3.11 The dissemination of good practices in sparse equation

solution (I. S. Duff and J. A. Scott)

We feel it is important not only to do high quality research in the solution of large sparse
linear systems but also that we should disseminate our research and that of our colleagues
to the community at large. Indeed we feel that much of the value of research in numerical

analysis lies in its application to problems in science and engineering.

In the last year, we have given talks at meetings of computational physicists. lain gave
an invited talk at the meeting “Supercomputing, Collision Processes and Applications”
held in The Queens University Belfast to commemorate the retirement of Professor
Phil Burke. He spoke on a wide range of methods for the solution of linear equations
and eigenvalues for both sparse and dense matrices and has produced a paper for the
Proceedings (Duff, 1999a). Jennifer had a similar brief in her invited talk at the “Workshop
on the TB-LMTO Method” in Strasbourg and her paper will be included in the conference
proceedings (Scott, 2000).

lain had quite a different audience in Helsinki where he was a keynote speaker at a
meeting on “Computational Cattle Breeding”. The scientists, principally from agricultural
research establishments, were concerned with determining breeding values in cattle with
the intention of improving milk or beef yield. Essentially they require the solution of very
large sparse least-squares problems with their current method of choice being the solution
of weighted normal equations (the mixed model equations). The dimension of the MME
can be in the tens of millions although use can be made of a hierarchical structure. lain
discussed methods of solving the MME including discussing preconditioning techniques
which have proved useful in other application areas, notably computational fluid dynamics.
He also suggested other approaches to solving their least-squares problems. He wrote a
short annotated bibliography (Duff 19996) which is available on the Web site for the
conference proceedings http://www.csc.fi/ttn/ccb99/program.htm.
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4 Optimization

4.1 GALAHAD (N. I. M. Gould and Ph. L. Toint)

We have long recognised that our trusty, well known, large-scale optimization package
LANCELOT (Conn, Gould and Toint, 1992) is showing its age. Our intention is to produce
a successor, GALAHAD, within the next couple of years, but to date we have been primarily
concerned with the theoretical issues which will inevitably underpin such an enterprise, and
with the development of new, core quadratic programming procedures (see Section 4.3).

LANCELOT is based on the sequential minimization of an augmented Lagrangian
function. This has some (particularly linear algebraic) advantages for large problems, but
augmented Lagrangian methods are widely believed to be inferior to sequential quadratic
programming (SQP) methods at least for small problems. For large problems, good
methods for the solution of (nonconvex) quadratic programming problems are not widely
available which has presumably been the reason for the limited experience with large-scale
SQP methods. However, things have changed over the past few years following Karmarkar’s
method and the “interior-point” revolution, which has resulted in dramatic improvements
in methods for both linear and convex quadratic programming. The ability to handle
nonconvex problems, which we believe is essential for a general purpose optimization
package, is not without difficulties, but both we (Conn, Gould and Toint, 1996, and Conn,
Gould, Orban and Toint, 1999) and others have now proposed interior-point methods for
nonconvex quadratic programming. Thus we believe that the main obstacle which has for
so long stood in the way of large-scale SQP algorithms has been removed, and intend to
experiment with such methods in the near future.

SQP methods themselves come in a variety of flavours. There are three current leading
candidates for GALAHAD. Many of the theoretical issues that lie behind these are either
well understood, or have recently been explored in our book (Conn, Gould and Toint,
2000) on trust-region methods, although there are still some outstanding difficulties that
we hope to address. Of particular significance is the first proof of convergence of an SQP
filter method for such problems (see Fletcher, Gould, Leyffer and Toint, 1999). This is
particularly important because these new methods have recently been shown to be very

effective in practice, and are thus front-runners for GALAHAD.
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4.2 Trust-region methods (A. R. Conn, N. I. M. Gould and
Ph. L. Toint)

Trust-region methods are one of the most popular techniques for solving nonlinear
optimization problems. For the past two years, we have been writing a book, whose
main aims are to describe and explore trust-region methods in all of their manifestations,
to unify many of the hundreds of existing algorithms in this area, and, as a result, to
develop a comprehensive theory which is capable of reproducing existing, and of providing
exciting new, results. On March 31st 1999, and 966 pages later, our endeavours finally
came to an end, as we passed our manuscript (Conn et al., 2000) to our publishers, SIAM
Press in Philadelphia. The resulting book is set to appear in time for the Mathematical
Programming Society’s triennial symposium in August, 2000.

A typical method for nonlinear optimization aims to replace the presumably hard
original problem by an easier model of this problem—by easier, we mean a model that
is possible to (approximately) solve at reasonable cost. For example, if we wish to find an
unconstrained minimizer of a nonlinear function, we might replace it by a locally-accurate
quadratic approximation based on a current estimate of the required minimizer. Next
we might minimize the quadratic model, and use the minimizer of this as an improved
estimate of the required minimizer of the original problem. However, two difficulties might
arise. Firstly, the model problem may not have a minimizer. Secondly, even if it does, the
minimizer of the model may provide a worse estimate of the solution to the problem than
the current estimate.

To avoid these difficulties, a trust-region method adds an extra requirement, the trust-
region bound, on the model. The trust-region bound is simply that the distance between

the current estimate and the minimizer of the resulting model problem should be bounded
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by a prescribed positive value, known as the trust-region radius. Since the solution to
the model is now required to lie within the trust-region, the model minimizer must exist.
Furthermore, the trust-region radius provides a mechanism for discarding a poor predicted
estimate of the solution to the original problem. If the predicted value is poor, the
radius should simply be reduced and the model problem resolved. On the other hand,
if there is good agreement between the model and the original problem, there may be
some justification for increasing the radius for the next iteration.

This simple idea is the basis for all of the methods considered in our book. Considerable
efficiencies are possible because the conditions actually required of an approximate model
minimizer are very weak. Moreover, such conditions are satisfied by most practical methods
for approximately minimizing the model. Trust-region methods are particularly appealing
since they mix powerful convergence properties in theory with excellent numerical
performance in practice. The book is arranged as follows:

Part I: Preliminaries.

Chapter 1: Introduction, Chapter 2: Basic Concepts, Chapter 3: Basic Analysis and
Optimality Conditions, Chapter 4: Basic Linear Algebra, and Chapter 5: Krylov Subspace
Methods.

Part II: Trust-region Methods for Unconstrained Optimization.

Chapter 6: Global Convergence of the Basic Algorithm, Chapter 7: The Trust-Region
Subproblem, Chapter 8: Further Convergence Theory Issues, Chapter 9: Conditional
Models, Chapter 10: Algorithmic Extensions, and Chapter 11: Non-Smooth Problems.

Part: IIT Trust-region Methods for Constrained Optimization with Convex

Constraints.

Chapter: 12: Projection Methods for Convex Constraints, and Chapter: 13: Barrier
Methods for Inequality Constraints.

Part: IV: Trust-region Methods for General Constrained Optimization and

Systems of Nonlinear Equations.

Chapter: 14: Penalty-Function Methods, Chapter: 15: Sequential Quadratic Programming
Methods, and Chapter: 16: Nonlinear Equations and Nonlinear Fitting.

Part V: Final Considerations.

Chapter: 17: Practicalities, Chapter: 18: Afterword, and a comprehensive, annotated

bibliography.
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4.3 Quadratic Programming (N. I. M. Gould and Ph. L. Toint)

We have recently been developing two new quadratic programming methods that lie at
the heart of our forthcoming nonlinear programming solver GALAHAD. Both algorithms
are designed to handle large, sparse, nonconvex problems, the ultimate aim being to solve

problems in hundreds of thousands of unknowns.

Our first method is based on a feasible-interior-point trust-region approach. At each
outer iteration, an appropriate model of the logarithmic barrier function is minimized
within the intersection of linear equality constraints and an appropriately-shaped ellipsoidal
trust-region.  The solution to this subproblem is (approximately) solved using a
preconditioned Lanczos/conjugate gradient-based approach (see Gould et al., 1998 and
Gould et al., 1999), in which some attempt is made to move around the boundary of the
trust region in an attempt to find a better boundary solution, if such a solution occurs. The
preconditioner used aims both to ensure that linear equality constraints remain satisfied,
and to mimic any ill-conditioning resulting from the barrier model. This has consequences
for both the shape of the trust-region, and for the underlying convergence theory. The
theoretical justification of the overall scheme, for problems with general objectives and
inequality constraints, is given by Conn et al. (1999). The method has been implemented
as a Fortran 90 module HSL_VE12 in the Harwell Subroutine Library, and we have presented
numerical results that suggest that it is indeed able to solve some problems of the size
we had been aiming for. Most recently, we have been investigating the ultimate rate
of convergence of such schemes, and have shown that, under fairly general conditions,
a superlinear rate is achievable both for quadratic and general nonlinear programs (see
Gould, Orban, Sartenaer and Toint, 2000).

Our second method (Gould and Toint, 2000) is of the active-set variety, and, although
general in scope, is intended within GALAHAD to deal with the case where a good estimate
of the optimal active set has been determined (and thus that relatively few iterations will
be required). The method is iterative at two levels, one level relating to the selection of the
current active set, and the second due to the method used to solve the equality-constrained
problem for this active set. A preconditioned conjugate gradient method is used for this
inner iteration, once again with the preconditioner chosen especially to ensure feasibility
of the iterates. The preconditioner is updated at the conclusion of each outer iteration to
ensure that this feasibility requirement persists. The well known equivalence between the
conjugate-gradient and Lanczos methods is exploited when finding directions of negative
curvature. This work is still ongoing, with the resulting software package HSL_VE19 planned
for 2000.
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4.4 Steepest-edge simplex code LA04 for linear programming (J.
K. Reid)

Work has been completed on the steepest-edge (Goldfarb and Reid, 1977) simplex code
LAO4 for linear programming. There has been a re-awakening of interest in simplex codes
recently with the realization that for really large problems it is worthwhile to exploit
sparsity in all the vectors as well as the matrix factors. Also, they are useful in conjunction
with interior-point methods for finding final solutions and for following small changes to
the data.

LAO4 aims for robustness by using the principle that it seeks a solution that is exact for
a nearby problem. It has run successfully on all but one of the test examples in the Netlib
test set. This an extremely large and extremely degenerate problem and LA0O4 ‘stalls’, that
is, does a huge number of iterations without progress. The problem is recognized as too

difficult for most codes.
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5 Fortran

5.1 Co-Array Fortran, a simple parallel extension to Fortran 90
(R. W. Numrich and J. K. Reid)

John Reid collaborated with Robert Numrich of SGI (formerly Cray Research) in the
detailed design (Numrich and Reid, 1998) of an extension to Fortran 90 for parallel
programming formerly called F~~ and now renamed Co-Array Fortran.

A Co-Array program is interpreted as if it were replicated a number of times and that
all copies were executed asynchronously. Each copy has its own set of data objects and
is termed an ‘image’. A data object is accessible only within its own image unless it is
specified with additional dimensions in square brackets. Such an object has the same shape
and address on all images and may be accessed from another image with the help of trailing
subscripts enclosed in square brackets. Such a ‘co-array’ may be used in expressions and
assignments as if it were an ordinary Fortran array.

References without square brackets are to the local array (or scalar), so that code that
can run independently is uncluttered. Only where there are square brackets or there is
a procedure call is communication between images involved. The use of array notation
to address data on other images provides a very flexible and clear mechanism for parallel
programming.

Array pointer components of co-arrays provide a mechanism for cases that require
arrays to have different sizes on different images. We would have liked to use allocatable
components, but unfortunately these are not part of Fortran 95, though an ISO Technical
Report has now been adopted that makes their presence in Fortran 2000 certain. Co-Array
Fortran limits the use of pointer components of co-arrays to that of allocatable components.

Very careful consideration has been given to making the extension easy for compiler
writers to implement and to ensuring that optimizations that are available to ordinary
Fortran programs are still available. For I/O, we have added an intrinsic called sync_file to
allow each processor to perform its I/O through its own buffer; calling the intrinsic has the
effect of making buffer data available to other images, and will probably involve flushing
the buffer before the call and reloading it afterwards. Similar considerations apply to the
use of local memory such as cache and we have added an intrinsic called sync_memory for
this purpose.

Cray Research has a subset implementation on the T3E and other vendors are

considering implementations.
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6 Miscellaneous Activities

6.1 CERFACS (L. S. Duff)

[ain has continued to lead a project at CERFACS on Parallel Algorithms and several of
the contributions to this report reflect interactions with that team. A major activity at
CERFACS, and indeed in Toulouse, was the hosting of EuroPar’99 by CERFACS and
ENSEEIHT-IRIT with the support of many other Laboratories in the Toulouse region.
lain was general chair for this meeting that was held at the beginning of September 1999.
There were over four hundred attendees with nearly 200 talks split into 20 topics, making
it the largest EuroPar ever. The social events reflected the “other half” of Toulouse and
were well appreciated by natives and visitors alike. Details of the meeting can be found on
the conference Web page http://www.enseeiht.fr/europar99 and the Proceedings were
published by Springer (Amestoy, Berger, Daydé, Duff, Frayssé, Giraud and Ruiz, 1999).

The main areas of research in the Parallel Algorithms Group are the development
and tuning of kernels for numerical linear algebra, the solution of sparse systems using
direct methods or iterative methods or a combination of the two, heterogeneous computing
including the use of PVM and MPI, large eigensystem calculations, optimization, and the
reliability of computations. Other activities of the Group include advanced training by both
courses and research. Amongst the research closest to the work of the Group at RAL is the
use of domain decomposition techniques in solving large systems from partial differential
equations and work on preconditioning, both using the techniques described in Section 3.2
and using sparse approximations to precondition dense matrices from electromagnetic
applications. In collaboration with a summer student, Laurent Sutra, and later a new PhD
student, Christof Voemel from Germany, we have developed a set of codes to implement
the sparse BLAS kernels of the BLAS Technical forum (Section 3.1).

The Parallel Algorithms Team was also involved in many European Projects including
the PARASOL Project with RAL and others (Section 6.2), PINEAPL (led by NAg Ltd),
and ODESIM (on parallel optimization).

During the reporting period, three students completed their PhDs at CERFACS. lain
was a jury member for the thesis defence of one of them, Serge Gratton. He was also on the
jury for two habilitation theses by Annick Sartenaer, a senior at CERFACS, and Patrick
Amestoy from ENSEEIHT-IRIT, who had been a PhD student of Iain’s at CERFACS

many years ago.
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Nick visited CERFACS to collaborate with Annick and a PhD student, Dominique
Orban, and to work on his book with Philippe Toint, visiting CERFACS from Belgium.

The home page for CERFACS is http://www.cerfacs.fr and current information on
the Parallel Algorithms Group can be found on page http://www.cerfacs.fr/algor/.
Full details on the activities of the Parallel Algorithms Team can be found in the report

CERFACS (1999).
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6.2 European project PARASOL, an integrated programming
environment for PARAIllel sparse matrix SOLvers

(I. S. Duff)

PARASOL was a long term research (LTR) ESPRIT IV Project for “An Integrated
Environment for Parallel Sparse Matrix Solvers”. This Project started on January 1st,
1996 and finished on June 30th, 1999. Its main aim was to develop a parallel scalable
library of sparse matrix solvers using Fortran 90 and MPI. The codes from this project are

now available in the public domain from the Web site http://www.pallas.de/parasol.

The PARASOL Consortium was managed by PALLAS in Germany and consisted of

e leading European research organizations with a well known experience and track-

record in the development of parallel solvers (CERFACS, GMD-SCAI, ONERA,
RAL, Univ. of Bergen);

e industrial code developers who defined the requirements for PARASOL and used its
results (Apex Technologies, Det Norske Veritas (DNV), INPRO, MSC, Polyflow);

¢ two leading European HPC software companies who managed the project,
disseminated information, and provided programming development tools (GENIAS,
PALLAS).
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The codes in the PARASOL Library include direct methods, domain decomposition
techniques, and multigrid approaches. Within this project, RAL was involved in the
development of direct solvers and worked in this context in close collaboration with
CERFACS and with ENSEEIHT (Toulouse, France) who formally joined the Project as
a subcontractor to CERFACS. The ENSEEIHT involvement was managed by Patrick
Amestoy. More details on the MUMPS software can be found in Section 2.1.

There have been several researchers who have worked on the PARASOL Project at RAL
during the period of this report. Jean-Yves L’Excellent joined the Project at CERFACS
in October 1996 and worked on the MUMPS code until July 1999. He worked at RAL
for the month of May 1999. Petr Plechac started at RAL at the beginning of November
1997 and worked on combining graph partitioning with sparse matrix orderings and on the
interface between MUMPS and PARASOL. He left the project at the end of August 1998.
Jacko Koster joined the PARASOL Team at RAL in February 1998 and stayed until the
end of the Project.

There have been a number of meetings of the PARASOL Project over the past two
years. At a Project Review meeting at GMD in Bonn in February 1998, the European
Commission gave permission for the Project to be extended from December 1998 to June
1999, although with no extra funding. As a condition of this extension, we were subjected
to an extra “Health Check” Review at ONERA in Paris in November 1998. The extension
was necessary largely because of the slow start to the Project, and it enabled the partners
both to spend the EU money and to meet the objectives of the Project. The final Project
review took place in Toulouse in August 1999, and we obtained a very good report from
the reviewers. Between these meetings, we had three internal meetings of the Project. One
in Bonn in December 1998 to finalize the Library interface, one in Munich in March 1999
to agree on test problems and a consistent way of reporting on them, and a third in Bergen
in June 1999 to collate our experiences and prepare for the final review meeting.

Information on PARASOL can be obtained from the GENIAS or
EU PROSOMA Web pages http://www.genias.de/projects/parasol/details.html

or http://www.prosoma. lu, respectively.
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7 Computing and mathematical software

7.1 The computing environment within the Group

Our policy of upgrading the Group’s workstations has continued over the past two years.
The main change has been that the Group’s venerable “high-performance” machine, our
IBM Risc Systems/6000 3BT, has been replaced by a considerably faster Compaq Alpha
DS20 dual EV6-processor server, with 3.5Gbytes of memory. One of the Group’s SUN
workstations has also been replaced by an improved performance SUN Ultra Sparc 5,
but we are now debating whether to move in future to cheaper, and more powerful,
Intel-like machines. In addition, we now have three Dell CPi laptop machines of varying
configurations, and have chosen to allow them to dual-boot for both Microsoft (NT) and
(RedHat) Linux operating systems. Our productivity has most definitely improved with
our ability to compute “on the move”. Our previous portable machine, an IBM Thinkpad
701 has been retired.

The responsibility for SUN software support continues to be delegated to other parts of
the Laboratory, although group members have still found it more convenient to get their
hands dirty for simple tasks—in particular, we maintain our own Linux systems on the
laptops. The Group continues to support a series of WWW pages describing its activities,
and now use our own, slightly outdated, IBM RS/6000 as a WWW server.

We still benefit from other public RAL machines, in particular the Compaq
multiprocessor systems. The Group’s files continue to reside on a central UNIX data
store, which is backed up daily by the Information Technology Department. We now have
access to a number of Fortran 95 compilers, some on our own machines, and are now
writing Fortran 95 codes. We have also made use of MPI, and associated parallel language
support systems, on both our own machines and on those provided by I'TD.

In combination with our Grant application, we obtained computing time on national
facilities: namely on Columbus at RAL, and the CSAR machines (SGI Origin 2000 and
CRAY T3E) at Manchester.

7.2 Software packages

The following new packages were developed during the reporting period.

LAO4 Sparse linear programming: steepest-edge simplex method (J. K. Reid)

This package uses the simplex method to solve the linear programming problem

n

. . . T _ o
minimize ¢ & = Y274 ¢;&;

subject to the constraints
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Az =1b

li <z; <wj,1 <5<k,

z; >0,l<j<n.
The variables z;, k+ 1 < j < [ — 1, if any, are free (have no bounds). Full advantage is
taken of any zero coefficients a;;. The inequalities 0 < k </ < n + 1 must hold. Special
values [; = —o and u; = ¢ may be used to remove one or both bounds.

To accommodate roundoff, all variables are permitted to lie slightly outside their

bounds.

MA49 Sparse over-determined: least squares by QR (I. S. Duff)
This subroutine computes an orthogonal factorization of a sparse overdetermined
matrix A and optionally solves the least squares problem min||b — Az||,. Given a sparse

matrix A of order m X n, m > n, of full column rank, this subroutine computes the QR

R

factorization A = Q) where () is an m X n orthogonal matrix and R is an n X n upper

triangular matrix.

Given an n-vector b, this subroutine may also compute the minimum 2-norm solution
of the linear system ATz = b, by solving [RT 0} z = b and performing the multiplication
z = Qz, or, if the Q factor is not stored, by solving R'Rz = b and performing the

multiplication z = Az.

or [RT 0], or

The subroutine can also solve systems with the coefficient matrix [

will compute the product of Q or Q7 with a vector.

The method used is based on the multifrontal approach and makes use of Householder
transformations. Because an ordering for the columns is chosen using the pattern of the
matrix AT A, this code is not designed for matrices with full rows.

Versions exist for globally addressable parallel computers. The parallel versions are
machine dependent but only require simple features like starting parallel tasks and locks.
In principle, a code can be supplied for any shared memory parallel machine, but the only
platforms on which the shared memory code has been tested are the SGI Origin 2000 and
the CRAY (C98.

HSL_MA55 Band symmetric positive-definite linear system (J. K. Reid)

This module solves a system of linear equations whose matrix is banded, symmetric and
positive definite. It uses block Cholesky factorization, taking advantage of any variation
in bandwidth. It has an option for storing the matrix itself as well as its factorization.

A secondary entry provides for further systems with the same matrix but different right-
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hand sides to be solved economically. The secondary entry can also be used to calculate
residuals, needed for iterative refinement, provided the matrix itself has been stored. For
very large systems or if restart facilities are desired, HSL_MAB5 uses a direct-access file for
the factors and a sequential file for the matrix.

The user must first specify all the row lengths. The matrix itself is supplied by blocks
of rows using reverse communication. The blocking for input is chosen by the user and is
independent of the blocking used for solution.

MC60 may be used to get a good ordering.

MA72 Sparse symmetric finite-element equations: out-of-core multiple front method (J. A.
Scott)

This collection of subroutines, when used in conjunction with the MC62 package,
solves symmetric positive-definite finite-element equations using a multiple front algorithm.
It is assumed that the underlying finite-element mesh has been partitioned into (non-
overlapping) subdomains. In the multiple front algorithm, a frontal method is applied to
each subdomain separately.

The application of the frontal method to each subdomain may be done in parallel.
Using multiple fronts can also have the advantage of requiring less work than applying the
frontal method to the whole domain.

MA72 provides routines for generating lists of interface variables, for preserving
the partial factorization of a matrix when the sequence of calls to the frontal solver
factorization routine MA62B/BD is incomplete, and for performing forward elimination or
backsubstitution on a subdomain.

MA72 uses reverse communication.

MC57 Assemble a set of finite-element matrices (J. A. Scott)

This subroutine assembles a set of element matrices, that is, it forms the summation
A = ¥, A where each element matrix AY has entries only in the principal submatrix
corresponding to the variables in element /. Each A" must be held in packed form as a
small full square matrix, together with a list of the variables associated with element [.
The assembled matrix A has a symmetric sparsity pattern but may be unsymmetric. An
option exists for assembling only the sparsity pattern of A. If the variables are not indexed

contiguously, absent rows and columns may optionally be removed.

MC62 Generate a row ordering for a row-by-row frontal solver (J. A. Scott)

Given an n X m matrix A with an unsymmetric sparsity pattern, this subroutine
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generates a row ordering for a row-by-row frontal solver (for example, the HSL packages
MA42 and MA43.

MC62 generates a row ordering that is designed to reduce the maximum and mean row
and column frontsizes, the maximum and mean frontal matrix size, and the sum of the
lifetimes, which in turn reduce storage requirements and operation counts for the frontal
solver. Only the pattern of the matrix is used. MC62 is not recommended if A has one or

more rows that are full or have a large number of nonzeros.

MC62 offers the option of generating the row graph of an m x n matrix A. The nodes
of the row graph are the rows of A and two rows ¢ and j (¢ # j) are defined to be adjacent

if and only if there is at least one column k of A for which a;;,.a;;, # 0.

MC63 Generate an element assembly ordering for a frontal solver (J. A. Scott)

This subroutine uses a variant of Sloan’s algorithm to generate an element assembly
ordering that is efficient when subsequently used with a frontal solver (for example, the
packages MA42 and MC62). The number of floating-point operations and the storage required
by a frontal solver for an unassembled finite-element matrix are dependent upon the order
in which the elements are assembled; the variation in the performance of different element
orderings can be significant. The assembly ordering obtained by MC63 is designed to
reduce the maximum and root-mean-square (r.m.s.) wavefronts and the profile, which in
turn reduce storage requirements and computation times for the frontal solver. Only the

pattern of the finite elements is used.

MC64 Find permutation that places large entries on the diagonal of a sparse matrix (I. S.
Duff and J. Koster)

Given a sparse n X n matrix A, this subroutine attempts to find a column permutation
vector that makes the permuted matrix have n entries on its diagonal. If the matrix
is structurally nonsingular, the subroutine optionally returns a column permutation that
maximizes the smallest element on the diagonal, maximizes the sum of the diagonal entries,
or maximizes the product of the diagonal entries of the permuted matrix. For the latter
option, the subroutine also finds scaling factors that may be used to scale the original
matrix so that the nonzero diagonal entries of the permuted and scaled matrix are one

in absolute value and all the off-diagonal entries are less than or equal to one in absolute

value. The natural logarithms of the scaling factors u;, ¢ = 1,...,n, for the rows and
vj, J = 1,...,n, for the columns are returned so that the scaled matrix B has entries
bij = azjelto).
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ME62 Sparse Hermitian or complex symmetric linear system: multifrontal method (J. A.
Scott)

This package solves one or more sets of sparse Hermitian or complex symmetric linear
unassembled finite-element equations, AX = B, by the frontal method, optionally holding
the matrix factor out-of-core in direct access files. The package is primarily designed for
positive-definite matrices since numerical pivoting is not performed. Use is made of high-
level BLAS kernels. The coefficient matrix A must of the form A = 27, A®  with A®
nonzero only in those rows and columns that correspond to variables in the k-th element.

The frontal method is a variant of Gaussian elimination and involves the factorization
A= PLD(PL)T, where P is a permutation matrix, D is a diagonal matrix, and L is a unit
lower triangular matrix. MC62 stores the reals of the factors and their indices separately.
A principal feature of MC62 is that, by holding the factors out-of-core, large problems can
be solved using a predetermined and relatively small amount of in-core memory. At an
intermediate stage of the solution, [ say, the ‘front’ contains those variables associated
with one or more of A® k = 1,2,...,1, which are also present in one or more of A®
k = 1,2,...,m. For efficiency, the user should order the A* so that the number of
variables in the front (the ‘front size’) is small. For example, a very rectangular grid
should be ordered pagewise parallel to the short side of the rectangle. The elements may

be preordered using the Harwell Subroutine Library routine MC63.

HSL_MP42 Unsymmetric finite-element equations: multiple-front method (J. A. Scott)

The module HSL_MP42 uses the multiple front method to solve sets of finite-element
equations AX = B that have been divided into non-overlapping subdomains. The routines
MA42 and MA52 are used with MPI for message passing.

In the multiple front method, a frontal decomposition is performed on each subdomain
separately. Thus, on each subdomain, L and U factors are computed. Once all possible
eliminations have performed within a subdomain, there remain the interface variables,
which are shared by more than one subdomain together with any variables that are not
eliminated because of stability or efficiency considerations. If F; is the remaining frontal
matrix for subdomain 2, and C; is the corresponding right-hand side matrix, then the
remaining problem is F'Y = C, where _ >, F; and C' = Y, ;. By treating each F; as an
element matrix, the interface problem (3) is also solved by the frontal method. Once (3)
has been solved, backsubstitution on the subdomains completes the solution.

The element data and/or the matrix factors are optionally held in direct-access files.

HSL_MP62 Symmetric finite-element equations: multiple-front method (J. A. Scott)
The module HSL_MP62 uses the multiple front method to solve sets of symmetric
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positive-definite finite-element equations AX = B that have been divided into non-
overlapping subdomains. The Harwell Subroutine Library routines MA62 and MA72 are
used with MPI for message passing.

In the multiple front method, a frontal decomposition is performed on each subdomain
separately. Thus, on each subdomain, . and U factors are computed. Once all possible
eliminations have performed within a subdomain, there remain the interface variables,
which are shared by more than one subdomain. If F; is the remaining frontal matrix
for subdomain ¢, and C; is the corresponding right-hand side matrix, then the remaining
problem is F'Y = C, where _}, F; and C = Y}, ;. By treating each F; as an element
matrix, the interface problem (3) is also solved by the frontal method. Once (3) has been
solved, backsubstitution on the subdomains completes the solution.

The element data and/or the matrix factors are optionally held in direct-access files.

HSL_VE12 Quadratic programming problem: interior-point trust-region method (N. I. M.
Gould)

This package uses a primal-dual interior-point trust-region method to solve the
quadratic programming problem

minimize %:vTH r+g'z
subject to the general linear constraints

d<adlr<ct,i=1,2,...,m,
and the simple bound constraints

xé-nggx;*,jzl,Q,...,n,

I 2% c, and c* are given.

where the n X n symmetric matrix H and the vectors g, a;,
Full advantage is taken of any zero coefficients in the matrix H or the vectors a;. Any of
the constraint bounds xé, Ty, ¢t and ¢ may be infinite.

If the matrix H is positive semi-definite, a global solution is found. However, if H is
indefinite, the procedure may find a local solution which is not the global solution to the

problem.

HSL_VE13 Constrained least distance problem:interior-point trust-region method (N. I. M.
Gould)

This package uses an primal-dual interior-point trust-region method to solve the
constrained least distance problem

minimize \/E?:l wi(z; — zY)?

i

subject to the general linear constraints
d<alfz<ct, i=1,2,...,m

and the simple bound constraints
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xégwjgzv?,jzlﬂ,...,n,

where the vectors w, 2, a;, z!, z*%, ¢/, and ¢* are given.
Full advantage is taken of any zero coefficients in the vectors a;. Any of the constraint
bounds wé, Ty, ¢t and ¢ may be infinite. In the special case where w = 0, the so-called

analytic centre of the feasible set will be found.

HSL_VE15 Quadratic programming: reorder the problem (N. I. M. Gould)

This package reorders to a standard form the variables and constraints for the quadratic
programming problem

minimize %;vTH z+g'z
subject to the general linear constraints

d<alr<ct, i=1,2,...,m,
and the simple bound constraints

xénggxy,jzlﬂ,...,n,

[ 2% c, and c* are given.

where the n X n symmetric matrix H and the vectors g, a;,
Full advantage is taken of any zero coefficients in the matrix H and the vectors a;. Any of
the constraint bounds xé, Ty, ¢t and ¢ may be infinite.

The variables are reordered so that any free variables (i.e., those without bounds) occur
first, followed respectively by non-negativities (i.e., those for which the only bounds are that
z; > 0), lower-bounded variables (i.e., those for which the only bounds are that z; > :ci #*
0), range-bounded variables (i.e., those for which the bounds satisfy —oo < z} < z¥ < o)
upper-bounded variables (i.e., those for which the only bounds are that z; < z # 0),
and finally non-positivities (i.e., those for which the only bounds are that z; < 0). Fixed
variables will be removed. Within each of the above categories, the variables are further

ordered so that those with non-zero diagonal Hessian entries occur before the remainder.

The constraints are reordered so that equality constraints (i.e., those for which ¢l = c¥)
occur first, followed respectively by those which are lower-bounded (i.e., those for which
the only bounds are that afz > cl), those which have ranges (i.e., those for which the
bounds satisfy —oo < cé << o0), and finally those which are upper-bounded (i.e.,
those for which the only bounds are that a]z < c¢*). Free constraints, that is those for

which ¢l = —o0o and ¢! = o), are removed.

Procedures are provided to determine the required ordering, to reorder the problem
to standard form, and to recover the problem, or perhaps just the values of the original

variables, once it has been converted to standard form.

It is anticipated that this module will principally be used as a pre- and post-processing

tool for other HSL packages.
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HSL_VF06 Global minimization of sparse quadratic function with norm constraint (N. I. M.
Gould)

Given a real n X n symmetric matrix H, a real n vector ¢ and a positive radius A,
this package finds a global minimizer of the quadratic objective function %mTH z+ clz,
where the vector z is required to satisfy the constraint ||z||ss < A, and where the M-norm
of z is ||z||;y = VaTMz. The symmetric positive-definite matrix M is constructed from
an appropriate factorization of H, and is chosen so that the problem is easy to solve.
Such problems commonly occurs as a trust-region subproblems in nonlinear optimization

calculations, and it is envisaged that this will be the primary use for this package.
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8 Seminars

19 February 1998

5 March 1998

17 March 1998

7 May 1998

15 October 1998

26 November 1998

4 February 1999

19 February 1999

23 February 1999

27 May 1999

3 November 1999

25 November 1999

Professor N. Nichols (Reading) Uncertain systems and data

assimilation: the problem of weather prediction.

Dr R. Fletcher (Dundee) Recent progress with filter methods for

nonlinear programming.

Dr M. van Gijzen (Utrecht, The Netherlands) GMRES-like methods

on distributed memory computers.

Dr K.D. Andersen (Dash Associates Ltd) The parallelization of the
XPRESS interior point optimizer for a shared-memory multiprocessor

using an OpenMP (like) programming environment.

Dr A.R. Krommer (NAg Ltd) Parallel sparse matrix computations in
the PINEAPL Library.

Dr P. Knight (Strathclyde) k-SAT and Markov chains.

Dr A. Trefethen (NAg Ltd) Developing numerical software for today’s

computing environments.

Mr F. Magoulés (ONERA, France) Two-level domain decomposition
methods with Lagrange multipliers for the fast iterative solution of

acoustic problems.

Dr Y. Hu (Daresbury Laboratory) Problems and algorithms for
dynamic load balancing and unsymmetric matrix ordering in parallel

computation.

Dr J. Gondzio (Edinburgh) Exploiting structure in the linear algebra

of interior point methods.

Dr D. Ryan (Auckland, New Zealand) Real operations research in

practice.

Dr J. Hall (Edinburgh) Exploiting hypersparsity in the revised simplex
method.
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9 Reports issued in 1998-1999

We give a full listing of Rutherford Technical Reports issued during the period of this
Progress Report. The other report listings, from organizations with which we collaborate,
only include reports not already included as RAL reports. All of our current technical

reports are publicly accessible via the internet from

http://www.numerical.rl.ac.uk/reports/reports.html.
Rutherford Reports

RAL-TR-98-003 A linesearch algorithm with memory for unconstrained
optimization. N. I. M. Gould, S. Lucidi, M. Roma, and
Ph. L. Toint.

RAL-TR-98-005 Subspace-by-Subspace preconditioners for structured linear
systems. M. J. Daydé, J. Décamps, and N. I. M. Gould.

RAL-TR-98-016 Ordering symmetric sparse matrices for small profile and
wavefront. J. K. Reid and J. A. Scott.

RAL-TR-98-027 Implicit scaling of linear least squares problems. J. K. Reid.

RAL-TR-98-028 Numerical Analysis Group Progress Report. January 1996 -
December 1997. 1. S. Duff (Editor).

RAL-TR-98-031 On ordering elements for a frontal solver. J. A. Scott.

RAL-TR-98-039 PARASOL An Integrated Programming Environment for
Parallel Sparse Matrix Solvers. P. Amestoy, 1. Duff,
J.-Y. L’Excellent, and P. Plechéc.

RAL-TR-1998-051 Multifrontal Parallel Distributed Symmetric and Unsymmetric
Solvers. P. Amestoy, I. Duff, and J.-Y. L’Excellent.

RAL-TR-1998-052 Preconditioning and Parallel Preconditioning. 1. S. Duff and H.
A. van der Vorst.

RAL-TR-1998-054 Direct Methods. 1. S. Duff.

RAL-TR-1998-056 A new row ordering strategy for frontal solvers. J. A. Scott.

RAL-TR-1998-057 ADO01, A Fortran 90 code for automatic differentiation. J. D.
Pryce and J. K. Reid.

RAL-TR-1998-060 Co-Array Fortran for parallel programming. R. W. Numrich
and J. K. Reid.

56



RAL-TR-1998-069

RAL-TR-1998-076

RAL-TR-1999-011

RAL-TR-1999-016

RAL-TR-1999-025

RAL-TR-1999-027

RAL-TR-1999-030

RAL-TR-1999-035

RAL-TR-1999-037

RAL-TR-1999-039

RAL-TR-1999-041

RAL-TR-1999-045

RAL-TR-1999-054

RAL-TR-1999-055

RAL-TR-1999-059

On the solution of equality constrained quadratic programming
problems arising in optimization. N. I. M. Gould, M. E. Hribar,
and J. Nocedal.

Matrix methods. 1. S. Duff.

Locking and restarting quadratic eigenvalue solvers.
K. Meerbergen.
Constraint preconditioning for indefinite linear systems.

C. Keller, N. I. M. Gould and A. J. Wathen.

The rational Lanczos method for the Hermitian eigenvalue
problem. K. Meerbergen.

Developments and trends in the parallel solution of linear
systems. I. S. Duff and H. A. van der Vorst.

On algorithms for permuting large entries to the diagonal of a
sparse matrix. [. S. Duff and J. Koster.

Row ordering for frontal solvers in chemical process engineering.
J. A. Scott.

Reversing the row order for the row-by-row frontal method.
J. K. Reid and J. A. Scott.

Application of a domain decomposition method with Lagrange
multipliers to acoustic problems arising from the automotive
industry. F. Magoules, K. Meerbergen and J.-P. Coyette.
Global convergence of trust-region SQP-filter algorithms for
general nonlinear programming. R. Fletcher, N. I. M. Gould,
S. Leyffer and Ph. L. Toint.

A class of incomplete orthogonal factorization methods I:
methods and theories. Z.-Z. Bai, I. S. Duff, and A. J. Wathen.
A primal-dual trust-region algorithm for minimizing a non-
convex function subject to general inequality and linear equality
constraints. A. R. Conn, N. I. M. Gould, D. Orban and Ph. L.
Toint.

SQP methods for large-scale nonlinear programming. N. I. M.
Gould and Ph. L. Toint.

A fully asynchronous multifrontal solver using distributed
dynamic scheduling. P. R. Amestoy, 1. S. Duff, J.-Y. L’Excellent,
and J. Koster.
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RAL-TR-1999-072 The impact of high performance computing in the solution of
linear systems: trends and problems. 1. S. Duff.
RAL-TR-1999-075 The design of a parallel frontal solver. J. A. Scott.

CERFACS Reports

TR/PA/98/02 MUMPS MUltifrontal Massively Parallel Solver. Version 2.0.
P. R. Amestoy, I. S. Duff, and J-Y L’Excellent.
TR/PA/99/12 A brief bibliography of recent research and software for the

parallel solution of large sparse linear equations. 1. S. Duff.
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10 External Publications in 1998-1999

References

P. Amestoy, P. Berger, M. Daydé, I. Duff, V. Frayssé, L. Giraud, and D. Ruiz, editors.
EuroPar’99 Parallel Processing, Lecture Notes in Computer Science, No. 1685,
Springer-Verlag, Berlin, Heidelberg, New York, 1999.

P. R. Amestoy, I. S. Duff, and J. -Y. L’Excellent. Multifrontal solvers within the PARASOL
environment. In B. Kagstrom, J. Dongarra, E. Elmroth and J. Waséniewski, eds,
‘Applied Parallel Computing, PARA’98’, Lecture Notes in Computer Science, No.
1541, Springer-Verlag, Berlin, pp. 7-11, 1998.

P. R. Amestoy, I. S. Duff, and J. -Y. L’Excellent. Parallélisation de la factorisation lu
de matrices creuses non-symmétriques pour des architectures a mémoire distribuée.
Calculateurs Paralléles Réseaux et sytémes répartis, 10(5), 509-520, 1998.

P. R. Amestoy, I. S. Duff, and J. -Y. L’Excellent. Multifrontal parallel distributed
symmetric and unsymmetric solvers. Comput. Methods in Appl. Mech. Eng., (to
appear), 2000.

P. R. Amestoy, 1. S. Duff, J. -Y. L’Excellent, and P. Plechac. PARASOL. An integrated
programming environment for parallel sparse matrix solvers. In R. J. Allan, M. F.
Guest, A. D. Simpson, D. S. Henty and D. A. Nicole, eds, ‘High-Performance
Computing’, Kluwer Academic/Plenum Publishers, New York, pp. 79-90, 1999.

J. Cardenal, 1. S. Duff, and J. M. Jiménez. Solution of sparse quasi-square rectangular
systems by Gaussian elimination. IMA J. Numerical Analysis, 18(2), 165-177, 1998.

C. Cartensen and P. Plechac. Adaptive algorithms for scalar non-convex variational
problems. Appl. Numer. Math., 26(1-2), 203—-216, 1998.

K. A. Cliffe, I. S. Duff, and J. A. Scott. Performance issues for frontal schemes on a
cache-based high performance computer. Int. J. Numerical Methods in Engineering,
42, 127-143, 1998.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. A primal-dual algorithm for minimizing a
nonconvex function subject to bound and linear equality constraints. In G. Di Pillo

and F. Gianessi, eds, ‘Nonlinear Optimization and Applications 2’, pp. 15-50, Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1999.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-region methods. SIAM, Philadelphia,
USA, (to appear), 966+xvii pages, 2000.

39



A. C. Damhaug, A. Bergseth, and J. K. Reid. The impact of an efficient linear solver on
finite-element analyses. Computer and Structures 72, 595-604, 1999.

M. J. Daydé, J. P. Décamps, and N. I. M. Gould. On the use of block stretching for solving
unassembled linear systems. Calculateurs Paralléles, Réseauzx et Systémes Répartis,
10(4), 391-399, 1999.

M. J. Daydé, J. P. Décamps, and N. I. M. Gould. Subspace-by-subspace preconditioners
for structured linear systems. Numerical Linear Algebra, 6, 213-234, 1999.

T. A. Davis and I. S. Duff. A combined unifrontal/multifrontal method for unsymmetric
sparse matrices. ACM Trans. Math. Softw., 25(1), 1-20, 1999.

J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Numerical Linear
Algebra for High-Performance Computers. SIAM Press, Philadelphia, 1998.

[. S. Duff. A brief bibliography of recent research and software for the parallel solution of
large sparse linear equations. In ‘Proceedings of the Computational Cattle Breeding

'99 Workshop, Tuusula, Finland, March 18-20, 1999’, Bulletin No 20, International
Bull Evaluation Service, Uppsala, Sweden, pp. 43-46, 1999.

[. S. Duff. Matrix methods. In K. L. Bell, K. A. Berrington, D. S. F. Crothers, A. Hibbert
and K. T. Taylor, eds, ‘Supercomputing, Collision Processes and Applications’,
Kluwer Academic, New York, pp. 119-136, 1999.

I. S. Duff and J. Koster. The design and use of algorithms for permuting large entries to the
diagonal of sparse matrices. SIAM J. Matriz Analysis and Applications, 20(4), 889—
901, 1999.

I. S. Duff and J. A. Scott. A comparison of frontal software with other Harwell Subroutine
Library sparse direct solvers. In P. Arbenz, M. Paprzycki, A. Sameh and V. Sarin,
eds, ‘High Performance Algorithms for Structured Matrix Problems’, NOVA Science
Publishers, Inc., Commack, NY, pp. 1-25, 1998.

[. S. Duff and J. A. Scott. A frontal code for the solution of sparse positive-definite
symmetric systems arising from finite-element applications. ACM Trans. Math. Softw.,
(to appear), 2000.

I. S. Duff and J. A. Scott. MA62 — a frontal code for sparse positive-definite symmetric
systems from finite element applications. In M. Papadrakakis and B. Topping,
eds, ‘Innovative Computational Methods for Structural Mechanics’, Saxe-Coburg
Publications, Edinburgh, pp. 1-25, 1999.

60



N. I. M. Gould. Iterative methods for ill-conditioned linear systems from optimization. In
G. Di Pillo and F. Gianessi, eds, ‘Nonlinear Optimization and Applications 2’, Kluwer
Academic Publishers, Dordrecht, The Netherlands, pp. 123-142, 1999.

N. I. M. Gould. On modified factorizations for large-scale, linearly-constrained
optimization. SIAM Journal on Optimization, 9(4), 1041-1063, 1999.

N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint. Solving the trust-region subproblem
using the Lanczos method. SIAM Journal on Optimization, 9(2), 504-525, 1999.

N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint. A linesearch algorithm with
memory for unconstrained optimization. In R. D. Leone, A. Murli, P. M. Pardalos
and G. Toraldo, eds, ‘High Performance Algorithms and Software in Nonlinear
Optimization’, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 207-
223, 1998.

N. I. M. Gould and J. Nocedal. The modified absolute-value factorization norm for trust-
region minimization. In R. D. Leone, A. Murli, P. M. Pardalos and G. Toraldo,

eds, ‘High Performance Algorithms and Software in Nonlinear Optimization’, Kluwer
Academic Publishers, Dordrecht, The Netherlands, pp. 225-241, 1998.

N. I. M. Gould and J. A. Scott. Sparse approximate-inverse preconditioners using norm-
minimization techniques. SIAM Journal on Scientific Computing, 19(2), 605-625,
1998.

N. I. M. Gould and Ph. L. Toint. A note on the second-order convergence of optimization

algorithms using barrier functions. Mathematical Programming, 85(2), 433-438, 1999.

N. I. M. Gould and Ph. L. Toint. SQP methods for large-scale nonlinear programming.
In M. J. D. Powell and S. Scholtes, eds, ‘Proceedings of the IFIP TC7 Conference on
System Modelling and Optimization, Cambridge, 1999’, Kluwer Academic Publishers,
Dordrecht, The Netherlands, (to appear), 2000.

D. A. Johnston and P. Plechac. Equivalence of ferromagnetic spin models on trees and
random graphs. J. Phys. A-Math. Gen., 31(2), 475-482, 1998.

C. Keller, N. I. M. Gould, and A. J. Wathen. Constraint preconditioning for indefinite
linear systems. SIAM J. Matriz Analysis and Applications, (to appear), 2000.

R. Lehoucq and K. Meerbergen. Using generalized Cayley transformations within an
inexact rational Krylov sequence method. SIAM J. Matriz Anal. Applic. 20(1), 131—
148, 1998.

61



K. Meerbergen. A theoretical comparison between inner products in the shift-invert Arnoldi
method and the spectral transformation Lanczos method. FTNA 7, 90-103, 1998.

K. Meerbergen and M. Sadkane. Using Krylov approximations to the matrix exponential
operator in Davidson’s method. Applied Numerical Mathematics 31, 331-351, 1999.

J.-L. Migeot, K. Meerbergen, and Ch. Lecomte. Implementation and accuracy issues.
In O. von Estorff, ed., ‘Boundary Element Methods in Acoustics’. Computational
Mechanics Ltd, (to appear), 2000.

R. Morgan and K. Meerbergen. §11.2. Inexact methods, In Z. Bai, J. Demmel, J. Dongarra,
A. Ruhe and H. van der Vorst, eds, ‘Templates for the solution of algebraic eigenvalue

problems: a practical guide’, SIAM, Philadelphia, USA, (to appear), 2000.

R. W. Numrich, K. Kim, and J. K. Reid. Writing a multigrid solver using Co-array Fortran.
In B. Kagstrom, J. Dongarra, E. Elmroth and J. Wasniewski, eds, ‘Applied Parallel
Computing, PARA98’, Lecture Notes in Computer Science, No. 1541, Springer-
Verlag, Berlin, pp. 390-399, 1998.

J. K. Reid. Implicit scaling of linear least squares problems. BIT, 40(1), 146-157, 2000.

J. K. Reid and J. A. Scott. Ordering symmetric sparse matrices for small profile and
wavefront. Inter. Journal on Numerical Methods in Engineering, 45, 1737-1755, 1999.

J. K. Reid, A. Supalov, and C. -A. Thole. PARASOL interface to new parallel solvers
for industrial applications. In E. H. D’'Hollander, G. R. Joubert, F. J. Peters, and
U. Trottenberg, eds, ‘Parallel Computing: Fundamentals, Applications and New
Directions’, Advances in Parallel Computing 12, Elsevier, The Netherlands, pp. 525-

532, 1998.

J. A. Scott. On ordering elements for a frontal solver. Communications in Numerical
Methods in Engineering, 15, 309-323, 1999.

J. A. Scott. A new row ordering strategy for frontal solvers. Numerical Linear Algebra
with Applications, 6, 1-23, 1999.

J. A. Scott. Sparse direct methods: an introduction. Springer Verlag Lecture Notes in
Physics, (to appear), 2000.

62



