RAL-TR-98-028

Numerical Analysis Group Progress Report
January 1996 - December 1997

Iain S. Duff (Editor)

ABSTRACT

We discuss the research activities of the Numerical Analysis Group in the Department
for Computation and Information at the Rutherford Appleton Laboratory for the period
January 1996 to December 1997.

Keywords: sparse matrices, numerical linear algebra, large-scale optimization, Fortran,
Harwell Subroutine Library, HSL

AMS(MOS) subject classifications: 65F05, 65F50.

Current reports available by anonymous ftp from matisa.cc.rl.ac.uk in the directory

“pub/reports”. This report is in file duRAL98028.ps.gz.

Department for Computation and Information
Atlas Centre

Rutherford Appleton Laboratory

Oxon OX11 0QX

March 26, 1998

Contents

1 Introduction (I. S. Duff)

2 Sparse matrices

2.1

2.2

2.3

2.4

2.5
2.6

2.7

2.8

2.9

2.10

2.11
2.12

2.13
2.14
2.15

Rutherford-Boeing Sparse Matrix Collection (I. S. Duff, R. G. Grimes, and
JoG Lewis) . . . oL
MUMPS - a distributed memory multifrontal solver (P. R. Amestoy,
I. S. Duff and J.-Y. I’Excellent) L.
Further developments of an unsymmetric multifrontal method (T. A. Davis
and . S.Duff)
Performance issues for frontal schemes on a cache-based high performance
computer (K. A. Cliffe, I. S. Duff, and J. A. Scott)
Exploiting zeros in frontal solvers (J. A. Scott)
MAG62: A frontal code for positive-definite symmetric systems arising from
finite-element applications (I. S. Duff and J. A. Scott)
A comparison of frontal software with other HSL direct solvers (I. S. Duff
and J. A.Scott) L
Ordering symmetric sparse matrices for small profile and wavefront
(J.K.Reidand J. A. Scott) Lo
Computing eigenvalues of the discretized Navier Stokes equations
(R. B. Lehoucqand J. A. Scott)
Iterative methods for finite-element problems (M. J. Daydé, J. P. Décamps,
and N.L M. Gould) oo o oo
Permuting large entries to the diagonal (I. S. Duff and J. Koster)
Least-squares problems from kinematics (J. Cardenal, 1. S. Duff, and
JoJimenez) ...
An improvement to the general sparse-matrix solver MA48 (J. K. Reid) . .
Sparse BLAS (I. S. Duff) L
Survey articles on sparse matrix and optimization research (I. S. Duff and

N.LM Gould) . . . oo oo e

3 Optimization

3.1
3.2

3.3

3.4

LANCELOT (A. R. Conn, N. I. M. Gould and Ph. L. Toint)
Exploiting negative curvature in large-scale nonlinear programming
(N. I. M. Gould, S. Lucidi, M. Roma and Ph. L. Toint)
Trust-region methods (A. R. Conn, N. I. M. Gould, S. Lucidi, J. Nocedal,
M. Roma and Ph. L. Toint)
Steepest-edge simplex code LA04 for linear programming (J. K. Reid) . . .

11

13

15

17

19
21

22
23
23

25

27
27

29

30

8

9

Numerical Linear Algebra 33
4.1 BLAS kernels (M. J. Daydé and I. S. Duff) 33
4.2 Implicit scaling of linear least-squares problems (J. K. Reid) 35
4.3 Numerical linear algebra for high performance computers (J. J. Dongarra,

I. S. Duff, D. C. Sorensen, and H. A. van der Vorst) 36
Fortran 37
5.1 Introduction (J. K. Reid) oo 37
5.2 The F programming language (J. K. Reid) 37
5.3 Exception handling in Fortran 90 (J. K. Reid) 38
5.4 F~~, asimple parallel extension to Fortran 90 (R. W. Numrich and J. K. Reid) 39
5.5 Conditional compilation in Fortran (D. Epstein and J. K. Reid) 41
Miscellaneous Activities 43
6.1 CERFACS (I.S.Duff) 43
6.2 European project PARASOL, an integrated programming environment for

PARAllel sparse matrix SOLvers (I. S. Duff) 44
6.3 PARASOL interface to new parallel solvers for industrial applications

(J. K. Reid and A. Supalov) 45
6.4 IFIP Working Group 2.5 (J. K. Reid) 46
Computing and the Harwell Subroutine Library 47
7.1 The computing environment within the Group 47
7.2 The Harwell Subroutine Library 47
Seminars 50
Reports issued in 1996-1997 51

10 External Publications in 1996-1997 54

i

Personnel in Numerical Analysis Group

Staff

Iain Duff.

Group Leader. Sparse matrices and vector and parallel computers and computing.

Nick Gould.

Optimization and nonlinear equations particularly for large systems.

Petr Plechac (from November 1st 1997).
PARASOL Project.

John Reid.

Sparse matrices and development of the Fortran programming language.

Jennifer Scott.

Sparse linear systems and sparse eigenvalue problems. Seminar organization.

Visitors and Attached Staff
Jerome Décamps (ENSEEIHT, Toulouse) Matrix stretching and optimization.
Jean-Yves L’Excellent (CERFACS) PARASOL.

Mike Hopper (Consultant) Support for Harwell Subroutine Library and for T'SSD.

John Lewis (Boeing) Sparse matrices and software.
Karl Meerbergen (University of Utrecht) Preconditioning techniques for sparse
eigenproblems.

Jorge Moré (Argonne National Laboratory) Optimization.
Jorge Nocedal (Northwestern University, Illinois) Optimization.
Massimo Roma (Rome) Optimization.

Philippe Toint (University of Namur) Optimization.

iii

1 Introduction (I. S. Duff)

This report covers the period from January 1996 to December 1997 and describes work
performed by the Numerical Analysis Group within the Department for Computing and
Information at the Rutherford Appleton Laboratory.

The details of our activities are documented in the following pages. These words of
introduction are intended merely to provide an introduction and additional information on

activities that are not appropriate for the detailed reports.

This past period has seen substantial organizational changes. Not only did the
Department change its name again but the merger of Daresbury Laboratory with the
Rutherford Appleton Laboratory to create CCLRC (Central Laboratory for the Research
Councils) brought us into closer contact with the Theory Division at Daresbury Laboratory,
led by Professor Paul Durham. Additionally, it was felt by an SLA (Service Level
Agreement) review panel that we were too research oriented to be entirely funded through
the SLA route so we were asked to apply to EPSRC for a research grant to cover 85% of
our funding. I am delighted to report that our application was successful, and indeed that

the referees’ reports were very supportive of our work and continued existence.

The support and development of the Harwell Subroutine Library (HSL) continues to
be one of our major activities. There have, however, been no releases of either HSL or
the NAG-marketed Harwell Sparse Matrix Library during the period of this report and
so Section 7.2 is rather sparse. As normal between releases, there are only a few new
routines in final form. We do not explicitly describe partly-completed routines although
their functionality may sometimes be deduced from reading our research reports, many
of which result in software for HSL or LANCELOT. The HSL marketing effort from AEA
Technology has been much more stable than in earlier years and Scott Roberts and Richard
Lee have been ably assisted by Virginia Ifould and then Maria Woodbridge. As well as
facilitating our contact with AEA Technology, the stability has helped boost HSL sales.
Although we had no releases of HSL, we still benefited greatly from the consultancy of
Mike Hopper who helped us both in typesetting and the ongoing commitment to higher
software standards. Our contacts with [an Jones and his CFDS group at Harwell continue
on a very informal basis, and we have continued our collaboration with Andrew Cliffe on

the solution of finite-element equations by frontal methods (Section 2.4).

We continue to maintain close links with the academic community in Britain and
abroad. Iain and John are Visiting Professors at Strathclyde University and RMCS
Shrivenham, respectively, Nick is a visiting Fellow at Shrivenham, and John and Jennifer
have lectured in M.Sc. courses at Reading University. All members of the Group gave
contributed talks at the Dundee Numerical Analysis meeting in 1997, lain is co-hosting a
visitor from China (Zhong-Zhi Bai) with Andy Wathen from Oxford on an EPSRC grant,

1

and Nick and Iain are supervising a CASE student (Carsten Keller), again with Andy
Wathen. Nick and lain were on the jury for the habilitation defence of Michel Daydé in
Toulouse, Tain was on the jury for the thesis exams of Jacko Koster and Luiz Carvalho,

and Nick was on the jury for the thesis of Jerome Décamps, all in Toulouse.

Most of our visitors stayed only for a short time although the interaction with them
has been quite intense. We continue our close association with Oxford University through
the Joint Computational Mathematics and Applications Seminar series and have hosted

several talks at RAL through that programme (see Section 8).

John has continued to combine his interests in Fortran and sparse matrices giving
several talks on these topics during the last two years. He has been very involved through
ISO WG@G5 in influencing the development of Fortran 2000 and has been their main architect
of a proposal for the inclusion of exception handling. He discusses this and other related
Fortran activities in Section 5. John has attended Fortran meetings in Las Vegas and
Vienna, and has given courses on Fortran 90 at Reading University, RAL, and RMCS
Shrivenham. His talk on Fortran 90 at RAL was used by the Graphics Group to test
their ideas on videoing meetings for the World Wide Web. He has continued with his
collaboration on automatic differentiation with groups at Shrivenham and the University
of Hertfordshire. John has remained an active member of IFIP Working Group 2.5 and
has attended and spoken at their meetings in Oxford and Albuquerque. John gave an
invited talk on his Linear Programming work at a meeting in Copenhagen, and he attended

conferences in Coeur d’Alene (Idaho) and York.

Nick’s collaboration with Conn and Toint continues to expand the theory and practice
of large-scale optimization, and they are currently writing a massive tome on trust-region
methods. Much of their work is embodied in the LANCELOT package which continues to be
in great demand and has had one commercial sale. He still has joint research activities with
contacts made during his visit to CERFACS in 1993 and has had an Alliance grant from
the British Council to support this activity. He was a co-supervisor of Jerome Décamps,
who completed his thesis at ENSEEIHT-IRIT in Toulouse in October 1997. He obtained
a British Council-MURST/CRUI grant 1996-1997 to collaborate with the Optimization
group at the Universita di Roma “La Sapienza”. Nick was also involved in a commercial
project with ICI paint division in Slough during 1996. Nick was an invited speaker at

conferences at Ischia, Lausanne, and York and gave a seminar at Oxford University.

Jennifer has developed several international collaborative projects over the two years,
primarily in the computation of sparse eigenvalues. Although she has continued her short-
hours working, she remains so productive that it is easy to forget this fact. In addition
to her work on eigensystems, she has continued to work on frontal solvers and has been
involved in a collaboration (see Section 2.9) that combines both of these areas. Jennifer

continues to coordinate our joint seminar series with Oxford University. She was invited to

talk at a summer school in Hamburg and gave an invited talk at a workshop at Argonne,
[linois. She has presented seminars at Argonne, Durham, Liverpool, and Strathclyde and
has attended meetings at York and Coeur d’Alene (Idaho).

Petr Plechac joined the Group at the beginning of November, 1997 to work on the
PARASOL Project (see Section 6.2). He had previously been a postdoc with John Ball
at Oxford. He has a strong background in analysis but also has considerable computing
skills. Petr has been working on the integration of graph partitioning with sparse ordering
techniques. He has implemented the PARASOL interface library for the MUMPS solver
and has written the test drivers so that the MUMPS code (see Section 2.2) can be used
by the PARASOL Library interface (Section 6.3).

lain still leads a project at the European Centre for Research and Advanced Training
in Scientific Computation (CERFACS) at Toulouse in France (see Section 6.1). Iain is
an Editor of the IMA Journal of Numerical Analysis, an Honorary Secretary of the IMA,
editor of the IMANA Newsletter, chairman of the IMA Programme Committee, chairman
of the Adjudicating Committee for the Fox Prize, IMA representative on the CCIAM
International Committee that overseas the triennial international conferences on applied
mathematics, a member of the International Scientific Programme Committee for ICTAM
'99, and is on the Mathematics College of the EPSRC. In high performance computing,
he has given tutorials at Supercomputing '97 (San Jose CA) and the SIAM 1997 National
Meeting (Stanford CA). Iain has been on the Programme and Organizing Committee
for several international meetings and has given frequent expository and survey talks to
mathematicians and other scientists. He has given invited talks at PARA’96 (Copenhagen),
EUROPAR’96 (Lyon), VECPAR’96 (Porto), AspenWorld’97 (Boston) and invited talks
at meetings in Lille, Miskolc (Hungary), Santorini (Greece), Trieste and York. He has
presented contributed talks and seminars in Coeur d’Alene (Idaho), MIT, Pontresina
(Switzerland), and Strathclyde.

We have tried to subdivide our activities to facilitate the reading of this report.
This is to some extent an arbitrary subdivision since much of our work spans these
subdivisions. Our main research areas and interests lie in sparse matrix research, nonlinear
algebra and optimization, and numerical linear algebra. Work pertaining to these areas
is discussed in Sections 2 to 4, respectively. The work by John on Fortran is discussed
in Section 5, and we group some miscellaneous topics in Section 6. Much of our research
and development results in high quality advanced mathematical software for the Harwell
Subroutine Library, and we report on our computer infrastructure and HSL developments
in Section 7. Lists of seminars (in the joint series with Oxford), technical reports,
and publications are given in Sections 8, 9, and 10, respectively. Current information
on the activities of the Group and on Group members can be found through page
http://www.dci.clrc.ac.uk/Group.asp?DCICSENAG of the World Wide Web.

2 Sparse matrices

2.1 Rutherford-Boeing Sparse Matrix Collection (I. S. Duff,
R. G. Grimes, and J. G. Lewis)

The change in the name of this activity from the Harwell-Boeing Sparse Matrix Collection
reflects the fact that lain has been away from Harwell for nearly eight years and also
serves to signify rather major changes to the organization and design of the Collection.
Additionally, it should help to avoid confusion between this project and the Harwell

Subroutine Library.

If one is defining a standard, albeit a de facto one, then it is very important to get
the design correct and to allow for possible future extensions. It is concerns of this kind

that has preoccupied us in the recent development of the Rutherford-Boeing Sparse Matrix
Collection (RBSMC).

The principal change from the Harwell-Boeing Sparse Matrix Collection has been that
the format has been extended so that the matrix is held in one file but other data such
as starting guesses, exact solutions, eigenvalues and vectors, singular values and vectors,
permutations, partitions, and geometric data are held in separate files. The formats are
also more restricted so that all the data files can be easily read from C programs.

Additional features that have been added more recently include the ability
to handle rectangular element matrices, Laplacian vectors, Schur bases, and an
auxiliary matrix values file. Documentation on the RBSMC has been completed
(Duff, Grimes and Lewis, 1997) and discussions have continued with NIST
(http://math.nist.gov/MatrixMarket/) on the integration of these structures within
the Matrix Market database.

The RBSMC has also been adopted by the PARASOL Project (see Section 6.2) as the
platform for data exchange (Supalov, 1998) and all the test examples from the PARASOL

end users are held in this format.

References

I. S. Duftf, R. G. Grimes, and J. G. Lewis. The Rutherford-Boeing sparse matrix
collection. Technical Report RAL-TR-97-031, Rutherford Appleton Laboratory,
Chilton, Oxfordshire, England, 1997.

A. Supalov. The Rutherford-Boeing File Formats and the PARASOL Test Driver. Version
2.1. January 9, 1998.

2.2 MUMPS - a distributed memory multifrontal solver
(P. R. Amestoy, I. S. Duff and J.-Y. L’Excellent)

We are involved in the development of direct solvers within the EU LTR Project PARASOL
(Sections 6.2 and 6.3). This work is the result of a collaboration with ENSEEIHT and
CERFACS in Toulouse, France. It is based on the shared memory parallel multifrontal
code MA41 developed by Amestoy and Duff (1993) that was extended by Espirat (1996) to
a message passing version based on PVM.

First, an MPI/F90 version of this code was developed (known as MUMPS Version
1.0), and was released in May, 1997. This version is for unsymmetric matrices and allows
pivoting, but only exploits parallelism of the elimination tree. It can be used with limited
functionality within the PARASOL Interface (Supalov, 1998).

Most of the work since Version 1.0 has consisted in developing a code to allow for better
parallelism, to solve larger problems, and to improve the robustness, error handling, and

memory management. Specific changes include:

¢ Introduction of parallelism inside the nodes, and use of ScaLAPACK at the root

node, with a fully parallel distributed assembly processes,
e Development of a module to manage asynchronous messages of various types,
¢ Improvement of the mapping to balance both flops and memory, and

¢ Distribution of the arrowheads (the reordered original matrix).

More details on technical aspects of this work can be found in Amestoy, Duff and
L’Excellent (1998). The version of the code described in that report, called MUMPS
Version 2.0, will be released at the end of January 1998, and has much better scalability
than Version 1.0.

We show results of a run on one of the PARASOL test problems in Table 2.1. This
problem came from MSC and is from a finite-element model of a crankshaft. The super-
linear speedup is quite a common effect and reflects the fact that the distribution of data
over more processors allows better memory management and less penalties from paging.

Future work will include an interface to graph partitioning packages, a more efficient
code for symmetric positive-definite matrices, an interface to handle unassembled finite-

element problems directly, and facilities for holding factors out-of-core.

Matrix CRANKSEGI1

Order 52,804
Entries 10,614,210
Entries in factors 80,148,400
Analysis time 36

Factorization time

Number of Processors

16 626
24 320
33 234

Table 2.1: Execution times in seconds on an IBM SP-2

References

P. R. Amestoy and I. S. Duff. Memory management issues in sparse multifrontal methods

on multiprocessors. Int. J. Supercomputer Applics, 7, 64-82, 1993.

P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. MUMPS MUItifrontal Massively Parallel
Solver, Version 2.0. Technical Report TR/PA/98/02, CERFACS, 1998.

V. Espirat. Développement d’une approche multifrontale pour machines a mémoire
distribuée et réseau hétérogene de stations de travail. Technical Report Rapport
de stage de 3ieme année, ENSEEIHT-IRIT, Toulouse, France, 1996.

A. Supalov (editor). PARASOL Interface Specification. Version 2.1. January 9, 1998.

2.3 Further developments of an unsymmetric multifrontal

method (T. A. Davis and I. S. Duff)

Partly because of some referees’ comments on our earlier work, we have conducted
more extensive experimentation and testing of our unifrontal /multifrontal method for the
direct solution of large sparse linear equations when the coefficient matrix does not have
a symmetric structure. In particular, we have compared our code with several other
sparse codes on very large unsymmetric matrices collected by Tim Davis (available at
http://www.cise.ufl.edu/~davis/sparse/).

Our findings have been very much “horses for courses”. The advantages of incorporating

the unifrontal element into our sparse unsymmetric multifrontal code are clear and

6

the resulting code is very competitive with other direct codes if the matrices are very
unsymmetric in pattern. For matrices which are less unsymmetric in pattern MA41
(Amestoy and Duff, 1989) is usually better, while for unsymmetric matrices that do not
fill-in much during factorization, MA48 (Duff and Reid, 1996) can be best. A description of
our algorithm and our experiments are discussed in the report by Davis and Duff (1997)

which will shortly appear in the ACM Transactions of Mathematical Software.

References

P. R. Amestoy and I. S. Duff. Vectorization of a multiprocessor multifrontal code. Int. J.
of Supercomputer Applics., 3, 41-59, 1989.

T. A. Davis and I. S. Duff. A combined unifrontal /multifrontal method for unsymmetric
sparse matrices. Technical Report RAL-TR-97-046, Rutherford Appleton Laboratory,
Chilton, Oxfordshire, England, 1997.

I. S. Duff and J. K. Reid. The design of MA48, a code for the direct solution of
sparse unsymmetric linear systems of equations. ACM Transactions on Mathematical

Software, 22(2), 187-226, 1996.

2.4 Performance issues for frontal schemes on a cache-based
high performance computer (K. A. Cliffe, I. S. Duff, and
J. A. Scott)

The frontal solution scheme is a technique for the direct solution of the linear systems of

equations
AX = B, (2.1)

where the n x n matrix A is large and sparse. B is an n X nrhs (nrhs > 1) matrix
of right-hand sides and X is the n X nrhs solution matrix. The method is a variant of
Gaussian elimination and involves the factorization of a permutation of A which can be

written as
A=PLUQ, (2.2)

where P and @ are permutation matrices, and L and U are lower and upper triangular
matrices, respectively. The code MA42 developed by Duff and Scott (1996a) for the Harwell
Subroutine Library uses a frontal scheme for solving systems of the form (2.1) with A
unsymmetric. MA42 includes an option which allows the assembled matrix A to be input
by rows. However, as illustrated by Duff and Scott (1996b), the power of the frontal

7

scheme is more apparent when the matrix A comprises contributions from the elements of

a finite-element discretization. That is, we can express A as the sum of elemental matrices

m

A=Y A0, (2.3)

=1

where AY is nonzero only in those rows and columns that correspond to variables in the
[-th element.

The aim of this study was to look at the performance of a frontal solver on a machine
where data must be in the cache before arithmetic operations can be performed on it.
An example of such a machine is a Silicon Graphics Power Challenge machine. One way
of achieving efficiency in the solution of linear equations is through the use of the Basic
Linear Algebra Subprograms (BLAS). The BLAS are subdivided into three levels. In each
succeeding level (from 1 to 3) more operations are performed for each data movement.
Thus the best performance is obtained by the Level 3 BLAS and for efficiency on modern
computers, maximum use should be made of Level 3 BLAS. In this study, we first showed
how the computation in MA42 is organized to exploit _GEMM, the Level 3 BLAS kernel
that implements dense matrix-matrix multiplication. We then looked at how the frontal
algorithm may be modified to obtain a factorization which requires a larger number of
floating-point operations but which is richer in Level 3 BLAS. This was achieved by
introducing a parameter 7,,;, to control the minimum number of pivots that are eliminated
at once. Using a range of practical problems, we found that, on the Silicon Graphics Power
Challenge, using 7,,;, > 1 leads to good performance in terms of Mflops.

We also performed experiments on an IBM RS/6000 and on a single processor of a
CRAY J932. Our experience was that the implementation of the frontal method which
uses only pivot blocks of size 1 does reasonably well on vector machines but performs
poorly on cache-based machines. For problems in elemental form, we found that the most
significant improvement in performance comes from not forcing all blocks to be of size 1,
but for some assembled problems, in which there is normally only one pivot available after
each assembly, better results are obtained if 7,,,, > 1.

Clearly, it is important that we implement our algorithms for solving large sparse
systems to make effective use of machines which have a hierarchical memory structure.
The techniques which we used in this study for making better reuse of data in the cache

are applicable to other direct solvers.

References

LS. Duff and J.A. Scott. The design of a new frontal code for solving sparse unsymmetric
systems. ACM Transactions on Mathematical Software, 22(1), 30-45, 1996a.

8

I. S. Duff and J. A. Scott, A comparison of frontal software with other sparse
direct solvers, Technical Report RAL-TR-96-102 (Revised), Rutherford Appleton
Laboratory, Chilton, Oxfordshire, England, 1996b.

K. A. Cliffe, I. S. Duff and J. A. Scott, Performance issues for frontal schemes on a cache-
based high performance computer, Technical Report RAL-TR-97-001, Rutherford
Appleton Laboratory, Chilton, Oxfordshire, England, 1997. To appear in Int J.

Numerical Methods in Engineering.

2.5 Exploiting zeros in frontal solvers (J. A. Scott)

We are interested in using the frontal method to solve systems of linear equations
AX = B, (2.4)

where the n x n matrix A is large and sparse. B is an n X nrhs (nrhs > 1) matrix
of right-hand sides and X is the n X nrhs solution matrix. The frontal method is a
variation of Gaussian elimination that interleaves an assembly phase and an elimination
phase, thereby allowing operations to be confined to a relatively small matrix, termed the
frontal matriz, that is usually regarded as dense. The efficiency of the method comes form
the use of high-level Basic Linear Algebra Subprograms (BLAS). In the Harwell Subroutine
Library (HSL), the code MA42 (Duff and Scott, 1996a) implements the frontal method for
unsymmetric systems. MA42 allows the matrix A to be input by elements or equations but
is principally structured for finite-element problems.

Experiments by Duff and Scott (1996b) found that, for some problems, MA42 can require
substantially more operations and storage for the factors than other HSL codes for solving
large sparse systems. In particular, the equation entry to MA42 was found to be inefficient
if the equations were poorly ordered. Closer examination revealed that, in this case, a
large number of zeros are held explicitly within the factors. The aim of this work was to
reduce the number of zeros within the factors, while not compromising the efficiency of
the code when applied to well-ordered problems. Reducing the zeros reduces the operation
count and the storage required for the matrix factors as well as the time needed for using
the factors to solve for different right-hand sides B.

Our study has led to two proposed future modifications to our frontal solver. The
first involves exploiting zeros within the frontal matrix and the second concerns the more
efficient treatment of static condensation variables (variables that are internal to an element
or belong to a single equation). We found that we are able to exploit zeros without altering
the internal data structures of MA42. The overheads are the search for zeros and, once found,
additional row and column permutations. For element entry, efficient static condensation

requires an additional array of length the number of variables in the incoming element

since, if off-diagonal pivoting is used (the default), it is necessary to hold both row and
column indices. We anticipate that, in a future release of the Harwell Subroutine Library,
MA42 will be superseded by a new frontal code which will use an additional array for static
condensations.

Numerical experiments using a range of practical problems have shown that the
proposed modifications can substantially improve the performance of the frontal solver.
This is illustrated in Table 2.2. The first three test problems are unassembled element

problems and the second three use the equation entry to the frontal solver.

Identifier Zeros Real storage Integer | Factorize Solve
exploited (Kwords) storage time time

(Kwords) | (seconds) | (seconds)
TRDHEIM N 6686 (1642) 535 51.9 3.8
Y 5048 (4) 352 50.3 2.8
AEAC6398 N 1474 (589) 290 6.3 0.9
Y 906 (21) 276 5.7 0.5
AEAS87000 N 32114 (11608) 4432 192.9 22.2
Y 20702 (195) 2553 185.2 14.0
WEST2021 N 545 (512) 229 1.1 0.44
Y 60 (27) 20 0.5 0.07
WANG3 N 38480 (12792) | 37504 971.4 48.1
Y 25687 (0) 25068 956.8 34.1
ONETONE2 N 24246 (21019) 13102 100.4 24.8
Y 4356 (700) 1311 46.8 3.3

Table 2.2: The effect of exploiting zeros in the front (Sun Ultra 1). The figures in

parentheses are the number of zeros (in thousands) which are held explicitly in the factors.

References

LS. Duff and J.A. Scott. The design of a new frontal code for solving sparse unsymmetric
systems. ACM Transactions on Mathematical Software, 22(1), 30-45, 1996a.

I. S. Duff and J. A. Scott, A comparison of frontal software with other sparse
direct solvers, Technical Report RAL-TR-96-102 (Revised), Rutherford Appleton
Laboratory, Chilton, Oxfordshire, England, 1996b.

J. A. Scott, Exploiting zeros in frontal solvers, Technical Report RAL-TR-97-041,
Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 1997.

10

2.6 MAG62: A frontal code for positive-definite symmetric
systems arising from finite-element applications (I. S. Duff

and J. A. Scott)

The code MA42 (Duff and Scott, 1996) is a general frontal code for solving sparse
unsymmetric linear systems of equations. Since its inclusion in the Harwell Subroutine
Library, MA42 has been used to solve a wide range of practical problems, including finite-
element problems for which the system matrix is symmetric and positive definite. However,
apart from offering an option of restricting pivoting to the diagonal, MA42 does not exploit
symmetry or positive definiteness and, as a result, the code is more expensive in terms of
both storage requirements and operation counts than it need be for this class of problems.
Our goal was to design and develop a frontal code specifically for the efficient solution
of sparse positive-definite symmetric systems from finite-element applications with A in
element form A = Y7, A, The new code is called MA62.

MA62 has three distinct phases.

1. An analysis phase that comprises a prepass and a symbolic factorization. The prepass
determines in which element each variable appears for the last time and thus when a
variable is fully summed and can be eliminated. The symbolic factorization uses the
information from the prepass to determine the amount of real and integer storage

required for the factorization.

2. A factorization phase in which the information from the analysis phase is used in the

factorization of the matrix. In addition, if element right-hand sides BY are specified,

the equations AX = B with right-hand side(s) B = ¥, BY are solved.

3. An optional solution phase which uses the factors produced by the factorization phase

to solve rapidly for further right-hand sides B.

The interface to the user is through reverse communication with control returned to
the calling program each time an element needs to be input. This provides the user with
flexibility when choosing how to hold the element matrices. In particular, the user may
choose to generate an element only when it is required. This is useful when solving problems
which are too large to allow all the elements to be stored at once.

The user may hold the matrix factors in direct access files. MA62 uses two direct access
files, one for the reals in the factors and one for the indices of the variables in the factors.
Use of direct access files is unnecessary if there is sufficient in-core space for the factors.

For efficiency, Level 3 BLAS are used in performing the numerical factorization and
in the solution phase. To make better use of BLAS, albeit at the cost of additional

operations, eliminations are delayed until a minimum number of pivots are available (see

11

also Section 2.4). Also for efficiency, MA62 attempts to exploit zeros within the frontal
matrix (see also Section 2.5).

Extensive numerical experiments have been performed with the new code. Some results

are given in Tables 2.3 and 2.4. Our experience has been that, as well as needing

Identifier Code | Factor Storage | Factor ops
(Kwords) (x109)
Real Integer

TRDHEIM MA42 | 6663 533 866.5
MA62 | 2154 110 502.1

CRPLAT?2 MA42 | 12915 2116 4980.1
MA62 | 6490 370 2674.6

OPT1 MA42 | 16674 1194 11047.1
MA62 | 7984 341 5710.9

TSYL201 MA42 [20905 1020 10723.5
MA62 [10405 483 5542.2

RAMAGEQ2 || MA42 | 41792 3495 55870.1
MA62 | 20996 851 28523.2

Table 2.3: A comparison of the operation count and storage requirements for MA42 and

MA62 on symmetric positive-definite unassembled finite-element systems.

approximately half the real storage for the matrix factors as the general frontal code MA42,
the new code can be more than twice as fast as MA42. Compared with other HSL codes for
symmetric positive-definite systems, we have seen that the frontal method can provide a
very powerful approach for the solution of large sparse systems (see Section 2.7), although
our conclusions may have to be modified when multifrontal and variable band codes for

positive-definite systems that exploit the Level 3 BLAS become available.

References

[.S. Duff and J.A. Scott. The design of a new frontal code for solving sparse unsymmetric
systems. ACM Transactions on Mathematical Software, 22(1), 30-45, 1996.

I. S. Duff and J. A. Scott, MA62 — a new frontal code for sparse positive-definite
symmetric systems from finite-element applications, Technical Report RAL-TR-97-
012, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 1997.

12

Identifier Code Time (seconds)
Analyse | Factorize Solve

nrhs = 1 | nrhs = 10

TRDHEIM MA42 0.6 8.8 0.49 2.00
MA62 0.6 5.7 0.33 1.42

CRPLAT?2 MA42 1.2 45.3 1.13 4.78
MA62 1.2 20.3 0.62 2.60

OPT1 MA42 0.8 76.0 0.91 3.65
MA62 0.8 37.0 0.70 2.80

TSYL201 MA42 0.7 71.8 1.00 3.88
MA62 0.7 38.8 0.90 3.60

RAMAGEO2 || MA42 1.4 389.6 2.29 9.32
MAB2 1.4 175.7 1.66 6.58

Table 2.4: A comparison of MA42 and MA62 on symmetric positive-definite unassembled
finite-element systems (single processor CRAY J932).

2.7 A comparison of frontal software with other HSL direct
solvers (I. S. Duff and J. A. Scott)

In recent years, a number of packages for the direct solution of sparse linear systems have
been included within the Harwell Subroutine Library (HSL). The aim of this study was
to compare the performance of the sparse HSL frontal codes MA42 and MA62 against other
HSL sparse direct solvers. We looked at the case of assembled and unassembled systems
for both symmetric and unsymmetric matrices and used a wide range of problems for real
engineering and industrial problems in our tests. To try and draw general conclusions, we
performed experiments using a single processor of a CRAY J932, an IBM RS/6000 550
and a DEC 7000.

For symmetric positive-definite problems, the frontal solver MA62 was compared with
the multifrontal code MA27 and the variable-band solver VBAN (the prototype for a new
HSL code MA55). Results for a subset of our test problems are given in Table 2.5. The first
three problems are elemental problems and the last problem is assembled. Our numerical
experiments showed that the frontal code performs well on unassembled finite-element
problems, particularly in the analysis and numerical factorization phases. The benefit of
holding the factors out-of-core in order to reduce the maximum amount of in-core storage
is evident. However, storage for the factors is usually significantly greater for the frontal
method than the multifrontal method and this is reflected in the much poorer times for
subsequent solution, although MA62 is more efficient if multiple right-hand sides are being

solved at the same time.

13

Identifier Code Time (seconds) Factor ops Storage
(x10%) (Kwords)
Analyse | Factorize | Solve In-core | Factors
TRDHEIM | MA27 10.8 17.7 0.27 211.0 2893 2002
VBAN 15.3 19.6 0.39 459.0 798 2958
MA62 0.6 5.6 0.33 502.1 130 2262
OPT1 MA27 11.9 77.1 0.32 3648.9 7741 5975
VBAN 20.7 74.2 0.86 4116.5 3315 7215
MA62 0.8 37.0 0.70 5523.8 990 8325
CRPLAT?2 MA27 5.3 40.2 0.30 1623.8 4554 3815
VBAN 9.4 54.9 0.77 2475.8 2276 6406
MA62 1.2 20.3 0.62 2624.2 302 6527
BCSSTK15 || MA27 2.7 7.1 0.07 219.4 951 788
VBAN 1.0 7.0 0.08 230.7 524 904
MA62 2.9 3.4 0.11 267.3 154 1013

Table 2.5: A comparison of MA27, VBAN and MA62 on symmetric positive-definite systems
(single processor CRAY J932).

For unsymmetric matrices in assembled form, we compared the equation entry of
MA42 with the HSL codes MA38, MA41, and MA48.

unifrontal /multifrontal algorithm, MA41 is a multifrontal code, and MA48 is a general sparse

MA38 is based on a combined

code using Gaussian elimination. We found that no one code is clearly better than the
others. The choice of code is dependent on the problem being solved. For problems with
a nearly symmetric structure, MA41 generally has the fastest factorize time and, by using
MC40 to order the rows, MA42 factorizes the matrix more rapidly than both MA38 and MA48.
However, the frontal code has the disadvantage of generally producing many more entries in
the factors than the other codes. For problems which are far from symmetric in structure,
MA38 or MA48 generally perform well, with MA48 being particularly suitable for very sparse
problems.

For elemental problems, we compared MA42 directly with the multifrontal code MA46,
which uses element input.
assembled system using MA38, MA41, and MA48. Our results showed that for these problems

it is advantageous to use a code that accepts input by elements and, in general, MA46 had

We also assembled the elements and solved the resulting

the fastest factorization time, while MA42 had the fastest analysis time and required the
least in-core storage.

Our experiments in other environments suggested that it is important to take account
of sparsity within the Level 3 BLAS implementation, that the performance of the out-of-
core frontal schemes are significantly affected by the efficiency of the i/o, and that it is

14

important to exploit machine characteristics, such as cache, for efficient implementation.

Our overall conclusions were that frontal codes can be a very powerful approach for
the solution of unassembled finite-element problems when a good ordering can be found.
In this case, although other approaches may result in much less fill-in, the frontal code is
often better in terms of the analysis time and, if the factors are held in direct access files,
is far superior in terms of main memory. Indeed, in some cases, this reduction in main
memory requirement meant that it was feasible to solve a problem with our frontal schemes
which could not be solved by other methods. This has indicated to us the desirability of
developing out-of-core versions of some of the HSL multifrontal codes. For most assembled
problems, the use of approaches other than the frontal method might be better and, if a
good ordering is not available, frontal methods can perform badly.

Finally, we found that the performance of some HSL codes can be very dependent on the
machine and on some of their parameters, including the cache size parameter for MA46 and
the parameter controlling the switch to full code in MA48. Further tests on the sensitivity
of the codes to such parameters are being performed, and we warn against making too

sweeping a conclusion on the merits of a code without considering the fine tuning further.

References

I. S. Duff and J. A. Scott, A comparison of frontal software with other sparse
direct solvers, Technical Report RAL-TR-96-102 (Revised), Rutherford Appleton
Laboratory, Chilton, Oxfordshire, England, 1996.

2.8 Ordering symmetric sparse matrices for small profile and

wavefront (J. K. Reid and J. A. Scott)

The ordering of large sparse symmetric matrices for small profile and wavefront or for
small bandwidth is important for the efficiency of frontal and variable-band solvers. In
this study, we were primarily concerned with positive-definite matrices, so we worked only
with the pattern of the matrix and did not take into account any permutations needed for
numerical stability. The work is useful also for a matrix that is non-definite or is symmetric
only in the pattern of its entries, but in these cases the actual factorization may be more
expensive and require more storage. For finite-element applications, we assumed that the
matrix had been assembled.

In recent years, much attention has been paid to the problem of ordering symmetric
sparse systems. One method which has been widely used for profile reduction is that of
Sloan (1986). Sloan exploits the close relationship between a symmetric matrix A = {a;;}
of order n and its undirected graph with n nodes. Two nodes ¢ and j are neighbours in

the graph if and only if a;; is nonzero. Sloan’s algorithm has two distinct phases. In the

15

first, a start node and an end node are chosen. In the second phase, the chosen start node
is numbered first and a list of nodes that are eligible to be numbered next is formed. At
each stage of the numbering, the list of eligible nodes comprises the neighbours of nodes
which have already been numbered and their neighbours. The next node to be numbered
is selected from the list of eligible nodes by means of a priority function. A node has a
high priority if it causes either no increase or only a small increase to the current front size

and is at a large distance from the end node.

The Harwell Subroutine Library code MC40 implements the ordering algorithm of Sloan
and has been in satisfactory use for a decade. One reason for deciding a revision was
now needed was that Kumfert and Pothen (1997) found that, for the large problems
that are currently handled, there is a considerable efficiency gain from using a binary
heap to manage the list of eligible nodes in the second phase of Sloan’s algorithm. Our
investigations supported this conclusion and, to make our code efficient both on the small
problems used by Sloan and the much larger problems which are common today, we
commence with code that performs a simple search, but switch to code that uses a binary
heap if the number of eligible nodes exceeds a threshold. Our experience was that the
performance is not very sensitive to this threshold. Based on our numerical experiments,

we use a threshold of 100 in our code.

Another reason for revising the HSL code was to economize by working with
supervariables (sets of variables for which the corresponding matrix columns have identical
patterns) when the number of supervariables is significantly less than the number of

variables. In our new code, the use of supervariables is optional.

We have added an option that permits users to provide a global priority vector because
Kumfert and Pothen (1997) report that the final ordering can be significantly better if a
hybrid algorithm that combines a spectral ordering with the Sloan algorithm is used. Our
numerical experiments showed that, for large problems, the hybrid method generally gives
smaller profiles than the Sloan algorithm, but for the small test problems, there seems
to be little advantage in using the hybrid algorithm. Some examples illustrating this are
given in Table 2.6.

A further option we have added is that of supplying the weights in Sloan’s priority
function. Experiments showed that, for some problems, the choice of (2,1) used by Sloan
was far from optimal.

In our study, we also compared the effectiveness of using an algorithm based on level-set
structures with using the spectral method for the computation of pseudoperipheral nodes as
the basis of the Reverse Cuthill-McKee algorithm for bandwidth reduction. We found that
using the end of the pseudodiameter with the narrower level-set structure as the starting
node was important for both algorithms and that neither algorithm was consistently better

than the other. As part of our revision of the code, we took the opportunity to include an

16

Identifier Order | Sloan | Hybrid

besstk30 28,924 | 16.15 7.88
copter2 55,476 | 37.96 32.78
finance256 37,376 6.35 6.44
ford2 100,196 | 41.05 35.97

onera_dual 85,5667 | 87.75 46.47
tandem_dual | 94,069 | 66.21 42.22

DWT1005 1,005 | 0.035 0.031
DWT1242 1,242 | 0.036 0.040
DWT2680 2,680 | 0.090 0.091

Table 2.6: Profiles (x10°) for the Sloan and hybrid algorithms

option for performing the Reverse Cuthill-McKee algorithm.
Our new code is called MC60, and we also provide a simple driver called MC61. Both

codes will be included in the next release of HSL.

References

J. K. Reid and J. A. Scott, Ordering symmetric sparse matrices for small profile
and wavefront, Technical Report RAL-TR-98-016, Rutherford Appleton Laboratory,
Chilton, Oxfordshire, England, 1998.

G. Kumfert and A. Pothen. Two improved algorithms for envelope and wavefront
reduction. BIT, 18, 559-590, 1997.

S.W. Sloan. An algorithm for profile and wavefront reduction of sparse matrices. Int J.
Numerical Methods in Engineering, 23, 13151324, 1986.

2.9 Computing eigenvalues of the discretized Navier Stokes
equations (R. B. Lehoucq and J. A. Scott)

Mixed finite-element discretizations of time-dependent equations modelling incompressible

fluid flow problems typically produce nonlinear finite dimensional systems of the form

Mu+ H(u)u+ Lu+Cp = b,
(2.5)
C'u = ¢
where u € R", p € R™ with n > m. M and L are symmetric positive-definite n X

n matrices, H(u) is a nonsymmetric n X n matrix, and C is an n x m matrix of full

17

rank. Linearized stability analysis leads to the problem of finding a few eigenvalues of the

generalized nonsymmetric eigenvalue problem

Axz = \Bx (2.6)

A:(KTC),B:(MO),and w:(“) (2.7)
cC 0 0 0 P

with the matrix K being a linearization of H(u)+ L. In the case of the so-called primitive

where

variable formulation of the discretized Navier Stokes equations for incompressible flow, u
and p denote the velocity and pressure degrees of freedom, respectively.

For stability analysis, the interest lies in computing the eigenvalues of smallest real
part (the left-most eigenvalues). Of special interest is the case when the eigenvalues of
smallest real part are complex, because algorithms for the detection of Hopf bifurcations
in parameter dependent systems can be developed from knowledge of these eigenvalues.
A complication that arises is that the eigenvalue problem can have infinite eigenvalues,
corresponding to eigenvectors of the form (0 p)”.

To be able to apply an iterative eigensolver, it is first necessary to transform the
generalized eigenvalue problem Ax = ABa into a standard eigenvalue problem of the
form T'x = Ox. Because the solution of some linear system involving A, B and/or a linear
combination of A and B is needed anyway, rational transformations are an obvious choice.
In this study, we considered using shift-invert and Cayley transformations. Traditionally,
subspace iteration has been the method of choice for the transformed problem because
Arnoldi’s method was perceived as being less reliable. Experiments reported by Garratt
(1991) found that Arnoldi’s method sometimes missed the sought-after left-most eigenvalue
and, because reliability is more important than efficiency in linear stability analysis,
Garratt favoured subspace iteration. However, the recent work of Meerbergen and Spence
(1997) demonstrated, in theory, that the implicitly restarted Arnoldi method (IRAM)
combined with shift-invert transformations, can be successfully employed to compute the
left-most eigenvalues of generalized eigenvalue problems with the block structure (2.7). In
this work, we looked at using the package ARPACK of Lehoucq, Sorensen and Yang (1998),
which implements the IRAM, combined with the frontal solver MA42 of Duff and Scott
(1996), to compute the left-most eigenvalues of the discretized Navier Stokes equations.

The algorithm we have adopted combines using the shift-invert transformation with a
zero pole to obtain an initial approximation to the spectrum and then using a generalized
Cayley transformation. We have looked at using the standard and the B semi-inner
product within Arnoldi’s method and compared using zero shifts with exact shifts in the

IRAM. We have also examined the use of purification techniques to improve the quality

18

of the computed eigenvectors. Our results suggest that, although using the B semi-inner
product is more expensive than the standard inner product, it does offer advantages in
terms of reliability and, in general, converges in fewer iterations. We also found that,
because of the connection between IRAM and subspace iteration (see, for example, Lehoucq
et al., 1998), it is more reliable to use zero shifts rather than exact shifts. In addition, in
our numerical experiments we found that the accuracy of the eigenvectors computed using
the generalized Cayley transformation can be reduced, sometimes very significantly, by
purification with a shift-invert operator. We conclude that, with careful implementation,
implicitly restarted Arnoldi methods can be used reliably for linear stability analysis.

Based on our findings so far, the plan is to incorporate the ARPACK software package
within the AEA Technology finite-element package ENTWIFE (Cliffe, 1996).

References

K.A. Cliffe. ENTWIFE (Release 6.3) Reference Manual. Technical Report AEAT-0823,
AEA Technology, Harwell Laboratory, Oxfordshire, England, 1996.

I.S. Duff and J.A. Scott. The design of a new frontal code for solving sparse unsymmetric
systems. ACM Transactions on Mathematical Software, 22(1), 30-45, 1996.

T.J. Garratt. The numerical detection of Hopf bifurcations in large systems arising in fluid
mechanics. Phd Thesis, University of Bath, 1991.

R. B. Lehoucq and J. A. Scott, Implicitly restarted Arnoldi methods and eigenvalues of the
discretized Navier Stokes equations. Technical Report RAL-TR-97-057, Rutherford
Appleton Laboratory, Chilton, Oxfordshire, England, 1997.

R.B. Lehoucq, D.C. Sorensen, and C. Yang. ARPACK USERS GUIDE: Solution of
Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM,
Philadelphia, PA, 1998. To appear.

K. Meerbergen and A. Spence. Implicitly restarted Arnoldi with purification for the shift—
invert transformation. Mathematics of Computation, 218, 667-689, 1997.

2.10 Iterative methods for finite-element problems (M. J. Daydé,
J. P. Décamps, and N. I. M. Gould)

We are interested in the solution of systems of symmetric linear equations
Az = b, (2.8)

19

where .
A= Z Eia
i=1

and where the matrices E; are symmetric and of low rank. Systems of this form arise
in finite-element methods for solving partially differential equations, and as subproblems
within partially separable optimization calculations. In order to solve very large equations
of this form, we may have to resort to iterative methods, and thus it is important to be able
to precondition the systems to accelerate the convergence of such methods. In previous
work (Daydé, L'Excellent and Gould, 1997), we considered so-called element-by-element
(EBE) methods, in which factors of modifications of each of the individual matrices E; are
combined to produce an overall preconditioner. We found it particularly advantageous to
amalgamate or assemble groups of the F; before applying the preconditioner.

More recently, we have considered two extensions to this work. The first is appropriate
when each FE; only has nonzeros in a small number of rows and columns, and for which

b))

the resulting dense “element” is nonsingular. Then, if we build the block diagonal matrix

B whose diagonal blocks are these elements, it is easy to show that (2.8) is equivalent to

(& 5)(7)-(5) &

where C' is very sparse and has entries +1. This technique is known as matrix stretching.

the augmented system

Since inverting B is trivial, the obvious approach is to use factors of B and the Schur
complement CT*B™'C to solve (2.9). However, the Schur complement may be dense,
and it is usually preferable to solve the Schur complement system using a preconditioned
iterative method. We compared a variety of preconditioners in Daydé, Décamps and Gould
(1997) on a number of challenging large examples. The EBE method often provides a good
preconditioner, particularly when the original system is ill-conditioned. We also noted that
the Schur complement is frequently better conditioned than the whole system. Finally, we
reported on some preliminary parallel experiments that indicate how stretching frequently
improves the parallelization of the linear solver.
Another topic of interest is the solution of (2.8) when A has the form

A= Ze: A A7,
i=1
and where A; is an n by n; (n; < n) real matrix. Systems of this form arise naturally
in a number of ways, such as in normal equation approaches to least-squares problems,
Schur complement methods following partial elimination in augmented systems, and in the
Newton equations for partially separable optimization of unary and more general partially
separable functions. We suppose that n is sufficiently large that the structure of the system

must be exploited, but we do not assume that all the A; are sparse. In Daydé, Décamps

20

and Gould (1998), we derive suitable EBE-like preconditioners for such systems, which take
advantage of the null-spaces of the A;, and demonstrate their effectiveness on a number
of test examples. We also consider combining these methods with existing techniques to
cope with the commonly-occurring case where the coefficient matrix is the linear sum of

elements, some of which are of very low rank.

References

M. J. Daydé, J. Décamps, and N. I. M. Gould. Solution of unassembled linear systems
using block stretching: Preliminary experiments. Technical Report RT/APO/97/3,
ENSEEIHT-IRIT, Toulouse, France, 1997.

M. J. Daydé, J. P. Décamps, and N. I. M. Gould. Subspace-by-Subspace preconditioners for
structured linear systems. Technical Report RAL-TR-98-005, Rutherford Appleton
Laboratory, Chilton, Oxfordshire, England, 1998.

M. J. Daydé, J.-Y. L'Excellent, and N. I. M. Gould. Element-by-element preconditioners
for large partially separable optimization problems. SIAM Journal on Scientific
Computing, 18(6), 1767-1787, 1997.

2.11 Permuting large entries to the diagonal (I. S. Duff and
J. Koster)

We have conducted further investigation into permutations that put large entries onto
the diagonal of a sparse matrix. In particular, we have developed a sparse variant of a
permutation and scaling algorithm of Olschowka and Neumaier (1996) that first minimizes
the absolute value of the product of entries on the diagonal and then scales the matrix
so that these entries are one and all other entries are no greater than one. We call the
version without scaling the maximum product algorithm (MPD) and that with scaling the
MPS algorithm. We have implemented these strategies using algorithms based on bipartite
weighted matchings (BWM) that do not rely on repeated applications of the depth first
search transversal algorithm MC21. We also used a BWM approach to implement the
bottleneck transversal algorithm that maximizes the minimum entry (in modulus) on the
diagonal.

We performed a series of experiments using these transversal algorithms and comparing
them with unweighted transversal selection (that is, MC21) on a range of matrices.
We studied the effect of these reorderings on a multifrontal direct code, on ILU-type
preconditionings, and on the Block Cimmino algorithm.

We find that these new codes (MPD and MPS) can surprisingly be sometimes faster
than the original MC21 code although normally algorithm MC21 is faster than BT, and this

21

is faster than MPD. Although the gains from using such preorderings are evident in all
three solution schemes and sometimes dramatically so, the effect is not uniform and no
single ordering is consistently best, except in the case of Block Cimmino where the scaling
in MPS has a significant effect.

The findings of this work are reported in Duff and Koster (1997) and in more detail in
the thesis of Jacko Koster (Koster, 1997). A further report is in preparation.

References

M. Olschowka and A. Neumaier. A new pivoting strategy for Gaussian elimination. Linear
Algebra and its Applications, 240, 131-151, 1996.

I. S. Duff and J. Koster. The design and use of algorithms for permuting large entries to
the diagonal. Technical Report RAL-TR-97-059, Rutherford Appleton Laboratory,
Chilton, Oxfordshire, England, 1997.

J. Koster. On the parallel solution and the reordering of unsymmetric sparse linear systems.

INPT PhD Thesis TH/PA/97/51, CERFACS, Toulouse, France, 1997.

2.12 Least-squares problems from kinematics (J. Cardenal,

I. S. Duff, and J. Jimenez)

Least-squares problems from kinematics have certain characteristics that can be exploited
in their solution. First, they are nearly square (quasi-square) so that null-space methods
can be used to great effect. We have studied such an approach in Cardenal, Duff
and Jiménez (1997). Additionally, the rectangular coefficient matrix can be permuted
to a generalized block triangular form through a Dulmage-Mendelsohn decomposition

performed, for example, by an algorithm like that developed by Pothen and Fan (1990). If

A, A
the rectangular matrix A can be ordered to the form (01 A2 where As and A4 are
4
I A .
rectangular, then the augmented system T can be permuted to block triangular
A

form. Although this destroys symmetry, the efficiency from using the block triangular form
may outweigh this so we have the interesting situation where an unsymmetric sparse code
that takes advantage of the block triangular form (for example, MA48) may outperform a
symmetric code (for example, MA27 or MA47). We show this is the case in Table 2.7.

22

Number rows 117 | 170 181 385 574
Number columns | 105 | 161 180 361 526
Number entries 615 | 1069 | 1200 | 1661 | 3365
MA27 7.3 | 15.6 | 13.1 | 43.4 | 120.7
MA48 6.6 | 10.1 7.1 174 | 58.1

Table 2.7: Times (in seconds) for runs on a SGI Onyx

References

J. Cardenal, 1. S. Duff, and J. M. Jiménez. Solution of sparse quasi-square rectangular
systems by Gaussian elimination. Technical Report RAL-TR-96-013 (Revised),
Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 1997. To appear
in IMA J. Numerical Analysis.

A. Pothen and C. Fan. Computing the block triangular form of a sparse matrix. ACM
Transactions on Mathematical Software, 16(4), 303—324, 1990.

2.13 An improvement to the general sparse-matrix solver M A48

(J. K. Reid)

Following a request from AspenTech, we modified MASOA/AD, which is called from MA48
(Duff and Reid, 1996) to perform an analysis of an unsymmetric sparse matrix prior
to its LU factorization. If it now exits prematurely for lack of storage, it returns the
amount of storage it would have needed to get to the same point in MA50B/BD (actual LU
factorization). This has proved very helpful to the user in deciding how much storage to

allocate before re-entry.

References

[. S. Duff and J. K. Reid. The design of MA48, a code for the direct solution of
sparse unsymmetric linear systems of equations. ACM Transactions on Mathematical
Software, 22(2), 187-226, 1996.

2.14 Sparse BLAS (I. S. Duff)

The Basic Linear Algebra Subprograms (BLAS) have had a profound influence on the
development of algorithms and software for the solution of systems of linear equations

with full coefficient matrices. The BLAS Technical Forum has been meeting 4-5 times

23

each year in the United States in an attempt to determine a consensus and establish a
standard for extensions to the BLAS. The main aspects that the Forum is considering are:
functional extensions to the existing dense BLAS; mixed precision BLAS; C, C++ and
F90 bindings; and sparse BLAS.

Sparse BLAS for computations of the form AX where A is sparse and X is dense
are particularly important for the iterative solution of sets of sparse linear equations. The
sparse BLAS are organized at two levels, a User Level that has a simple and standardized
interface (Duff, Marrone, Radicati and Vittoli, 1997), and a Toolkit level that implements
the kernels for a specific data structure (Carney, Heroux, Li and Wu, 1994).

The functionality of the sparse BLAS consists of a sparse matrix-by-matrix
multiplication and a sparse triangular solution routine. We have designed routines for
these cases as Level 3 BLAS so that the Level 2 equivalents are available as a particular

case€.

In the sparse case, there is the problem of how the matrix is stored, and indeed storage
schemes differ very widely and are usually applications dependent. We have therefore
also designed routines for data conversion with a standard interface to include the main
data structures that we are familiar with. Finally, we have also included two permutation

routines to facilitate the efficient use of the kernels in iterative solvers.

In the User Level BLAS, we have deliberately shielded the user from the details of the
representations and have offered a transparent interface to allow vendors to choose the
best representation without the need for the user to be concerned with this choice. We

have also illustrated a Fortran 90 binding for this User Level approach.

References

Sandra Carney, Michael A. Heroux, Guangye Li, and Kesheng Wu. A revised proposal
for a sparse BLAS toolkit. Technical Report 94-034, Army High Performance
Computing Research Center, June 1994. Updated version at Web address
http://www.cray.com/products/applications/support/scal/spblastk.ps.

I. S. Duff, Michele Marrone, Giuseppe Radicati, and Carlo Vittoli. Level 3 Basic Linear
Algebra Subprograms for sparse matrices: a user level interface. Technical Report
RAL-TR-95-049 (Revised), Rutherford Appleton Laboratory, Chilton, Oxfordshire,
England, 1997. To appear in ACM Trans Math Softw 23(3).

24

2.15 Survey articles on sparse matrix and optimization research

(I. S. Duff and N. I. M. Gould)

An important part of our activity lies in developing survey and tutorial material and
disseminating this through publications and talks. We are concerned both to assist young
numerical analysts and also scientists from application areas who wish to use modern

numerical analysis techniques.

As part of this activity, we have written surveys of research in direct methods for sparse
matrices and in methods for constrained optimization, that were presented at a State of
the Art in Numerical Analysis meeting. This was the fourth meeting in a decennial series
and was held in York in April 1996.

The survey on sparse matrices covered high performance sparse factorization techniques
using Level 2 and Level 3 BLAS, new techniques for symmetric orderings, new approaches
to the solution of unsymmetric systems, the solution of indefinite systems, least-squares
problems, parallel computing, preconditioning, and a discussion of recent trends towards a
sparse problem solving environment. The survey on constrained optimization concentrated
on advances in SQP, penalty, augmented-Lagrangian, and optimality-condition based
methods for handing general nonlinear constraints, as well as special methods for dealing
with linear and convex constraints, and a discussion on available software. Both surveys
are available as RAL reports (Duff, 1996, and Conn, Gould and Toint, 1996, respectively)
and are included in the State of the Art Proceedings (Duff, 1997, and Conn, Gould and
Toint, 1997, respectively), which was edited by Iain Duff and Alistair Watson (Duff and
Watson, 1997).

References

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Methods for nonlinear constraints in
optimization calculations. Technical Report RAL-TR-96-042, Rutherford Appleton
Laboratory, Chilton, Oxfordshire, England, 1996.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Methods for nonlinear constraints in
optimization calculations. in 1. S. Duff and G. A. Watson, eds, ‘The State of the Art
in Numerical Analysis’, pp. 363-390, Oxford, 1997. Oxford University Press.

I. S. Duff. Sparse numerical linear algebra: direct methods and preconditioning. Technical
Report RAL-TR-96-047, Rutherford Appleton Laboratory, Chilton, Oxfordshire,
England, 1996.

25

I. S. Duff. Sparse numerical linear algebra: direct methods and preconditioning. in I. S.
Duff and G. A. Watson, eds, ‘The State of the Art in Numerical Analysis’, pp. 27-62,

Oxford, 1997. Oxford University Press.

I. S. Duff and A. Watson, editors. The State of the Art in Numerical Analysis, Oxford
University Press, Oxford, 1997.

26

3 Optimization

3.1 LANCELOT (A. R. Conn, N. I. M. Gould and Ph. L. Toint)

Since its release in 1992, the large-scale nonlinear optimization package LANCELOT A
(Conn, Gould and Toint, 1992) has been installed at over 250 sites throughout the world.
Over the past two years, an interface has been provided by others to the popular language
modelling language AMPL, and the package has become one of the most-used solvers under
NEOS, the public-domain Network-Enabled Optimization System, at Argonne National
Laboratory.

Despite its considerable successes, work has continued on its successor, particularly as

it has long been recognized that LANCELOT is deficient in a number of ways:

(1) Inequality constraints are converted to equations by the addition of “slack” variables.
Thus a problem involving 20 variables and 5000 inequality constraints was formulated
by LANCELOT A as a problem in 5020 variables.

(ii) The package was designed to handle nonlinear constraints, while little attention was
given to the possibility that many of these might actually be linear. Thus the method

is less efficient for linearly constrained problems than other software packages.

(iii) The “projected-gradient” mechanism used to identify which subset of constraints are

“binding” at the solution proved to be inefficient for (nearly) degenerate problems.

(iv) The general linear equation solvers we provided were not especially suited for the

types of structures routinely encountered in many applications.

(v) The simple “trust region” used was not particularly appropriate when the problem is

structured.

Much work has been performed at RAL and elsewhere over the past few years with the
aim of correcting such deficiencies. In this and the following sections, we describe some of
our efforts.

A long-time aim has been to compare LANCELOT with other state-of-the-art codes.
We have been particularly interested in MINOS 5.5, which is probably the best-known
code of all. The authors of both packages agreed to collaborate on such a comparison,
and the results of significant numerical testing (see Bongartz, Conn, Gould, Saunders and
Toint, 1997b) were summarized by Bongartz, Conn, Gould, Saunders and Toint (1997a).
We observed that LANCELOT is usually more efficient in terms of the number of function
and derivative evaluations. If the latter are inexpensive, MINOS may require less CPU
time unless there are many degrees of freedom. LANCELOT proves to be less reliable

than MINOS on linear programming problems, but somewhat more reliable on problems

27

involving nonlinear constraints. Although none of these conclusions were particularly
surprising given the different design intentions of the authors, it was comforting to have
our prejudices confirmed.

Since our current means of determining the correct set of active inequality constraints
at the solution to a nonlinear programming problem has proved to be rather inefficient,
and since interior-point—and particularly primal-dual-—methods for linear programming
have purported to avoid such inefficiencies, it is natural to consider interior-point methods
for nonlinear optimization. We have considered two such approaches. In Conn, Gould and
Toint (1996), we proposed a new primal-dual algorithm for the minimization of a non-
convex objective function subject to simple bounds and linear equality constraints. The
method alternates between a classical primal-dual step and a Newton-like step in order
to ensure descent on a suitable merit function. We show convergence of a well-defined
subsequence of iterates to a first-order critical point. Preliminary numerical results are
most encouraging although there are still difficulties primarily with an effective means of
coping with negative curvature.

As trust-region methods are often designed to cope with difficulties caused by non-
convexity, our second approach is of the trust-region variety. This approach resembles more
closely a classical sequential barrier minimization, but the challenges which arise when a
trust-region method is used to solve the barrier subproblem are rather more subtle. Once
again, global convergence to a first-order critical point may be demonstrated (see, Conn,
Gould and Toint, 1998). Of particular interest are the choice of trust-region norm, which is
made so as to capture the geometry of the barrier function, and the potentially unbounded
preconditioners which are recommended. It has yet to be seen which of the two approaches
turns out to be more effective in practice, but careful implementations are underway.

On a theoretical note, it has long been known that barrier algorithms for constrained
optimization can produce a sequence of iterates converging to a critical point satisfying
weak second-order necessary optimality conditions, while their inner iterations ensure that
second-order necessary conditions hold at each barrier minimizer. We have shown that,
despite this, strong second-order necessary conditions may fail to be attained at the limit,

even if the barrier minimizers satisfy second-order sufficient optimality conditions (see
Gould and Toint, 1997 for details).

References

I. Bongartz, A. R. Conn, N. I. M. Gould, M. A. Saunders, and Ph. L. Toint. A numerical
comparison between the LANCELOT and MINOS packages for large-scale nonlinear
optimization. Technical Report RAL-TR-97-054, Rutherford Appleton Laboratory,
Chilton, Oxfordshire, England, 1997 a.

28

I. Bongartz, A. R. Conn, N. I. M. Gould, M. A. Saunders, and Ph. L. Toint. A
numerical comparison between the LANCELOT and MINOS packages for large-scale

nonlinear optimization: the complete results. Technical Report (97/14), Department
of Mathematics, FUNDP, Namur, Belgium, 19976.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT : a Fortran package for large-scale
nonlinear optimization (Release A). Springer Series in Computational Mathematics.
Springer Verlag, Heidelberg, Berlin, New York, 1992.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. A primal-dual algorithm for minimizing
a non-convex function subject to bound and linear equality constraints. Technical
Report RAL-TR-96-096, Rutherford Appleton Laboratory, Chilton, Oxfordshire,
England, 1996.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. A primal-dual trust-region algorithm for
minimizing a non-convex function subject to bound and linear equality constraints.

Technical Report (to appear), Rutherford Appleton Laboratory, Chilton, Oxfordshire,
England, 1998.

N. I. M. Gould and Ph. L. Toint. A note on the second-order convergence of optimization
algorithms using barrier functions. Technical Report RAL-TR-97-055, Rutherford
Appleton Laboratory, Chilton, Oxfordshire, England, 1997.

3.2 Exploiting negative curvature in large-scale nonlinear
programming (N. I. M. Gould, S. Lucidi, M. Roma and
Ph. L. Toint)

This research was directed towards methods for solving highly nonlinear unconstrained
minimization problems. Such problems typically exhibit negative curvature away from
the solution, and are such that function and derivative values may change dramatically for
small changes in the minimization variables. The whole program focused on three separate
but related topics,—the third of which is described in the next section—and was supported
by a British Council-MURST research grant.

The first piece of work (Gould, Lucidi, Roma and Toint, 1997) aimed to define new
efficient linesearch algorithms for solving large-scale unconstrained optimization problems,
and which exploit the local non-convexity of the objective function. Existing algorithms
of this type compute two search directions at each iteration: a Newton-type direction that
ensures global and fast local convergence, and a negative curvature direction that enables
the iterates to escape from the region of local non-convexity. A new point is then generated

by performing a search along a curve obtained by combining these two directions. However,

29

the relative scaling of the two directions is typically ignored, and this often led to one of
the directions dominating the other. Our way around this difficulty is simply to select the
more promising of the two directions, and then to perform a step along this direction. The
selection criterion is based on a test on the rate of decrease of the quadratic model of the
objective function. We have established global convergence to second-order critical points
for the new algorithm and reported some encouraging but preliminary numerical results.
The second research topic considers algorithms for unconstrained nonlinear
optimization for which the model used by the algorithm to represent the objective function
explicitly includes “memory” of past iterations. This is intended to make the algorithm
less myopic in the sense that its behaviour is not completely dominated by the local nature
of the objective function, but rather by a more global view. We proposed a non-monotone
linesearch algorithm that had this feature, and established its global convergence (Gould,
Lucidi, Roma and Toint, 1998). Numerical evidence indicating the effectiveness of the
approach was reported. There are still a number of outstanding issues here, and future

work will concentrate on improving the basic approach.

References

N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint. Exploiting negative curvature
directions in linesearch methods for unconstrained optimization. Technical Report
RAL-TR-97-064, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England,
1997.

N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint. A linesearch algorithm
with memory for unconstrained optimization. Technical Report RAL-TR-98-003,
Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 1998.

3.3 Trust-region methods (A. R. Conn, N. I. M. Gould,
S. Lucidi, J. Nocedal, M. Roma and Ph. L. Toint)

Trust-region methods replace a nonlinear optimization problem by a sequence of simpler
problems, whose solutions are constrained to lie within a neighbourhood of the current
estimate of the solution. Typically, the simple “trust-region” problem which must be
(approximately) solved at each iteration involves the minimization of a quadratic function

within the intersection of a trust region—a constraint on the allowable step s of the form
sl <A

for some appropriate norm and positive radius A—and, possibly, some other simplified
constraints. Such methods possess extremely powerful convergence properties under weak

assumptions, and perform very well in practice.

30

We have considered the approximate minimization of a quadratic function within an
ellipsoidal trust region. This is an important subproblem for many nonlinear programming
methods. When the number of variables is large, the most widely-used strategy is to trace
the path of conjugate gradient iterates either to convergence or until it reaches the trust-
region boundary. In Gould, Lucidi, Roma and Toint (1997), we investigated ways of
continuing the process once the boundary has been encountered. The key was to observe
that the trust-region problem within the currently generated Krylov subspace has a very
special structure which enables it to be solved very efficiently. We compared the new
strategy with existing methods. The resulting software package has been made available
as a Fortran 90 module, HSL_VF05, within the Harwell Subroutine Library. This work is
now being extended to cope with linear constraints on the variables.

Since the actual norm which defines the trust region is, to a large extent, arbitrary, we
might consider whether there are certain norms for which the solution of the subproblem is
easy. In Gould and Nocedal (1997), we proposed a trust-region method for unconstrained
minimization, using a trust-region norm based upon a modified absolute-value factorization
of the model Hessian. We showed that the resulting trust-region subproblem may be solved
using a single factorization. In the convex case, the method reduces to a backtracking
Newton linesearch procedure. The resulting software package HSL_VFO06 is also available
within the Harwell Subroutine Library, and numerical evidence shows that the approach
is effective in the non-convex case.

These and many other topics are covered in our forthcoming book (Conn, Gould
and Toint, 1999) on trust-region methods. The book should be published (subject to
satisfactory final reviews) by SIAM at the end of 1999, and is intended to be a definitive
account of the trust-region framework in all its different guises. Topics to be covered
will include unconstrained and constrained differentiable optimization, non-differentiable
optimization and nonlinear systems of equations, and it is intended that the book be
both comprehensive and essentially self-contained. The current manuscript is roughly six

hundred pages long and will ultimately be about eight hundred pages.

References
A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-region methods. In preparation, 1999.

N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint. Solving the trust-region subproblem
using the Lanczos method. Technical Report RAL-TR-97-028, Rutherford Appleton
Laboratory, Chilton, Oxfordshire, England, 1997.

N. I. M. Gould and J. Nocedal. The modified absolute-value factorization norm for
trust-region minimization. Technical Report RAL-TR-97-071, Rutherford Appleton
Laboratory, Chilton, Oxfordshire, England, 1997.

31

3.4 Steepest-edge simplex code LAO04 for linear programming
(J. K. Reid)

In response to requests from two potential clients, we have resumed work on the steepest-
edge (Goldfarb and Reid, 1977) simplex code LA04 for linear programming. Although most
interest in recent years has been in interior-point methods, it has become apparent that
simplex methods have a useful role to play in conjunction with them or for problems that
are not very large. LA04 aims for robustness using the principle that it seeks a solution that
is exact for a nearby problem. It has run successfully on all but one of the test examples
in the netlib test set. This test example is called QAP15 and is an extremely large and
extremely degenerate problem and LAO4 ‘stalls’, that is, does a huge number of iterations

without progress. The problem is recognized as too difficult for most codes.

References

D. Goldfarb and J. K. Reid. A practical steepest-edge simplex algorithm. Mathematical
Programmang, 12, 361-371, 1977.

32

4 Numerical Linear Algebra

4.1 BLAS kernels (M. J. Daydé and 1. S. Duff)

The Basic Linear Algebra Subprograms (BLAS) are the most important building blocks
for linear algebra codes. In particular, the Level 3 BLAS, which include kernels for matrix-
matrix multiplication, and the solution of sets of triangular equations, are a particularly
powerful tool for the construction of efficient algorithms and codes on workstations, vector
supercomputers, and high-performance computers that utilize RISC processors. We have
been designing and implementing Level 3 BLAS kernels over the past several years in
collaboration with our colleagues at CERFACS and ENSEEIHT in Toulouse. In this
past year, we have continued our work on the development of Level 3 BLAS kernels by
extending the techniques of blocking and loop unrolling to optimize performance on RISC-
based computers and workstations. This has included the design and tuning of a version
for the SGI Power Challenge and one for the CRAY T3D. Our portable code is competitive
with the vendor supplied kernels on the SGI and significantly outperforms that provided
on the T3D on many of the kernels. The kernels have also been tested on Sun and HP
workstations and our software performs far better than a standard implementation. The

current version is described in the report by Daydé and Duff (1997a).

We are currently developing versions of the BLAS for complex matrices and show some
results from our kerensl (called RISC B.) in Table 4.1. On every machine except the IBM
SP2 we outperform the vendor’s code and the performance of the RISC BLAS is everywhere
substantially better than that of standard code.

We have also demonstrated the use of these building blocks in the construction of dense

and sparse linear equation solvers in the report by Daydé and Duff (19975).

References

M. J. Daydé and I. S. Duff. A blocked implementation of Level 3 BLAS for RISC
processors (revised version). Technical Report RT/APO/97/2, ENSEEIHT-IRIT,

Toulouse, France, 1997 a.

M. J. Daydé and I. S. Duff. The use of computational kernels in full and sparse linear
solvers, efficient code design on high-performance RISC processors. in J. M. L. M.
Palma and J. Dongarra, eds, ‘Vector and Parallel Processing - VECPAR’96’, Lecture
Notes in Computer Science 1215, pp. 108-139, Berlin, 1997b. Springer.

33

Comp. Kernel | op(A) ‘N | Q| T N | N O) T T
op(B) ‘N | ‘N | N ¢ T Cr | T O T

Version
CRAY CGEMM | Standard | 104 | 112 | 147 | 100 | 101 | 72| 72| 70| 73
T3E SCILIB 217 | 207 | 213 | 157 | 158 | 219 | 220 | 226 | 227
RISC B. | 222|234 | 234 | 200 | 201 | 250 | 250 | 217 | 217
HP CGEMM | Standard | 195 | 169 | 174 | 194 | 197 | 162 | 167 | 169 | 174
C160 RISCB. | 331|323 | 333|350 | 341 | 367 | 378 | 352 | 341
ZGEMM | Standard | 197 | 177 | 193 | 201 | 200 | 163 | 160 | 159 | 167
RISCB. | 299 | 284 | 294 | 295 | 295 | 350 | 363 | 361 | 333
IBM CGEMM | Standard | 94 | 106 | 142 | 92| 92| 94| 110 | 113 | 122
SP2 ESSL 398 | 417 | 401 | 388 | 390 | 434 | 396 | 396 | 403
P2SC RISCB. | 361 | 385 | 399 | 360 | 393 | 360 | 377 | 377 | 389
ZGEMM | Standard | 110 | 140 | 143 | 106 | 105 | 80| 99| 97| 94
ESSL 382 | 431 | 388 | 362 | 362 | 362 | 373 | 364 | 372
RISC B. | 348 | 355 | 361 | 304 | 321 | 328 | 324 | 342 | 333
SGI CGEMM | Standard | 204 | 295 | 251 | 200 | 199 | 193 | 185 | 182 | 183
POWER library 304 | 286 | 286 | 291 | 291 | 275 | 275 | 275 | 276
10000 RISCB. | 317|318 | 318 | 315 | 315 | 319 | 319 | 320 | 320
ZGEMM | Standard | 200 | 264 | 232 | 193 | 192 | 141 | 153 | 153 | 209
library 279 | 255 | 254 | 252 | 252 | 236 | 236 | 236 | 236
RISC B. | 275 | 276 | 276 | 279 | 279 | 276 | 277 | 276 | 276
SUN CGEMM | Standard | 50 | 35| 35| 46 | 47| 32| 32| 31| 32
Ultral RISC B. 139 | 143 | 138 | 128 | 138 | 110 | 109 | 117 | 121
143MHz | ZGEMM | Standard | 46 | 49| 55| 47| 48| 40| 43| 47| 46
RISC B. 73| 71| 71| 68| 64| 49| 48| 54| 53

Table 4.1: Average performance in Mflop/s of the blocked implementation of the complex
GEMM on range of RISC processors (using square matrices of order 32, 64, 96, and 128).

34

4.2 Implicit scaling of linear least-squares problems (J. K. Reid)

We have been considering the weighted least-squares problem of minimizing
(b— Az)"W?3(b— Ax),

where W is a diagonal matrix. This can be expressed as the unweighted least-squares

solution of the system

WAx = Whb.

Powell and Reid (1969) formed this set of equations explicitly and used QR factorization
of A (Golub, 1965). They performed a backward error analysis that showed the solution
obtained to be exact for a perturbed system where the perturbations in each row were
small compared with the largest element in the row.

We have shown that the algorithm can be extended to the constrained case by use of
implicit scaling, that is, without ever forming W A or Wb explicitly. Corresponding to

the QR factorization of A, we obtain the factorization
WA=QWR

and the backward error analysis of Powell and Reid is applicable. Furthermore, it is
applicable to the constrained case by using infinite weights. By storing the inverse weights
W !, we can include the case of infinite weights without the need to represent co.

We also show that iterative refinement is applicable with implicit and possibly infinite
weights.

For further details of this work, see Reid (1998).

References

G. H. Golub. Numerical methods for solving linear least squares problems. Numerische
Mathematik, 7, 206-216, 1965.

M. J. D. Powell and J. K. Reid. On applying householder transformations to linear least
squares problems. in A. J. H. Morrell, ed., ‘Information Processing 68’, pp. 122-126.
North-Holland, 1969.

J. K. Reid. Implicit scaling of linear least squares problems. Technical Report RAL-TR-
98-027, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 1998.

35

4.3 Numerical linear algebra for high performance computers
(J. J. Dongarra, I. S. Duff, D. C. Sorensen, and
H. A. van der Vorst)

The STAM book on “Solving Linear Systems on Vector and Shared Memory Computers”
(Dongarra, Duff, Sorensen and van der Vorst, 1991) is still a best seller, but it has ceased
to be at the leading-edge because of recent developments both in computer hardware and
also in the design and implementation of algorithms in numerical linear algebra.

We have therefore been planning and writing a substantial revision of this text over the
past two years and have recently completed a complete first draft. It is hoped that this
will be published by STAM in 1998 or early in 1999.

We have decided not to change a winning formula too much but have felt it necessary
to add some chapters to cover new developments and areas where we felt the “first
edition” to be deficient. Our discussion of computer hardware and the study of the design
and performance of kernels now includes distributed memory parallel computers and, in
addition to a much revised chapter on the solution of dense linear systems (now including
copious reference to ScaLAPACK), there is a full chapter on eigensolvers. The chapters
on direct and on iterative methods for sparse systems have been completely rewritten
and extra chapters have been added on preconditioning, generalized eigenproblems, and
on Krylov methods to avoid duplication between the iterative solution and eigensystem

chapters.

References

Jack J. Dongarra, I. S. Duff, Danny C. Sorensen, and Henk A. van der Vorst. Solving Linear
Systems on Vector and Shared Memory Computers. STAM Press, Philadelphia, 1991.

Second edition in preparation.

36

5 Fortran

5.1 Introduction (J. K. Reid)

John Reid has been very active in the area of Fortran standardization and associated
activities. He contributed a chapter on the array features (Reid, 1996) in a special issue of
Computer Standards and Interfaces devoted to Fortran 90. He revised his book with Mike
Metcalf (Metcalf and Reid, 1996a) to keep it up-to-date with formal interpretations of the
standard and to include a chapter on Fortran 95. John and Mike also wrote a version of
their book for the subset language F (Metcalf and Reid, 1996b) and we say more about this
in Section 5.2. John has been striving for several years to see exception handling included
in Fortran and this work has now reached a conclusion with the publication of a ‘Type-2
Technical Report’, which he edited (see Section 5.3).

John also acted as editor for the corrigenda to Fortran 90 and the repository of
requirements for Fortran 2000. The third and final corrigendum was formally accepted
in 1997, with very few changes needed following a formal ballot. Significant activity on
the repository was needed during the year, but the content of Fortran 2000 has now been
chosen and that activity is now dormant.

The Group is involved with the ESPRIT IV PARASOL Project for the parallel solution
of sparse linear equations (see Section 6.2), which has decided to rely on the use of MPI
from Fortran. MPI is essentially a library of C routines, some of which rely on argument
associations that are not valid for Fortran. This led John to an active email collaboration
with the binding subgroup of the MPI committee, as a result of which the problems
are better explained in the MPI-2 document and some strategies that may be used to

ameliorate the problem are explained.

References

M. Metcalf and J. K. Reid. Fortran 90/95 explained. Oxford University Press, Oxford,
1996a.

M. Metcalf and J. K. Reid. The F programming language. Oxford University Press, Oxford,
1996b.

J. K. Reid. The array features. Computer Standards and Interfaces, 18, 323-331, 1996.

5.2 The F programming language (J. K. Reid)

F is a subset of Fortran 90, chosen by Walt Brainerd, David Epstein, and Dick Hendrickson

of Imagine Inc. to be easy to learn, easy to implement, easy to understand and safe. It is

37

fully defined by the book of Metcalf and Reid (1996) and its advantages are summarized
by Reid (1996). Of particular note are the following:

No duplications. Where Fortran 90 has alternative syntax for expressing the same thing, F
picks a good one and discards the rest. For example, all type declaration statements

must have a double colon and must specify all the attributes of the entities.

Source form restrictions make it possible to catch all occurrences of a name with a case-

sensitive editor.
No obsolescent features, since they are redundant.

No labels, since even the most disciplined use of labels leaves the reader uncertain over

how each statement may be reached.
No use of explicit kind values, since they are not portable.

Reserved words. All the language keywords, such as program, do, true, etc. are reserved

for use as such.
The baroque rules for use association are drastically simplified.
Procedures all have explicit interfaces, and so can be checked at compile time.
Functions are required to be free of side effects.

Storage association is fundamentally unsafe particularly when COMMON and
EQUIVALENCE are used to share storage between data of different types, and is

not permitted.

References

M. Metcalf and J. K. Reid. The F programming language. Oxford University Press, Oxford,
1996.

J. K. Reid. An appreciation of F. Fortran Journal, 8(6), 3-9, 1996.

5.3 Exception handling in Fortran 90 (J. K. Reid)

The ISO Fortran Standardization Committee, WGbH, decided in 1995 that exception
handling was too important to leave until Fortran 2000, and so established a development
body to create a ‘“Type 2 Technical Report’. This requires a less lengthy approval process

than a standard and the committee promised that it will be part of Fortran 2000 unless

38

serious snags are uncovered in the field, which will permit vendors to implement it as an
extension of Fortran 95. It is thus a kind of beta-test facility for a new language feature.

John Reid led the development body and considered two approaches, the enable
construct or a collection of procedures. The merits of the two were discussed by Reid
(1997). The enable construct provides a mechanism for specifying the scope within which
extra checks are required. The collection of procedures provides a mechanism for inspecting
and altering the values of the exception flags of the IEEE floating-point standard.

The enable construct has been under consideration for many years and is seen by most
people as the best long-term solution. However, there have always been difficulties with
the details, mainly because people have varying perceptions of what should happen after
the detection of an exception, particularly when the only possible handler is much higher
up the call chain and some of the intermediate calls are in procedures without exception
handling. For these reasons, and because the procedures approach provides the useful by-
product of other support for the IEEE floating-point standard, the enable approach was
discarded.

The procedures approach was not without its difficulties since the aim was to
accommodate vendors that do not implement the IEEE standard or provide options for
much faster execution at the expense of partial compliance. A particular difficulty arose
from some vendors requiring different machine instructions to be generated according to
whether exception handling is in operation. The solution adopted was to provide the
feature in an intrinsic module and allow the compiler to treat the USE statement as a
directive that controls the code generated. An unfortunate consequence of this is that the
feature cannot be implemented without changes to the compiler itself.

The Technical Report passed its first formal ISO ballot in March 1997 with no
opposition, but some requests for minor changes. These changes have been made and

the document is in its final stages of formal adoption, with no indication of any objections.

References

J. K. Reid. Two approaches to exception handling in Fortran 90. in R. F. Boisvert, ed.,
‘The Quality of Numerical Software: Assessment and Enhancement’, pp. 210-223.
Chapman and Hall, London, 1997.

5.4 F~—, a simple parallel extension to Fortran 90
(R. W. Numrich and J. K. Reid)

John Reid has been collaborating with Robert Numrich of Cray Research in the detailed
design of an extension to Fortran 90 for parallel programming called F~~ (Numrich and
Steidel, 1997). The ‘-’ signifies that it is a small extension.

39

An F~~ program is interpreted as if it were replicated a number of times and that
all copies were executed asynchronously. Each copy has its own set of data objects and
is termed an ‘image’. A data object is accessible only within its own image unless it is
specified with additional dimensions in square brackets. Such an object has the same shape
and address on all images and may be accessed from another image or from a set of images
with the help of trailing subscripts enclosed in square brackets. The additional subscripts
are mapped to images in the same way as Fortran array syntax maps sets of subscripts to
memory locations. Such a ‘co-array’ may be used in expressions and assignments as if it
were an ordinary Fortran array.

References without square brackets are to the local array (or scalar), so that code that
can run independently is uncluttered. Only where there are square brackets or there is a
procedure call is communication between images involved.

Array pointer components of co-arrays provide a mechanism for cases that require
arrays to have different sizes on different images. They are carefully limited so that
each references data only on its own image. However, the target may be addressed from

elsewhere:
A(1:N) = B[P]%C(1:N)

There are intrinsic functions that return the number of images and the index of the
current image. There is an intrinsic subroutine for synchronizing all images or a specified
set of images.

The use of array notation to address data on other images provides a very flexible and
clear mechanism for parallel programming. We illustrate this with a redistribution that is

needed for 3-dimensional Fourier transforms. Given the declarations

INTEGER :: I,K,LX,LY,LZ
REAL :: A(LX,LY)[LZ], B(LY,LZ) [LX]

the code

K = THIS_IMAGE() + 1 ! Image indices commence at zero.
IF (K<=LZ) THEN

DO I =1, LX
A(I,:) = B(:,K)[I]
END DO
END IF

redistributes the co-array B in the co-array A.
The difficulties that we have faced have been associated with how the F~— extensions

are integrated with the dynamic storage, pointer, and generic procedure mechanisms of

40

Fortran 90. We currently allow allocatable co-arrays, but require that each allocation
occurs on every image and involves implicit synchronization of all images. We allow co-
array pointers, but with strict rules to avoid unexpected consequences. We have decided
not to allow co-array sections as actual arguments to avoid any change to the (complicated)
generic procedure rules or unexpected consequences from copy-in copy-out across images.

The work is ongoing. Cray Research already have a subset implementation and it is

hoped that a full implementation will be made during 1998.

References

R. W. Numrich and J. L. Steidel. F~7: A simple parallel extension to Fortran 90. SIAM
News, 30(7), 1-8, 1997.

5.5 Conditional compilation in Fortran (D. Epstein and

J. K. Reid)

Conditional compilation (coco) in Fortran has been controversial for many years. Recently,
the principle disagreement has been between those who see the existing C pre-processor
cpp as adequate for Fortran and those who think Fortran should have its own ‘Fortran-like’
pre-processor. A majority of the ISO Committee WG5 has consistently been in favour of
the Fortran-like approach.

Another source of disagreement has been over the power of the pre-processor and
whether it should be used to avoid additions to the underlying language. David Epstein
of Imagine Inc. has consistently argued in recent years in favour of a minimalist approach.
He wants a very simple facility that may itself be written in Fortran (though it would be
better integrated with the compiler) and which will be completely transparent to all users.

John Reid has collaborated with David in refining his proposal to one that is in its final
stages of acceptance as an auxiliary standard that will constitute Part 3 of the Fortran
standard.

The document defines a ‘coco program’ that will normally reside in a file and which
will produce ‘coco output’ when executed. Execution is controlled by directives in a very
short ‘SET" file that will vary according to the version required and directives in the coco
program itself. All directives have ‘??’ in character positions 1 and 2. Directives are
either omitted from the coco output or are changed to Fortran comments. Other lines
(noncoco lines) are either copied unchanged to the output, omitted, or changed to Fortran
comments.

A simple example is the coco program
?? LOGICAL :: USE_SECTIONS

41

?? IF (USE_SECTIONS) THEN

7?7 IF (USE_SECTIONS) THEN
A(1:10,1:10) = B(1:10,1:10) + C(1:10,1:10)

7?7 ELSE
DO I =1, 10
DO J =1, 10
A(I,J) = B(I,J) + C(I,J)
ENDDO
ENDDO
?? ENDIF

which permits a segment of code to be adapted according to whether the compiler is more

efficient with array section syntax or with loop syntax. If run with the SET file

?? ALTER: DELETE ! Delete directives
?? LOGICAL :: USE_SECTIONS = .TRUE.

its output is

A(1:10,1:10) = B(1:10,1:10) + C(1:10,1:10)

42

6 Miscellaneous Activities

6.1 CERFACS (L. S. Duff)

Jain has continued to lead a project at CERFACS on Parallel Algorithms and several of the
contributions to this report reflect interactions with that team. A major recent activity at
CERFACS has been the International Linear Algebra Year. This was held from September
1995 until September 1996 and included four workshops and a visitor’s programme. Iain
co-chaired the international scientific committee with Gene Golub from Stanford and is
participating in all the workshops. The two final Workshops of the International Linear
Algebra Year were held in 1996 and were each attended by about eighty researchers of
whom half were from outside France. Nick helped to organize the optimization workshop
that took place in Albi in April 1996, and the final Workshop on July was on iterative
methods. Selected papers from all four workshops have appeared as special issues of BIT.
Tain and Nick were two of the guest editors for the second issue (Volume 37, Issue 3 of
BIT) that contained papers from the Direct Methods, Iterative Methods, and Optimization

workshops.

The main areas of research in the Parallel Algorithms Group are the development
and tuning of kernels for numerical linear algebra, the solution of sparse systems using
direct methods or iterative methods or a combination of the two, heterogeneous computing
including the use of PVM and MPI and the design of schedulers, large eigensystem
calculations, optimization, and the reliability of computations. Other activities of the
Group include advanced training by both courses and research and the porting of industrial
codes. Fuller details on the activities of the Parallel Algorithms Team can be found in the

report CERFACS (1998).

During the reporting period, three students completed their PhDs at CERFACS. Tain
was co-supervisor for Jacko Koster who finished his thesis in November 1996 (Koster,
1997). Jacko will come to RAL in February 1998 to work on the PARASOL Project.

Nick continued to visit both CERFACS and ENSEEIHT-IRIT with the support of a
British Council grant to enable him to develop and extend some of the work commenced
when he spent a year at CERFACS in 1994.

The main projects at CERFACS still include Parallel Algorithms and Computational
Fluid Dynamics although recent emphasis on environmental modelling has led to a
significant increase in the size of the Climate Modelling Group. There are smaller groups
in electromagnetics, and signal processing.

The home page for CERFACS is http://www.cerfacs.fr and current information on

the Parallel Algorithms Group can be found on page http://www.cerfacs.fr/algor/ of
the World Wide Web.

43

References

CERFACS. Activity report of the parallel algorithms project at CERFACS. January 1997
- December 1997. Technical Report SR/PA/98/06, CERFACS, 1998.

J. Koster. On the parallel solution and the reordering of unsymmetric sparse linear systems.

INPT PhD Thesis TH/PA/97/51, CERFACS, Toulouse, France, 1997.

6.2 European project PARASOL, an integrated programming
environment for PARAllel sparse matrix SOLvers

(I. S. Duff)
PARASOL is a long term research (LTR) ESPRIT IV Project for “An Integrated

Environment for Parallel Sparse Matrix Solvers”. This Project started on January 1st,
1996, and its aim is to develop a parallel scalable library of sparse matrix solvers using
Fortran 90 and MPI. At the end of the Project, the codes will be made available in the

public domain.

The PARASOL Consortium is managed by PALLAS in Germany and consists of

¢ leading European research organizations with a well-known experience and track-
record in the development of parallel solvers (CERFACS, GMD-SCAI, ONERA,
RAL, Univ. of Bergen);

¢ industrial code developers who define the requirements for PARASOL and will
use its results (Apex Technologies, Det Norske Veritas (DNV), INPRO, MacNeal-
Schwendler, Polyflow);

e two leading European HPC software companies who will exploit the project results
and will provide programming development tools (GENIAS, PALLAS).

The codes in the Library will include direct methods, domain decomposition techniques,
and multigrid approaches. Within this project, RAL is involved in the development of
direct solvers and is working in this context in close collaboration with CERFACS and with
ENSEEIHT (Toulouse, France). More details on this work can be found in Section 2.2.

We had problems recruiting at the beginning of the Project both at RAL and
CERFACS, but now have two people working full time, Jean-Yves L’Excellent joined
the Project at CERFACS in October 1996 and is working on the MUMPS code (see
Section 2.2). Petr Plecha¢ started at RAL at the beginning of November 1997 and has
been working on combining graph partitioning with sparse matrix orderings and on the
interface between MUMPS and PARASOL. Jacko Koster will join the PARASOL Team
at RAL in February 1998.

44

There have been a number of meetings of the PARASOL Project over the past two years.
After a kick-off meeting at MSC in Munich in January 1996, we had a one-day meeting
in Paris in May and a two-day one at INPRO in Berlin in September. A one-day meeting
to finalize the interface was held in December at Frankfurt airport. In the past year,
there was a successfully negotiated Project Review meeting in Brussels in January, and
a Project Meeting coupled with an open Workshop was held at CERFACS in September.
We hosted a two-day meeting of the PARASOL Project partners at RAL in November,
with participants staying in Cosener’s House and business sessions in the Atlas Centre. At
that meeting we decided to request the Commission that the Project be extended until
June 30, 1999.

6.3 PARASOL interface to new parallel solvers for industrial
applications (J. K. Reid and A. Supalov)

In connection with the PARASOL Project, John Reid collaborated very actively with
Alexander Supalov of GMD on the design of a standard interface and the writing of the
document that specifies it.

The aim of the interface is to provided a unified framework for users to specify problems
to the various PARASOL solvers, some of which are direct and some of which are iterative.

It needs to accommodate three modes of parallel execution:

e Host-node - one process inputs the problem definition and the others exchange data

with it and compute the solution.

¢ Hybrid-host - one process inputs the problem definition and exchanges data with the

others, but then helps the others to compute the solution.

e Hybrid-node - all processes input the problem definition and compute the solution.

The interface also needs to allow for several problems being in the process of solution
at the same time, including the possibility of one solver calling another for a subproblem.

To achieve these goals, the PARASOL interface differs in several respects from the more
conventional approaches of other parallel solver packages. The main characteristic of the
PARASOL interface is that the data are passed to and from the solvers by data exchange
routines instead of actual arguments to the solvers. This permits users to supply their
data in manageable pieces, request an intermediate return of control, and request further
solutions with changed right-hand side vectors or changed matrices. It also permits the
solvers to use the data structures most suited to them and to have some control over the

order in which data are provided.

45

Having flexibility on both sides cannot work without an agreement between the parties.
Therefore, the computation is broken into a sequence of data exchange series. Each series
starts with a negotiation in which the user specifies what data are desired to be sent and
what answers are desired to be received. The package either accepts this contract or refuses
it. In the case of refusal, the user has to seek an alternative way to obtain the desired
result. The hints returned by the PARASOL package can be used to help. If the contract is
accepted, the user then has to make a series of calls that accord with the contract and the
data exchange protocol. The package will check that the calls are done in an appropriate
order.

For further details, see Reid, Supalov and Thole (1998).

References

J. K. Reid, A. Supalov, and C-A Thole. PARASOL interface to new parallel solvers for
industrial applications. in ‘Proceedings ParCo '97’. Elsevier, 1998.

6.4 IFIP Working Group 2.5 (J. K. Reid)

There were two meetings of IFIP Working Group 2.5 (mathematical software) during
the reporting period and John Reid played an active role in both. In July 1996, the
Group organized a working conference on ‘The Quality of Numerical Software: Assessment
and Enhancement’ and he gave a talk (Reid, 1997) on ‘T'wo Approaches to Exception
Handling in Fortran 90’. In October 1997, the Group organized a workshop on ‘Numerical
and Programming Environment Aspects of DOE’s ASCI (Advanced Scientific Computing
Initiative) Modelling and Simulation Projects’ and (in place of a speaker who was unable
to attend) he gave a talk on the F~~ language, which was well received and promoted a
lively discussion.

John’s main activity for the Working Group was in connection with the Group’s wish to
see the addition of exception handling to Fortran, which has reached a successful conclusion
(see Section 5.3).

References

J. K. Reid. Two approaches to exception handling in Fortran 90. :n R. F. Boisvert,
ed., ‘The quality of numerical software: assessment and enhancement’, pp. 210-223.
Chapman and Hall, London, 1997.

46

7 Computing and the Harwell Subroutine Library

7.1 The computing environment within the Group

Our policy of upgrading the Group’s workstations has continued over the past two years.
The main change has been that the Group now runs 3 SUN Ultra Sparc 1s as replacements
for Tain, John and Jennifer’s SUN Sparc 10/30s. Petr has inherited one of the older
machines, while the others have replaced our previous generation of SUN Sparc 1s, all of
which have finally been retired. Nick had intended to replace his IBM RISC Systems/6000
3BT with the next generation of IBM machine, but recent announcements of significantly
better machines from IBM and others has meant that we have delayed this upgrade until
1998. The Group’s IBM Thinkpad 701 portable computer has proved to be less reliable
than had been hoped, but it has still proved useful for Group members on their frequent
travels.

The responsibility for SUN software support has been delegated to other parts of the
Department, although Group members have still found it more convenient to get their
hands dirty for simple tasks. The Group continues to support a series of World Wide Web
pages describing its activities. This has resulted in much wider publicity for the Group,
and made it easier for external users to access our technical reports and publicly-available
software. In addition, we maintain and update pages of links to other relevant numerical
analysis information.

We continue to benefit from other DCI machines, in particular the DEC Alpha 3000
and HP-9000 farms, the CRAY J932 and the newer DEC 8400 multiprocessor system.
Most of the Group’s files now reside on a central UNIX data store, which is backed up on
a daily basis by the Department. We now have access to eight Fortran 90 compilers, some
on our own machines and some on other DCI machines. This has enabled our gradual
transformation from Fortran 77 to 90 to proceed, and in some cases we have found these
compilers uncovered previously hidden errors in our existing Fortran 77 codes. We have also
installed MPI and associated parallel language support systems on some of our machines,

as our development of parallel algorithms continues.

7.2 The Harwell Subroutine Library

The following new packages were added to the Library during the reporting period.

MA62 (I. S. Duff and J. A. Scott)

This package solves one or more sets of sparse symmetric linear unassembled finite-

element equations, AX = B, by the frontal method, optionally holding the matrix factor

47

out-of-core in direct access files. The package is primarily designed for positive-definite
matrices since numerical pivoting is not performed. Use is made of high-level BLAS kernels.

The coefficient matrix A must of the form
A= fj AW
k=1

with A® nonzero only in those rows and columns that correspond to variables in the k-th
element.

The frontal method is a variant of Gaussian elimination and involves the factorization
A=PLD(PL)",

where P is a permutation matrix, I is a diagonal matrix, and L is a unit lower triangular
matrix. MA62 stores the reals of the factors and their indices separately. A principal feature
of MA62 is that, by holding the factors out-of-core, large problems can be solved using a
predetermined and relatively small amount of in-core memory. At an intermediate stage of
the solution, / say, the ‘front’ contains those variables associated with one or more of A®
k=1,2,...,1, which are also present in one or more of A% £k =1,2, ..., m. For efficiency,
the user should order the A" so that the number of variables in the front (the ‘front size’)
is small. For example, a very rectangular grid should be ordered pagewise parallel to the
short side of the rectangle. The elements may be preordered using the Harwell Subroutine
Library routine MC43.

MC60 (J. K. Reid and J. A. Scott)

This subroutine uses a variant of Sloan’s method to calculate a symmetric permutation
that aims to reduce the profile and wavefront of a sparse matrix A with a symmetric
sparsity pattern. Alternatively, the Reverse Cuthill-McKee Method may be requested to
reduce the bandwidth. There are optional facilities for looking for sets of columns with
identical patterns and taking advantage of them. There is also an option for computing a
row order that would be appropriate for use with a row-by-row frontal solver (for example,

the equation entry to MA42). These optional facilities may also be used independently.

Mc61 (J. K. Reid and J. A. Scott)

Let A be an n X n sparse matrix with a symmetric sparsity pattern. Given the sparsity
pattern of A, this subroutine uses a variant of Sloan’s method to calculate a symmetric
permutation that aims to reduce the profile and wavefront of A. Alternatively, the Reverse
Cuthill-McKee (RCM) method may be requested to reduce the bandwidth, or the user may
request an ordering for the rows of A that is efficient when used with a row-by-row frontal

solver (for example, equation entry to MA42).

48

MC61 provides the user with a straightforward interface to the MC60 package when
detailed control of the steps in constructing a symmetric permutation or row ordering is

not required.

HSL_MI02 (N. I. M. Gould)
This routine uses the SYMMBK method to solve the n x n symmetric but possibly
indefinite linear system Az = b, optionally using preconditioning. If PPT is the

preconditioning matrix, the routine actually solves the preconditioned system
Az = b,

with A = PAP" and b = Pb and recovers the solution £ = PTZ. Reverse communication

is used for preconditioning operations and matrix-vector products of the form Az.

HSL_VFO05 (N. I. M. Gould)
Given real n X n symmetric matrices H and M (with M positive definite), a real
n vector ¢ and a positive scalar A, this package finds an approximate minimizer of the

quadratic objective function

1
imTHcc +cTe,

where the vector @ is required to satisfy the constraint || @ ||, < A, and where the M-norm
of ¢ is || @ ||y= V&TMz. This problem commonly occurs as a trust-region subproblem
in nonlinear optimization calculations. The method may be suitable for large n as no
factorization of H is required. Reverse communication is used to obtain matrix-vector
products of the form Hz and M 'z.

49

8 Seminars

11 January 1996

16 January 1996

1 February 1996

9 May 1996

31 October 1996

30 January 1997

6 March 1997

18 March 1997

11 April 1997

8 May 1997

15 May 1997

19 June 1997

27 November 1997

Dr T Braconnier (Manchester) Computing the fields of values and

pseudospectra using the Lanczos method with continuation.

Dr J Reid (Rutherford Appleton Laboratory) The current status of
Fortran 90 and Fortran 95.

Dr K Meerbergen (Leuven, Belgium) The calculation of eigenvalues of

Navier Stokes problems.

Dr I Smith (Liverpool) A comparative study of solution strategies for

domain decomposition reordered systems.

Dr L Hemmingsson (Uppsala, Sweden) Domain decomposition
methods and fast solvers for first-order PDEs.

Professor John Pryce (Shrivenham) Solving systems of differential

algebraic equations by Taylor series.

Dr Stephen Zitney (AspenTech) Sparse matrix methods for dynamic

chemical process simulation.

Drs F. Malucelli and L. Tarricone (Perugia, Italy) Bandwidth

minimization algorithms.

Dr Martin van Gijzen (Utrecht, The Netherlands) GMRES-like

methods on distributed memory computers.

Istvan Maros (Imperial College) On numerically exact implementation

of the simplex method.

Dr Mike Osborne (Canberra, Australia) Wrap-around partitioning for

block bidiagonal linear systems.

Dr George Goodsell (Cambridge) A new iterative method for thin plate

spline interpolation to scattered data.

Dr Sven Leyffer (Dundee) An integrated approach to integer and

nonlinear optimization.

50

9 Reports issued in 1996-1997

We give a full listing of Rutherford Technical Reports issued during the period of this

Progress Report. The other report listings, from organizations with which we collaborate,

only include reports not already included as RAL reports. All of our current technical

reports are publicly accessible via the internet from

“http://www.rl.ac.uk/departments/ccd /numerical /reports /reports.html”.

Rutherford Reports

RAL-TR-96-010

RAL-TR-96-013

RAL-TR-96-014

RAL-TR-96-015

RAL-TR-96-022

RAL-TR-96-023

RAL-TR-96-042

RAL-TR-96-047

RAL-TR-96-096

RAL-TR-96-102

MA46, a Fortran code for direct solution of sparse unsymmetric linear
systems of equations from finite-element applications. A. C. Damhaug

and J. K. Reid.

A projection method for the solution of rectangular systems. J. Cardenal,

I. S. Duff, and J. M. Jimenez.

A blocked implementation of Level 3 BLAS for RISC processors. M. J.
Daydé and I. S. Duff.

Numerical Analysis Group - Progress report. January 1994 - December

1995. 1. S. Duff (Editor).

An evaluation of subspace iteration software for sparse nonsymmetric

eigenproblems. R. B. Lehoucq and J. A. Scott.

An evaluation of Arnoldi based software for sparse nonsymmetric

eigenproblems. R. B. Lehoucq and J. A. Scott.

Methods for nonlinear constraints in optimization calculations. A. R.
Conn, N. I. M. Gould, and Ph. L. Toint.

Sparse numerical linear algebra: direct methods and preconditioning.

I. S. Duff.

A primal-dual algorithm for minimizing a non-convex function subject
to bound and linear equality constraints. A. R. Conn, N. I. M. Gould,
and Ph. L. Toint.

A comparison of frontal software with other sparse direct solvers. I. S.
Duff and J. A. Scott.

51

RAL-TR-97-001

RAL-TR-97-012

RAL-TR-97-028

RAL-TR-97-031

RAL-TR-97-041

RAL-TR-97-046

RAL-TR-97-054

RAL-TR-97-055

RAL-TR-97-058

RAL-TR-97-059

RAL-TR-97-064

RAL-TR-97-071

Performance issues for frontal schemes on a cache-based high performance
computer. K. A. Cliffe, I. S. Duff, and J. A. Scott.

MAG62 - a frontal code for sparse positive-definite symmetric systems

from finite-element applications. I. S. Duff and J. A. Scott.

Solving the trust-region subproblem using the Lanczos method. N. I. M.
Gould, S. Lucidi, M. Roma, and Ph. L. Toint.

The Rutherford-Boeing sparse matrix collection. I. S. Duff, R. G. Grimes,
and J. G. Lewis.

Exploiting zeros in frontal solvers. J. A. Scott.

A combined unifrontal/multifrontal method for unsymmetric sparse
matrices. T. A. Davis and I. S. Duff.

A numerical comparison between the LANCELOT and MINOS packages
for large-scale nonlinear optimization. I. Bongartz, A. R. Conn, N. I. M.
Gould, M. A. Saunders, and Ph. L. Toint.

A note on the second-order convergence of optimization algorithms using
barrier functions. N. I. M. Gould and Ph. L. Toint.

Implicitly restarted Arnoldi methods and eigenvalues of the discretized
Navier Stokes equations. R. B. Lehoucq and J. A. Scott.

The design and use of algorithms for permuting large entries to the
diagonal. I. S. Duff and J. Koster.

Exploiting negative curvature directions in linesearch methods for
unconstrained optimization. N. I. M. Gould, S. Lucidi, M. Roma, and
Ph. L. Toint.

The modified absolute-value factorization norm for trust-region
minimization. N. I. M. Gould and J. Nocedal.

CERFACS Reports

TR/PA/96/47 Use of computational kernels in full and sparse linear solvers, efficient

code design on high-performance RISC processors. M. J. Daydé and I. S.
Duft.

52

FUNDP Reports

97/14 A numerical comparison between the LANCELOT and MINOS packages for large-
scale nonlinear optimization: the complete results. 1. Bongartz, A. R. Conn,

N. I. M. Gould, M. A. Saunders, and Ph. L. Toint.

ENSEEIHT-IRIT Reports

RT/APO/97/2 A blocked implementation of Level 3 BLAS for RISC processors (revised
version). M. J. Daydé and I. S. Duff.

RT/APO/97/3 Solution of unassembled linear systems using block stretching: Preliminary
experiments. M. J. Daydé, J. Décamps, and N. I. M. Gould.

Argonne National Laboratory Reports

MCS-P547-1195 An evaluation of software for computing eigenvalues of nonsymmetric
matrices. R. B. Lehoucq and J. A. Scott.

33

10 External Publications in 1996-1997

P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering
algorithm. SIAM Journal on Matriz Analysis and Applications, 17(4), 886-905, 1996.

P. R. Amestoy, I. S. Duff, and C. Puglisi. Multifrontal QR factorization in a multiprocessor
environment. Numerical Linear Algebra with Applications, 3(4), 275-300, 1996.

L. Carvalho, I. S. Duff, and L. Giraud. Linear algebra kernels for parallel domain
decomposition methods. In M. Papadrakakis and G. Bugeda, eds, ‘Advanced
Computational Methods in Structural Mechanics’, pp. 1-17. International Centre for
Numerical Methods in Engineering (CIMNE), Barcelona, Spain, 1996.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Numerical experiments with the
LANCELOT package (Release A) for large-scale nonlinear optimization. Mathematical
Programming, 73(1), 73-110, 1996.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Methods for nonlinear constraints in
optimization calculations. n I. S. Duff and G. A. Watson, eds, ‘The State of the Art
in Numerical Analysis’, pp. 363-390, Oxford, 1997. Oxford University Press.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. A globally convergent Lagrangian barrier
algorithm for optimization with general inequality constraints and simple bounds.
Mathematics of Computation, 66, 261-288 and S1-S11, 1997.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. On the number of inner iterations
per outer iteration of a globally convergent algorithm for optimization with general

nonlinear inequality constraints and simple bounds. Computational Optimization and
Applications, 7(1), 41-69, 1997.

A. R. Conn, N. I. M. Gould, A. Sartenaer, and Ph. L. Toint. Convergence properties of
an augmented Lagrangian algorithm for optimization with a combination of general
equality and linear constraints. SIAM Journal on Optimization, 6(3), 674-703, 1996.

A. R. Conn, N. I. M. Gould, A. Sartenaer, and Ph. L. Toint. Convergence properties of
minimization algorithms for convex constraints using a structured trust region. STAM
Journal on Optimization, 6(4), 1059-1086, 1996.

A. R. Conn, N. I. M. Gould, A. Sartenaer, and Ph. L. Toint. On iterated-subspace
minimization methods for nonlinear optimization. In L. Adams and L. Nazareth,
eds, ‘Proceedings on Linear and Nonlinear Conjugate Gradient-Related Methods’,
pp- 50-78, STAM, Philadelphia, 1996.

54

T. A. Davis and I. S. Duff. An unsymmetric-pattern multifrontal method for sparse LU
factorization. SIAM Journal on Matriz Analysis and Applications, 18(1), 140-158,
1997.

M. J. Daydé and 1. S. Duff. The use of computational kernels in full and sparse linear
solvers, efficient code design on high-performance RISC processors. In J. M. L. M.
Palma and J. Dongarra, eds, ‘Vector and Parallel Processing - VECPAR’96’, Lecture
Notes in Computer Science 1215, pp. 108-139, Springer, Berlin, 1997.

M. J. Daydé, J. P. Décamps, J.-Y. L’Excellent, and N. I. M. Gould. Solution of large scale
partially separable unconstrained optimization problems using element-by-element
preconditioners. In ‘Proceedings of NAFEMS World Congress 97°, Vol. 2, pp. 942—
953, 1997.

M. J. Daydé, J.-Y. L’Excellent, and N. I. M. Gould. Preprocessing of sparse unassembled
linear systems for efficient solution using element-by-element preconditioners. In
A. M. L. Bourgé, P. Fragniaud and Y. Roberts, eds, ‘Proceedings of Euro-Par 96,
Lyons’, number 1124 in ‘Lecture Notes in Computer Science’, pp. 34-43, Springer
Verlag, Heidelberg, Berlin, New York, 1996.

M. J. Daydé, J.-Y. L’Excellent, and N. I. M. Gould. Element-by-element preconditioners
for large partially separable optimization problems. SIAM Journal on Scientific
Computing, 18(6), 1767-1787, 1997.

I. S. Duff. A review of frontal methods for solving linear systems. Computer Physics
Communications, 97(1&2), 45-52, 1996.

I. S. Duff. Sparse numerical linear algebra: direct methods and preconditioning. in I. S.
Duff and G. A. Watson, eds, ‘The State of the Art in Numerical Analysis’, pp. 27-62,
Oxford, 1997. Oxford University Press.

[. S. Duff and J. K. Reid. The design of MA48, a code for the direct solution of
sparse unsymmetric linear systems of equations. ACM Transactions on Mathematical
Software, 22(2), 187-226, 1996.

I. S. Duff and J. K. Reid. Exploiting zeros on the diagonal in the direct solution of
indefinite sparse symmetric linear systems. ACM Transactions on Mathematical

Software, 22(2), 227-257, 1996.

I. S. Duff and J. A. Scott. The design of a new frontal code for solving sparse unsymmetric
systems. ACM Transactions on Mathematical Software, 22, 30—45, 1996.

35

[. S. Duff and J. A. Scott. Frontal software for the solution of sparse linear equations.
In J. Wasniewski, J. Dongarra, K. Madsen and D. Olesen, eds, ‘Applied Parallel
Computing. Industrial Computation and Optimization. Proceedings of the Third
International Workshop, PARA ’96’, Lecture Notes in Computer Science 1184,
pp- 227-238, Springer Verlag, Heidelberg, Berlin, New York, 1996.

I. S. Duff and A. Watson, editors. The State of the Art in Numerical Analysis, Oxford
University Press, Oxford, 1997.

S. Jones, B. Jumarhon, S. McKee, and J. A. Scott. A mathematical model of a biosensor.
Journal of Engineering Mathematics, 30, 321-337, 1996.

M. Metcalf and J. K. Reid. The F' programming language. Oxford University Press, Oxford,
1996.

M. Metcalf and J. K. Reid. Fortran 90/95 explained. Oxford University Press, Oxford,
1996.

J. K. Reid. An appreciation of F. Fortran Journal, 8(6), 3-9, 1996.
J. K. Reid. The array features. Computer Standards and Interfaces, 18, 323-331, 1996.

J. K. Reid. Remark on fast floating-point processing in common lisp. ACM Transactions
on Mathematical Software, 22, 496-497, 1996.

J. K. Reid. Two approaches to exception handling in Fortran 90. In R. F. Boisvert, ed.,
‘The Quality of Numerical Software: Assessment and Enhancement’, pp. 210-223.
Chapman and Hall, London, 1997.

J. A. Scott. Element resequencing for use with a multiple front solver. International
Journal of Numerical Methods in Engineering, 39, 3999-4020, 1996.

56

