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1 Introduction (I.S. Duff)

This report covers the period from January 1994 to December 1995 and describes work

performed by the Numerical Analysis Group within the Computing and Information Systems

Department at the Rutherford Appleton Laboratory.

The details of our activities are documented in the following pages. These words of

introduction are intended merely to provide an introduction and additional information on

activities that are not appropriate for the detailed reports.

The support and development of the Harwell Subroutine Library (HSL) continues to be one

of our major activities. This reporting period has seen new releases of both HSL (Release 12)

and the NAG-marketed Harwell Sparse Matrix Library (Mark 2). The turbulent times at AEA

Technology have led to some confusion in their support for the marketing and sales of HSL

with three changes of management by them over the last year. For the moment, at least some

stability reigns and we are developing a good working relationship with Scott Roberts and

Richard Lee who took over from John Harding on the eve of Release 12. As in the previous

Release, we benefited greatly from the consultancy of Mike Hopper who, in modern parlance,

performed the quality control in the latter stages of code development. Our contacts with Ian

Jones and his CFDS group at Harwell continue on a very informal basis, and we have

continued our collaboration with Andrew Cliffe on the solution of finite-element equations by

frontal methods.

Most of our visitors have been fairly short-term although the interaction with them has been

quite intense. We continue our interaction with Oxford in support of the Joint Computational

Mathematics and Applications Seminar series and have hosted several talks at RAL through

that programme. We were involved in the successful CCLRC bid to host an HPCI Centre at

Daresbury, and we hosted a course on Numerical Calculations with Matrices at RAL in

December 1995 with the support of this Centre. It was a very successful course in which all

Group members participated and may well be the forerunner to subsequent similar courses in

numerical computation.

John has continued to combine his interests in Fortran and sparse matrices giving several

talks on these topics during the last two years. He has been very involved through ISO WG5

in influencing the development of Fortran 95 and has been their main architect of a proposal

for the inclusion of exception handling in Fortran 2000. He attended several X3J3 meetings,

primarily to promote and develop this proposal, and discusses this and other related Fortran

activities in Section 6.2. John has given talks on automatic differentiation at Oxford; Fortran

90 and Fortran 95 at RAL, NAG Users’ Association, RMCS Shrivenham, and JPL; and has

given courses on Fortran 90 at RAL and Shrivenham, where he is a visiting Professor. He had

a six-week visit to Australia, primarily hosted by ANU Canberra, during which time he

worked and gave talks on Fortran 90, sparse matrices, constrained least squares, and

automatic differentiation, the latter topic in which he supervises a CASE student, David
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Cowey. John gave some MSc lectures on iterative methods at Reading University and has

given invited talks at meetings in Hamburg, RAL, St Girons, and Toulouse, and a contributed

talk in Linköping.

Nick’s collaboration with Conn and Toint continues to expand the theory and practice of

large-scale optimization. Much of their work is embodied in the LANCELOT package for

which they were awarded the Beale-Orchard-Hays prize for excellence in computational

mathematical programming in August 1994. He still has joint research activities with contacts

made during his visit to CERFACS in 1993 and has had an Alliance grant from the British

Council to support this activity. He was a co-supervisor of Jean-Yves L’Excellent, who

completed his thesis at ENSEEIHT-IRIT in Toulouse in November 1995. Another student of

Nick’s, Marli Hernandez at the Unversity of Hertfordshire, completed her thesis successfully

in 1995. Nick is a Visiting Fellow at RMCS Shrivenham. He was an invited speaker at

conferences at CORE in Belgium, Manchester, RAL, St Girons, and Stockholm, has given

seminars at RAL and Durham and contributed talks at Dundee and Minneapolis.

Jennifer has developed several international collaborative projects over the past year,

primarily in the computation of sparse eigenvalues. Although she has continued her part-time

working, now on a five-day per week basis, she remains so productive that it is easy to forget

this fact. In addition to her work on eigensystems (in which she hosted a visit from Richard

Lehoucq), she has continued with her work on frontal solvers and has developed a suite of

iterative solvers and an approximate inverse preconditioning technique in collaboration with

Nick. Jennifer continues to coordinate our joint seminar series with Oxford University. She

gave an invited talk at Toulouse and posters and contributed talks at Utah, Dundee, and

Manchester.

Iain still leads a project at the European Centre for Research and Advanced Training in

Scientific Computation (CERFACS) at Toulouse in France and has welcomed all Group

members to Toulouse during the last year (see Section 6.1). Iain is a chief editor of the IMA

Journal of Numerical Analysis, editor of the IMANA Newsletter, chairman of the IMA

Programme Committee, an adjudicator for the Fox Prize, IMA representative on the CCIAM

International Committee that overseas the triennial international conferences on applied

mathematics, and a Visiting Professor at Strathclyde. In high performance computing, he has

given tutorials at Supercomputing ’94 (Washington DC), Supercomputing’95 (San Diego),

and HPCN Europe (Milan), is on the Scientific Council of the CRIHAN Centre in Rouen, and

was on an international panel that reviewed proposals for Supercomputing in Sweden. Iain has

been on the Programme Committee for several international meetings and was on the

organizing committee for the Linear Algebra meeting in Manchester in July 1994. He has

given seminars in Berkeley, Boulder, Copenhagen, NASA Ames, Oak Ridge, Tennessee, and

Umeå, and has given invited presentations at Ascona (Switzerland), Bonn, Copenhagen,

Grenoble, Hamburg, Linköping, Oxford, San Francisco, St Girons, St Malo, Skalsky Dvur

(Czech Republic), Toulouse, and Yokohama.
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We have tried to subdivide our activities to facilitate the reading of this report. This is to

some extent an arbitrary subdivision since much of our work spans these subdivisions. Our

main research areas and interests lie in sparse matrix research, nonlinear algebra and

optimization, applied mathematics, and numerical linear algebra. Work pertaining to these

areas is discussed in Sections 2 to 5, respectively. We group some miscellaneous topics in

Section 6. Much of our research and development results in high quality advanced

mathematical software for the Harwell Subroutine Library. The organization, maintenance,

documentation, and distribution of this Library is in itself a major task and we report on work

in these areas in Section 7. Lists of seminars (in the joint series with Oxford), technical

reports, and publications are given in Sections 8, 9, and 10, respectively. Current information

on the activities of the Group and on Group members can be found through page

http://www.cis.rl.ac.uk/struct/ARCD/NUM.html of the World Wide Web.
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2 Sparse Matrices

2.1 The direct solution of sparse unsymmetric linear sets of equations (I.S. Duff
and J.K. Reid)

We have completed a new code, MA48, for the direct solution of a sparse unsymmetric set of

linear equations

Ax = b, (1)

where A is usually square and nonsingular. The main features are:

(i) a fast and robust solution to sparse unsymmetric sets of linear equations,

(ii) a user-friendly input format (entries in any order in a real array and corresponding

row and column indices in two parallel integer arrays, with duplicates allowed

and summed),

(iii) the code switches to full-matrix processing when the reduced matrix is

sufficiently dense, using Basic Linear Algebra Subprograms (BLAS) at Levels 1,

2, and 3,

(iv) the pivot sequence is normally chosen automatically from anywhere in the

matrix, but the choice may be limited to the diagonal or the pivot sequence may

be specified,

(v) in the event of insufficient storage allocation by the user, the package continues

with the computation to obtain a good estimate of the amount required,

(vi) the code computes and uses the block triangular form,

(vii) entries smaller than a threshold are dropped from the factorization,

(viii) singular or rectangular matrices are permitted,

(ix) another matrix of the same pattern may be factorized with or without additional

row interchanges for stability,

(x) there is an option of specifying that some columns have not changed when

factorizing another matrix,

(xi) another problem with the same matrix or its transpose may be solved,

(xii) iterative refinement of the solution is available to improve its accuracy or provide

an error estimate.

A most exciting development is the work of Gilbert and Peierls [3] for economically

generating the patterns of the columns of the factors when factorizing with a given column

sequence but allowing for row interchanges. The overall complexity is O(n) + O(f) where f is

the number of floating-point operations. There are overheads, associated with the

recomputation of the sparsity patterns of the columns and the row interchanges may cause

extra fill-ins, so in MA48 we provide two ‘factorizes’ which we call first and fast. The first

factorize must be provided with a column sequence. Thus, the analyse phase need only

provide a recommended pivot sequence; there is no need for this phase to provide the sparsity
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pattern of the factorized matrix. We have therefore designed the analyse phase to provide the

permutations without the actual factors. This saves storage since working storage is then

needed only for the active submatrix of the block on the diagonal of the block triangular form

that is currently being processed. It may save time since the vectors that hold the active

columns are shorter and data compressions are much less likely to be needed.

Since the Harwell Subroutine Library code MA28 is a benchmark standard in the solution of

sparse unsymmetric equations, we have compared MA48 with MA28 on three computing

environments, taking ratios of storage and execution times for the various phases in the

solution of (1). The results are summarized in Table 2.1.1 which shows the median and

quartiles for these ratios. MA28 always produces a factorization when it performs an analysis

and its only form of factorization is without pivoting. The MA28 analyse time is therefore

strictly comparable with the sum of the analyse and factorize times of MA48, and this

comparison is shown in column “Analyse + Fact.”. However, analyse alone or factorize with

pivoting may also be needed by the user, so we also use the MA28 analyse time to compare

separately with the analyse (column “Analyse”) and first factorize (column “First Fact.”)

times of MA48.

In view of these satisfactory results, we regard MA28 as having been rendered obsolescent

by MA48 and have thus flagged it for removal in a later Release of HSL. The design of MA48 is

described in [1] and in more detail in [2].

Array Analyse First Analyse Fast Solve
size reqd Fact. + Fact. Fact.

CRAY lower quartile 0.50 2.87 7.84 2.03 1.92 1.79
median 0.69 4.47 12.10 3.26 2.61 2.20
upper quartile 0.71 7.21 21.41 5.11 3.41 2.35

SUN lower quartile 0.50 2.20 3.88 1.38 1.27 0.70
median 0.68 3.17 5.09 1.89 1.79 0.83
upper quartile 0.74 6.39 9.71 3.52 2.21 1.03

RS/6000 lower quartile 0.50 2.67 7.99 2.04 2.03 1.03
median 0.68 3.58 11.69 2.64 2.61 1.16
upper quartile 0.74 7.07 24.33 5.06 4.17 1.36

Table 2.1.1. MA28 results divided by those with MA48.

References

[1] Duff, I.S. and Reid, J.K. (1995). The design of MA48, a code for direct solution of sparse

unsymmetric linear systems of equations. Report RAL-TR-95-039, Rutherford Appleton

Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX. To appear in ACM Trans. Math.

Softw.

[2] Duff, I.S. and Reid, J.K. (1993). MA48, a Fortran code for direct solution of sparse

unsymmetric linear systems of equations. Report RAL-93-072, Rutherford Appleton

Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX.

[3] Gilbert, J. R. and Peierls, T. (1988). Sparse partial pivoting in time proportional to

arithmetic operations. SIAM J. Sci. Stat. Comput. 9, 862-874.
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2.2 The design and use of algorithms for permuting large entries to the
diagonal (I. S. Duff and J. Koster)

We have developed software for permuting a sparse matrix so that the diagonal of the

permuted matrix has entries of large absolute value. We have modified and extended Harwell

Subroutine Library routine MC21, which finds a maximum transversal of any unsymmetric

sparse matrix. A maximum transversal is a set of entries of maximum cardinality where no

two members of the set are in the same row or column. For a structurally nonsingular matrix,

this cardinality will be equal to the matrix order. Our extension consists of taking into account

the values of the matrix entries and finding, among all maximum transversals, one that

maximizes the minimum entry on the diagonal. We call such a transversal a bottleneck

transversal. We have explored several ways of doing this and have designed one that is in

practice similar in execution time to only a few calls to MC21 itself.

There are many ways in which the permutation of a matrix to put the bottleneck transversal

on the diagonal can be useful and we are investigating several of these. For example, many

current algorithms for the solution of sparse sets of linear equations (for example MA37 and

MA41) perform an analysis phase that assumes that diagonal entries will be suitable as pivots

during a subsequent numerical factorization phase. Now, while there is no guarantee that

having a bottleneck transversal on the diagonal will ensure the pivots selected by the analysis

are numerically satisfactory, we intuitively feel that this should be better than a more arbitrary

set of entries on the diagonal. We are currently experimenting with this preordering using the

MA41 code. Initial findings are encouraging.

We are also examining the use of bottleneck transversals in the context of a block iterative

scheme like that developed in [1]. In such a scheme, a direct solution scheme is used on

blocks of the matrix, and the overall solution is obtained by iterating over the blocks. By

placing large entries on to the diagonal, we can improve the robustness of our direct solver, in

a similar fashion to the discussion in the previous paragraph, while at the same time helping

the iterative part of the solver by reducing the influence of the overlapping part of the blocks.

Finally, we are also examining the use of bottleneck transversals in techniques for obtaining

preconditioning matrices for iterative solution. Clearly, it would appear that a diagonal

preconditioner consisting of the bottleneck transversal might perform better than an arbitrary

one and this effect might also influence more sophisticated preconditioners.

A fuller discussion of this work will shortly be available [2].

References

[1] Arioli, M., Duff, I. S., Noailles, J., and Ruiz, D. (1992). A block projection method for

sparse equations. SIAM J. Sci. Stat. Comput. 13, 47-70.

[2] Duff, I. S. and Koster, J. (1996). The design and use of algorithms for permuting large

entries to the diagonal of sparse matrices. To appear.
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2.3 An approximate minimum degree ordering (P.R. Amestoy, I.S. Duff, and

T.A. Davis)

The minimum degree reordering scheme for symmetric matrices is one of the oldest known

reordering schemes for sparse matrices [3]. At each stage of the elimination, the next pivot is

chosen as a diagonal entry in the reduced matrix with least number of other entries in its row.

This very simple algorithm is a highly successful ordering scheme for reducing work and

fill-in when performing Gaussian elimination. However, on larger problems, as commonly

occur today, it can be quite slow. Most of the time is spent on the degree update, that is

updating the row counts after a pivoting step. This cost is even more noticeable because of the

recent increase in the speed of the numerical factorization algorithms.

The purpose of our work, which is described in more detail in [1], is to design an ordering

scheme that closely approximates the minimum degree ordering, and so retains its good

properties, while at the same time executes much more quickly than the best available

implementation of minimum degree.

We use the same quotient graph model as most current implementations of minimum

degree to represent the symbolic factorization but replace the costly degree update by an

approximate update, which in many cases will be exact. The resulting algorithm is typically

much faster than previous minimum degree ordering algorithms and produces results that are

comparable in quality with the best orderings from other minimum degree algorithms.

We show a comparison in Table 2.3.1 of our new algorithm with MMD, the multiple

minimum degree algorithm of Liu [2], and the minimum degree ordering from the Harwell

Subroutine Library code MA27. This clearly illustrates the power of our new algorithm. It has

been incorporated in the Harwell Subroutine Library at Release 12 as subroutine MC47.

Matrix Order Entries Number of entries in L Time

(in thousands) (seconds on SUN SPARC 10)

MC47 MMD MA27 MC47 MMD MA27

RAEFSKY3 21200 733784 4709 4779 5041 1.05 2.79 1.23

BCSSTK31 35588 572914 5115 5231 6056 4.55 11.60 7.92

FINAN512 74752 261120 4778 8180 8159 15.03 895.23 40.31

BBMAT 38744 1274141 19673 19876 21139 27.80 200.86 134.58

ORANI678 2529 85426 147 147 147 5.49 124.99 124.66

PSMIGR1 3140 410781 3020 2974 2966 10.61 186.07 229.51

Table 2.3.1. Comparison of MC47 with MMD and MA27 orderings.

References

[1] Amestoy, P. R., Davis, T. .A., and Duff, I. S. (1995). An approximate minimum degree
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ordering algorithm. Technical Report TR/PA/95/09, CERFACS, Toulouse. To appear in

SIAM J. Matrix Anal. and Applics.

[2] Liu, J. W. H. (1985). Modification of the minimum degree algorithm by multiple

elimination. ACM Trans. Math. Softw. 11, 141-153.

[3] Tinney, W. F. and Walker, J. W. (1967). Direct solutions of sparse network equations by

optimally ordered triangular factorization. Proc. IEEE 55, 1801-1809.

2.4 Developments in frontal solvers (I. S. Duff and J. A. Scott)

We are concerned with the solution of n × n linear systems of equations

Ax = b, (1)

where A is a large sparse matrix arising from finite-element analysis. The matrix A is a sum of

elemental matrices

m
(k)A = A . (2)∑

k=1

(k)Each matrix A has entries only in the principal submatrix corresponding to the variables in

element k and represents contributions from this element. This principal submatrix is assumed

to be dense. The matrix A may be unsymmetric but the form (2) implies that the sparsity

pattern is symmetric with nonzero diagonal entries. One possible direct solution method for

(1), and the one which is still frequently the method of choice in many structural engineering

applications, is the frontal method.

There are two major deficiencies with the frontal method.

• Far more arithmetic may be done than is required by the numerical factorization

• There is little scope for parallelism, other than that which can be obtained through the use of

high level BLAS.

We have been concerned with looking at ways in which we can improve the performance of

the frontal method and, in particular, the performance of our frontal code MA42 (Duff and

Scott [1], [2]).

One possible approach is to extend the basic frontal algorithm to use multiple fronts (Duff

and Scott [3]). In a multiple front algorithm, the finite-element domain is partitioned into a

number of subdomains and a frontal decomposition is performed on each subdomain

separately. Since the factorizations of the subproblems are independent, this can be done in

parallel. Once the assembly and eliminations on the subdomains are complete, there remains

an interface problem to be solved. In our experiments, we solved the interface problem using

a frontal method. To implement the multiple front algorithm, we developed the package MA52.
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This is a collection of subroutines, that can be used in conjunction with the MA42 package.

We examined the performance of MA52 and MA42 in two parallel environments: on an eight

processor shared memory CRAY Y-MP8I and on a network of five DEC Alpha workstations

using PVM. The results we obtained for a model finite-element problem are encouraging and

indicate that, for sufficiently large problems, high performance and good speedups can be

achieved. Full details are given in [3].

For high performance computers where data must be cache resident before arithmetic

operations can be performed on it, we are looking at enhancing the performance of MA42 by

increasing the proportion of arithmetic operations performed using Level 3 BLAS. This is

done by only performing eliminations once a block of pivots of a predetermined size is

available. This can increase the amount of arithmetic but enables better reuse of data in the

cache. Preliminary experiments on the Silicon Graphics Power Challenge machine using

different pivot block sizes suggest that significant improvements in performance can be

achieved using this approach.

References

[1] Duff, I. S. and Scott, J. A. (1993). MA42 – a new frontal code for solving sparse

unsymmetric systems. Report RAL-93-064, Rutherford Appleton Laboratory, Chilton,

Didcot, Oxfordshire OX11 0QX.

[2] Duff, I. S. and Scott, J. A. (1996). The design of a new frontal code for solving sparse

unsymmetric systems. ACM Trans. Math. Softw., to appear.

[3] Duff, I. S. and Scott, J. A. (1994). The use of multiple fronts in Gaussian elimination.

Report RAL-94-040, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire

OX11 0QX.

2.5 Fortran 90 version of Harwell frontal code MA42 (J.K. Reid and J.A. Scott)

The code MA42 [1] performs frontal elimination for a finite-element problem, normally using

direct-access files for holding the factors. There may be significant efficiency gains from

splitting a large problem into subdomains, using MA42 on each subdomain to create a Schur

complement matrix for the variables on the boundary of the subdomain, and finally using

MA42 for the interface problem. This multiple front approach is hard to organize because of

the long argument lists and the need for distinct workarrays and direct-access files. We have

therefore constructed a Fortran 90 version that collects everything pertaining to a problem in a

single object.

Using the Fortran 90 version, a typical run looks like this:

USE HSL_MA42
TYPE(MA42_DATA) DATA ! DATA holds everything about the problem.
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CALL MA42_INITIALIZE (DATA)
DO I = 1, NUMELT ! Read the integer data for the elements, one by one.

READ . . .
CALL MA42_ANALYSE (LIST(1:LEN),DATA)

END DO
DO I = 1, NUMELT ! Read the real data for the elements, one by one.

READ . . .
CALL MA42_FACTORIZE (LIST(1:LEN), &

REALS(1:LEN,1:LEN),DATA)
END DO
READ . . . ! Read the data for the right-hand side.
CALL MA42_SOLVE (B,X,DATA)

The module looks after everything in DATA, except a few control or informative variables.

Options may be specified in extra calls such as

CALL MA42_FILES(LENBUF,LENFILE,DATA)

which provides information on the files, by use of optional arguments, such as

CALL MA42_SOLVE(B,X,DATA,TRANS)

or setting components of the data structure, such as

DATA%ALPHA = 0.001

and extra information may be retrieved by accessing components, such as

FLOP_COUNT = DATA%FLOPS

The Fortran 90 code does run a little slower that the Fortran 77 code, hardly surprising since

we call the old code from within a Fortran 90 jacket. Depending on the compiler and

computer, we have found that the overhead varies from about 5% to about 50%.

References

[1] Duff, I. S. and Scott, J. A. (1993). MA42 – a new frontal code for solving sparse

unsymmetric systems. Report RAL-93-064, Rutherford Appleton Laboratory, Chilton,

Didcot, Oxfordshire OX11 0QX.

2.6 Element resequencing for use with a multiple front solver (J. A. Scott)

The efficiency of a frontal scheme, in terms of both storage and computation time, is

dependent upon the ordering of the elements. This is because, in the frontal method, the

system matrix A is never assembled explicitly but the assembly and Gaussian elimination

processes are interleaved, with each variable being eliminated as soon as its row and column

are fully summed. This allows all intermediate working to be performed in a full matrix,

termed the frontal matrix, whose rows and columns correspond to variables that have not yet

been eliminated but occur in at least one of the elements that have been assembled. Since the

order of the frontal matrix increases when a variable appears for the first time and decreases
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whenever a variable is eliminated, the order in which the elements is input is critical. In recent

years, many algorithms for automatically ordering finite elements have been proposed in the

literature.

In a multiple front algorithm (Duff and Scott [1]), the finite-element domain is partitioned

into a number of subdomains and a frontal decomposition is performed on each subdomain

separately. For a given partitioning of the domain, the efficiency of the multiple front

algorithm depends on the ordering of the elements within each subdomain. The aim of our

study was to look at the limitations of existing element reordering algorithms when applied to

a subdomain and to consider how these limitations may be overcome.

The problem of ordering elements for use with a multiple front algorithm is more

complicated than that of sequencing elements for a frontal solver on a single domain since it is

necessary to distinguish between variables which can be eliminated once they are fully

summed and interface variables that cannot be eliminated within the subdomain. We have

considered two approaches which involve two different ways of locating a suitable starting

element s for the reordering procedure. Once a starting element has been selected, both

methods use a modification of the method of Sloan [2] to reorder the remaining elements. Our

first method for choosing s is based on finding pseudo-peripheral nodes of the element

communication graph. The second method introduces an artificial element, the guard element,

and uses this extra element to find an element lying as far from the interface boundary as

possible and uses this to start the reordering. We have tested both approaches on a range of

problems and compared their performance with that of the Harwell Subroutine Library code

MC43, which is designed for single domain problems. Both approaches give significant

improvements over MC43, and the second method was almost always the method of choice.

On the basis of our findings, a code MC53 implementing this second method has been

developed and is included in Release 12 of the Harwell Subroutine Library.
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2.7 Exploiting zeros on the diagonal in the direct solution of indefinite sparse
symmetric linear systems (I.S. Duff and J.K. Reid)

We consider the direct solution of sparse sets of n linear equations

Ax = b, (1)

when the matrix A is symmetric and has a significant number of zero diagonal entries. An

example of applications in which such linear systems arise is the equality-constrained

least-squares problem

minimize ||Bx − c|| (2)2
x

subject to

Cx = d. (3)

This is equivalent to solving the sparse symmetric linear system

I B r c
0 C λ = d . (4)

T TB C 0 x 0

Our earlier Harwell Subroutine Library code MA27 uses a multifrontal solution technique

and is unusual in being able to handle indefinite matrices. It has a preliminary analysis phase

that chooses a tentative pivot sequence from the sparsity pattern alone, assuming that the

matrix is definite so that all the diagonal entries are nonzero and suitable as 1 × 1 pivots. For

the indefinite case, this tentative pivot sequence is modified in the factorization phase to

maintain stability by delaying the use of a pivot if it is too small or by replacing two pivots by

a 2 × 2 block pivot.

The assumption that all the diagonal entries are nonzero is clearly violated in the above

example. For such problems, the fill-in during the factorization phase of MA27 can be

significantly greater than predicted by the analysis phase. Duff, Gould, Reid, Scott, and

Turner [1] found that the use of 2 × 2 pivots with zeros on the diagonal alleviated this problem

and also assisted the preservation of sparsity during the analysis phase. Our new code, MA47,

is based upon this work and, like MA27, uses a multifrontal method. It will work for the

definite case, but there are many opportunities for simplifications and efficiency

improvements, so we plan to provide a separate code for this special case.

The design of the new code, MA47, is described in [2] and in more detail in [3]. It was hoped

that MA47 would replace MA27 for the indefinite case, but our experience is that it is not always

superior. A comparison summary is shown in Table 2.7.1 of runs on a CRAY Y-MP and a

SUN SPARCstation 10 on a collection of test problems. The analyse phase of MA47 is more

complicated and is inevitably more expensive, but we expect actual applications to amortize

this over several factorizations and many solves. For factorization and solution, in general,

MA47 with its default outperforms MA27 with its default, but it is clear that MA27 will continue
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to be needed for some problems. We are keeping both codes in the Harwell Subroutine

Library.

Total storage Storage for factors Time
Predicted Predicted Actual Analyse Factorize Solve

CRAY lower quartile 0.96 0.59 0.31 1.69 0.53 1.44
median 1.45 1.15 0.57 2.64 1.38 1.82
upper quartile 1.86 1.46 1.21 5.41 2.04 2.18

SUN lower quartile 0.96 0.59 0.31 1.88 0.25 0.45
median 1.45 1.15 0.57 3.32 0.96 0.75
upper quartile 1.86 1.46 1.12 5.58 1.88 1.40

Table 2.7.1. MA47 to MA27 ratios using default parameter settings.
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2.8 A combined unifrontal/multifrontal method (T.A. Davis and I.S. Duff)

Frontal methods (see Section 2.4) are particularly powerful inasmuch as they make

considerable use of the Level 3 BLAS kernels while keeping the amount of integer overhead

and data movement low. However, they usually require a far greater number of floating-point

operations than methods using an ordering based on Markowitz or minimum degree.

Multifrontal methods attempt to capture the benefits of both the full arithmetic of frontal

schemes and the orderings designed to reduce fill-in and arithmetic. They are quite successful

at this but still involve more data movement and indirect addressing than a frontal method.

The object of this work is to combine elements of a frontal solver into a multifrontal solver in

order to obtain a factorization that is efficient in arithmetic, number of operations, and

overhead operations.

In the multifrontal method, several frontal matrices are used. Each is used for one or more

pivot steps, and the resulting Schur complement is summed with other Schur complements to

generate another frontal matrix. Although this means that arbitrary sparsity patterns can be

handled efficiently, extra work is required to add the Schur complements together and can be

costly because indirect addressing is required. The (uni–)frontal method avoids this extra

work by factorizing the matrix with a single frontal matrix. Rows and columns are added to
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the frontal matrix, and pivot rows and columns are removed. Data movement is simpler, but

higher fill-in can result if the matrix cannot be permuted into a variable-band form with small

profile. We consider a combined unifrontal/multifrontal algorithm to enable general fill-in

reducing orderings to be applied without the data movement of previous multifrontal

approaches.

Suppose we attempt to factorize a matrix with the frontal method, but we give it a smaller

working array than it requires. The factorization proceeds until the point at which the front

size would grow larger than the working array. At this point the frontal method halts, unable

to proceed. However, the remaining terms in the current frontal matrix form a Schur

complement (which we refer to as a contribution block). We store the contribution block and

deallocate the working array. A new pivot is then selected based on a fill-in reducing heuristic

on the whole reduced matrix, and a new frontal matrix started with this starting pivot, in a

newly allocated working array. The contribution block from the first frontal matrix is

eventually assembled into a subsequent frontal matrix. This is the combined

unifrontal/multifrontal method, described in more detail in [1].

In Table 2.8.1, we compare an earlier version of our unsymmetric multifrontal code (old)

with one incorporating this new device (new) and include a comparison of these codes with

the frontal code, MA42. The test matrices, from the Harwell-Boeing Collection and some large

examples collected by Tim Davis, show quite clearly the advantage of using our combined

unifrontal/multifrontal technique.

Matrix Order Entries Total storage required Time
6(10 ) (seconds on CRAY C-98)

MA42 Multifrontal MA42 Multifrontal

(old) (new) (old) (new)

GRE1107 1107 5664 0.1 0.3 0.2 0.21 0.30 0.30

GEMAT11 4929 33185 2.2 0.4 0.3 15.95 0.18 0.20

ORANI678 2529 90158 4.1 1.1 1.0 9.62 2.07 1.36

LHR04 4101 82682 0.7 1.5 0.8 4.21 2.51 1.79

HYDR1 5308 23752 1.1 0.6 0.4 8.01 1.05 1.10

Table 2.8.1. Comparison of unsymmetric multifrontal codes with MA42.
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2.9 An unsymmetric multifrontal code (T.A. Davis and I.S. Duff)

We have used the work discussed in Section 2.8 to design and develop a new multifrontal

code for the solution of sets of sparse unsymmetric equations and have included this code in

Release 12 of HSL as code MA38. Unlike MA37 and MA41, MA38 does not assume any

symmetry in the matrix and its initial pivot selection considers also the values of the matrix

entries and only selects a pivot if it satisfies the normal threshold test. In the current version of

our code, we only offer a factorize which uses the same pivot sequence as in an earlier call to

the analyse-factorize entry.

The underlying representation for this unsymmetric multifrontal method is a directed

acyclic graph, rather than the elimination or assembly trees used by our other multifrontal

codes. The frontal matrices are rectangular rather than square and the internal data

organization during factorization is more complicated since frontal matrices are not usually

absorbed at the parent node in the graph. In this respect, the approach is similar to that of the

HSL code MA47 (see 2.7).

In common with other multifrontal codes, high computational performance is obtained

through the use of higher Level BLAS on the factorizations within the dense frontal matrices.

This code will thus be most efficient when the matrix structure gives rise to large dense

subblocks during the factorization. The algorithm also incorporates the use of unifrontal

processing as discussed in Section 2.8.

We show, in Table 2.9.1 below, a comparison of the performance of MA38 with MA48 on a

range of our standard test problems from the Harwell-Boeing Collection and some matrices

collected by Tim Davis. We see clearly that, on some matrices, this new code is very

competitive with MA48 and can significantly outperform it on some problems. We note,

however, that the functionality of the codes is somewhat different which more than justifies

keeping both in the Harwell Subroutine Library.

Matrix Order Entries Factorization Total storage Number fl-pt ops
6 6time (secs) (10 words) (10 )

MA48 MA38 MA48 MA38 MA48 MA38

GRE1107 1107 5664 0.38 0.30 0.3 0.2 8.1 6.7

ORANI678 2529 90158 1.01 1.36 0.8 1.0 14.2 7.2

PSMIGR1 3140 543162 28.86 22.67 20.9 25.2 10465.3 9489.8

LNS 3937 3937 25407 3.37 1.78 2.2 1.2 280.4 84.1

HYDR1 5308 23752 0.81 1.10 0.4 0.4 0.9 2.7

Table 2.9.1. Comparison of MA38 with MA48. Times in seconds on a CRAY C-98.
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2.10 Unsymmetric multifrontal methods for finite-element problems (A.C.
Damhaug and J.K. Reid)

We have constructed a new multifrontal code for unsymmetric finite-element sets of linear

equations AX = B, which has been included in the Harwell Subroutine Library as MA46. The

matrix A must be input by elements and be of the form

m
(k)A = A∑

k=1

(k)where A is nonzero only in those rows and columns that correspond to variables of the

nodes of the k–th element. Optionally, the user may pass an additional matrix A ofd

coefficients for the diagonal. A is then of the form

m
(k)A = A + A .∑ d

k=1

The right-hand side B is expressed through the summation

m
(k)B = B .∑

k=1

The analysis phase accepts the matrix pattern by element-node connectivity lists and

chooses diagonal pivots for Gaussian elimination to preserve sparsity while disregarding

numerical values. The ordering is done with the minimum-degree heuristic. The final

assembly tree is reordered to reduce the size of the working stack.

To support any kind of data base that might hold the element stiffness matrices, we use

‘reverse communication’ for the matrix factorization. The routine must be called by the user

NB times, where NB is the number of assembly steps (internal nodes of the assembly tree),

determined by the analysis code. In each call, the user must pass a specified sequence of

finite-element coefficient matrices. Pivoting with the usual relative pivot tolerance is

included.

For good performance on machines with cache storage, the user may provide the cache

size. If necessary, the actual elimination is performed in blocks of columns of a size that

allows the active part of the matrix to reside in the cache. On the biggest problem that we ran

in performance tests, this reduced the factorization time with pure Fortran code from 1607 to

1149 secs on a SUN Sparcserver 670 mp and from 342 to 229 secs on a DEC 3000-400.
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We use Level 3 BLAS for the actual computation. Where optimized vendor versions are

available, very good performance can be obtained. Indeed, on the DEC our blocking for good

cache usage did not help, presumably because the vendor-supplied BLAS itself uses blocking.

For the big problem mentioned in the previous paragraph, the time was reduced to 197 secs by

using vendor-supplied BLAS.

The new code comfortably outperformed the code MA37 in our tests. These are summarized

in Table 2.10.1.

DEC 3000-400 SUN Sparcserver 670 mp CRAY Y-MP
Analyse Factorize Solve Analyse Factorize Solve Analyse Factorize Solve

lower quartile 2.3 2.5 1.1 2.1 1.8 0.9 1.5 3.2 1.0
median 3.3 2.7 1.4 2.9 2.0 1.1 1.7 3.8 1.2
upper quartile 13.7 3.7 1.6 11.5 2.2 1.2 7.0 4.0 1.4

Table 2.10.1. MA37 times divided by MA46 times.

More detail is available in the report [1].
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2.11 MUPS: a MUltifrontal Parallel Solver for sparse unsymmetric sets of
linear equations (P.R. Amestoy and I.S. Duff)

We have developed our prototype MUPS package to produce a new HSL code, MA41, for the

solution of sets of sparse unsymmetric equations using a multifrontal method. MA41 is similar

to MA37 in the sense that the initial analysis is performed on a symmetrized pattern of the

original matrix and assumes that pivots can be chosen from the diagonal in any order. It is thus

best suited to systems which are structurally symmetric or nearly so and which are diagonally

dominant. It differs from MA37 in several respects.

We have reorganized the structure of the code along the lines described in [3] and [4] so

that it is no longer assumed that the code is being executed on a single processor. This makes

the internal data structures a little more complicated but the overhead for uniprocessor

running is almost negligible. We also require a more complex data management policy so that

garbage collections do not interfere with parallel efficiency, see [2]. Another main change

from MA37 is that we make extensive use of the higher Level BLAS which increases

computational efficiency on all machines, particularly those with caches or vector chips [1].

Other enhancements to MA37 include options for scaling, permutation so that the diagonal is

zero-free, error analysis, and iterative refinement.

The uniprocessor version is included in the standard release of the Harwell Subroutine
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Library (Release 12), but versions for shared memory parallel computers are also available on

request. The code is designed so that it is relatively simple to develop a version for any shared

memory machine since the only primitives used by the code involve task starting and locks.

At present, we have fully tested versions for the CRAY YMP/C90 range of machines and for

an Alliant FX/80 and are currently writing a version for multiprocessor Sun workstations.

Versions of the code have also been designed and run on some virtual shared memory

machines, for example on a BBN TC 2000 and a KSR-1.

We show, in Table 2.11.1 below, a comparison of the performance of the uniprocessor

version of MA41 with MA37 on a range of our standard test problems from the Harwell-Boeing

Collection and some matrices collected by Tim Davis. These results indicate the

improvements we have made and illustrate the power of using vendor-supplied BLAS on the

HP 715/64.

Matrix Order Entries Analyse time Factorization time Solve time

MA41 MA37 MA41 MA37 MA41 MA37

ORANI678 2529 90158 4.15 28.41 46.02 251.18 0.29 0.36

BCSSTK15 3948 117816 0.61 0.96 11.79 104.80 0.18 0.34

LNS 3937 3937 25407 0.32 0.34 1.79 13.22 0.07 0.12

SHERMAN3 5005 20033 0.61 0.31 1.07 3.23 0.05 0.06

GOODWIN 7320 324784 1.09 1.81 8.18 510.65 0.23 0.77

WANG3 26024 177168 8.63 5.09 299.50 1591.21 2.17 2.70

Table 2.11.1. Comparison of MA41 with MA37. Times in seconds on an HP 715/64 workstation.
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2.12 Multifrontal QR factorization in a multiprocessor environment (P.R.
Amestoy, I.S. Duff, and C. Puglisi)

We have designed and implemented an algorithm for the parallel QR decomposition of a

sparse matrix A. Our current version is designed for shared memory or virtual shared memory

parallel architectures and only uses the primitives task start and lockon/lockoff or their

equivalents. The algorithm is based on the multifrontal approach and makes use of

Householder transformations. The tasks are distributed among processors according to an
Tassembly tree which is built from the symbolic factorization of the matrix A A. Our approach

is unusual inasmuch as we keep the orthogonal factors Q which may be required in some

applications (for example if an orthogonal basis for the column space of A is wanted) and may

be crucial in the solution of ill-conditioned or weighted least-squares problems. Another novel

aspect of this work is that we use relaxation of the sparsity structure of both the original

matrix and the frontal matrices to improve the performance by enabling more efficient use of

the Level 3 BLAS.

We discussed this work extensively in the previous Progress Report (articles 2.11, 2.12, and

2.13 in [2]). Since then we have completed our main report on this work [1] and have

developed and tuned codes for using the factorization to solve a least-squares problem.

If the QR factorization is being used to solve the sparse least-squares problem min

2||b−Ax|| , and we have the factors Q and R then the solution is obtained by first multiplying b
Tby Q and then solving the triangular system Rx=b. Since Q and R were produced by the

multiprocessor multifrontal factorization, we must also use the underlying tree structure to
Teffect an efficient parallel algorithm for these two phases. For the first calculation (Q b) we

process the assembly tree from the leaf nodes to the root as in the factorization itself. The data

management is, however, much simpler than in the factorization and we can update

components of the product vector without synchronization worries. In the back substitution

phase (Rx=b), we process the assembly tree from the root node to the leaf nodes. If the entries

of Q are discarded and we want to solve the least-squares problem using the semi-normal
Tequations then we also require the forward substitution step R y=c so we have also

implemented this in parallel. We show, in Table 2.12.1 below, that these three phases in the

solution of least-squares problems all parallelize well. The runs for this table were performed

on an Alliant FX/80.
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T TMatrix (m × n) Number Q b Rx=b R y=c

proc.

Time Speedup Time Speedup Time Speedup

LARGE (28254 × 6400) 1 2.59 2.69 2.44

8 0.62 4.18 0.42 6.40 0.43 5.66

MEDIUM2 (18794 × 12238) 1 2.84 1.79 1.66

8 0.77 3.69 0.32 5.59 0.37 4.52

LARGE2 (56508 × 34528) 1 10.98 5.49 3.10

8 3.53 3.11 1.11 4.95 1.19 2.59

NFAC80 (24964 × 6400) 1 1.80 1.02 0.97

8 0.34 5.29 0.18 5.67 0.18 5.25

NFAC100 (39204 × 10000) 1 2.98 1.65 1.54

8 0.70 4.26 0.27 6.11 0.31 4.98

Table 2.12.1. Time in seconds and speedups for multifrontal QR solution phases on an Alliant

FX/80.
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2.13 The solution of linear least-squares problems (J. Cardenal, I.S. Duff, and
J. Jimenez)

We have designed and developed a general method for the linear least-squares solution of

overdetermined and underdetermined systems. The method is particularly efficient when the

coefficient matrix is quasi-square, that is when the number of rows and number of columns is

almost the same. The numerical methods proposed in the literature for linear least-squares

problems and minimum-norm solutions do not generally take account of this special

characteristic. The proposed method is based on an LU factorization of the original

quasi-square matrix A, assuming that A has full rank.

I A x bWe have developed a framework based on the augmented system = forT y cA 0
presenting our algorithm and give a unified approach to solving both least-squares problems

and minimum-norm problems.

In the overdetermined case, the LU factors are used to compute a basis for the null space of
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TA . The right-hand side vector b is then projected onto this subspace and the least-squares

solution is obtained from the solution of this reduced problem. In the case of underdetermined

systems, the desired solution is again obtained through the solution of a reduced system. The

use of this method may lead to important savings in computational time for both dense and

sparse matrices.

We have studied the performance of our algorithm on practical test problems arising in the

solution of problems from the computer simulation of the kinematic behaviour of multibody

systems. Some results from this study are shown in Table 2.13.1.

Code Test 1 Test 2 Test 3 Test 4 Test 5

Rows 117 170 181 385 574

Columns 105 161 180 361 526

Entries 615 1069 1200 1661 3365

Normal equations LAPACK 57.4 203.3 238.6 1914.1 5990.1

MA27 12.1 32.3 37.0 100.3 288.6

Augmented system MA27 7.3 15.6 13.1 43.4 120.7

Proposed Method LAPACK 29.8 47.7 56.4 391.7 2124.2

MA48 4.5 7.3 4.1 21.1 67.7

Table 2.13.1. Solution of sparse least-squares problems. Times in seconds on Silicon Graphics

Onyx workstation (150 MHz).

The test cases all come from multibody simulation problems and, although small by current

sparse matrix standards, they are typical of realistic problems arising in this application.

Indeed the three smaller cases are more usual. It is thus quite surprising that the dense codes

from LAPACK do so badly relatively to the sparse codes. From these results, we see that our

proposed method does very well, especially if a good sparse code is used for the initial LU

factorization of A. A full report on this work is presented in [1].
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2.14 Approximate-inverse preconditioners (N. I. M. Gould and J. A. Scott)

We are interested in using iterative techniques to solve large, sparse systems of linear

equations

Ax = b. (1)

Such methods invariably require one or more matrix-vector products per iteration;

convergence is normally accelerated using a preconditioner P, in which case the required

matrix-vector products involve AP or PA, not A.

The solution of such problems remains a considerable challenge, especially if we are

interested in robust methods for general problems. The difficulties are two-fold. Firstly, the

theory of iterative methods for (1) is, at best, incomplete. In particular, it is difficult to be

confident, when faced with a new problem, that a given algorithm will converge in a

reasonable time, if at all. Secondly, while it is recognized that preconditioning the system

often improves the convergence of a particular method, this is not always so. In particular, a

successful preconditioner for one class of problems may prove ineffective on another class.

Thus, it has long been recognized that the construction of successful general purpose

preconditioners is unlikely to be possible.

We are interested in constructing approximations, M, to the inverse of A for which

|| AM − I || is small (I is the n × n identity matrix). So long as matrix-vector products involving

M are inexpensive, the matrix M may then be a suitable preconditioner. There has been a lot

of recent interest in such preconditioners because they have considerable scope for

parallelization, and there is some evidence that they are perform well in practice. However, a

proper assessment of their effectiveness in comparison with other preconditioners and of the

correctness of the assumptions on which they are based has been lacking.

In this study, we investigate the use of sparse approximate-inverse preconditioners. We

propose a number of enhancements which are shown to significantly improve their

performance on some problems. We compare the use of sparse approximate-inverse

preconditioners with incomplete LU factorization (ILU) preconditioners. Using a range of

problems, we find that the sparse approximate-inverse methods are significantly more

expensive to use on a single processor machine. However, the sparse approximate-inverse

methods can be successful when ILU preconditioners fail, and preliminary studies suggest the

imbalance in the computation times may be redressed when the methods are used in parallel.
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2.15 Linear algebra kernels for parallel domain decomposition methods (L.
Carvalho, I. S. Duff, and L. Giraud)

The modelling of many applications in physics and engineering gives rise to systems of

nonlinear partial differential equations (PDEs). Approximate solutions to these PDEs are

obtained by nonlinear iterative procedures that linearize and discretize the equations. Each

step of the nonlinear procedure involves the solution of large sparse linear systems. These

systems, for example those arising in 3D numerical simulations, can be very large and can

seldom be solved using only direct methods as they may often require too much memory.

Equally, the use of standard iterative techniques, such as those based on Krylov sequences, is

not practical due to the slow convergence. We thus combine iterative techniques with direct

methods for solving subproblems to accelerate the convergence. Examples of this hybrid

approach are block preconditioned Krylov methods and domain decomposition methods.

These are additionally suitable for parallel computing on distributed memory machines.

In this work, we study the parallel implementation of a domain decomposition method

based on a Schur complement approach. In this approach, we divide the problem into

subdomains and, within each subdomain, we partition the variables into internal and interface

variables. We can then solve for the internal variables of each subdomain using a direct

method. The resulting problem in the interface variables has the Schur complement matrix as

coefficient matrix. We solve this using an iterative method. The main concern with this class

of techniques is how to precondition the Schur complement problem.

The preconditioning technique that we use is a block Jacobi preconditioning, where the

blocks correspond to the contribution to the diagonal blocks of the Schur complement matrix

from each subdomain. We approximate the inverse of each of these blocks by tridiagonal

matrices using the probing technique of Chan [2]. This approximation is then factorized and

used as a preconditioner to accelerate the conjugate gradient iteration on the interface

variables. We have found that the method is strongly influenced by the direct method used to

solve the subproblems and show, in Table 2.15.1 below, the effect of using different direct

solvers. The band solver used was DPBTRF/S from LAPACK. The PCG code used in solving

the subproblems was an ICCG code developed by Notay et al. [3].

Solver Memory requirement Factorization Solve

(in Mbytes) times (in sec) times (in sec)

Band 2.12 0.875 0.103

Skyline 1.31 1.034 0.061

MA27 0.70 0.409 0.027

PCG 0.63 0.008 0.875

Table 2.15.1. Comparison between the different linear solvers on a single 64×64 domain. Times

on a single processor of a Meiko CS2-HA.
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We thus choose to solve the subproblems with MA27 and have experimented with this

solution scheme on various parallel environments including a Meiko CS2-HA and a network

of Sun SPARC-10 workstations. We have studied the effect of different partitioning strategies

and have examined speedup and scaled speedup. More details of these results can be found in

[1].
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2.16 Solution of large sparse unsymmetric linear systems with a block iterative
method in a multiprocessor environment (M. Arioli, L. A. Drummond, I.
S. Duff, and D. Ruiz)

Block iterative methods for the solution of large sparse sets of linear equations are well suited

for implementation on parallel computers since the solutions of the partial problems on each

block can be performed independently. We were particularly interested in the Block Cimmino

algorithm since there is no data communication between the subblocks and these subproblems

can be solved simultaneously. We have already designed and experimented with the Block

Cimmino algorithm, accelerated by conjugate gradients and block conjugate gradients, on

shared memory parallel computers [3], [4]. This work was discussed in Section 2.15 of the

previous Progress Report [6].

We have extended this work to enable the implementation on distributed memory

computers and networks of workstations. This has involved the consideration of many issues

not present in the shared memory version. The issues of scheduling and load balancing have

resulted in the design of a scheduler for heterogeneous computing environments that is

discussed in detail in the thesis of Tony Drummond [5].

We made a detailed study of the block conjugate gradient algorithm using various strategies

for distributing the computation. Each strategy has its advantages and disadvantages but we

found that, on most platforms and on most problems, it was best to use a master-slave

distributed implementation in which the master performs an initial scheduling and distributes

the tasks to the slaves. Thereafter the master is only used for global operations like computing

inner products and testing for termination. The alternatives that we compared this strategy

with were only to distribute matrix-vector multiplies and one where there is no master process
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but more redundant computation. We used the master-slave distributed implementation of the

block conjugate gradient algorithm as the preconditioner for a distributed block Cimmino

algorithm.

We have found it very beneficial to allow the scheduler to group closely related tasks on the

same processor and have also experimented with different strategies for the initial subdivision

of the equations for the block Cimmino algorithm. Choosing the best strategies in each case,

we obtain impressive speedups, as is illustrated in Table 2.16.1 below.

Further information on this work can be found in [1], [2] and [5].

Number of 1 2 4 8 10

processors

Time 8.3 4.3 2.5 1.4 1.0

Speedup – 1.9 3.3 5.9 8.3

Efficiency – 0.95 0.83 0.74 0.83

Table 2.16.1. Time in seconds on an IBM SP2 for solution of problem SHERMAN4 from the

Harwell-Boeing Collection.
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2.17 An evaluation of software for sparse nonsymmetric matrices
(R. B.Lehoucq and J. A. Scott)

The last few years has seen a significant increase in research into numerical methods for

computing selected eigenvalues (and eigenvectors) of large sparse nonsymmetric matrices.

This interest has led to a large number of papers and reports on possible numerical methods

for solving this problem. It has also begun to lead to the development of high quality

mathematical software. However, the published numerical results are extremely limited and,

in general, the authors of the software have provided few results comparing the performance

of their software with that of rival software. The aim of the our study is to evaluate this

state-of-the-art software in terms of the following criteria:

• The user interface

• Storage requirements

• Performance

• Accuracy and stability

• Reliability and robustness.

There are three methods which have received significant attention by the numerical

analysis community. These are subspace, or simultaneous, iteration, Arnoldi’s method and the

(nonsymmetric) Lanczos’ method. It is our intention to provide a comprehensive comparative

study of these three methods together with the recent Jacobi-Davidson method. So far, we

have considered subspace iteration and Arnoldi methods, for which several high quality codes

have appeared. The scope of our study is restricted to software which is available either in the

public domain or under licence. For the Lanczos method, there is currently only a very limited

amount of such software. As far as the authors are aware, the only code which falls within the

criteria for inclusion in this study is the code EIGLAL of Freund and Nachtigal. At present,

there is no software implementing the Jacobi-Davidson method which meets our criteria.

The results of our subspace iteration and Arnoldi experiments on a wide-range of practical

problems show that the algorithms are very sensitive to implementation details. None of the

codes is able to solve all the problems included in our test set. Difficulties were encountered in

the case of multiple eigenvalues and highly non-normal matrices. We also conclude that an

implicitly restarted Arnoldi iteration algorithm appears to provide a promising way forward,

but there are many aspects of the practical algorithm that require further investigation before a

robust code becomes available.
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2.18 Sparse BLAS (I.S. Duff, M. Marrone, G. Radicati, and C. Vittoli)

The Basic Linear Algebra Subprograms (BLAS) have had a profound influence on the

development of algorithms and software for the solution of systems of linear equations with

full coefficient matrices. Although a set of sparse BLAS was developed [1], their use and

manufacturer-supported availability are not very widespread. This is in part due to the fact

that they are only Level 1 BLAS and suffer from the same shortcomings of inefficiency on

modern computer architectures as in the full case. Another reason why they are not widely

accepted is that, at least for direct sparse solution, it is more efficient to code the kernels using

full linear algebra so that the full matrix BLAS can be used (see, for example, [2]).

However, in the solution of sparse equations using iterative methods, there is an urgent

need for a standard interface for a sparse matrix by matrix multiplication and a sparse

triangular solution routine. We have therefore designed routines for these cases as Level 3

BLAS so that the Level 2 equivalents are available as a particular case. In the sparse case,

there is the problem of how the matrix is stored, and indeed storage schemes differ very

widely and are usually applications dependent. We have therefore also designed routines for

data conversion with a standard interface to include all the data structures we are familiar

with. Finally, we also include two permutation routines to facilitate the efficient use of the

kernels in iterative solvers.

In response to comments on our earlier report [3], we have made many changes to that

proposal and have developed a revised proposal to address these points including designing a

harness in Fortran 90 [4]. A prototype code for the sparse BLAS is available from the

anonymous ftp server at RAL in file spblas.f in directory pub on seamus.cc.rl.ac.uk.
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2.19 Sparse matrix test problems (I.S. Duff)

Release I of the Harwell-Boeing Collection of sparse matrices consists of sparse matrices in a

standard format from a wide range of application areas. The format used is basically a

column-pointer row-index format and is described in [1]. There are both symmetric and

unsymmetric systems, some rectangular matrices, and a few in unassembled element format.

Sometimes only the pattern of the sparse matrix is given, and sometimes a right-hand side

vector is supplied in addition to the reals.

We have nearly completed the design of Release II of the Collection and will shortly

circulate it for comment [2]. This redesign has proved to be a significant task since we wish to

enhance the value and scope of the Collection while effectively maintaining upward

compatibility with the present release. In particular, we have extended the format to include

more information on matrices and on systems being solved. These include starting guesses,

exact solutions, eigenvalues and vectors, singular values and vectors, permutations, partitions,

and geometric data. We have also made it a requirement that the format of the matrices

enables them to be read easily from C programs. Although we will include matrix generation

programs in the Release II repository, we will not include generated matrices in the Collection

unless they are explicitly submitted and accepted for the Collection. We propose this because

we feel that one of the main strengths of the collection is its reproducibility and do not want to

jeopardize this aspect.

We have written complete Fortran subroutines both to read matrices in the Collection and to

write a matrix in Harwell-Boeing format. These routines are included in the Harwell

Subroutine Library as MC36 and MC37 and are discussed in more detail in Section 7.4 of this

report. They are also distributed with the test Collection.

Release I is available by anonymous ftp from both RAL (seamus.cc.rl.ac.uk) and

CERFACS (ftp.cerfacs.fr), in both cases in directory pub/harwell_boeing. More recently,

some researchers at NIST in Washington DC and their collaborators have been developing an

efficient World Wide Web interface to the Collection.
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3 Optimization

3.1 LANCELOT (A.R. Conn, N.I.M. Gould, and Ph.L. Toint)

Since its release in 1992, the large-scale nonlinear optimization package LANCELOT

(Release A) [1] has been installed at over 150 sites throughout the world. Over the past two

years, research has commenced on its successor. In order to design an improved algorithm, it

has been necessary to test the existing algorithm on as large a class of representative problems

as possible [2], and to compare the algorithm against existing state-of-the-art codes [3].

We have identified a number of areas in which the algorithm needs to be improved.

(i) The algorithm does not handle linear constraints very effectively. Linear constraints are

treated as if they were general nonlinear constraints.

(ii) The algorithm is sensitive to degeneracy at the solution to the problem. Although the

algorithm will converge to a degenerate solution, the rate of convergence may

significantly degrade in the presence of degeneracy.

(iii) Inequality constraints are handled inefficiently by means of slack variables. The

resulting increase in problem dimension is sometimes severe.

Current research is concentrating on interior-point methods for handling the model

subproblem as it is felt that such an approach is capable of coping with all of the

above-mentioned disadvantages of LANCELOT A. However, complications arise as the

model problem may be non-convex, thus requiring a significant reappraisal of interior-point

methods.

In the interim, LANCELOT A has been translated into Fortran 90, using many of the

advanced features of the new language to simplify the calling sequences and to remove

restrictions on fixed-size workspace. The new code has one new feature, the opportunity to

generate problem derivatives automatically. This is possible using the new Harwell

Subroutine Library Fortran 90 package AD01 (see Section 4.1).
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nonlinear optimization Technical Report in preparation, Rutherford Appleton

Laboratory, Chilton, England.

3.2 Iterated-subspace minimization methods (A. R. Conn, N. I. M. Gould,
A.Sartenaer, and Ph. L. Toint)

The problem of minimizing a function of a large number of variables is considered. We are

interested in the case where the value of the objective function and possibly its derivatives are

cheap to compute. We consider a class of Iterated-Subspace Minimization (ISM) methods for

solving these problems.

At each major iteration of such a method, a low-dimensional manifold, the iterated

subspace, is constructed and an approximate minimizer of the objective function in this

manifold then determined. The iterated subspace is chosen to contain vectors which ensure

global convergence of the overall scheme and may also contain vectors which encourage fast

asymptotic convergence.

The iterated subspace is determined by applying the conjugate gradient method to the

Newton equations at the current major iteration. The conjugate gradient method generates a

sequence of search directions as it attempts to minimize the current quadratic model. The

most promising of these directions make up the iterated subspace. In particular, the subspace

comprises

(a) the steepest descent direction, which guarantees convergence;

(b) the truncated-Newton direction, which guarantees rapid convergence; and

(c) a collection of the remaining directions, chosen to give large decreases in the model, or

because they give approximations to dominant eigenvalues.

This approach is compared with truncated-Newton and limited-memory methods, as well as

with LANCELOT. The ISM approach is seen to be competitive with, and in some cases

superior to, these approaches. Extensions to bound-constrained and linearly constrained

minimization methods are suggested.
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3.3 Element-by-element preconditioners in optimization (M. J. Daydé, J.–Y.
L’Excellent, and N. I. M. Gould)

Most functions f, of a large number of variables x, can be expressed as

m

f(x) = f (x),∑ i
i=1

where each of the element functions f (x) has a large invariant subspace. Such a function isi

said to be partially separable [5]. Normally, an element function will have a large invariant

subspace because it only depends on a small number of variables, but this is not always the

case [3]. However, any sufficiently differentiable function with a sparse Hessian matrix is

partially separable so this decomposition is extremely general [5]. Note that the

decomposition is not unique.

At the heart of any iterative algorithm for minimizing a partially separable function, an

approximate solution to the Newton equations

m m

H s = − g ,∑ ∑i i
i=1 i=1

where g = ∇ f (x) and H = ∇ f (x), is sought. The method of choice is now considered to bei x i i xx i

the preconditioned conjugate gradient method (see, for example, [4]).

In [1], we consider preconditioners which aim to mimic the structure implicit in the Newton

equations. These element-by-element methods ([6], [7]) have proved most effective when

applied to problems arising from the solution of partial differential equations. We consider a

number of existing and new element-by-element preconditioners, and report that these

preconditioners appear to be effective in the optimization context. However, their

performance can be significantly improved if groups of elements are amalgamated – treated as

a dense block – before the preconditioner is constructed. A variety of amalgamation

techniques are examined, and the best of these is seen to generate very effective

preconditioners. All of the proposed methods are highly parallelizable and are seen to be

effective on parallel machines [2].
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3.4 Linearly constrained minimization (N. I. M. Gould)

We consider solving the problem

(1) minimize f(x)
nx∈R

subject to a set of m independent linear equations

(2) Ax = b,

where f is twice continuously differentiable. We assume that ∇ f(x) is available and that wexx

wish to exploit this curvature information; contrary to popular belief, this assumption holds

for a wide variety of applications.

Our interest here lies in algorithms which require the solution of problems of the form

(1)–(2) as subproblems. It is likely that the next version of LANCELOT [1] will be based, in

part, upon such subproblems. We are particularly concerned with the case where n and

possibly m are large, and the matrices A and ∇ f(x) are sparse.xx

In [2], we discuss general issues of convergence for schemes for solving (1)–(2) and lay the

foundations for the linear algebraic processes we later employ. In particular, if Ax = b, wee

exploit the structure of the Newton equations
T ∇ f(x)∇ f(x) A p xxx(3) = − ,λ 0A 0

for a correction p to x . When f(x) is not convex, these Newton equations may not bee

appropriate and we discuss suitable replacements for ∇ f(x) in (3). Our aim is to ensure thatxx

the replacement is positive definite in the null-space of the constraints, while not adversely

affecting the convergence of Newton’s method nor incurring a significant computational
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overhead.

We consider methods which form a sparse factorization of the coefficient matrix in (3). The

matrix is reordered to ensure a stable factorization, and the factorization is continued so long

as it determined that ∇ f(x) need not be altered. Once it is realized that ∇ f(x) is insufficient,xx xx

diagonal perturbations are made. Two different approaches are considered, an implicit method

in which any potentially bad diagonal is modified, and subsequently unmodified if the

modification turns out to be unnecessary, and an explicit method in which perturbations are

only made if they can be shown to be necessary.

Numerical experiments [2] show that the technique can be effective, in that modified

factorizations are possible at little additional cost over an unmodified (but, in this application,

unusable) factorization. However, it is unclear which of the two proposed modifications is the

more successful, each having good and bad instances. A software package incorporating

many of these ideas is currently under development.
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4 Applied Mathematics

4.1 Automatic differentiation in Fortran 90 (D. Cowey, J.D. Pryce, and J.K.
Reid)

We have developed a Fortran 90 package for automatic differentiation and placed it in the

Harwell Subroutine Library. It contains modules for both the forward and the backward

method.

In the forward method, for each independent variable and each dependent variable, the

module holds a representation of the values of the variable and all its derivatives of up to a

requested order. For each elementary operation, the desired derivatives of the result are

calculated from those of the primaries by the chain rule. For example, if

a = b∗c,

we have

∂a ∂b ∂c= c + b .∂t ∂t ∂t

All the derivatives are calculated at the same time as the values.

In the backward method, a graph is constructed to represent the whole computation, with a

node i for each independent variable, i = 1, 2, ..., m, and a node i for the result of each

elementary operation, i = m+1, 2, ..., n, with links to nodes for the primaries of the operation.

The nodes are in execution-order sequence, so the links are always to nodes with lesser

indices. Only the values are constructed initially in the forward pass that constructs the tree.

Let us use the notation x for the value at node i and suppose that derivatives of f = x arei n
∂f

required. As well as x , is held at node i, i = 1, 2, ..., n. The derivatives are calculated byi ∂x i

AD01 subroutines. Initially, all the variables are regarded as independent so that all the

derivatives are zero except at node n where the derivative value is 1. One by one, from n

backwards to m+1, the variables are changed to be dependent and the derivatives updated by

the chain rule. For example, if

a = g(b,c),

when a is changed to dependent, we have

new old old∂f ∂f ∂f ∂g= + .∂b ∂b ∂a ∂b

The forward method is likely to be best if the number of independent variables is small,

since then the extra work and storage to compute and hold all the derivatives as the

computation proceeds is modest, though we store only the non-zero derivatives if that is

advantageous. If some variables are dependent on a large number of independent variables,

the forward method becomes impractical, but the work of the backward method is bounded by
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a small fixed multiple of the work needed for the values themselves. The disadvantage of the

backward method is that the whole computational tree has to be stored, which is not practical

for very long computations.

The user must make changes in every program unit that contains a variable whose

derivatives are required or is invoked in the course of calculating the value of such a variable.

The changes are

1. Add a USE statement for the module.

2. Change the type of all independent variables and variables whose values vary with the

independent variables to TYPE(AD01_REAL) and give them the special initial value

AD01_UNDEFINED.

3. Initialize the module with a call to AD01_INITIALIZE.

4. Execute the modified code

5. Obtain the required derivatives with calls to AD01 subroutines.

First and second derivatives may be obtained with the backward method and derivatives of

any order with the forward method.

There are facilities for storing and restoring the module data, which permits the calculation

to be suspended while a subsidiary calculation takes place.
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5 Numerical Linear Algebra

5.1 Computational kernels on vector and parallel machines and on RISC
architectures (M.J. Daydé and I.S. Duff)

The Basic Linear Algebra Subprograms (BLAS), particularly the Level 3 BLAS, are one of

the main platforms for the efficient implementation of a wide range of algorithms on modern

high performance computers. The rapid development of new machines means that it is

important to maintain a watching brief over new architectures and to develop and tune the

BLAS in cases when the manufacturer fails to do so.

It is an impossible task to so redesign all of the BLAS (even just the Level 3 BLAS) for

each machine so we have developed BLAS based on the GEMM, or matrix-matrix multiply,

kernel so that only this one routine need be tuned for the machine. The GEMM kernel is

usually the first to be optimized by the vendor and it is relatively easy to tune code for this

operation. This work is described in detail in [2] and [3].

Our recent work, which will shortly appear in the report [2], shows that, even using a

standard version for GEMM, our Level 3 BLAS can outperform some of the vendor-supplied

BLAS on most machines including the Silicon Graphics Power Challenge and the DEC 8400

5/300 Turbo laser. Furthermore, if our kernels use the vendor-supplied version of GEMM,

they can be made to run even faster.

We make extensive use of these new building blocks in linear algebra software and

demonstrate that the high speed of these kernel operations can be reflected in the speed of the

linear equation solvers [1].
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5.2 Infinite weights in the Powell-Reid method for linear least squares
problems (J.K. Reid)

Powell and Reid [1] considered the application of Golub’s method to the linear least squares

problem

A x = b (1)

in the case that the norms of the rows of A vary widely. They showed that Householder

transformations could be applied to produce a QR factorization

A P = Q R (2)

of a column permutation of A in a backwards stable manner provided both row and column

interchanges were included. They had in mind the case of weighted least squares problems

with widely varying weights where the square roots of the weights were applied explicitly.

That is, to find

T 2min (c − Bx) W (c − Bx) (3)

they solved the unweighted problem (1) with

A = WB, b = Wc. (4)

We have shown [2] that the algorithm and its error analysis extends very simply to the case of

infinite weights, that is, to the constrained and weighted least squares problem.
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6 Miscellaneous Activities

6.1 CERFACS (I.S. Duff)

Iain has continued to lead a project at CERFACS on Parallel Algorithms and several of the

contributions to this report reflect interactions with that team. One of the main activities of the

“Algo” team over the past year has been the hosting of an International Linear Algebra Year.

This Year was preceded by a Workshop in the Pyrenean town of St Girons in July 1994.

Attendance was by invitation and around forty international researchers in sparse matrices

participated, including all members of the Group at RAL. The Linear Algebra Year is being

held from September 1995 until September 1996 and includes four workshops and a visitor’s

programme. Iain is co-chairing the international scientific committee with Gene Golub from

Stanford and is participating in all the workshops. John spoke at the first Workshop on “Direct

Methods” and Jennifer at the second on “Eigenvalues and beyond”. Nick is helping to

organize the optimization workshop that will take place in Albi in April 1996.

The main areas of research in the Parallel Algorithms Group are the development and

tuning of kernels for numerical linear algebra, the solution of sparse systems using direct

methods or iterative methods or a combination of the two, heterogeneous computing including

the use of PVM and MPI and the design of schedulers, large eigensystem calculations,

optimization, and the reliability of computations. Other activities of the Group include

advanced training by both courses and research and the porting of industrial codes [4].

During the reporting period, two students completed their PhDs at CERFACS. Thierry

Braconnier completed his thesis in May 1994 [1], and Tony Drummond who finished in

December 1995 was co-supervised by Iain [5]. Jean-Yves L’Excellent, whom Nick

co-supervised, was a regular visitor to CERFACS and both Nick and Iain were on his jury in

November 1995 [6].

Nick continued to visit both CERFACS and ENSEEIHT-IRIT with the support of a British

Council grant to enable him to develop and extend some of the work commenced when he

spent a year at CERFACS in 1994.

The main projects at CERFACS still include Parallel Algorithms and Computational Fluid

Dynamics although recent emphasis on environmental modelling has led to a significant

increase in the size of the Climate Modelling Group. There are smaller groups in

electromagnetics, signal processing, shape optimization, and computational chemistry, the

latter currently a subgroup of the Parallel Algorithms Group. At the beginning of 1995,

Jean-Claude André from the French meteorological service succeeded Roland Glowinski as

the Director of CERFACS. A brief summary of activities at CERFACS, especially in the

Parallel Algorithms Project, can be found in [3] and a fuller account of recent activities of all

groups can be found in [2]. Current information on the Parallel Algorithms Group can be

found on page http://www.cerfacs.fr/algor/ of the World Wide Web.
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6.2 Fortran 90 (J.K. Reid)

Although no longer a member of X3J3, the ANSI Fortran Standardization Committee, John

Reid attended several meetings during the reporting period in the hope of getting exception

handling into the language.

There were two attempts to provide such a feature during the development of Fortran 90.

The first included tasking and was abandoned as too ambitious. The second involved a new

construct, ENABLE, and was simpler, but was relegated to a ‘Journal of Development’ with the

pressure to keep Fortran 90 small and with the need to devote resources to the development of

the rest of the language.

John Reid played a leading role in developing a simplified ENABLE proposal during 1994 at

the February and May meetings of X3J3 and the August meetings of WG5 and X3J3 in

Edinburgh. He represented IFIP WG 2.5 (Numerical Software), which is strongly in favour of

the provision of such facilities, at all these meetings. The final version was the subject of an

X3J3 letter ballot. Unfortunately, following this ballot, X3J3 decided that to continue to work

on it would put the whole schedule for Fortran 95 in jeopardy and therefore stopped.

This decision was endorsed by WG5, the ISO Fortran Standardization Committee, but at its

April 1995 meeting in Tokyo it decided that handling floating-point exceptions was too

important to leave until Fortran 2000. It therefore decided to establish a development body to

create a ‘Type 2 Technical Report’. The intention is to finalize this soon (to be ready for
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formal balloting by April 1996). It will permit vendors to implement the feature as an

extension of Fortran 95, confident that it will be part of Fortran 2000, unless experience in

their implementation and use demand changes. It is a kind of beta-test facility for a new

language feature. John Reid agreed to act as project editor.

The development body was requested to consider both the ENABLE approach and the use of

a set of intrinsic procedures to provide more basic support for exceptions. The ENABLE

approach is summarized in [1] but the other approach is simpler to understand and provides

some support for other features of the IEEE floating-point standard. In November 1995, X3J3

decided to take the latter route, again with John Reid playing a leading role.

John Reid and Mike Metcalf kept their book Fortran 90 explained up to date with

interpretations by revisions in two reprintings over the period.

Good optimizing compilers are now available on all platforms, and we have access to

compilers from Nag (site licence), EPC (SUN and IBM workstations), Cray Y-MP, IBM

(RS/6000), Digital (Alpha), and Fujitsu (SUN).

The technical content of the next revision of Fortran, informally known as Fortran 95 was

finalized in November 1995. It is a minor revision that incorporates items in the corrigenda

and editorial improvements, and these new features:

FORALL

Nested WHERE

Pure procedures

Elemental procedures

Pointer initialization

Automatic component initialization

Allocation status always defined

User procedures in specifications

CPU_TIME

The following new obsolescent features: computed GO TO, statement functions,

DATA among executables, assumed-length character functions, fixed source

form, and character * declarations.
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7 Computing and Harwell Subroutine Library

7.1 The computing environment within the Group (N.I.M. Gould)

Our policy of upgrading the group’s workstations has continued over the past two years. The

main change has been that Nick’s old IBM RISC Systems/6000 320H has been put out to

grass at home and replaced by a newer model RISC Systems/6000 3BT, a machine which is

theoretically capable of up to 300 Megaflops. The rest of the group continues to favour SUN

equipment, and an order was placed at the end of 1994 for a SUN Ultra Sparc 1 to replace

Iain’s aging Sparc 10/30. We continue to maintain three Sparc 1s for use by our short and

medium-term visitors, one of which has now been upgraded to run the Solaris operating

system. A further order was recently placed for an IBM Thinkpad 701 portable computer

which is intended for use by group members on their frequent travels.

Our system has been generally stable over the past two years. We continue to rely on the

CISD Unix system support team for major system administration, although group members

have found it more convenient to get their hands dirty for simple tasks. The group has

developed a series of WWW pages describing its activities. This has resulted in much wider

publicity for the group, and made it easier for external users to access our technical reports

and publicly-available software. In addition, we maintain pages of links to other relevant

numerical analysis information.

We continue to benefit from other public CISD machines, in particular the DEC Alpha

3000 and HP-9000 farms, the CRAY Y-MP8I and the new DEC 8400 six processor system.

Regular system backups are taken via the CISD IBM virtual tape reader. We now have access

to six Fortran 90 compilers, some on our own machines and some on other CISD machines.

This has enabled our gradual transformation from Fortran 77 to 90 to proceed, and in some

cases we have found these compilers uncovered previously hidden errors in our existing 77

codes.

7.2 Harwell Subroutine Library

The Group continues to act as consultants for the Harwell Subroutine Library. Our

collaboration with Harwell was marred by three changes of principal contact person over the

period, but nevertheless Release 2 of the Harwell Sparse Matrix Library was completed in

June 1995 and Release 12 of the main Library was made in December 1995.

The second release of the Harwell Sparse Matrix Library now contains 45 packages,

including many that were new in Release 11 of the main Library. It is over twice the size of

the first release (1988).

We employed Mike Hopper as a consultant to help with the preparation of Release 2 of the

Harwell Sparse Matrix Library and we greatly appreciated his assistance in designing a
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suitable Unix file system for this library, applying extra checks to the codes and sorting out

the problems that he found. We also employed him to apply his Unix tools to the new routines

of the Release 12 of the main Library, and he provided us with a new release of the computer

typesetting system TSSD.

7.3 Release 12 of the Harwell Subroutine Library

Release 12 of the Library was made in December 1995. It contains a few Fortran 90 modules,

with a very similar style for the documentation as presently used for Fortran 77 packages. The

names take the form HSL_lldd where l stands for a letter and d stands for a digit. The library

contains the following significant new routines:

HSL_AD01 This Fortran 90 package provides automatic differentiation facilities for variables

specified by Fortran code.

DC05 Solves a system of ordinary differential equations or algebraic differential equations of

index no higher than one.

–12DC06 Solves the initial value problem for a system of ordinary differential equations or
–12differential algebraic equations of index no higher than one.

DC07 Front end to DC06.

EB13 Given a real unsymmetric matrix A = {a }, this routine uses Arnoldi based methods toij

calculate the r eigenvalues λ , i = 1, 2,..., r, that are of largest absolute value, or arei

right-most, or are of largest imaginary parts.

HSL_FA04 Fortran 90 version of the random-number generator FA04.

MA38 Solves a sparse unsymmetric system of linear equations using an unsymmetric multifrontal

variant of Gaussian elimination.

MA41 To solve a sparse unsymmetric system of linear equations on a shared-memory

multiprocessor, using a parallel direct method based on a sparse multifrontal variant of

Gaussian elimination.

HSL_MA42 Solves one or more sets of sparse linear equations by the frontal method, optionally

using direct access files for the matrix factors. It is a Fortran 90 module based on MA42

and offers a much more friendly interface.

MA46 Solves one or more set of sparse unsymmetric linear equations AX = B from finite-element

applications, using a multifrontal elimination scheme. The matrix A is input by elements.

MA51 For use in conjunction with the MA48 and MA50 packages for solving sparse unsymmetric

sets of linear equations. It identifies which equations are ignored when solving Ax = b

and which solution components are always set to zero.

MA52 This collection of subroutines, when used in conjunction with the MA42 package, solves

finite-element equations using a multiple front algorithm.

MC36 To read a sparse matrix, coded in a Harwell-Boeing format with possible right-hand sides.
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The subroutine reads assembled as well as unassembled matrices, and returns them in a

column oriented compressed sparse format.

MC37 Given a sparse symmetric matrix A, this subroutine computes a set of element matrices

that, if assembled, would yield the same matrix. Note that this set of elements is not

unique.

MC38 Given a sparse matrix held in a compressed column oriented format, this subroutine

generates the transpose of the matrix, holding it in compressed column format.

MC44 Given the structure of an unassembled finite-element matrix, this subroutine groups the

variables into supervariables and optionally generates either the element connectivity

graph or the supervariable connectivity graph.

MC47 Given a representation of the nonzero pattern of a symmetric matrix, this subroutine

performs an approximate minimum degree ordering.

MC52 To write a sparse matrix in Harwell-Boeing format with possible right-hand sides.

MC53 This subroutine generates an ordering for finite-element matrices within a subdomain that

is efficient when subsequently used with a multiple front algorithm.

MF36 To read a complex sparse matrix, coded in a Harwell-Boeing format with possible

right-hand sides. The subroutine reads assembled as well as unassembled matrices, and

returns them in a column oriented compressed sparse format.

MI01 Uses the Conjugate Gradient method to solve a symmetric positive-definite linear system

Ax = b, optionally using preconditioning.

MI03 Uses the CGS (Conjugate Gradient Squared) method to solve an unsymmetric linear

system Ax = b, optionally using preconditioning.

MI04 This routine uses the Generalized Minimal Residual method with restarts every m

iterations, GMRES(m), to solve an unsymmetric linear system Ax = b, optionally using

preconditioning.

MI05 This routine uses the BiCG (BiConjugate Gradient) method to solve an unsymmetric linear

system Ax = b, optionally using preconditioning.

MI06 This routine uses the BiCGStab (BiConjugate Gradient Stabilized) method to solve an

unsymmetric linear system Ax = b, optionally using preconditioning.

MI11 This routine forms an incomplete LU factorization of a sparse unsymmetric matrix A.

MI12 This routine finds an approximate inverse M of a sparse unsymmetric matrix A by

attempting to minimize the difference between AM and the identity matrix in the

Frobenius norm.

HSL_VH01 This package uses the genetic algorithm to find the smallest value of an objective

function of n binary (zero-one) variables.

HSL_ZA03 This package provides kind values for 1- and 2-byte Fortran 90 LOGICAL variables. If

a particular kind is not supported, a kind offering at least as much storage is substituted.
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7.4 New Library subroutines

The following routines were added to the Library during this period. Although we now

issue well-defined Releases to the Library, we continue to develop it internally on an

incremental basis and may offer single routines commercially before they are included in a

specific Release. The following routines are all included in Release 12 of HSL.

HSL_AD01 (J. K. Reid and D. Cowey)

This Fortran 90 package provides automatic differentiation facilities for variables specified

by Fortran code. Each independent variable and each variable whose value depends on the

value of any independent variable must be declared to be of type AD01_REAL instead of

default REAL. Note that Fortran variables of type default REAL and default INTEGER may enter

the computation provided their values do not vary with the values of the independent

variables. Both the backward and the forward method are available.

First and second derivatives are available with both the forward and backward methods.

Derivatives of any order are available with the forward method. They are stored in a

hyper-triangular format so that only one copy of identical derivatives is held.

It is possible to store the current state of the module data, perform a subsidiary calculation,

and then return to the main calculation. For example, this mode may be used to compute the

local derivatives of a unary function of the main calculation.

A record is kept of the number of occurrences of errors. By default, execution continues

after an error in a motoring mode where each operation is executed as an immediate return.

Alternatively, an immediate stop may be requested.

DC05 (A. H. Harker)

This is a package for solving a system of ordinary differential equations or differential

algebraic equations

y' = f (y , y ,..., y , x) i=1,2,...,n.i i 1 2 n

0 0The solution starts from given initial values y at x = x . It is numerically similar to DC03; buti

it presents a different user interface, possibly less convenient for ordinary use, intended for

special-purpose packages. Function evaluation and linear algebra is done in the calling

program by using ‘reverse communication’. Also, it can solve a wider range of problems,

including implicit differential equations. The method is especially efficient on stiff problems.

DC06 (A. H. Harker)

This solves a system of ordinary differential equations or differential algebraic equations of
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index less than or equal to one. There is a system of n variables, y where i = 1 ,..., n, whichi

satisfy the equations

y' = f (y , y ,..., y , x), i=1,2,...,n,i i 1 2 n

where y' = dy /dx is the x derivative of variable y . DC06 solves the initial value problem fori i i

these equations; that is given the initial values of the variables, y (x ), at some point, x , iti 0 0

advances the solution forward in x. The user must supply a subroutine to evaluate the

derivative function f and may supply subroutines to evaluate the Jacobian and K-Jacobianj

required during the solution.

DC07 (A. H. Harker)

This solves the initial value problem for a full system of explicit ordinary differential

equations or a system of differential algebraic equations of index less than or equal to one.

That is, equations of the form

y' = f (y , y ,..., y , x) i=1,2,...,n.i i 1 2 n

where y' = dy /dx is the x derivative of variable y . The Jacobian of the right hand side isi i i

assumed to be full.

DC07 solves the initial value problem; that is given the initial values of the variables, y (x ),i 0

at some point, x , it advances the solution to equations forward in x.0

HSL_FA04 (N. I. M. Gould and J. K. Reid)

This package generates uniformly distributed pseudo-random numbers. Random reals are

generated in the range 0 < ξ < 1 or the range −1 < η < 1 and random integers in the range

1 ≤ k ≤ N where N is specified by the user.

A multiplicative congruent method is used where a 31 bit generator word g is maintained.
5 31On each call to a procedure of the package, g is updated to 7 g mod(2 − 1); the initialn+1 n

16value of g is 2 − 1. Depending upon the type of random number required the following are
31computed ξ = g /(2 − 1); η = 2ξ − 1 or k = int.part{ξN}+1.n+1

The package also provides the facility for saving the current value of the generator word

and for restarting with any specified value.

MA38 (T. A. Davis and I. S. Duff)

This package solves a sparse unsymmetric system of n linear equations in n unknowns

using an unsymmetric multifrontal variant of Gaussian elimination. There are facilities for

choosing a good pivot order, factorizing another matrix with a nonzero pattern identical to

that of a previously factorized matrix, and solving a system of equations using the factorized
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matrix. An option exists for solving triangular systems using the factors from the Gaussian

elimination.

MA41 (P. A. Amestoy and I. S. Duff)

To solve a sparse unsymmetric system of linear equations on a shared-memory

multiprocessor. Given an unsymmetric square sparse matrix A of order n and an n-vector b,
Tthis subroutine solves the system Ax=b or A x=b.

The method used is a parallel direct method based on a sparse multifrontal variant of

Gaussian elimination. An initial ordering for the pivotal sequence is chosen using the pattern
Tof the matrix A + A and is later modified for reasons of numerical stability. Thus this code

performs best on matrices whose pattern is symmetric, or nearly so. For symmetric sparse

matrices or for very unsymmetric and very sparse matrices, other software might be more

appropriate (for example, MA47 or MA48).

There is a version of the code for uniprocessors which is in Fortran 77. The parallel

versions are machine dependent but only require simple features like starting parallel tasks

and locks. In principle, a code can be supplied for any shared memory parallel machine but

the only two platforms on which this has been tested extensively are the CRAY Y-MP and the

ALLIANT FX/80.

HSL_MA42 (J. A. Scott)

The module HSL_MA42 is a Fortran 90 interface to the MA42 package that shields the user

from most of the complexities in the calling sequences to that package.

MA46 (A.C. Damhaug and J.K. Reid)

This solves one or more set of sparse unsymmetric linear equations AX = B from

finite-element applications, using a multifrontal elimination scheme. The matrix A must be

input by elements and be of the form

m
(k)A = A∑

k=1

(k)where A is nonzero only in those rows and columns that correspond to variables of the

nodes of the k-th element. Optionally, the user may pass an additional matrix A ofd

coefficients for the diagonal. A is then of the form

m
(k)A = A +A∑ d

k=1

The right-hand side B should be assembled through the summation
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m
(k)B = B ,∑

k=1

before calling the solution routine.

MA51 (J.K. Reid)

This is for use in conjunction with the MA48 and MA50 packages for solving sparse

unsymmetric sets of linear equations. It identifies which equations are ignored when solving

Ax = b and which solution components are always set to zero. The roles are reversed for
TA x = b. There are such equations and/or components in the singular or rectangular case. Note

Tthat, if Ax = b or A x = b is not consistent, there may be large residuals for the equations that

are ignored.

MA52 (J. A. Scott)

This collection of subroutines, when used in conjunction with the MA42 package, solves

finite-element equations using a multiple front algorithm. It is assumed that the underlying

finite-element mesh has been partitioned into (non-overlapping) subdomains. In the multiple

front algorithm, a frontal method is applied to each subdomain separately. This can be done in

parallel. Using multiple fronts can also reduce the amount of work required.

At the end of the assembly and elimination processes for the subdomains, for each

subdomain i there remains a frontal matrix F and a corresponding right-hand side vector ci i

satisfying

F y = c . (1)i i i

These equations may be assembled to give a system of the form

Fy = c. (2)

By treating each of the subdomain frontal matrices F as an elemental matrix, (2) may bei

solved by a frontal method. Once (2) has been solved, back-substitution on the subdomains

completes the solution.

MA52 provides routines for generating lists of variables lying on the subdomain interfaces, for

preserving the partial factorization of a matrix when the sequence of calls to MA42B/BD is

incomplete, and for performing forward or back-substitution on a subdomain.

MA52 uses reverse communication.

The use of Harwell Subroutine Library routine MC53 to obtain an efficient element ordering in

each subdomain is recommended before MA52 is used.

For further details of multiple fronts, see Duff, I. S. and Scott, J. A. (1994), The use of multiple

fronts in Gaussian elimination. Rutherford Appleton Laboratory Report RAL-94-040.
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MC36 (I. S. Duff)

To read a sparse matrix, coded in a Harwell-Boeing format with possible right-hand sides.

The subroutine reads assembled as well as unassembled matrices, and returns them in a

column oriented compressed sparse format. MF36 must be used if the matrix is complex.

MC37 (I. S. Duff)

Given a sparse symmetric matrix A, this subroutine computes a set of element matrices

that, if assembled, would yield the same matrix. Note that this set of elements is not unique.

The matrix can be input by the user either in compressed column format (column pointer/row

index scheme) or by row and column index pairs in any order.

MC38 (I. S. Duff)

Given a sparse matrix held in a compressed column oriented format, this subroutine

generates the transpose of the matrix, holding it in compressed column format. It can also be

viewed as a conversion between a column oriented scheme and a row oriented one. This

subroutine differs from MC46 inasmuch as it preserves the input data and should be faster,

particularly on vector machines. However, it does require storage for both the matrix and its

transpose.

MC44 (J. K. Reid and J. A. Scott)

Given the structure of an unassembled finite-element matrix, this subroutine groups the

variables into supervariables and optionally generates either the element connectivity graph or

the supervariable connectivity graph.

A supervariable is a collection of one or more variables, such that each variable belongs to

the same set of finite elements. In the supervariable connectivity graph, the nodes are the

supervariables and the edges are constructed by making the supervariables of each finite

element pairwise adjacent. The supervariable connectivity graph, together with the number of

variables in each supervariable, provide a compact representation of the variable connectivity

graph. In the element connectivity graph, the nodes are the elements and the edges are

constructed by defining two elements to be adjacent whenever they have one or more

variables in common.

MC47 (P. R. Amestoy, T. A. Davis, and I. S. Duff)

Given a representation of the nonzero pattern of a symmetric matrix, A, this subroutine

performs an approximate minimum degree ordering to compute a pivot order so that the

number of nonzeros in the Cholesky factors of A is kept low. At each step, the pivot selected
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is the one that minimizes an easily-computed upper-bound on the (external) degree. A

permutation corresponding to this ordering is returned, together with information to assist the

subsequent numerical factorization of the matrix.

The code is typically faster than other minimum degree algorithms and produces

comparable results to other minimum external degree algorithms in terms of fill-in and the

number of floating-point operations needed to compute the factors.

The version of the code described here is based on work done by Amestoy, Davis and Duff

(An approximate minimum degree ordering algorithm, Report TR-94-039, Computer and

Information Sciences Department, University of Florida), and is a symmetric analogue of the

ordering used in the code of Davis and Duff (An unsymmetric-pattern multifrontal method for

sparse LU factorization. Report RAL 93-036, Rutherford Appleton Laboratory.)

MC52 (I. S. Duff)

To write a sparse matrix in Harwell-Boeing format with possible right-hand sides. The

matrix can be input as an assembled matrix in either column-oriented or coordinate form, or as

an unassembled finite-element matrix. The right-hand sides must be in full format.

MC53 (J. A. Scott)

This subroutine generates an ordering for finite-element matrices within a subdomain that

is efficient when subsequently used with a multiple front algorithm. In a multiple front

algorithm, the finite-element domain is partitioned into a number of subdomains and a frontal

decomposition is performed on each subdomain separately. The storage required by a multiple

front algorithm and the time taken to run it are dependent upon the order in which the

elements in each subdomain are input; the variation in the performance of different element

orderings can be significant. The ordering obtained by MC53 is designed to reduce the

maximum and root mean-squared frontsizes and to reduce the floating-point operation count

for the frontal solver on the subdomain. If nelt is the number of elements in the subdomain and

fsize is the number of variables in the front after the assembly of the ith element, thei

maximum frontsize fmax in the subdomain is defined to be

fmax = max {fsize }i
1≤i≤nelt

and the root mean-squared frontsize frms in the subdomain is defined to be

nelt1 2frms = fsize .∑ inelt i=1

The user is required to use reverse communication to supply a list of the variables belonging

to each element in the subdomain one at a time followed by a list of the variables lying on the

subdomain interface.
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MF36 (I. S. Duff)

To read in a complex sparse matrix, coded in a Harwell-Boeing format with possible

right-hand sides. The subroutine reads assembled as well as unassembled matrices, and

returns them in a column oriented compressed sparse format. If the matrix being read is real

MC36A/AD should be used.

MI01 (N. I. M. Gould and J. A. Scott)

This routine uses the Conjugate Gradient method to solve the n × n symmetric positive
Tdefinite linear system Ax = b, optionally using preconditioning. If PP is the preconditioning

matrix, the routine actually solves the preconditioned system

Ax = b,

T Twith A = PAP and b = Pb and recovers the solution x = P x. Reverse communication is used

for preconditioning operations and matrix-vector products of the form Az.

MI03 (N. I. M. Gould and J. A. Scott)

This routine uses the CGS (Conjugate Gradient Squared) method to solve the n × n

unsymmetric linear system Ax = b, optionally using preconditioning. If P , P are theL R

preconditioning matrices, the routine actually solves the preconditioned system

Ax = b,

with A = P AP and b = P b and recovers the solution x = P x. If P = I, preconditioning isL R L R L

said to be from the right, if P = I, it is said to be from the left, and otherwise it is from bothR

sides. Reverse communication is used for preconditioning operations and matrix-vector

products of the form Az.

MI04 (N. I. M. Gould and J. A. Scott)

This routine uses the Generalized Minimal Residual method with restarts every m

iterations, GMRES(m), to solve the n × n unsymmetric linear system Ax = b, optionally using

preconditioning. If P , P are left and right preconditioning matrices, the routine actuallyL R

solves the preconditioned system

Ax = b,

with A = P AP and b = P b. The solution may be recovered as x = P x. If P = I,L R L R L

preconditioning is said to be from the right, if P = I, it is said to be from the left, andR

otherwise it is from both sides. Reverse communication is used for preconditioning operations

and matrix-vector products of the form Az.
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MI05 (N. I. M. Gould and J. A. Scott)

This routine uses the BiCG (BiConjugate Gradient) method to solve the n × n unsymmetric

linear system Ax = b, optionally using preconditioning. If P , P are the preconditioningL R

matrices, the routine actually solves the preconditioned system

Ax = b,

with A = P AP and b = P b and recovers the solution x = P x. If P = I, preconditioning isL R L R L

said to be from the right, if P = I, it is said to be from the left, and otherwise it is from bothR
Tsides. Reverse communication is used for preconditioning operations Pz and P z, where

TP=P P , and for matrix-vector products of the form Az and A z.L R

MI06 (N. I. M. Gould and J. A. Scott)

This routine uses the BiCGStab (BiConjugate Gradient Stabilized) method to solve the

n × n unsymmetric linear system Ax = b, optionally using preconditioning. If P , P are theL R

preconditioning matrices, the routine actually solves the preconditioned system

Ax = b,

with A = P AP and b = P b and recovers the solution x = P x. If P = I, preconditioning isL R L R L

said to be from the right, if P = I, it is said to be from the left, and otherwise it is from bothR

sides. Reverse communication is used for preconditioning operations and matrix-vector

products of the form Az.

MI11 (N. I. M. Gould and J. A. Scott)

This routine forms an incomplete LU factorization of an n × n sparse unsymmetric matrix

A. No fill-in is allowed. The entries of A are stored by rows. If A has zeros on the diagonal,

the routine first finds a row permutation Q which makes the matrix have nonzeros on the

diagonal. The incomplete LU factorization of the permuted matrix QA is then formed. L is

lower triangular and U is unit upper triangular. The incomplete factorization may be used as a

preconditioner when solving the linear system Ax = b. A second entry performs the

preconditioning operations

Ty = Pz and y = P z,

−1where P Q is the preconditioner.

MI12 (N. I. M. Gould and J. A. Scott)

This routine finds an approximate inverse M of an n × n sparse unsymmetric matrix A by

attempting to minimize the difference between AM and the identity matrix in the Frobenius

norm. The process may be improved by first performing a block triangularization of A and
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then finding approximate inverses to the resulting diagonal blocks.

A second entry allows the user to form the matrix-vector products

Ty = Mz and y = M z.

The principal use of such an approximate inverse is likely to be in preconditioning iterative

methods for solving the linear system Ax = b.

HSL_VH01 (N. I. M. Gould)

This package uses the genetic algorithm to search for a small value of an objective function

of n binary (zero-one) variables. Each string of binary variables is stored in a logical array. A

population of p such strings is maintained along with their associated objective function

values. The population evolves in a sequence of iterations. The best features of the population

at iteration k are passed to the population at iteration k+1 by means of mutation and crossover.

The package obtains function values by reverse communication. The user is periodically

required to check for termination.

HSL_ZA03 (N. I. M. Gould)

This package provides kind values for 1- and 2-byte Fortran 90 LOGICAL variables. If a

particular kind is not supported, a kind offering at least as much storage is substituted.
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8 Seminars

27 January 1994 N. I. M. Gould (Rutherford)

Optimization research in the parallel algorithms team at CERFACS

3 February 1994 P. Graves-Morris (Bradford)

Is SOR being revived?

11 May 1994 R. da Cunha (Kent)

Designing a portable package for parallel architectures

9 June 1994 C-H. Lai (Greenwich)

Large-scale computing and domain decomposition methods

26 August 1994 J. Bunch (California)

Bounding the subspaces obtained by rank revealing two-sided

orthogonal decompositions

3 November 1994 Z. Jia (Bielefeld)

A refined strategy in orthogonal projection methods for the

unsymmetric eigenproblem

24 November 1994 A. Ramage (Strathclyde)

Preconditioned conjugate gradients for irregular finite element grids

2 February 1995 E. Hinton (Swansea)

Structural optimisation – numerical issues

9 February 1995 A. Erisman (Boeing Computer Services)

Technology change and what we do with it

2 March 1995 A. Wathen (Bristol)

The iterative solution of discrete saddle-point problems

4 May 1995 J. Du Croz (NAG Ltd)

The design of the NAG Fortran 90 Library

12 May 1995 J. Mason (Huddersfield)

Parallel and structured data approximations

23 November 1995 D. Higham (Dundee)

Time-stepping analysis using concepts from numerical linear

algebra

7 December 1995 P. Sweby (Reading)

Dynamics of discretisation
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9 Reports issued in 1994-95

We give a full listing of Rutherford Reports during the period of this Progress Report. The

other report listings, from organizations with which we collaborate, only include reports not

already included as RAL Reports.

Rutherford Reports

RAL 94-018 Porting industrial codes and developing sparse linear solvers on parallel

computers. M.J. Daydé and I.S. Duff.

RAL 94-040 The use of multiple fronts in Gaussian elimination. I.S. Duff and J.A. Scott.

RAL 94-062 Numerical Analysis Group – Progress Report. January 1991 – December

1993. I.S. Duff (Editor).

RAL 94-069 On iterated-subspace minimization methods for nonlinear optimization.

A.R. Conn, N.I.M. Gould and Ph.L. Toint.

RAL 95-001 MA47, A Fortran code for direct solution of indefinite sparse symmetric

linear systems. I.S. Duff and J.K. Reid.

RAL 95-009 Convergence properties of an augmented Lagrangian algorithm for

optimization with a combination of general equality and linear constraints.

A.R. Conn, N.I.M. Gould, A. Sartenaer, and Ph.L. Toint.

RAL 95-010 On the use of element-by-element preconditioners to solve large-scale

partially separable optimization problems. M.J. Daydé, J.Y. l’Excellent,

and N.I.M. Gould.

RAL-TR-95-026 On approximate-inverse preconditioners. N.I.M. Gould and J.A. Scott.

RAL-TR-95-029 Element resequencing for use with a multiple front algorithm. J.A. Scott.

RAL-TR-95-037 Constructing appropriate models for large-scale, linearly-constrained,

nonconvex, nonlinear, optimization algorithms. N.I.M. Gould.

RAL-TR-95-039 The design of MA48, a code for the direct solution of sparse unsymmetric

linear systems of equations. I.S. Duff and J.K. Reid.

RAL-TR-95-040 Exploiting zeros on the diagonal in the direct solution of indefinite sparse

symmetric linear systems. I.S. Duff and J.K. Reid.

RAL-TR-95-049 A set of Level 3 Basic Linear Algebra Subprograms for sparse matrices. I.S.

Duff, M. Marrone, G. Radicati, and C. Vittoli.
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AEA Technology Reports

HARWELL SUBROUTINE LIBRARY. A Catalogue of Subroutines (Release 12). October

1995.

HARWELL SUBROUTINE LIBRARY. Release 12. Specifications. Volume 1 and Volume 2.

December 1995.

CERFACS Reports

TR/PA/94/10 The CERFACS Experience. M.J. Daydé and I.S. Duff.

TR/PA/94/15 A parallel scheduler for block iterative solvers in heterogeneous computing

environments. M. Arioli, A. Drummond, I.S. Duff, and D. Ruiz.

TR/PA/95/09 An approximate minimum degree ordering algorithm. P. Amestoy, T.A. Davis,

and I.S. Duff.

TR/PA/95/26 Linear algebra kernels for parallel domain decomposition methods. L.

Carvalho, I. Duff and L. Giraud.

ENSEEIHT-IRIT Reports

RT/APO/95/1 Solution of structured systems of linear equations using element-by-element

preconditioners. M.J. Daydé, J.Y. l’Excellent, and N.I.M. Gould.

University of Florida Reports

TR-95-020 A combined unifrontal/multifrontal method for unsymmetric sparse matrices.

T.A. Davis and I.S. Duff.
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