nAL-1 Nn-aUUL-VUs4a

MA57 -A new code for the solution of sparse

symmetric definite and indefinite systems'

Iain S. Duff?

ABSTRACT

We introduce a new code for the direct solution of sparse symmetric linear equations
that solves indefinite systems with 2 x 2 pivoting for stability. This code, called MA57,
is in HSL 2002 and supersedes the well used HSL code MA27. We describe the user
interface in some detail and emphasize some of the novel features of MA57. These
include restart facilities, matrix modification, partial solution for matrix factors,
solution of multiple right-hand sides, and iterative refinement and error analysis.
There are additional facilities within a Fortran 90 implementation that include the
ability to identify and change pivots. Several of these facilities have been developed
particularly to support optimization applications and the performance of the code
on problems arising therefrom will be presented.

Keywords: sparse indefinite systems, augmented systems, direct sparse
factorization, multifrontal method, numerical optimization.

AMS(MOS) subject classifications: 65F05, 65F50.

lCurrent reports available by anonymous ftp to ftp.numerical.rl.ac.uk in directory
pub/reports. This report is in file duRAL2002024.ps.gz. The report also available through
the URL www.numerical.rl.ac.uk/reports/reports.html.

2i.s.duff@rl.ac.uk. This work was supported by the EPSRC Grant GR/R46441.

Computational Science and Engineering Department
Atlas Centre

Rutherford Appleton Laboratory

Oxon OX11 0QX

September 26, 2002

Contents

1 Introduction 1
2 Frontal and multifrontal methods 1
3 Factorization of sparse indefinite matrices 3
4 Novel features of the code 4
5 The software package MAS57 7
5.1 The user interface L. 7
5.1.1 Imitialization L 8

5.1.2 Analysisphase 8

5.1.3 Numerical factorization. 8

5.1.4 Solvephase 10

5.2 Copyingdata 10
5.3 Internal data structures 11
5.4 Structure of the package 12
54.1 Analysis e e e 12

5.4.2 Factorize Lo 12

5.4.3 Solve 14

6 Numerical results 14
6.1 Test problems 14
6.2 The analysis phase oL 16
6.3 The factorization phase Lo 18
6.4 Thesolvephase 22
6.5 The performance of MA57 compared with MA27. 23
6.6 Comparison with other HSL codes on augmented systems 25

7 The use of MA57 in optimization packages 26
7.1 Analysis oo e e e e e 27
7.2 Solve e e e 27
7.3 Solution within optimization code 28
7.3.1 [Iterative refinement 29

7.4 Factorize 29
7.4.1 Scaling L 30

8 Concluding remarks 30
9 Availability of the code 31

1 Introduction

In this report, we discuss the design and use of a code for the solution of the linear
systems of equations

AX =B (1.1)

where the n X n matrix A is large, sparse, and symmetric but need not be definite.
B is an n x nrhs (nrhs > 1) matrix of right-hand sides and X is the n X nrhs
solution matrix. Our algorithm for the solution of (1.1) uses an LDLT factorization
of the matrix implemented using a multifrontal approach. We very briefly discuss
multifrontal methods in Section 2 and the LDLT factorization in Section 3.

The resulting code is called MA57 (Fortran 77 version) or HSL_MA57 (Fortran
90 version) in HSL (2002) and supersedes the earlier code MA27 (Duff and Reid
1982, Duff and Reid 1983). There were several reasons for deciding to embark on
this enterprise. MA27 was one of the most popular codes in HSL and, in particular,
was heavily used by people working in optimization. It was, however, written in
the early 1980’s and did not use the BLAS (Basic Linear Algebra Subprograms),
in particular the Level 2 and Level 3 BLAS (Dongarra, Du Croz, Hammarling and
Hanson 1988, Dongarra, Du Croz, Duff and Hammarling 1990). Recent experience
has shown that these building blocks lead to efficient and portable code on a wide
range of modern computers. In addition, there were several features that were being
frequently requested by some of the major users of MA27. We list the new features
that we have added to address these concerns in Section 4. An overview of our new
code is presented in Section 5 with the structure of the code given in Section 5.4.

We discuss the performance of our code in Section 6. There are many user
controllable parameters that can affect performance including numerical pivoting
controls and blocking for the Level 2 and Level 3 BLAS, and we discuss their effect
and sensitivity in Sections 6.2 to 6.4 before we compare the MA57 code with other
HSL codes.

Finally, we have been fortunate in having several experts in optimization who
were willing to test our code within their software and include comments related to
this experience in Section 7. Concluding comments are presented in Section 8.

2 Frontal and multifrontal methods

Our algorithm for the solution of (1.1) uses a multifrontal approach. We give only
a brief outline of the multifrontal method here and refer the reader to our earlier
papers (Duff and Reid 1982, Duff and Reid 1983) for further details. A more didactic
presentation of the multifrontal method can be found in the book by Duff, Erisman
and Reid (1986).

Before we describe the essential features of a multifrontal approach, we first
discuss a frontal scheme. These have their origins in the solution of finite-element

problems (Irons 1970) and we introduce them in this context, although they are
applicable also when the matrix is assembled.
If we thus assume that A is of the form

where each element matrix Al has nonzeros in only a few rows and columns and is
normally held as a small dense matrix representing contributions to A from element
[. If a;; and agljl denote the (i,j)th entry of A and Al respectively, the basic
assembly operation when forming A is of the form

Qg5 = Qg + ay}, (21)

and it is evident that the basic operation in Gaussian elimination
Qjj < Qj — aik[akk]_lakj7 (2.2)

with the product a;.[a;:] ™! called the multiplier, may be performed as soon as all the
terms of the triple product in (2.2) are fully summed (that is, will be involved in no
more sums of the form (2.1)). The assembly and Gaussian elimination processes can
therefore be interleaved and the matrix A is never assembled explicitly. Variables
that are internal to a single element can be immediately eliminated (called static
condensation) and this can be extended to a submatrix that is a sum of several
element matrices. In this scheme, all intermediate working can be performed within
a dense matrix, termed the frontal matriz, whose rows and columns correspond to
variables that have not yet been eliminated but occur in at least one of the elements
that have been assembled. We can partition the frontal matrix, F, as:

Fll F12
F = 2.3
l F; Fa] (23)

where the fully summed variables correspond to the rows and columns of the block
F11. Pivots can be chosen from F;; to perform the factorization Fy; = L1D1L'1r,
where L, is a triangular matrix and D, is block diagonal with blocks of order 1 or
2 (this factorization is discussed in Section 3). The kernel computation in a frontal
scheme then continues as

F), « Fy — FLLT 'D;'L'Fys, (2.4)

and can be performed using Level 3 BLAS.

The frontal method can be easily extended to non-element problems because
any set of rows of a sparse matrix can be held in a rectangular array whose number
of columns is equal to the number of columns with nonzero entries in the selected
rows. A variable is regarded as fully summed whenever the equation in which it

last appears is assembled. These frontal matrices can often be quite sparse but are
suitable for computations involving Level 3 dense BLAS. A full discussion of the
equation input can be found in Duff (1984).

The computations involved in the frontal scheme can be represented by a
computational tree where the nodes correspond to computations of the form (2.4)
and the edges represent the transfer of the F,, matrix to the next step of the
elimination. Of course, for the frontal method as just described, this computational
tree will be a chain.

If the frontal scheme is combined with an ordering to preserve sparsity and
reduce the number of floating-point operations and if a new frontal matrix can
be formed independently of already existing frontal matrices, we can develop a
scheme that combines the benefits of using Level 3 BLAS with the gains from using
sparsity orderings. This is developed in multifrontal schemes where, as before, the
computation can be viewed as a tree, whose nodes represent computations of the
form (2.4), but now most of the nodes have more than one child. The edges represent
the transfer of data from a child to its parent node. This data transfer corresponds
to the Schur complement matrix F%,, being sent to the parent node, where it is
summed with contributions from the original matrix and the other children to form
another dense frontal matrix on which similar operations are performed. If the
matrix is irreducible, this tree will have only one root. We use the term assembly
tree to describe this structure.

We note that, at each node of the tree, a block of the factors will be generated.
This will correspond to the matrices L; and D; and the matrix F;5 or, if the
multipliers are held, the matrix D7 'Ly Fy,.

Before we discuss the finer details of our implementation it is useful to first define
the steps in our solution scheme. These are:

1. Analysis. Generate a pivot ordering and an assembly tree.

2. Factorization. Use the assembly tree to guide the numerical factorization,
performing numerical pivoting at this stage.

3. Solve. Use the assembly tree and the factors just generated to solve the linear
system(s) by forward and backward substitution.

3 Factorization of sparse indefinite matrices

The analysis step of our multifrontal method proceeds on the assumption that all
diagonal entries are acceptable as pivots, which will be the case if the matrix is
definite. However, in the case of symmetric indefinite systems this will no longer be
the case as the simple example

0 x

x 0

testifies. Thus some additional form of numerical pivoting is required.

The numerical pivoting takes place entirely within the frontal matrix and uses a
modified version of the algorithm by Bunch, Kaufman and Parlett (1976) to effect
a stable decomposition when the matrix is indefinite. The factorization in this case
is of the form

PAPT = LDL” (3.1)

where P is a permutation matrix, the matrix D is block diagonal with blocks of
order 1 and 2, and L is block lower triangular, with blocking compatible to that of
D. The 1 x 1 blocks correspond to single pivots, ayy, that satisfy the threshold test

lakr| > v . max|ag;|, j =k+1,n. (3.2)

Each 2 x 2 block corresponds to a 2 X 2 pivot that satisfies the threshold test

~1
< Ak Ak k+1) (maxy:Zk-l—Z || |) < (Ui)7 (3.3)
k1 kARl kil max;>ri2 |1 | u

where 0 < u < 0.5 to ensure that a pivot can always be chosen when the matrix
is fully summed and the modulus signs around the matrix mean that the matrix
entries are replaced by their absolute values. Note that this test is less severe than
the test for 2 X 2 pivots in MA27, the precursor to MA57, which uses the infinity norm
of the potential pivot. Our new test (3.3) means that it is slightly more likely that
a 2 x 2 pivot will be chosen by MA57 than by MA27. Of course, the use of these tests
presupposes that matrix entries are of similar magnitude or that some automatic
scaling routine like MC30 (Curtis and Reid 1972) from HSL is used. We discuss
scaling further in Sections 6.6 and 7.4.1.

We note that the entire 2 X 2 pivot must lie within the F;; block of the frontal
matrix and it is possible that large entries in the F;, block will prevent some
(maybe many) potential pivots from satisfying either (3.2) or (3.3). In this case,
the factorization can still proceed but the Schur complement matrix passed to the
parent node will be increased in dimension to include the failed candidates for pivot.
We say that some pivots have been delayed. This will normally increase both storage
and work for the factorization above that required if no pivots are delayed. At the
root node of the tree, all rows and columns of the frontal matrix are fully summed
(that is, there is no (2,2) block in (2.3)) and so, if the matrix is nonsingular, the
factorization can complete stably.

4 Novel features of the code

We first give a brief history of some of the sparse symmetric codes within HSL.

The code MA17 was written by Reid (1972) and used a totally dynamic approach
implemented using linked lists. Only 1 x 1 pivots were used so that the factorization
could fail on indefinite systems. It would continue if the pivots changed sign or were
very small and would only terminate with failure if a zero pivot were encountered.

Duff and Reid (1982) used pivots of order 1 and 2 in their MA27 code that was the
first code in a software library to use the multifrontal technique. MA27 was widely
used by the numerical optimization community and, for constrained problems, was
often employed on the augmented matrix of the form

(o) (4.1)

so, in 1993, Duff and Reid developed another multifrontal code MA47 (Duff and Reid
1995) that used structured pivots of the form < z g or 2 E) and used data
structures to preserve the block structure of (4.1) during the factorization. At the
same time, several improvements were made to the implementation including the use
of Level 3 BLAS and the avoidance of COMMON blocks. However, although there
were some notable successes with this code (Duff and Reid 1996), its complexity
meant that it sometimes performed worse than MA27, sometimes even on matrices
of the form (4.1) for which it was designed. Thus it never did replace or supersede
MA27 in HSL. More recently, John Reid has developed a new HSL routine, MA67, to
replace MA47. It combines the analysis and factorization phases. Although it does
not use a multifrontal approach, it does make use of the Level 2 and Level 3 BLAS.
We compare our new code with these specialized codes in Section 6.6.

One of the main reasons for the decision to develop MA57 was to keep to the
relative simplicity of the MA27 algorithm but provide a code with a better user
interface, that does not use COMMON blocks, and that uses higher level BLAS in
both factorization and solve phases. In addition, there were several new features
that had been often requested by users of MA27 that we wished to add.

These new features of MA57 include:

In the analysis phase:

1. Use of an approximate minimum degree ordering (Amestoy, Davis and Duff
1996) as well as minimum degree, with a version that is efficient even if the
input matrix has some dense rows.

In the factorization phase:
1. A range of pivoting options.

e Numerical pivoting using the Bunch, Kaufman, Parlett decomposition
with threshold pivoting, as described in Section 3.

¢ No numerical pivoting and error return if the matrix is discovered non-
definite.

e No numerical pivoting and only exit if a zero pivot is found.

e No numerical pivoting but, if the matrix is not definite, then modify
pivots dynamically using a variant of the Schnabel-Eskow scheme (Eskow
and Schnabel 1991) to obtain a factorization L'D,L'T of the modified
matrix A + D; where D; and D, are diagonal matrices and entries of
D, are all of the same sign.

2. The ability to restart the computation from where it stops if it runs out of
storage. It is also possible to discard the factors to provide more space so that
the factorization can continue and will provide accurate information on the
space required for a subsequent factorization of the same matrix.

3. The option to return the pivots to the user and to alter them if desired.
In the solve phase:

1. A range of entries for error analysis and iterative refinement. This can be
automatic, using the strategy of Arioli, Demmel and Duff (1989), with either

e no estimate of the solution provided by the user,

or
e an estimate of the solution provided by the user,
or can be left more to the control of the user when only one step of iterative
refinement is performed on each call. There are five possible options.
e Solve and return the residual.

e Solve, return the residual, and perform one iterative correction.

e Estimate of the solution provided by the user. Compute the residual and
perform one iterative correction.

e Estimate of the solution and the residual provided by the user. Perform
one iterative correction.

o Estimate of the solution and the residual provided by the user. Perform
one iterative correction and return correction and new residual.

2. The solution of multiple right-hand sides using Level 3 BLAS.
3. If the factorization is written as
A = PLDLTPT

then a partial solution facility offering the solution of equations with coefficient
matrix:

o A

PLPT

e PDPT or
PLTPT,

5 The software package MA57

In this section, we describe the user interface to MA57, its internal data structures,
and its use of BLAS kernels.

5.1 The user interface

An initial decision when designing MA57 was that it should have a user interface
which was similar to that of the previous indefinite solver MA27. This was because
we wanted to make it straightforward for a user who was familiar with MA27 to
use MA57. In addition we have also provided a Fortran 90 interface with additional
functionality. We describe the version in Fortran 77, making appropriate reference
to the added features of the Fortran 90 version as we proceed. The MA57 package
has six entries which may be called directly by the user. Each of the subroutines are
named according to the naming convention of HSL with the single precision version
having names commencing with MA57 plus one more letter, and double precision
versions with the additional sixth letter D. For simplicity, we will use the single
precision names throughout this report. For similar reasons, if a BLAS routine is
referenced explicitly, we will use the single precision name. The user-callable entries
are:

Initialization : MA571I initializes the parameters which control the execution of the
package. A single call should be made to MA57I before any other routines in
the MA57 package are called.

Analysis and symbolic factorization : MA57A computes an ordering using a
variant of the minimum degree algorithm and then generates an assembly
tree and calculates the work and storage required for subsequent numerical
factorization if there are no delayed pivots because of numerical pivoting.

Numerical factorization : MA57B performs the numerical factorization of the
matrix using the information generated by MA57A.

Solve : MA5S7C solves for one or more right-hand sides using the factors produced
by MA57B. A single call to MA57C will solve for the number of right-hand sides
specified by the user. If the iterative refinement and error analysis of Arioli et
al. (1989) is required, then MA57D should be called, in which case only one set
of equations (that is, one right-hand side) can be solved on each call.

7

Copying data : MA57E copies the data into larger arrays so that the MA57B routine
can be recalled to continue the factorization if it had earlier stopped because
of running out of space. The default for the Fortran 90 code HSL_MA57 is to
automatically increase the storage by a user-supplied factor, to use MAS7E and
then to restart the factorization from the point at which it ran out of space.

We briefly discuss each of these subroutines. Full details of their argument lists
and their calling sequences are given in the Specification Sheets (see Section 9).

5.1.1 Initialization

The user should make a single call to MA57T prior to calling any of the other routines
in the MA57 package. MA571 assigns default values to the control parameters held in
the arrays ICNTL and CNTL. These parameters control the action of the subroutines
within the MA57 package. They include parameters to control the level of diagnostic
printing. Should the user want a control parameter to have a value other than its
default, the appropriate parameter should be reset after the call to MAS71.

5.1.2 Analysis phase

MA57 allows the user to specify (using the control parameter ICNTL(12)) the
minimum number of pivots that will be selected at any stage. Delaying performing
eliminations until the number of fully summed variables is at least ICNTL(12)
increases the Level 3 BLAS component of the factorization albeit at the cost of
more floating-point operations and an increased number of reals in the factor. We
show the influence of this node amalgamation parameter on our analysis phase in
Table 6.4 and the effect of the changed assembly tree on the numerical factorization
in Table 6.6.

The default ordering in the analysis is the approximate minimum degree ordering
(AMD) of Amestoy et al. (1996). This is almost always much faster than a regular
minimum degree ordering, as for example implemented in MA27, but often gives
as good if not a better ordering for the subsequent factorization. The current
implementation of AMD in HSL is MC47 and this does not take any special action
if there are dense or nearly dense rows in the matrix. We thus offer the option to
use a research version of a routine, MC50, that does this and have made this the
default ordering in the Fortran 90 version. We thus include MC47, MC50, and the
minimum degree ordering routine from MA27 in our analysis phase and we compare
these orderings on some test examples in Table 6.3.

5.1.3 Numerical factorization

In the indefinite case, the space required by the numerical factorization cannot be
determined by the symbolic factorization, so it is possible for the factorization to
run out of storage. The main control for this is the threshold parameter, u, see

equations (3.2) and (3.3). This is set by the user in CNTL(1) and we study the effect
of varying this in Section 6.3. In MA57, each pivot candidate (that is, each fully
summed variable) is checked to see that it is of absolute value at least as large as
the control parameter CNTL(2) (with default value zero). If a pivot is found to be
too small, the action taken depends on the setting of the parameter ICNTL(7). If a
pivot is found to be negative, the matrix is not positive definite, and an immediate
failure occurs if ICNTL(7)=2 but, if ICNTL(7)=3, the computation continues provided
the pivot is of absolute value at least CNTL(2). In this case, and in the case when
numerical pivoting is performed (ICNTL(7)=1), the number of negative pivots is
returned to the user in the information array INFO.

As mentioned earlier, a major difference between MA57 and the earlier code MA27
is that extensive use of the Level 3 BLAS are made in MA57. The block size for the
Level 3 BLAS is determined by the user (with a default value set in MAS7I).

A major benefit of multifrontal methods is that the floating-point arithmetic is
performed on dense submatrices. In particular, if we perform several pivot steps
on a single frontal matrix, the Level 3 BLAS can be used. However, in the present
case, we also wish to maintain symmetry and the current Level 3 BLAS suite does
not have an appropriate kernel. Provided at least NBLOC pivots are selected in the
block pivot step, we use Level 3 BLAS for constructing the Schur complement. The
computation is of the form (2.4) and, if we represent the matrix Fa5 by S, D;* by
D, and F;2 by M, this can be expressed in the form

S=S-M"DM, (5.1)

where M is a rectangular matrix and D is a diagonal matrix with blocks of order 1
and 2. Our concern is the efficient formation of (5.1) for a full rectangular matrix
M. Unfortunately, there are no BLAS routines for forming a symmetric matrix as
the product of two rectangular matrices, so we cannot form DM and use a BLAS
routine for calculating MT(DM) without ignoring symmetry and doing about twice
as much work as necessary (although the subroutine SYMM in the new BLAS recently
announced by the BLAS Technical Forum (2002) will hopefully be available from
vendors in the not too distant future). We therefore choose a block size NBLOC (with
default size 16 held in ICNTL(11)) and divide the rows of M and DM into strips
that start in rows 1, NBLOC+1, 2 NBLOC+1, This allows us to compute the block
upper triangular part of each corresponding strip of S in turn, using SGEMM, the Level
3 BLAS matrix-matrix multiplication kernel, for each strip except the last where,
for this undersize strip, we use simple Fortran code and take full advantage of the
symmetry. In a block of size NBLOC on the diagonal, the extra work is NBLOC*(NBLOC-
1) floating-point operations. Clearly this means that while we would like to increase
NBLOC for Level 3 BLAS efficiency, by doing so we increase the amount of arithmetic.
In Table 6.8 we examine the trade off between these competing trends.

5.1.4 Solve phase

When nrhs > 1, both the forward elimination and back substitution steps use SGEMM.
When there is only one right-hand side (nrhs = 1), Level 2 BLAS are used. It should
be noted that B is involved in the matrix-matrix product and that SGEMM becomes
more efficient with an increased number of columns in B (see results in Table 6.9).
The time for this phase is significantly less than for the factorization although, as
we will comment when we discuss the solution of optimization problems, there are
circumstances where it is very important to keep the cost of the solution as low as
possible. In an early version of the MA57 code, we were alarmed to find that the
overhead of a call to SGEMM was noticeable when there was only one right-hand side
and so we use SGEMV for this case.

The factors (see equation 2.4), are held by rows as a packed triangular matrix
D; LT (held as Dl_l and L) and a dense rectangular matrix F; corresponding to the
rows and columns of the pivot block and the out of pivot columns at that elimination
stage. When using the block pivot to update the appropriate components of the
modified right-hand side, the components can be identified in the main right-hand
side vector using indirect addressing or they can first be mapped into a temporary
vector of length equal to the size of the current frontal matrix. Thence the operations
at this block stage can be effected using direct addressing and Level 2 or 3 BLAS.
If there are very few rows in the block pivot, then it may not pay to load the
appropriate entries of the modified right-hand side into a dense vector, and it may
be more efficient to use indirect addressing on the main vector. We have a switch
(ICNTL(13)) to control this. To be more precise, mapping of vectors and direct
addressing is used if there are more than 4 rows and the number of columns exceeds
ICNTL(13). We show the influence of this parameter in Table 6.10.

5.2 Copying data

One of the weaknesses of sparse direct methods that use numerical pivoting is that it
is not known when commencing the factorization how much storage will be required.
An estimate is given by the analysis but this will only be accurate if no pivots are
delayed and all eliminations take place at the expected node of the assembly tree.
In our earlier codes, if insufficient space was allocated, the factorization terminated
with an error message, and the user had to recall the code after allocating more
space to the arrays used in the factorization. This could be particularly annoying if
the termination occurred near the end of the factorization, perhaps after an already
costly run.

In our new code, we allow the factorization routine to exit, keeping sufficient
data to enable a reentry to continue the factorization from the point of termination.
This is permitted if ICNTL(8) is left at its default value of 1. The user can allocate
bigger arrays, copy the current data to these and recall the factorization routine.
In the Fortran 90 code, this is done automatically and we include a parameter to

10

indicate how much larger the arrays should be on reentry (the default is to double
the size).

5.3 Internal data structures

The internal data structures used by MA57 are similar to those of our earlier
multifrontal codes. The user must supply both a real array and an integer array,
both of which are subdivided within the package as follows:

Computed factors Current frontal matrix Free space Stacked elements

The user’s input data is held in separate arrays and is not changed during the calls
to MAG7.

We now discuss this subdivision of workspace in a little more detail.

Computed factors. This part of the arrays holds the factors that have already
been computed and thus will grow monotonically to the right during the
factorization. The real values are held block pivot by block pivot and comprise
the triangular factor D; LT (held as D;* and L;) in packed form followed by
the rest of the block pivot rows as a dense rectangular matrix F;5 held by
rows. The integer storage comprises a list of column indices headed by the
number of rows and number of columns in the block.

Current frontal matrix. This part is formed afresh for each tree node and is used
to assemble the current frontal matrix from original rows and stacked elements.
It is held in full form to expedite assembly and subsequent elimination
operations.

Free space. At the beginning, this is the only partition present in the arrays and
subsequently free space is eroded from the front by the factors (and temporarily
the frontal matrix) and at the end by the stack.

Stacked elements. Any rows and columns remaining after the eliminations within
the frontal matrix must be stacked as a dense triangular matrix for later
assembly when the parent node is being factorized. We store these matrices
in packed form.

11

5.4 Structure of the package
5.4.1 Analysis

The driver subroutine MA57A first does simple checks on the user’s input data and
then executes code depending on the choice of ordering option determined by the
parameter ICNTL(6). The options are:

ICNTL(6)=1. The user is supplying an ordering. First MA57J is called to sort the
input matrix into the working arrays and then the assembly tree is generated
using MAS7K.

ICNTL(6)=0 or 3. The approximate minimum degree ordering is being used. The
matrix is first sorted using MA57G and either MC47B is called if the standard
AMD is used (ICNTL(6)=0) or the experimental code MC50 that should be
faster if the input matrix has some dense rows (ICNTL(6)=3).

ICNTL(6)=2. The minimum degree ordering as used in the old MA27 code is
requested. The sort is performed using MA27G followed by the ordering and
tree generation routine MA27H.

In all cases, the tree generated is then processed by MAS7L that performs a depth first
search, generates a permutation, orders the children so that the eldest child (the last
to be processed) has the largest frontal matrix, and performs node amalgamation if
requested. A mapping vector to map the user’s input directly to the reordered form
for efficient factorization is then constructed using MA57M to avoid any expensive
sorting within the factorization and, finally, subroutine MA57N evaluates storage and
operation counts for the case when subsequent numerical pivoting does not alter the
tree structure.

5.4.2 Factorize

The driver subroutine MA57B first does simple checks on the user’s input data and
then copies the input data directly to the working arrays using the mapping vector
generated by the analysis phase. The factorization is then effected by a call to
MA570, which we now describe in more detail. One feature of this code is that there
is only one part where problems with insufficient storage can appear.

For each tree node in turn the following steps are executed by MA570.

Step_1. Construct the index list for the frontal matrix. The indices of the rows
that are fully summed at this step (new rows), followed by those from the child
nodes that were previously fully summed (old rows from which pivots were not
earlier chosen because of numerical considerations), are placed in the leading
positions and their number is stored in NASS. The total number of indices is
stored in NFRONT. We call this phase the symbolic assembly.

12

Step_2. Assemble the fully summed rows numerically as a full square matrix of
dimension NFRONT although only the upper triangular part holds the correct
data. If there is insufficient space available for this assembly, the garbage
collection routine MA57P is first called and, if sufficient space is still not
obtained, the subroutine will either:

e exit, after having copied the values of key variables to a subroutine
parameter to enable a subsequent restart from the same point if MAS7B is
recalled with larger working arrays (ICNTL(8) # 0),

e or will destroy previously constructed factors and try to continue
(ICNTL(8) = 0). In this case, if the factorization completes, exact values
for storage and work for the factorization will have been computed
although no factors are generated.

Step_3. We then search for pivots. Unless the matrix is assumed definite or matrix
modification is used (ICNTL(7)>1), numerical threshold pivoting is performed
within the frontal matrix. To make use of Level 3 BLAS within the pivot block,
the fully summed block is divided into blocks of length NBLOC depending on the
input parameter ICNTL(11). Of course, the last block might have fewer than
NBLOC rows. In a cyclic search of the current NBLOC rows of the fully summed
part of the frontal matrix, first the diagonal is tested to see if it passes the
test (3.2) and, if so, is accepted. Otherwise, the 2 X 2 pivot comprising the
diagonal and the largest off-diagonal in its row that is in the current block is
checked for stability using the test (3.3) and is accepted if the test is passed. If
a pivot is not accepted the search moves cyclically to the next diagonal. If one
is, then the multipliers are computed and the part of the fully summed block
within the current block of NBLOC rows is updated. If it proves impossible to
find pivots in the block, the block size is doubled and we try again. At the
end of the search or when NBLOC pivots are found, Level 3 BLAS are used to
update the rest of the fully summed part of the frontal matrix. In the case
that more pivots can be found, we then move to the next set of NBLOC fully
summed rows/columns. At the end of this step, all of the fully summed rows
are updated but no operations have been performed on the Schur complement.

Step_4. If the Schur complement part of the frontal matrix has order larger than
NBLOC, this is updated in place using the Level 3 BLAS by block columns to
avoid computing all of the symmetric matrix (see Section 5.1.3). The upper
triangle of the Schur complement is then stacked and the copying is done so
that no extra space is required.

If the Schur complement has order less than NBLOC, the upper triangle is first
copied to the stack (again no extra space is required) and then the update
operations are performed directly on this copy.

13

Step_5. The data structure of the factors is reorganized into a packed triangular
matrix followed by a rectangular block held by rows, and is stored at the end
of the already computed factors. Again no extra space is required for this.

5.4.3 Solve

There are two user-callable solve routines, MA57C and MA57D. MA57C is the primary
solution routine and is itself called by MA57D.

MAS7C first checks the user’s input data and then calls separate routines for
the forward and back substitution. For one right-hand side, MA57X is called for
the forward substitution and MA57Y for the back substitution. The corresponding
subroutines for the multiple right-hand side case are MA57Q and MAB7R, respectively.
The entries for the partial solutions mentioned at the end of Section 4 call
MA57X/MA57Q for the solution with L and MA57S for the solution with D. However,
the solution with LT requires requires slightly different logic and is performed by
MA57T. In all cases, these inner routines scan the factors in the appropriate order
and either first load the appropriate components into a dense vector and use Level
2 or 3 BLAS routines or operate directly on the vector using indirect addressing,
depending on the value of ICNTL(13). If the number of rows in the block pivot is
greater than 4 (a value that we found to be appropriate in some earlier tests) and
the number of columns greater than ICNTL(13) then the BLAS routines are used.

MA57D performs iterative refinement and computes the measures required by the
error analysis of Arioli et al. (1989). It calls MA57C to perform the solutions. This
entry only allows the solution of one right-hand side.

6 Numerical results

6.1 Test problems

In this section, we describe the problems that we use for testing the performance
of MAS7. In all cases, they arise in real engineering, industrial or commercial
applications. We record the fact that we performed many experiments on a much
extended set but have chosen this subset as a manageable and representative
sample. A brief description of the principal set of test problems is given in
Table 6.1. The problems are grouped into three categories. In each category,
we have ordered the test matrices by increasing dimension. A brief description
of the source of each is given and all matrices are available from the author on
request and will soon be available through the GRID-TLSE Project in Toulouse
(www.enseeiht.fr/lima/tlse). The Rutherford-Boeing test set that will be
available from this site has been developed from the original Harwell-Boeing
Collection (Duff, Grimes and Lewis, 1992) and is available in prototype form from
ftp.cerfacs.fr/pub/algo/matrices/rutherford_boeing/.

14

Identifier

Order

Number of
entries

Description/source

Indefinite matrices ... nonzero diagonal

VIBROBOX 12328 177578 | Vibroacoustic problem

HELM3DO01 32226 230335 | 3-D Helmholtz

DAWSONS5 51537 531157 | FLAP, part of actuator system on airplane
COPTER2 55476 407714 | Adapted CFD grid for helicopter rotor blade
BMW3.2 227362 5757996 | Car crankshaft

HELM2DO03 392257 1567096 | 2-D Helmbholtz

Augmented system matrices

SAWPATH1 1359 4066 | CUTEr problem
EXDATA 6001 1137751 | Misc problem from Wright
BRATU3D 8288 28583 | CUTEr problem
NCVXQP1 12111 47648 | CUTEr problem
AUG3DCQP 35543 105372 | CUTEr problem
TURON_M 189924 912345 | Modelling Uranium mine
DARCY003 389874 1167685 | Mixed finite elements
Positive definite matrices

NASASRB 54870 1366097 | Shuttle Rocket Booster
CFD1 70656 949510 | CFD problem
FINAN512 74752 335872 | Portfolio optimization

Table 6.1: The test problems.

The first category are indefinite systems with a nonzero diagonal. Problems
VIBROBOX, DAWSON5, and COPTER2 were all obtained originally from Tim Davis
(www.cise.ufl.edu/~davis/sparse/); the first one supplied to him by André
Cote from Quebec, and the second two supplied by Ed Rothberg (formerly at
SGI), the last of which originated from R. Strawn of NASA Ames. HELM2D03
and HELM3DO01 were generated for the author by Mario Arioli at the Rutherford
Appleton Laboratory and represent a discretization of the Helmholtz equation in
two and three dimensions, respectively,. BMW3_.2 is from the PARASOL test set
(www.parallab.uib.no/parasol/).

The second group are augmented matrices of the form shown in equation (4.1).
Four are from the CUTEr collection (Gould, Orban and Toint 2002), EXDATA is from
Mike Gertz (Argonne National Laboratory), and the remaining matrices TURON_M
and DARCY003 are from Mario Arioli (Rutherford Appleton Laboratory), both are
augmented systems from a mixed finite-element model. The first is from a model of
a Uranium mine in the Czech Republic, courtesy of the Department of Mathematical

15

Modelling in DIAMO, s.e., Straz pod Ralskem, and the second is a discretization of
Darcy’s equation by Arioli and Gianmarco Manzini of CNR Pavia, Italy.

Although MAS57 is specifically designed for indefinite systems, it should be efficient
also when the matrix is positive definite. We thus include in our test set three
positive definite matrices: NASARB from Alex Pothen of ICASE, and CFD1 and
FINAN512 from Ed Rothberg. FINAN512 was originally generated by John Mulvey
at Princeton.

The experimental results given in this paper were obtained using 64-bit floating-
point arithmetic on a single processor of a Compaq/HP Alpha DS 20 workstation
using the Fortran £90 compiler with the compiler options -05 -arch ev6 -tune
ev6 -math_library fast -assume bigarrays -assume nozsize. For all the
runs, we allocate a working array of length 110 million 64-bit words (this is the
maximum we could allocate on the DS 20), and we use the default settings for the
code parameters, unless explicitly stated otherwise. The default value that we use
for all codes for the threshold u is 1072. The vendor-supplied BLAS were used (from
the DXML Library). All times are CPU times in seconds. In all the tables in which
the number of floating-point operations (“ops”) are quoted, we count all operations
(+7 ™ *’ /) equa'HY-

In the following subsections, we examine aspects of the three main phases of
solution and then compare the new MA57 code with MA27 on the full set of test
matrices. We then compare our code on the set of augmented systems with two
other codes from HSL, MA47 and MA67, that are specifically designed for such systems.

6.2 The analysis phase

In the analysis phase, we allow (through the parameter ICNTL(7)) a choice of three
ordering routines. The other parameter that directly affects the performance of the
analysis, and in particular the tree that is generated, is ICNTL(12) that controls
node amalgamation. We examine the effect of these two parameters in this section.

When we ran the three ordering algorithms on our set of test problems in
Section 6.1, in all cases the analysis times were almost identical for the MC47 and
MC50 orderings while that for the full minimum degree algorithm was expectedly
higher, usually by a factor of about two. The quality of the ordering produced
in all cases was similar although the AMD algorithms almost always produced
slightly less fill-in. The fact that this occurred is not particularly surprising, but
we were a little surprised about the consistency with which AMD beat the MA27
implementation of minimum degree, sometimes by quite a large margin. For the
purposes of this experiment, we thus introduced some new test problems that we
describe in Table 6.2. In this table, GUPTA1 was from Anshul Gupta of Minneapolis
(now at IBM), and BRAINPC2 and AONSDSIL are from the CUTEr test set.

We show the results in Table 6.3. As in the main test set, the MC47 (AMD)
times are usually about half that of MA27H (minimum degree) with the exception

16

Identifier Order | Number of Description/source
entries
BRAINPC2 || 27607 117384 | CUTEr problem
GUPTA1 31802 1098006 | Linear programming matrix of form AAT
AONSDSIL || 80016 200021 | CUTEr problem

Table 6.2: The additional test problems for comparing orderings.

of GUPTA1 where it is about thirteen times faster. However, we see that in this
example and in the others, the routine MC50 is much faster than either of these
orderings by up to a factor of 100 over MC47. We studied the structure of these
matrices and found that there were a significant number of very dense rows (for
example, for BRAINPC2 with an average number of entries per row of around 5, there
are two rows with over 20,000 entries, one of 14,000, and one of 7,000). Thus, as is
evident from our results, a code that respects this will perform much better than one
which does not. Although these dense rows are not chosen early in the elimination
they are always accessed during the degree update unless special action is taken to
prevent this. There is a primitive form of such prevention in the MA27H code, but
it clearly does not work all the time, spectacularly so in the case of GUPTA1. The
quality of the ordering is very similar in all cases, although occasionally there is a
wide variation in factorization times. We investigated thoroughly the SAWPATH1
example and found that quite a different assembly tree was produced after the
different orderings. The MA27H and MC50 trees have much shorter paths from the
root to the leaves than that generated by MC47. This means that a delayed pivot
is often passed up a long chain in the MC47 case, and the frontal matrices in this
chain increase in size as the factorization progresses. However, in the other cases, the
Schur complement matrix containing the delayed pivot is stacked and not assembled
until the root or close to the root. The number of delayed pivots for the ordering
produced by MC47, MA27H, and MC50 are 125720, 35594, and 776 respectively, where
the count for delayed pivots is augmented each time a pivot is delayed even if it
had already been delayed earlier in a previous step. This is reflected in the different
factorization times although the final storage for the factors was 170 Kwords in each
case.

The influence of the node amalgamation (ICNTL(12)) is shown in Table 6.4
where, as expected, the number of tree nodes and assembly operations decrease
monotonically with increasing value of ICNTL(12) while the number of elimination
operations increases. The behaviour over the test problems is similar but not
identical and we will examine this parameter again in the next section when we
discuss the numerical factorization. The analysis times are, of course, hardly altered
by changing ICNTL(12) since this is only used during the final post-processing of
the assembly tree.

17

Identifier Ordering | Analyse time | Forecast for factorization | Factorize time
(seconds) Storage Ops (seconds)
(Kwords) (x10)

SAWPATH1 || MC47 0.005 5 .023 5.49
MA27H 0.007 5 .023 0.83

MC50 0.004 5 .023 0.14

BRAINPC2 || MC47 8.85 193 1.42 0.29
MA27H 14.68 193 1.42 0.74

MC50 0.09 193 1.42 0.64

GUPTA1 Mc4a7 113.62 2056 302 8.42
MA27H 1452.04 2021 265 8.71

MC50 4.93 2056 302 4.93

AONSDSIL Mc4a7 10.82 340 1.72 0.23
MA27H 23.98 340 1.72 0.23

MC50 0.28 350 1.90 0.24

Table 6.3: A comparison of different orderings.

6.3 The factorization phase

In this section, we first study the effect of varying the pivot threshold parameter,
u. Of course, the fill-in and time may be very influenced by the value set for this
in CNTL(1). We show the influence of this through the results in Table 6.5. We
then study the influence of the parameters that control the minimum pivot block
size (Tables 6.6 and 6.7) and the size of the blocks used by the Level 3 BLAS
for updating the frontal matrix (Table 6.8). The control parameters for these are
ICNTL(12) and ICNTL(11), respectively. In Tables 6.6 to 6.8 results are given for a
subset of our test problems for a range of values of the parameters.

The results in Table 6.5 are really quite dramatic and show clearly that vastly
different performance can be obtained by reducing the value of the threshold
parameter. The effect is usually most dramatic when u is reduced from 10~ to 10~2
and in most of our test runs the residual or error did not increase significantly by this
reduction. However, we should be wary of reducing the threshold too much since
we can potentially get greater growth in the factors and hence greater instability in
the factorization. We show the scaled residual in the last column of Table 6.5 and
note that there are just two cases when the value is not at rounding level for 64-bit
arithmetic. In the case BRATU3D, the residual is unsatisfactory for threshold values
smaller than 1072, If iterative refinement is used, the residual can be reduced to
1015, but it does not happen with threshold values smaller than 107°. Although
there are sometimes significant gains by reducing the threshold from 1072 to 105,
we feel that we want to err on the side of caution and choose « = 1072 as the default
value. Another reason for this is that, although iterative refinement can sometimes
enable a stable solution for lower thresholds, it is quite an expensive option relative
to the solution cost. However, it may be very appropriate to set a lower threshold

18

Identifier Amalgamation | Number of | Forecast for factorization
level tree nodes | Ops (¥x10°) Ops (x107)

ICNTL(12) Assembly | Elimination

DAWSON5 1 18214 14.0 1.22
5 9519 12.0 1.23

10 8158 11.1 1.24

50 6940 8.4 1.40

100 6840 7.5 1.64

BMW3_2 1 28981 157 54.5
5 24883 155 54.5

10 17332 143 54.6

50 10081 117 56.2

100 8376 105 58.8

HELM2D03 1 231446 67.0 13.7
5 121090 61.4 13.7

10 109865 58.4 13.8

50 102833 48.9 14.7

100 102353 43.9 16.2

SAWPATH1 1 1331 0131 .0000232
5 479 0077 .0000590

10 414 .0070 .0000740

50 396 .0068 .0002870

100 394 .0067 .0008420

BRATU3D 1 5941 4.74 .369
5 3770 3.60 371

10 3672 3.31 374

50 3582 2.27 404

100 3571 1.94 447

TURONM 1 112216 50.8 17.0
) 62791 49.1 17.0

10 58858 479 17.1

50 56409 42.8 17.7

100 56228 39.2 18.7

DARCY003 1 312409 12.7 764
) 172969 10.9 7T

10 160176 10.1 .802

50 155952 8.3 1.02

100 155801 7.5 1.28

NASASRB 1 7891 33.8 5.58
5 5953 32.2 4.59

10 4297 29.7 4.61

50 3091 23.7 5.00

100 2940 20.7 5.72

Table 6.4: Effect of node amalgamation.

19

Identifier Threshold Number of Factorization Residual
parameter | delayed pivots Time Number reals
Uu (Seconds) (Kwords)
VIBROBOX || 107! 30855 40.58 7301 [1. 1071°
10~2 3509 3.23 2318 | .8 107
10—° 0 2.58 2087 | .8 1071°
1010 0 2.58 2087 | .8 10715
10~12 0 2.58 2087 | .8 1071
BMW3_2 1071 > 110 million words of storage required
10~2 13800 129.98 55606 | 2. 1071°
10~5 0 115.98 52963 | 3. 107
10-10 0 116.08 52963 | 3. 107
10~12 0 116.24 52963 | 3. 10~ 1%
SAWPATH1 || 107! 126109 5.38 172 | .7 10716
10~2 125720 5.24 172 | .8 10~1°
10-5 117045 4.00 157 | .2 10715
1010 2782 0.01 8| .210°°
10712 571 0.00 6| .410°°
EXDATA 10~ 2965 96.58 5370 | .2 10~
1072 2471 47.33 4176 | .2 10715
10—% 0 2.37 1139 | .2 1071
10-10 0 2.37 1139 | .2 10715
1012 0 2.37 1139 | .2 10715
BRATU3D 101 18104 5.99 2220 | .6 10713
10~2 17312 5.03 2127 | .1 10710
10~5 13540 3.52 1787 | .2 10~°
1010 12683 2.74 1647 | .3 10°
10~12 12604 2.67 1632 | .4 10°
NCVXQP1 101 123115 351.22 22486 | .4 10717
10~2 122079 208.59 22000 | .8 10717
10°° 83253 89.20 11936 | .1 10716
10-10 56036 53.19 8438 | .3 101¢
10~12 23132 23.23 4729 | .5 10716

Table 6.5: Effect of threshold parameter.

20

value if you are in an environment where there are other controls against unstable
factorizations. This is often the case in optimization applications when a threshold
of 1079 or less is used by some codes (for example, the HSL code VE12).

Identifier ICNTL(12)
1 | 5 | 10 | 50 | 100
DAWSON5 385 376 374 387 431
BMW3_2 131.63 129.61 128.62 129.45 133.07

HELM2D03 33.85 33.63 33.71 3493 33.27
SAWPATH1 5.44 .77 1.14 0.71 0.68
BRATU3D 5.09 4.80 4.75 4.55 4.83
TURONM 39.10 39.00 39.06 40.20 42.16
DARCY003 4.10 3.91 4.04 4.71 5.24
NASASRB 12,59 11.86 11.76 11.99 12.97

Table 6.6: The time in seconds for the numerical factorization for different values of
the node amalgamation parameter ICNTL(12).

The factorization times in Table 6.6 indicate that, in general, modest savings can
be achieved by allowing ICNTL(12) to be greater than 1 but the precise choice of
the minimum pivot block size parameter does not appear crucial. This is important
from a practical point of view since it is possible to get good performance without
having to optimize the parameter from run to run. If we further look, in Table 6.7,
at the influence of ICNTL(12) on the number of entries in the factors, and hence on
the solution time, we see that these increase monotonically as ICNTL(12) increases.
Because the factorization times are quite flat and the solution time is least when
ICNTL(12) = 1, we choose this as the default but note that for small examples, such
as SAWPATH1, a larger value may help.

Identifier ICNTL(12)

1 | 5 | 10 | 50 | 100
DAWSON5 || 4627 4765 4888 5595 6106
BMW3_2 55606 55673 56404 61960 66321

HELM2DO03 || 28016 29064 30046 34558 37694
SAWPATHI1 172 247 247 247 247
BRATU3D 2127 2161 2185 2330 2472
TURONM 23258 23854 24486 25427 27046
DARCY003 6941 7848 8927 11084 11922
NASASRB 11801 11865 12033 13220 14386

Table 6.7: The number of entries in the factors for different values of the node
amalgamation parameter ICNTL(12).

21

Identifier ICNTL(11)

1 | 5 | 10 | 20 | 50 | 100 | >n
HELM3DO01 81.78 29.79 23.40 18.80 19.21 20.49 47.40
COPTER2 115.57 43.02 35.06 31.04 31.18 3430 61.39

BMW3.2 795.45 210.83 158.96 134.46 129.88 137.50 358.48
HELM2D03 163.61 47.86 39.08 34.97 35.81 39.97 66.48
BRATU3D 19.51 6.55 5.61 5.24 5.07 5.29 6.53

NCVXQP1 1098.97 390.62 262.95 215.36 197.81 193.41 576.70
TURONM 201.68 57.43 45.63 38.02 40.21 44.40 84.41
NASASRB 49.96 15633 13.39 11.93 1397 1592 19.93

Table 6.8: The time in seconds for the numerical factorization for different values of
the blocking parameter ICNTL(11).

The effect of using blocking and the Level 3 BLAS is very dramatic, as we
see in the results in Table 6.8. The factorization when using even a low value for
the blocking is typically three times as fast as when using blocks of size one. We
notice that the performance is relatively flat over the range 10-50 for the blocking
parameter, ICNTL(11), making it fairly easy to choose a default, which we have
set at 16. We note that, for some examples, an even bigger block value can be
beneficial although in every case switching off blocking (ICNTL(11)> n) does worse,
sometimes by a factor of two or more.

6.4 The solve phase

In this section, we examine the influence of the number of right-hand sides and the
switch between direct and indirect addressing on the solution phase. Although this
phase is very much less costly than the factorization, typically about one hundred
times faster, it is nevertheless important to tune this code well since there are many
environments, for example in some optimization applications, where the solve times
can still dominate.

In Table 6.9, we show the solve times for some of our test problems for the number
of right-hand sides ranging from 1 to 50 and notice that it is typically over twice
as fast to use a block of vectors B than to solve for a set of single right-hand sides.
In some cases, however, the cost increases when many right-hand sides are being
solved, notably for HELM2D03 and DARCY003. These are the largest systems that
we solve with order just under 400,000 so it would appear that we are constrained
by the size of the Level 2 cache on the DS 20. We show the cost for solving one
right-hand side when using SGEMM (column 2 in Table 6.9), to indicate why we have
chosen to use SGEMV for the case of one right-hand side. In further experiments,
performed by John Reid at RAL, the preliminary indications are that it is better to
use SGEMV if less than four right-hand sides are being solved simultaneously.

22

Identifier Number of right-hand sides
GEMV GEMM

1 1 | 5 | 10 | 20 | 50
VIBROBOX || 0.06 0.08 0.03 0.03 0.03 0.03
HELM3DO01 0.19 026 0.11 0.11 0.11 0.12
DAWSONS 0.15 021 0.08 0.07 0.06 0.07
COPTER2 037 051 020 0.18 0.17 0.19
BMW3._2 149 216 0.80 0.68 0.58 0.59
HELM2D03 | 0.97 133 054 0.49 048 0.71
BRATU3D 0.05 0.07 0.03 0.03 0.02 0.03
AUG3DCQP | 0.04 0.05 0.02 0.02 0.02 0.02
TURON_M 067 095 037 032 028 0.34
DARCYO003 040 054 028 0.28 039 0.73
NASASRB 033 046 017 0.14 0.11 0.12
CFD1 091 129 048 0.41 0.35 0.36

Table 6.9: The time for the solve phase in seconds per right-hand side.

The impact of changing the point at which we switch between direct and indirect
addressing is less powerful. However, we see from the results in Table 6.10 that
modest gains can be made in some cases by switching when the block size is around
10 (this is our default) and that it is almost always slower if only indirect addressing
is used (ICNTL(13)> n), as we can see from the last column in Table 6.10.

Identifier ICNTL(13)

1 | 5 | 10 | 50 | 100 | >n
VIBROBOX || 0.06 0.06 0.06 0.06 0.07 0.06
HELM3DO01 || 0.20 0.20 0.21 0.20 0.20 0.24
HELM2D03 || 0.96 0.96 0.96 0.94 092 0.98
EXDATA 0.07 0.06 0.06 007 007 0.17
BRATU3SD || 0.05 0.05 0.05 0.05 005 0.05
NCVXQP1 |[0.38 0.38 0.37 0.37 040 0.74
NASASRB |/ 0.32 0.32 032 033 032 028
FINAN512 || 0.14 0.15 0.15 0.15 0.14 0.20

2

3

Table 6.10: The time in seconds for the solve phase on a single right-hand side for
changing the switch to indirect addressing.

6.5 The performance of MA57 compared with MA27

Our aim in designing and developing MA57 was to produce a code that would be
noticeably more efficient than the HSL symmetric indefinite multifrontal solver MA27.
To assess how successful we have been, in Table 6.11 we compare runs of our new
code with MA27.

Identifier Code Execution time Storage
(Seconds) (Kwords)
Analyse | Factorize | Solve | Real | Integer
Indefinite
VIBROBOX || MA57 0.18 3.38 0.06 | 2318 212
MA27 0.31 8.94 0.07 | 2961 210
HELM3DO01 MA57 0.52 19.28 0.19 | 7631 481
MA27 0.95 48.45 0.18 | 8148 480
DAWSONS5 MA57 0.50 3.83 0.14 | 4627 562
MA27 0.72 6.25 0.14 | 5214 568
COPTER2 MA57 0.76 30.05 0.36 | 14143 838
MA27 1.27 101.66 0.36 | 17237 842
BMW3.2 MA57 2.87 129.02 1.45 | 55606 2091
MA27 3.15 469.97 1.38 | 63692 2147
HELM2D03 || MA57 3.16 33.70 0.95 | 28016 3744
MA27 3.51 80.47 0.88 | 31687 3623
Augmented
SAWPATH]1 || MA5T7 0.01 549 0.00 172 5
MA27 0.01 0.53 0.00 172 4
EXDATA MA57 0.63 47.39 0.07 | 4176 14
MA27 0.54 36.27 0.07 | 4104 15
BRATU3D MA57 0.06 5.03 0.05 | 2127 102
MA27 0.12 6.00 0.05 | 2342 96
NCVXQP1 MA57 0.18 208.62 0.37 | 22000 297
MA27 0.67 621.42 0.47 | 23330 344
AUG3DCQP || ma57 0.13 1.16 0.04 958 237
MA27 0.17 1.42 0.03 | 1003 204
TURONM MA57 1.11 39.15 0.65 | 23258 1339
MA27 1.13 158.41 0.70 | 31249 1394
DARCY003 MA57 2.59 4.07 0.38 | 6941 1937
MA27 2.55 590 033 | 7629 1962
Pos Def
NASASRB MA57 0.73 12.53 0.32 | 11801 603
MA27 0.83 24.86 0.30 | 13743 627
CFD1 MA57 1.10 98.06 0.89 | 37162 1412
MA27 2.65 386.12 0.94 | 46747 1459
FINANb512 MA57 0.40 746 0.15 | 4318 664
MA27 0.86 3191 0.17 | 6323 863

Table 6.11: A comparison of the time and storage requirements for MA57 and MA27
on the set of test matrices.

24

The analysis phase is nearly always faster, sometimes by a factor of more than
two. For the factorization phase, we see from these tables that MA57 is almost always
significantly faster than MA27 and, for the larger problems, MA57 can be more than
four times as fast as MA27. The solve times for MA57 are roughly comparable with
those of MA27 although of course significant gains can be made with MA57 if several
right-hand sides are solved simultaneously. The accuracy obtained by both codes
was roughly comparable.

6.6 Comparison with other HSL codes on augmented
systems

Augmented systems of the form (4.1) are ubiquitous in numerical computation (Duff
1994) so much so that we have designed codes in HSL to specifically deal with this
case. We compare our new code with these codes, MA47 and MA67, on our set of
augmented system examples in Table 6.12.

Identifier Code Execution time Storage
(Seconds) (Kwords)

Analyse | Factorize | Solve | Real | Integer

SAWPATH1 || MA57 0.01 5.49 0.00 172 5
MA47 0.01 4.69 0.00 170 3

MA67 2.56 0.00 169 4

EXDATA MA57 0.63 47.39 0.07 | 4176 14
MA47 0.84 46.14 0.06 | 4108 11

MA67 2092.45 0.42 | 1630 638

BRATU3D MAB7 0.06 5.03 0.056 | 2127 102
MA47 0.83 1.42 0.03 | 1015 15

MA67 265 0.25 973 108

NCVXQP1 MAB7 0.18 208.62 0.37 | 22000 297
MA47 17.30 37175.92 0.72 | 26645 7961

MA67 614.79 0.35 | 16033 1016

AUG3DCQP || MA57 0.13 1.16 0.04 958 237
MA47 0.33 1.50 0.05 | 1173 143

MA67 3.20 0.04 | 1164 241

TURON-M MAB7 1.11 39.15 0.65 | 23258 1339
MA47 1363.28 167.09 1.00 | 37061 1519

MA67 219.52 1.28 | 48682 2395

DARCY003 MAB7 2.59 4.07 0.38 | 6941 1937
MA47 | 13217.81 6.55 0.42 | 7629 2264

MAB7 1794 0.58 | 8491 2837

Table 6.12: A comparison of the time and storage requirements for MA57 and MA47
and MA67 on the set of augmented matrices.

The results in Table 6.12 show that MA57 often outperforms the other two codes

25

both in terms of execution time and storage and, when it is not the best code, it is
not much more than twice as bad as the best one. We note that, for SAWPATHI,
the best code for the factorization time was in fact MA27 (see Table 6.11) although,
as we remarked in Section 6.2, this problem has somewhat unusual characteristics.

To check the effect of scaling the system using the HSL code MC30, we ran all of
our test problems and all the codes after an explicit scaling of the system. In most
cases, there was very little difference but, in three cases, the performance improved
and, in three cases, it was noticeably worse. All codes were affected similarly. There
were two cases that were particularly dramatic. For NCVXQP1, the factorize times
were reduced to 90.01, 227.70, 15900.57, and 186.723 seconds for MA57, MA27, MA47,
and MA67 respectively. On the other hand, for BMW3_2, the codes are unable to
factorize the scaled version within the memory allocated (which is the maximum
we could obtain on the DS 20). This reinforces our belief that scaling is an inexact
science and that it must be performed very much in the context of the application
or environment in which the system is being solved.

7 The use of MA57 in optimization packages

In interior point methods for the solution of nonlinear programming problems, a
vital subproblem is

1
min ixTHx + gTx, subject to Ax =0 (7.1)

for which the coefficient matrix is of the form

(o1 &), o2

where D is a positive semi-definite matrix used to penalize inequality constraints.
A common solution scheme is to perform conjugate gradient iterations respecting

the constraint Ax = 0 and to use
B AT
(34, -

as a preconditioner that is factorized by a sparse direct code. We are currently
investigating a range of preconditioners together with Dominique Orban of
Northwestern.

Nick Gould of Rutherford Appleton Laboratory uses this approach and our
software in both his interior point code VE12, and in VE19, an active set code with
a Schur complement update, and both Jorge Nocedal and Steve Wright have used
MAS7 as a linear solver in their optimization packages, KNITRO (Byrd, Hribar and
Nocedal 1999) and OOQP (Gertz and Wright 2001), respectively.

26

This application of a sparse direct solver is a particularly rich one for testing the
linear code. Obviously any matrix of the form (7.3), with B symmetric, is symmetric
and indefinite. In addition, the matrix B is often not positive-definite and may even
be (close to or actually) singular, so that really quite evil linear systems can result. A
solution to the linear system is sometimes only possible because the right-hand side
lies in a subspace for which the projection of the augmented matrix is nonsingular.
Additionally, the matrices A and B can have a very wide range of sparsity patterns
depending on the original source of the optimization problem. Such matrices, and
the sophistication of the optimization codes which call the linear solver, result in a
varied and severe test for all three phases of the direct solution. In the following
sections, we discuss the use of MA57 within these optimization codes, showing the
influence that our early experience in this application area has had on the tuning
and design of our code.

7.1 Analysis

For the analysis phase, we already remarked in Section 6.2 that the AMD algorithm
as implemented in MC47 can be rather slow when the matrix has one or more very
dense rows. Indeed, this is fairly common in our optimization problems. For
example, in a matrix of order 30007 supplied by Nick Gould, the analysis phase
for MC47 required 214 seconds on a DS 20 workstation, contrasting with 2.47 and
0.26 seconds for factorization and solve phases, respectively. It was this behaviour
that prompted us to include the research code MC50. When we used this code, the
analysis time dropped to 1.4 seconds and the quality of the ordering was essentially
unaffected. Of course, one of the main issues in the case of augmented systems is
that, as we saw in Section 6, the forecast from the analysis may not be a good guide
to what is actually needed in the factorization.

7.2 Solve

Often, in the solution of sparse linear systems, less attention is placed on the solve
phase because, as we saw in Section 6, it is usually up to two orders of magnitude
faster than the factorization. However, in the context of these optimization codes,
where the direct factorization of (7.3) is used as a preconditioner for an iterative
method, there are many more calls to the solve routine than to the factorization
routine (for example, in a typical run of KNITRO, there were 34,174 calls to the
solve routines but only 125 matrix factorizations). Thus the overall time can be
significantly affected by the solve times. Indeed, on early runs using the new MA57
code, we were dismayed to find that, although the factorization times were less than
half that of the earlier MA27 code, the overall times for many of the optimization
runs were much longer when MA57 was used in place of MA27. This early problem
was traced to a slower solve time for MA57 which, on further investigation, was found

27

to be caused by the overhead of SGEMM when there was only one right-hand side (see
columns 2 and 3 of Table 6.9). This discovery caused us to write separate code for
the case of one right-hand side as we discussed in Section 6.4. In most cases, the
optimization code with MA57 included then outperformed the version with MA27.

7.3 Solution within optimization code

In Table 7.1, we show the results of a typical run of MA27 and MA57 on a system
of linear equations obtained from test problem STCQP1 from the CUTE collection
(Bongartz, Conn, Gould and Toint 1995). We see that MA57 is significantly superior
to MA27 in all phases. This is true for all the linear systems that we have tested, and
we have observed larger cases on which the MAS7 factorize is ten times faster than
that of MA27, largely because of the use of the Level 3 BLAS.

Analyse Factorize Solve
MA27 0.59 0.54 0.08
MA57 0.29 0.39 0.06

Table 7.1: Times in seconds for all phases of MA27 and MA57 on example STCQP1
from CUTE. Matrix of order 5036 with 38045 entries.

Identifier # vars # inequalities | MA27 MASB7
AUG3DCQP | 27543 8000 | 95.8 54.9
AUG3DQP 27543 8000 | 95.8 56.9
BLOWEYA 20002 10002 | 183 35.9
DEGENQP 50 125025 | 49.1 19.2
CVvXQPr1 15000 7500 | 906.5 2.9
STCQP1 8193 4095 | 107.8 161.3
STCQP2 8193 4095 | 108.1 48.3

Table 7.2: Total times to solution of CUTE problems in seconds using VE12.

When we look, in Table 7.2, at times for complete runs of a prototype primal-
dual interior point method of Gould, using both the codes, we would naturally
expect the performance to mirror that in Table 7.1. In nearly all cases, runs of
the optimization package with the new code are faster, sometimes significantly so.
There are, however, a few cases that cause us concern (for example BLOWEYA and
STCQP1 in Table 7.2). Of course, the times for the solution of the nonlinear problem
will be affected strongly by convergence rates and the convergence path taken by
the algorithm and even a small change in the solution provided by the linear solver
may influence this. One important issue is that the matrices (7.2) become very
ill conditioned, particularly near the solution of the optimization problem which is

28

exactly when an accurate solution to the linear problem is required. Additionally, if
we look at the results shown in Table 7.3, we see it is important from an efficiency
point of view to keep the threshold very low but then there is significant risk of
obtaining a poor solution, as happens when the threshold is reduced to 10 1? in this
example. Because of this risk and because the solution must satisfy the Ax = 0
constraints to high accuracy, the optimization codes have built in a facility for
iterative refinement. Because of differences in pivoting strategies of MA27 and MA57,
it would appear that on some examples MA57 required far more iterative refinements
causing the overall time for the optimization to increase.

7.3.1 Iterative refinement

We conducted a more detailed investigation into the apparent paradox between
the relative times for problem STCQP1 in Tables 7.1 and 7.2. The two runs of
the optimization code required about the same number of function evaluations and
conjugate gradient iterations but the run with MA57 required far more iterative
refinements. On further examination, we found that, for the same linear equations
with the same threshold value of 107!°, MA57 returned a scaled residual of 10~° while
the scaled residual using MA27 was 107!0. The MA57 value triggered the iterative
refinement option. We then studied both solvers more closely to see why the residuals
were so different and found that the MA57 code had inherited a pivoting strategy
from MA47 whereby, if the candidate 2 x 2 pivot fails the threshold test (3.3), the
(2,2) entry is immediately tested as a possible 1 X 1 pivot. If it satisfies the test,
then the modified (1,1) entry is then tested and if it passes the test, the 2 x 2 pivot is
accepted. This was a reasonable strategy for MA47 since there is a high premium on
being able to choose pivots of the form 2 z . However, the resulting 2 X 2 pivot
is potentially less stable than the normal test would allow. In fact, although the pivot
has been accepted, the bound on the growth for the 2 x 2 pivot is now 1/u* rather
than 1/u. This was certainly not intended for MA57 and when this was removed, the
resulting scaled residual was the same as for MA27 and the optimization code ran
faster with MA57 than with MA27. Now, although this was all caused effectively by a
bug in an early version of MA57, we have discussed this in some detail to illustrate
the sensitivity of the optimization code to seemingly small changes to the linear
equation pivoting strategy.

7.4 Factorize

Although Gould reports that MA57 efficiently and effectively solves 99% of his
problems from the CUTEr test set, he has found a few where MA57 fails by running out
of space. In one of the most dramatic examples, a problem from discrete optimized
control called DTOC, the factorization of a matrix of order 24993 with only 69972
entries required more than 110 million words for the factorization. In this case, the

29

(1,1) block was zero so that no 1 x 1 pivot could be chosen and the ordering and
assembly tree produced by the analysis were totally unable to guide the factorization.
The strategies of MA47 and MA67 did work much better on this matrix but Duff and
Gilbert are developing an ordering to choose block pivots and a prototype version
of this approach has been tried with reasonable success on matrices of this form.

7.4.1 Scaling

Threshold Factorization
Uu Reals Time
Analysis 59273
108 44529 .406
107° 13620 .049
10-10 8355 .013
With scaling
10-8 5915 .004

Table 7.3: Effect of changing threshold and scaling. Matrix from SAWPATH1
problem. Times in seconds for MA57.

Of course, some of the sensitivity to the threshold parameter that we see most
dramatically in Table 7.3, might be significantly affected by scaling the matrix prior
to numerical pivoting. When we used the HSL routine MC30 to scale the matrix in
this table, we were able to factorize it stably with a threshold of 1072 in a fraction of
the time without scaling, and faster than the unstable factorization with threshold
1071°, with the number of entries in the factors close to that predicted by the
analysis. Although scaling works extremely well in this case, there are cases, for
example the CUTEr problem A5ESINDL, on which the reverse is true so that scaling
is as big an issue as always and we are investigating this further with Nick Gould
and Jorge Nocedal of Northwestern.

8 Concluding remarks

We have designed and developed a new multifrontal code for solving systems of
symmetric indefinite equations. The code makes full use of Level 3 BLAS in its
innermost loop and in the solution phase. We have shown that the code can be
significantly faster than MA27 and is competitive with specially designed HSL codes
on structured matrices of the form (4.1).

30

9 Availability of the code

MAS57 is written in standard Fortran 77 and HSL_MA57 in standard Fortran 90. There
is also a version for complex symmetric matrices called ME57. Documentation
on the codes can be obtained from the author. The codes are included in HSL
2002. Further information on HSL 2002 can be obtained from the Web page
www.cse.clrc.ac.uk/nag/hsl.

Acknowledgments

I am very grateful to Michael Friedlander, Mike Gertz, Nick Gould, Jorge Nocedal,
Michael Saunders, Richard Waltz, and Steve Wright for testing various versions of
MA57 within their optimization codes, in some cases generating test cases that I have
used in this report. I am also grateful to Mario Arioli for generating and providing
some of the test matrices, and to Nick Gould, John Reid, and Jennifer Scott of the
Rutherford Appleton Laboratory for their remarks on an earlier draft of this paper.

References

Amestoy, P. R., Davis, T. A. and Duff, I. S. (1996), ‘An approximate minimum

degree ordering algorithm’, SIAM J. Matrix Analysis and Applications
17(4), 886-905.

Arioli, M., Demmel, J. W. and Duff, I. S. (1989), ‘Solving sparse linear systems with
sparse backward error’, SIAM J. Matriz Analysis and Applications 10, 165-190.

BLAS Technical Forum (2002), ‘Special Issue: On Basic Linear Algebra
Subprograms Technical BLAST Forum Standard -1 and II’, The International
Journal of High Performance Computing Applications.

Bongartz, I., Conn, A. R., Gould, N. I. M. and Toint, P. L. (1995), ‘CUTE:
Constrained and Unconstrained Testing Environment’, ACM Trans. Math.
Softw. 21(1), 123-160.

Bunch, J. R., Kaufman, L. and Parlett, B. N. (1976), ‘Decomposition of a symmetric
matrix’, Numerische Mathematik 27, 95-110.

Byrd, R., Hribar, M. and Nocedal, J. (1999), ‘An interior point algorithm for large
scale nonlinear programming’, SIAM J. Optimization 9(4), 877-900.

Curtis, A. R. and Reid, J. K. (1972), ‘On the automatic scaling of matrices for
Gaussian elimination’, J. Inst. Maths. Applics. 10, 118-124.

Dongarra, J. J., Du Croz, J., Duff, I. S. and Hammarling, S. (1990), ‘A set of Level
3 Basic Linear Algebra Subprograms.’, ACM Trans. Math. Softw. 16, 1-17.

31

Dongarra, J. J., Du Croz, J. J., Hammarling, S. and Hanson, R. J. (1988), ‘An
extented set of Fortran Basic Linear Algebra Subprograms’, ACM Trans. Math.
Softw. 14, 1-17.

Duff, I. S. (1984), ‘Design features of a frontal code for solving sparse unsymmetric
linear systems out-of-core’, SIAM J. Scientific and Statistical Computing
5, 270-280.

Duff, I. S. (1994), The solution of augmented systems, in D. F. Griffiths and
G. A. Watson, eds, ‘Numerical Analysis 1993, Proceedings of the 15th Dundee
Conference, June-July 1993’, Pitman Research Notes in Mathematics Series.
303, Longman Scientific & Technical, Harlow, England, pp. 40-55.

Duff, I. S. and Reid, J. K. (1982), MA27 — A set of Fortran subroutines for solving
sparse symmetric sets of linear equations, Technical Report AERE R10533, Her
Majesty’s Stationery Office, London.

Duff, I. S. and Reid, J. K. (1983), ‘The multifrontal solution of indefinite sparse
symmetric linear systems’, ACM Trans. Math. Softw. 9, 302-325.

Duff, I. S. and Reid, J. K. (1995), MA47, a Fortran code for direct solution of
indefinite sparse symmetric linear systems, Technical Report RAL 95-001,
Rutherford Appleton Laboratory, Oxfordshire, England.

Duff, I. S. and Reid, J. K. (1996), ‘Exploiting zeros on the diagonal in the direct
solution of indefinite sparse symmetric linear systems’, ACM Trans. Math.

Softw. 22(2), 227-257.

Duff, I. S., Erisman, A. M. and Reid, J. K. (1986), Direct Methods for Sparse
Matrices, Oxford University Press, Oxford, England.

Duff, I. S., Grimes, R. G. and Lewis, J. G. (1992), Users’ guide for the Harwell-
Boeing sparse matrix collection (Release I), Technical Report RAL 92-086,
Rutherford Appleton Laboratory, Oxfordshire, England.

Eskow, E. and Schnabel, R. B. (1991), ‘Algorithm 695: Software for a new modified
Cholesky factorization’, ACM Trans. Math. Softw. 17, 306-312.

Gertz, E. M. and Wright, S. J. (2001), OOQP User Guide: Object-Oriented Software
for Quadratic Programming, Argonne National Laboratory.

Gould, N. I. M., Orban, D. and Toint, P. L. (2002), CUTEr (and SifDec), a
constrained and unconstrained testing environment, revisited, Technical Report
RAL-TR-2002-009, Rutherford Appleton Laboratory.

HSL (2002), ‘HSL 2002: A collection of Fortran codes for large scale scientific
computation’. www.cse.clrc.ac.uk/nag/hsl.

32

Irons, B. M. (1970), ‘A frontal solution program for finite-element analysis’, Int. J.
Numerical Methods in Engineering 2, 5-32.

Reid, J. K. (1972), Two Fortran subroutines for direct solution of linear equations
whose matrix is sparse, symmetric and positive-definite, Technical Report
AERE R 7119, Her Majesty’s Stationery Office, London.

33

