The design of a new frontal code for solving spar se unsymmetric systems

|.S. Duff and J. A. Scott

ABSTRACT

We describe the design, implementation, and performance of afrontal code for the solution of
large sparse unsymmetric systems of linear equations. The resulting software package, MA42,
isincluded in Release 11 of the Harwell Subroutine Library and is intended to supersede the
earlier MA32 package. We discuss in detail the extensive use of higher level BLAS kernels
within MA42 and illustrate the performance on a range of practical problems on a CRAY
Y-MP, an IBM 3090, and an IBM RISC System/6000. We examine extending the frontal
solution scheme to use multiple fronts to allow MA42 to be run in parallel. We indicate some
directions for future development.

Keywords : sparse unsymmetric linear equations, unsymmetric frontal method, Gaussian
elimination, finite-element equations, level 3 BLAS, parallel processing.

AMS(MOYS) subject classification : 65F05, 65F50.

CR classification system : G.1.3.

Computing and Information Systems Department,
Atlas Centre,

Rutherford Appleton Laboratory,

Oxon OX11 0QX.

April 1996.

1 Introduction
We consider the solution of sets of linear equations
Ax=Db (1.2

where the matrix A is large and sparse. We do not assume that A is symmetric or has any
particular structure. This paper describes the design and implementation of a new code for the
solution of (1.1) by adirect solution method using a frontal algorithm.

The frontal method (see, for example, Irons 1970, Hood 1976, Duff 1984, Duff, Erisman,
and Reid 1986) is a variant of Gaussian elimination and involves the factorization of a
permutation of A which can be written as

A=PLUQ, (12

where P and Q are permutation matrices, and L and U are lower and upper triangular
matrices, respectively. In the frontal method the matrix A is normally envisaged as a sum of
finite-element matrices

m
A=Y AY, (1.3
k=1
where each matrix A® has nonzeros only in afew rows and columns and corresponds to the
matrix from element k. The basic assembly operation is of the form

The basic Gaussian elimination operation
a;<—a; —ay[a] _1an (1.5)

may be performed once each of thetermsin thetriple product in (1.5) isfully summed (that is,
they are involved in no more sums of the form (1.4)). In this way, the factorization can
proceed without ever assembling the whole coefficient matrix A, and only the active part, the
frontal matrix, need be held. The size of the frontal matrix depends upon the ordering of the
finite elements so it is important that the elements are suitably ordered (see, for example,
Duff, Reid, and Scott 1989). Duff (1981) extended the frontal method to permit input by
eguations (rows) as well as elements.

In this paper, we are not concerned with the algorithmic details of the frontal method and
we refer the reader to the abovementioned papers for thisinformation. Our work is based on a
substantial restructuring of an earlier frontal code, MA32 (Duff 1981, 1983), and indeed was
motivated by the requirement to redesign MA32 so that it would run efficiently on a wide
range of modern computers and would be in a form suitable for further developments in
frontal matrix solution, including exploitation of parallelism and the design of codes for
complex and symmetric cases. The restructured frontal code is called MA42 in Release 11 of
the Harwell Subroutine Library (Anon 1993) and full details of the code, including
specification sheets, may be found in Duff and Scott (1993).

The MA42 code may be split into three distinct phases.
(i) An analyse phase (MA42A) which determines when each variable is fully summed.

(ii) A factorization phase (MA42B) which factorizes the matrix into its upper and lower
triangular factors using Gaussian elimination. If right-hand side vectors (in unassembled
form) areincluded in the callsto MA42B, forward substitution on these right-hand sides
is performed at the same time as the matrix factorization and, once the factorization is
complete, MA42B calls an internal subroutine (MA42D) to perform the back-
substitution.

(iii) A solution phase for further right-hand sides and for the solution of transpose systems

ATx=b (MA42C). This phase is optional. MA42C calls an internal subroutine MA42E
to perform the forward substitution on the right-hand sides and then calls the internal
subroutine MA42D to perform the back-substitution and complete the solution.

Key features of MA42 are:
» The matrix A may be input either by finite elements or by equations.

* The interface to the user is through reverse communication with control returned to the
calling program each time an element or equation needs to be input.

» Efficiency of the code (in terms of storage and computation time) is dependent upon the
order in which the elements or equations are input.

» Large problems can be solved in a predetermined and relatively small amount of main
memory. In genera, filesfor the factors PL and UQ are not held in the main memory. Instead,
during the factorization, datais put into explicitly held buffers and, whenever a buffer isfull,
it iswritten to a direct access file held on disk.

» The length of the records in each of the direct access files (which is equal to length of the
associated in-core buffer) is chosen by the user.

* If the user is able to choose very long buffers, direct access files are not necessarily
required so in MA42 the call to the routine that initializes the direct access files is optional.

» Thereals and integers for the factors are held in separate direct access files.

» Anoptiona symbolic factorization of the matrix computes lower bounds on the maximum
size of the frontal matrix and estimates of the sizes of the files for holding the factors.

* MAA42 switches to a symbolic factorization if the user fails to allocate sufficient space to
the files for the factors. Information to enable success on a subsequent run with identical data
is returned.

» If the user does not want either to solve for further right-hand sides or to solve transpose
systems, MA42 need not store the PL factor.

» The sign and exponent of the determinant of the matrix A is computed.

* Level 2 and Level 3 Basic Linear Algebra Subprograms (BLAS) are exploited both in the
inner loops of the factorization and when performing forward and back-substitutions (see
Section 2).

» The codeis portable and written in standard Fortran 77.

» Common blocks are not used and are replaced by information and control arrays. Default
values for the control variables are set by a call to the initialization subroutine MA42l.

* An option to continue the computation if the matrix is found to be singular is offered. An
estimate of the deficiency of the matrix is returned to the user at the end of the factorization
and in the solution vector (or solution matrix for multiple right-hand sides) components
corresponding to zero pivots are set to zero.

The remainder of this paper is organised as follows. In Section 2 we consider the
restructuring of the code and, in particular, the exploitation of high level BLAS. In Section 3
we illustrate the performance of MA42 and compare it with the earlier code MA32 on a
CRAY Y-MP, an IBM 3090, and an IBM RS/6000. We consider the use of MA42 in aparallel
environment in Section 4 and finally indicate possible future work in Section 5.

2 Coderestructuring and the use of BLAS

The Basic Linear Algebra Subprograms (BLAS) are an aid to clarity, portability, modularity,
and maintenance of software. Efficiency is achieved by using tailored implementations of the
BLAS. The BLAS are now generally accepted and are widely used in mathematical software.
The purpose of the BLAS and their advantages are reviewed by Dongarra, Duff, Sorensen,
and van der Vorst (1991). They adso give a complete list of the BLAS, including the
operations they perform and their calling sequences.

The BLAS are divided into three levels. The Level 1 BLAS, which is the original set of
BLAS, perform low-level operations such as dot-products and the adding of a multiple of one
vector to another (Lawson, Hanson, Kincaid, and Krogh 1979). The Level 1 BLAS permit
efficient implementation on scalar machines, but the ratio of floating-point operations to data
movement is too low to achieve effective use of most vector or parallel hardware. Even on
scalar machines, the cost of a subroutine call may be prohibitively high when vector lengths
are short. To obtain better performance on computers that use vector processing, an additional
set of BLAS, theLevel 2 BLAS, was designed for asmall set of frequently used matrix-vector
operations (Dongarra, Du Croz, Hammarling, and Hanson 1988). Most of the common
algorithms used in linear algebra can be coded so that the bulk of the computation is
performed by callsto the Level 2 BLAS; efficiency can then be obtained through optimisation
within the BLAS. Unfortunately, for machines having amemory hierarchy, the Level 2 BLAS
do not have aratio of floating-point operations to data movement that is high enough to make
efficient use of data that reside in cache or local memory. For these architectures, it is often
preferable to partition matrices into blocks and to perform the computation using
matrix-matrix operations on the blocks. The Level 3 BLAS are targeted at the matrix-matrix
operations required for these purposes (Dongarra, Du Croz, Duff, and Hammarling 1990).

When designing our new frontal code a prinicpal objective was to enable maximum use of
Level 2 and Level 3 BLAS. There are two main places in MA42 where we exploit Level 3
BLAS. Thefirstisin theinnermost loop of the frontal method where the Gaussian elimination
operations are performed, and the second is in the solution phase. We describe the use of
Level 3BLAS n each of these phasesin more detail in the following subsections. We remark
that, in addition to using Level 2 and Level 3 BLAS, it would have been possible in MA42 to
make extensive use of the Level 1 BLAS routines _SWAP, _SCAL, and _COPY for
interchanging two vectors, scaling a vector, and copying one vector to another, respectively.
However, from our numerical experiments, we found that, while they marginally improved
the readability of the code, use of these routines generally lead to an unacceptable increase in
the total computation time so they have not been used.

2.1 Theuseof BLASIin frontal Gaussian elimination
In atypical frontal method the innermost loop is of the form

DO 20 L = 1, LFRNT
P1:P()
| F (PL. EQZRO) GO TO 20
DO 10 K = 1, KFRNT
F(K L) = F(K L) - PC(K)*P1
10 CONTI NUE
20 CONTI NUE

where F isthe frontal matrix, PCisthe pivotal column, PRisthe scaled pivotal row, and KFRNT
and LFRNT are, respectively, the number of rows and columnsin the front. This code performs
a rank-one update to the matrix F. To achieve greater efficiency, whenever possible the old
code MA32 performed two steps of Gaussian elimination together using a rank-two update.
This is described by Dave and Duff (1987), who showed that optimal performance could be
obtained on the CRAY-2 using this device with CAL coding of the kernels. The

implementation of arank-two update required more preparatory work since two pivots had to
be chosen and tested for stability. The first pivot was tested as usual using a stability threshold
criterion. The second pivot was tested after updating its column (and row) using the first
pivot. If the second pivot did not satisfy the stability threshold criterion, some work was
wasted.

To improve the portability of the code, it would be possible to use the Level 2 BLAS
routine _GER to perform one step of Gaussian elimination and the Level 3 routine_ GEMM to
perform two steps. However, by restructuring the code we would like to avoid the possibility
of wasting work when looking for a second pivot and, more importantly, we would like to
avoid the limitation of only allowing rank-one and rank-two updates. We would like to be able
to delay updating the part of the frontal matrix corresponding to variables not chosen as pivots
until all pivotsfor the current element or equation have been chosen. We now discuss how this
can be achieved. After the assembly of an element or equation into the frontal matrix, if al the
fully assembled variables are permuted to the first rows and columns, the frontal matrix F has
the form

_[F1 F2
e 7

where F, is a square matrix of order k and F, is of order k; xk,, with k; equal to k, for
element entry and to O for equation entry. Note that k + k, is equal to KFRNT (the current
number of rowsin the front). The rows and columnsof F,, therows of F, and the columns of
F, are fully summed; the variables in F, are not yet fully summed. Pivots may be chosen
from anywhere in F . The columns of F, are searched in order for a pivot and the first entry
in F, to satisfy the stability threshold criterion is selected as the pivot. The pivotal row and
column are permuted to the first row and column of F. Row 1 of the permuted matrix F, is
then scaled by the pivot and columns 2 to k of the permuted frontal matrix are updated using
theLevel 1 BLASroutine _AXPY . Columns 2 to k of the updated matrix F, are then searched
for the next pivot (starting with the first unsearched column and searching cyclically). When
found, the pivotal row and column are permuted to row 2 and column 2 of F, row 2 of F, is
scaled by the pivot, and columns 3 to k of the frontal matrix are updated. This process of
selecting pivots and updating the fully summed columns continues until no more pivots
satisfying the stability criterion can be found in the fully summed part of F. At this point, if r
pivots have been chosen (r <k), the first r rows of F, are updated using the Level 3 BLAS
routine _TRSM and, finally, the remaining k-r rows of F, and the rows and columns of F,
are updated using the Level 3 BLAS routine_ GEMM (or the LEVEL 2 routine _GER if only
one pivot has been chosen). Thefirst r rows and columns of F are then written to the buffers.

When implementing this strategy in MA42, because of the overheads involved in swapping
and sorting operations, the fully summed rows and columns are not permuted to the first rows
and columns of the frontal matrix before the pivot selection begins. Instead, the fully summed
columns are searched for a pivot and, once a pivot has been found, its row and column are
permuted to the last row and column of F. When the next pivot is chosen, it is permuted to the
last but one row and column of F, and so on. Having chosen all r pivots for the current
element or equation, if r<k, the remaining k-r fully summed columns are permuted to
columns LFRNT-r, LFRNT-r-1,..., LFRNT-k+1 of F. The last r rows of the frontal matrix
(columns 1 to LFRNT- k) are updated using TRSM and finally, the remaining rows and
columns are updated using GEMM (_GER if r =1). Since the pivotal rows and columns are
always permuted to the end of the frontal matrix, once they have been written to the buffers,
they can be reset to zero before the next element or equation is assembled, without the need
for further row and column permutations.

The performance achieved by MA42 through the use of Level 3 BLAS in the elimination
phase can be impressive. We illustrate this using a model problem which, although artificial,
is designed to simulate those actually occurring in some CFD calculations. The elements are

nine-node rectangular elements with nodes at the corners, mid-points of the sides, and centre
of the element. A parameter to the element generation routine determines the number of
variables per node. We have chosen this parameter to be five for our numerical experiments.
The elements are arranged in a rectangular grid and a range of grid dimensions is used. In
Table 2.1 we illustrate the performance of MA42 on a single processor of a CRAY Y-MP8I
vector supercomputer, whose peak performance is 333 Mflop/s and on which the Level 3
BLAS matrix-matrix multiply routine SGEMM runs at 313 Mflop/s on sufficiently large
matrices. It isimportant to realize that the Mflop rates given in Table 2.1 include all overheads
for the out-of-core working used by MA42.

Table 2.1. Performance (in Mflop/s) of MA42 on CRAY Y-MP on test problem.

Dimension of element grid 16x16 32x32 48x48 64x64 96x96

Max order frontal matrix 195 355 515 675 995
Total order of problem 5445 21125 47045 83205 186245
Mflop/s 145 208 242 256 272

2.2 The solution phase and the use of BLAS

The other use of Level 2 and Level 3BLASin MA42 isin the solution phase. In MA32, each
column of PL and each row of UQ was stored separately and, in the forward and
back-substitution phases, one column of PL or one row of UQ was read in at atime and the
Level 1 BLASroutines DOT and _AXPY were used. In MA42, the blocks of columns of PL
and blocks of rows of UQ corresponding to variables eliminated at the same stage are of the

form
I:L
FC

where, if r isthe number of rows or columnsin the block, F, , F, arer xr lower and upper
triangular matrices respectively, F. is of order (KFRNT-r) xr, and Fy is of order
r X (LFRNT-r). To exploit this block structure during the solution phase we use direct
addressing. During the forward substitution, all the active components of the partial solution
vector y (PLy =b) are put into an array w=(w, ,w,) ", withw, of lengthr and w, of length
KFRNT-r . Operations of the form

w, « F{lw,

and (Fy Fg),

and
WZ «— W2 - FCW1

are performed before w is unloaded into y. Similarly, during the back-substitution, all the
active components of the partial solution vector y are put into an array z, of length r and the
active variables of the solution vector x are put into an array z, of length LFRNT-r .
Operations of the from

z, — 2, -Fgrz,
and

2, - F'z,
are performed before z, is unloaded into x. Similar operations are performed when solving
the transpose system. In MA42, the forward and back-substitutions are performed using the

Level 2 BLASroutines_ GEMV and _TPSV if thereis only one right-hand side and the Level
3routine_ GEMM and the Level 2 routine _TPSV if there are multiple right-hand sides (there

isno Level 3 BLAS routine for solving triangular systems of equations where the matrix is
held in packed form with multiple right-hand sides). Use of the high level BLAS will be
particularly efficacious in cases where the number of variables eliminated at the same stage is
large (that is, wherer islarge) and where the number of right-hand sides is large. Numerical
results which demonstrate this are included in the next section.

In MA32, two direct access files were used, one for PL and one for UQ. The reals and
integers for each factor were stored in the same direct access file and an integer was stored in
area word. Explicit row and column indices were not held but dynamic changes to the front
were stored. One of the disadvantages of this storage scheme was that, if the user of MA32
wished to solve transpose systems, a separate subprogram had to be called after A had been
factorized to create files holding the factors of AT and then afurther subprogram was called to
complete the solution. To make the code MA42 easier to read and to maintain, aswell as more
portable, when designing the code we chose to use three direct access files, one each for the
reals in PL and UQ and one for the row and column indices of the variables in the factors.
This use of three direct access files greatly simplifies the user interface for solving transpose
systems. In MA42, when calling the solution phase (MA42C) the user has only to set alogical
flag to indicate whether linear systems with the system matrix A or AT are to be solved.

3 Performance of MA42

In this section we report the results of using the new code MA42 on a set of test problems.
The test problems al arise from practical applications. A brief description of each problemis
givenin Table 3.1. Problems 1-8 were taken from the Harwell-Boeing sparse matrix collection
(Duff, Grimes, and Lewis (1989,1992)). Problem 9 arises from a Lagrange-Galerkin mixed
finite element approximation of the Navier-Stokes and continuity equations on a unit cube
(see Ramage and Wathen (1993) for details). Problem 10 comes from a finite-element
discretisation of a natural convection problem in two dimensions. The element matrices for
this problem were generated using the finite-element package ENTWIFE (see Winters
(1985)).

MAA42 has been tested on a Cray Y-MP8I, an IBM 3090-400E, and an IBM RISC
System/6000 Model 550 and its performance has been compared with that of MA32. In each
test, the Harwell Subroutine Library routine MC43 was used to obtain a good element
ordering. All CPU timings given in this section are in seconds. The double precision versions
of the codes were used on the IBM 3090 and the IBM RS/6000. On the Cray Y-MP asingle
processor was used and the codes were run in single precision. On each of the machines, the
implementations of the BLAS provided by the manufacturer were used.

In Table 3.2 we compare the storage used by MA32 in real words with the real and integer
storage used by MA42. The ratio of the real storage to the integer storage for MA42 and the
largest number of pivots chosen at a single stage (the largest pivot block size) are also given.
From the table we see that, as expected, the real storage requirements for MA42 are less than
those for MA32. More interestingly, problems 1, 3, and 9 use a comparatively small amount
of integer storage. These problems are 3D problems with 20-node brick elements with either
60 or 68 degrees of freedom. Two adjacent brick elements have a common 2D face so that, if
ajudicious element ordering is used, as the assembly proceeds several nodes will, in general,
appear for the last time at the same assembly step. As a result, for 3D problems of this type
with multiple freedoms at the nodes, alarge number of pivots may be chosen at a significant
number of stages of the factorization and this limits the amount of integer storage used.

The performance times of the factorization routines MA32B and MA42B are compared for
the above mentioned machines in Table 3.3. From the table we see that, for each of the test
problems on each of the machines, MA42B performs better than MA32B. The gain in using
MAA42B in preference to MA32B is particularly significant for the IBM 3090, where MA42B
may sometimes take nearly a quarter of the time of MA32B. The differences in the

Table 3.1. The test problems
(CEGB = Centra Electricity Generating Board; LOCK = Lockheed Palo Alto Research Laboratory;
NV 3D = Navier-Stokes in 3D; AEAT = AEA Technology, Harwell.)

Number of Number of

Problem Origin Description varisbles elements Elements

1 CEGB 3D model of a 2694 108 20-node / 60-freedom bricks
turbine blade

2 CEGB Framework problem 3222 791 2-node / 12-freedom bars
from structural
engineering

3 CEGB 3D model of a 2859 128 20-node / 60-freedom bricks
cylinder with a
flange

4 CEGB 2D cross-section 2996 551 8-node / 16-freedom quadrilaterals
of areactor core

5 LOCK 2D cradle 1038 72 2-node / 6-freedom bars
assembly problem 158 2-node / 12-freedom bars

94 3-node / 18-freedom triangles

6 LOCK 2D model of a 691 72 2-node / 6-freedom bars
component used 158 2-node / 12-freedom bars
in ocean-mining 94 3-node / 18-freedom triangles

7 LOCK 2D model of part 3416 72 2-node / 6-freedom bars
avehicle 10 2-node / 12-freedom bars

48 3-node / 18-freedom triangles
556 4-node / 24-freedom quadrilaterals

8 LOCK Framework model 2208 944 2-node / 12-freedom bars
of alaunch
umbilical tower

9 NV3D 3D Navier-Stokes 1476 128 20-node / 68-freedom bricks
and continuity
equations

10 AEAT Double glazing 5081 800 6-noded triangular elements
problem

improvements between the machines is a consequence of the performance of the BLAS
routines_ GEMM and _TRSM on the architectures of the different machines.

In Table 3.4 the performance times of the solve routines MA32C and MA42C are
compared. The results show that, for some problems when the number of right-hand sides is
small, MA32C may perform better than MA42C on the IBM 3090 and IBM RS/6000.
However, if MA42 is able to use large pivot blocks (problems 1, 3, and 9), MA42C gives
improvements over MA32C for any number of right-hand sides. Moreover, as the number of
right-hand sides increases, the cost of running MA42C increases at a slower rate than the cost
of running MA32C. Thisresults from the use of the BLAS routine_ GEMM in MA42C, which
ismore efficient for alarge number of right-hand sides. We conclude that for problems which
allow large pivot blocks or problemswith alarge number of right-hand sides, significant gains
are made by using the MA42 package in place of MA32. For some small problems, MA42C
may perform less well than MA32C but for these problems the computational times are

Table 3.2. Storage used by MA32 and MA42

MA42
Problem MA32
Integer Storage Largest pivot
Real words Real words W(s%s ratiag bl gck SI? ze

1 508962 481854 33241 14.5 32

2 418302 386814 68766 5.6 11

3 1048140 1019550 71997 14.2 49

4 516592 486736 110713 4.4 14

5 172470 162102 26941 6.0 13

6 98736 91862 18591 4.9 12

7 245232 223188 40140 5.6 12

8 923636 889626 150797 5.9 24

9 778558 763928 67781 11.3 29

10 1492160 1440986 243666 5.9 13

Table 3.3. Performance times (in seconds) of MA32B
and MA42B on various machines
Problem Cray Y-MP IBM 3090 IBM RS/6000
MA32B MA42B MA32B MA42B MA32B MA42B

1 0.61 0.43 541 2.12 2.29 1.82
2 0.57 0.46 3.64 2.06 1.74 1.55
3 1.55 1.07 22.01 573 9.22 5.86
4 0.66 0.54 5.63 2.56 2.45 2.20
5 0.23 0.18 1.84 0.92 0.88 0.82
6 0.13 0.11 0.86 0.56 0.44 0.44
7 0.33 0.28 1.76 1.34 0.94 0.91
8 1.18 0.92 12.85 534 5.40 4.95
9 1.35 1.09 25.51 6.79 11.86 7.06
10 1.86 1.54 25.67 9.02 11.81 7.95

unlikely to be as important so we propose that MA32 should be superseded by MA42 for all
applications.

4 Theuseof MA42in paralle

One of the main deficiences of the frontal solution scheme is that there is little scope for
parallelism other than that which can be obtained within the high level BLAS. One way of
attempting to overcome thisisto extend the basic frontal algorithm to use multiple fronts. The
use of multiple fronts depends upon being able to decouple the underlying ‘domain’ and
eliminate variables within each subdomain independently. The logical conclusion of this
approach is the so-called multifrontal algorithm (see, for example, Duff and Reid 1983),
where many fronts are started simultaneously. The variables that are not immediately
eliminated are combined to form new elements or fronts which are then merged with other
new elements or original elements according to an assembly tree. The initia fronts and the
assembly tree are identified by a flop reducing ordering such as minimum degree or nested
dissection. We will adopt the term multiple fronts for algorithms for solving systems of
finite-element equations which partition the finite-element domain into a (small) number of

Table 3.4. Performance times (in seconds) of MA32C
and MA42C on various machines

Number of Cray Y-MP IBM 3090 IBM RS/6000
Problem right-hand MA32C MA42C MA32C MA42C MA32CD MA42CD

sides

1 1 0.04 0.02 0.21 0.18 0.22 0.14

2 0.06 0.03 0.28 0.23 0.25 0.23

10 0.26 0.09 0.89 0.62 0.50 0.45

100 250 0.69 9.63 5.14 5.82 3.74

2 1 0.04 0.03 0.18 0.20 0.13 0.23

2 0.07 0.05 0.25 0.28 0.15 0.21

10 0.29 0.15 0.76 0.85 0.37 0.66

100 2.83 115 8.45 8.65 5.54 6.75

3 1 0.05 0.03 0.41 0.34 0.36 0.36

2 0.08 0.05 0.56 0.46 0.43 0.42

10 0.33 0.15 1.70 113 0.99 0.89

100 3.20 117 18.38 8.44 11.31 6.86

4 1 0.04 0.04 0.21 0.25 0.21 0.23

2 0.07 0.07 0.29 0.35 0.21 0.32

10 0.28 0.19 0.89 1.23 0.47 0.87

100 2.73 1.40 9.90 10.80 6.24 9.41

5 1 0.01 0.01 0.07 0.08 0.05 0.08

2 0.02 0.02 0.10 0.11 0.06 0.12

10 0.10 0.05 0.18 0.20 0.15 0.20

100 0.94 0.40 3.20 2.80 214 242

6 1 0.01 0.01 0.04 0.05 0.03 0.07

2 0.02 0.01 0.06 0.07 0.05 0.08

10 0.06 0.04 0.31 0.30 0.08 0.15

100 0.60 0.28 1.87 1.96 121 164

7 1 0.03 0.02 0.11 0.13 0.06 0.14

2 0.05 0.04 0.15 0.18 0.08 0.12

10 0.19 0.09 0.48 0.53 0.27 0.46

100 1.85 0.74 4.89 5.30 3.19 3.98

8 1 0.05 0.05 0.37 0.38 0.33 0.29

2 0.05 0.05 0.50 0.54 0.33 0.42

10 0.36 0.23 158 1.50 0.85 1.18

100 3.40 1.70 16.76 13.40 10.01 11.18

9 1 0.02 0.02 0.30 0.27 0.29 0.28

2 0.04 0.04 0.40 0.36 0.32 0.35

10 0.14 0.11 1.28 0.84 1.06 0.78

100 0.85 1.35 13.25 6.72 8.75 1.58

10 1 0.06 0.07 0.59 0.62 0.47 0.56

2 0.10 0.12 0.81 0.87 0.73 0.67

10 0.40 0.36 2.56 2.20 1.33 1.78

100 3.77 2.72 27.28 19.27 17.83 17.18

subdomains and perform a frontal decomposition on each subdomain using an element-by-
element ordering in a somewhat similar fashion to Benner, Montry, and Weigland (1987) and
Zhang and Lui (1991).

With multiple fronts, we partition the underlying finite-element domain into subdomains
and perform a frontal decomposition on each subdomain separately. Since the factorizations
of the subproblems are independent, this can be done in paralel. At the end of the assembly
and elimination processes for the subdomains, there will remain m variables, where mis the
number of variables on the interface boundaries of the subdomains. These variables are called

interfacevariables. They cannot be eliminated within the subdomains since they are shared by
more than one subdomain. In practice, there will also remain variables which were not
eliminated within the subdomain because of stability considerations. For each subdomain a
relationship of the form

Fiyi =¢ (4.1)

is thus formed, where F; is the remaining frontal matrix for subdomain i after the final
assembly, and c; is the corresponding frontal right-hand side vector (or matrix). If there are
nsub subdomains, nsub equations of the type (4.1) are generated and these can be assembled
to give

Fy=c, (4.2

where F is of order mxm. The system (4.2) may also be solved using a frontal solver. Once
(4.2) has been solved, the results for the interface variables must be passed to the subdomains
so that back-substitution can be performed. The back-substitutions on the subdomains may
also be performed in parallel. Some experiments using this approach have been reported by
Zhang and Lui (1991) for structural finite-element problems on an Alliant FX/80.

We would like to use MA42 to implement the multiple front algorithm. If MA42 is applied
to a subdomain, the elimination of interface variables must be prevented during the
factorization phase (MA42B). To do this, during the prepass phase (MA42A) the interface
variables must be marked as being not fully summed after the entry of all the elementsin the
subdomain. This can be done quite simply by making a final cal to MA42A with an extra
element containing all the interface variables. The extra element will be termed the ‘guard
element’ and there will be one guard element associated with each subdomain. A new routine
MAS52A has been developed to generate guard elements. After the extra call to MA42A,
MAA42B is called for each element in the subdomain but not for the guard element. Since
MA42B is not called for the guard element, variables in the guard element (that is, the
interface variables) will remain in the front after the assembly and eliminations for the final
element in the subdomain. The frontal matrix and corresponding frontal right-hand side
vectors are held within the work arrays used by MA42B. A new subroutine was needed to
extract the frontal matrix F; and frontal right-hand sides c; from these arrays and return them
to the user in the form of an element matrix and element right-hand side. This new subroutine
also had to be able to write any remaining data in the in-core buffers to the files holding the
factors. We have written MA52B to perform these tasks.

The interface problem (4.2) can be solved using MA42. Once thisis done, aroutine to take
the results for the interface variables and perform back substitution on the subdomain is
needed. When designing the MA42 code, we decided that the routinesto perform forward and
back-substitution, namely MA42D and MAA42E, should be internal subroutines. This
simplifies the user interface since it reduces the number of subroutine calls the user has to
make. However, for the multiple front algorithm we want to call forward or back-substitution
directly. The routine we have written to do thisis MA52C. This routine provides an interface
to MA42D and MA42E. A user-supplied parameter determines whether forward or
back-substitution is performed and, for back-substitution, whether it follows a call to MA42B
or to MA42C for the interface problem. MA52C must be called for each subdomain but the
calls may be made in parallel.

Some preliminary experiments have been performed using MA42 and MAS52 to implement
the multiple front algorithm and these are reported by Duff and Scott (1994a, 1994b). In Table
4.1 we illustrate the performance of MA42 for our model problem (see Section 2.1) in two
parallel environments: on an eight processor shared-memory CRAY Y-MP8l and on a
network of five DEC Alpha workstations using PVM (Geist, Beguelin, Dongarra, Jiang,
Manchek, and Sunderam 1993). In each case we divide the original problem into a number of
subdomains equal to the number of processors being used. It is difficult to get meaningful
times in either environment because we cannot guarantee to have a dedicated machine. The

Table 4.1. Multiprocessor performance of MA42 on CRAY Y-MP
and DEC Alpha farm on model problem.

CRAY Y-MP DEC Alphafarm
Dimension of Order of Number of Wall clock Speedup Wall clock Speedup
element grid problem subdomains time (secs) time (secs)
16 x 16 5445 1 1.88 - 23.2 -
2 1.12 1.7 294 0.8
4 0.77 2.4 29.9 0.8
8 0.92 2.0 - -
32x 32 21125 1 16.67 - 350.6 -
2 9.95 1.7 250.8 1.4
4 4.17 4.0 110.5 3.2
8 3.97 4.2 - -
48 x 48 47045 1 98.75 - 1460.3 -
2 64.57 15 1043.0 1.4
4 30.65 3.2 457.5 3.2
8 15.25 6.5 - -

times are, however, for lightly loaded machines.

The results on the CRAY are encouraging and show good speedup for large problem sizes.
In genera, the efficiency of the multiple front algorithm increases with the size of the
problem. For small problems, the amount of computation on each subdomain is small and the
ratio of internal variables to interface variables is also small. As aresult, the communication
time dominates the computation time and only a relatively small amount of work is actually
performed in parallel. Results on the Alpha farm are comparable with those on the CRAY and
indicate that, for larger problems, the overheads of PVM and communication costs do not
dominate and good speedups are possible. We should add that it is important that disk i/o is
local to each processor. The default on our Alpha system was to write all files centrally and
thisincreased data traffic considerably, gave poor performance, and varied greatly depending
on system loading.

In the future we plan to extend this work on using MA42 to implement a multiple frontal
algorithm. In particular, we intend to perform experiments using real applications, and we will
look at the issues of loading balancing and obtaining efficient element orderings within the
subdomains.

5 Further extensionsto our frontal codes.

Since one of the main reasons for designing and coding MA42 was to provide a code which
would be relatively easy to develop further, we indicate in this final section our development
plans.

Although the code MA32 was widely used for more than a decade to solve real linear
systems of equations, there was no comparable code in the Harwell Subroutine Library for
solving systems of complex linear equations. One of the obstacles to creating a complex
version of MA32 was the storage of reals and integers in the same buffer. As we have already
mentioned, the reals and integers are stored separately in MA42. Moreover, MA42 isdesigned
to be both readable and modular, and to exploit BLAS routines. These design features make
creating a complex version of the code straightforward. The complex version of the code is
called ME42 and can be used to solve the systems Ax = b, ATx = b, or A"x = b (A" isthe
conjugate transpose of A). ME42 is aso included in Release 11 of the Harwell Subroutine

Library.

In MA42 (and ME42) the interface to the user is through reverse communication. This
means that control is returned to the user each time an assembly operation is required. The
user must regard the coefficient matrix as being of the form (1.3). For finite-element
caculations, the matrices A are the element matrices. For an assembled matrix
(non-element problem), AX is nonzero only in row k (A® holds row k of A). The reverse
communication interface is convenient for finite-element problems, but for non-element
problems it can be too complicated and may deter potential users. To simplify the user
interface in this case, we have developed a separate code MA43 (with a complex version
ME43) available when direct access files are not required. The user has only to specify the
matrix A once using the standard sparse matrix format (see, for example, Duff, Erisman, and
Reid 1986) and to provide the code with sufficient workspace. A symbolic factorization
performed by MA43A assists the user in determining the amount of workspace that will be
required by the factorization and, in the event of failure due to insufficient space being
allocated, the user is given arevised estimate of the space needed. The code does all the work
in checking the input data for errors and presenting the matrix in the correct form to MA42. In
the future, we plan to develop afurther code which will ssimplify the user interfacein asimilar
manner both for finite-element problems and for non-element problems when direct access
files are needed. We envisage that the user will supply the element matrices or fully
assembled matrix once and these will then be (optionally) written to a direct access file and
read into the MA42 subroutines as necessary.

We have had some demand from users for a frontal code for symmetric problems and
indeed the MA32 code was frequently used when the matrix was symmetric since the speed of
the innermost loop sometimes outweighed the penalty of ignoring symmetry. It would have
been very difficult to modify MA32 to exploit symmetry but we will shortly be developing
such a code based on the MA42 design.

6 Availability of the code

MA42, MA43, and their complex versions ME42, ME43 are included in Release 11 of the
Harwell Subroutine Library (Anon 1993). We plan to include MA52 in Release 12 of HSL.
Anyone interested in using HSL routines should contact the HSL Manager: Ms L Thick,
Harwell Subroutine Library, AEA Technology, Building 8.19, Harwell, Oxfordshire, OX11
ORA, England, tel (44) 235 432688, fax (44) 235 432989, or e-mail libby.thick@aea.orgn.uk,
who will provide details of price and conditions of use.

7 Acknowledgments

We would like to acknowledge the partial financial support of AEA Technology. We would
also to thank Andrew Cliffe of AEA Technology for supplying test problem 10 and Alison
Ramage of the University of Strathclyde for supplying test problem 9. We are grateful to our
colleagues at the Atlas Centre for assistance with running our codes in a multiprocessor
environment and to Andrew Cliffe and to Hon Yau and Mark Sawyer of the Edinburgh
Parallel Computing Centre for helpful discussions on the multiple frontal algorithm.

8 References
Anon (1993). Harwell Subroutine Library. A catalogue of subroutines (Release 11).

Benner, R.E., Montry, G.R., and Weigand,G. G. (1987). Concurrent multifrontal methods:
shared memory, cache, and frontwidth issues. Int. J. Supercomputer Applics. 1, 26-44.

Dave, AK. and Duff, I.S. (1987). Sparse matrix calculations on the CRAY-2. Parallel
Computing 5, 55-64.

Dongarra, J.J.,, Du Croz, J, Duff, I.S., and Hammarling, S. (1990). A set of level 3 Basic
Linear Algebra Subprograms. ACM Trans. Math. Softw. 16, 1-17.

Dongarra, J.J., Du Croz, J., Hammarling, S., and Hanson, R. J. (1988). An extended set of
Fortran Basic Linear Algebra Subprograms. ACM Trans. Math. Softw. 14, 1-17.

Dongarra, J.J., Duff, I.S., Sorensen, D.C. and van der Vorst, H. A. (1991). Solving linear
systems on vector and shared memory computers. SIAM Press.

Duff, I.S. (1981). MA32 — A package for solving sparse unsymmetric systems using the
frontal method. AERE R10079, HM SO, London.

Duff, 1.S. (1983). Enhancements to the MA32 package for solving sparse unsymmetric
eguations. AERE R11009, HM SO, London.

Duff, I.S. (1984). Design features of a frontal code for solving sparse unsymmetric linear
systems out-of-core. SAM J. Si. Stat. Comput. 5, 270-280.

Duff, 1.S., Erisman, A.M., and Reid, J. K. (1986). Direct Methods for Sparse Matrices.
Oxford University Press, London.

Duff, I.S.,, Grimes, R.G., and Lewis, J. G. (1989). Sparse matrix test problems. ACM Trans.
Math. Softw. 15, 1-14.

Duff, I.S., Grimes, R. G., and Lewis, J. G. (1992). Users' guide for the Harwell-Boeing Sparse
Matrix Collection (Release 1). Rutherford Appleton Laboratory Report RAL-92-086.

Duff, 1.S. and Reid, J. K. (1983). The multifrontal solution of indefinite sparse symmetric
linear systems. ACM Trans. Math. Softw. 9, 302-325.

Duff, 1.S., Reid, J. K., and Scott, J. A. (1989). The use of profile reduction algorithms with a
frontal code. Int. J. Numer. Meth. Engng. 28, 2555-2568.

Duff, I.S., and Scott, J A. (1993). MA42 — A new fronta code for solving sparse
unsymmetric systems. Rutherford Appleton Laboratory Report RAL-93-064.

Duff, I.S,, and Scott, J. A. (1994a). The use of multiple fronts in Gaussian elimination.
Proceedings of the Fifth SIAM Conference on Applied Linear Algebra, editor J. Lewis,
SIAM Press, 567-571.

Duff, 1.S., and Scott, J.A. (1994b). The use of multiple fronts in Gaussian elimination.
Rutherford Appleton Laboratory Report RAL-94-040.

Geigt, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V. (1993). PVM
3 Usar's Guide and Reference Manual. Technica Report ORNL/TM-12187,
Engineering Physics and Mathematics Division, Oak Ridge National Laboratory,
Tennessee.

Hood, P. (1976). Frontal solution program for unsymmetric matrices. Int. J. Numer. Meth.
Engng. 10, 379-400.

Irons, B.M. (1970). A frontal solution program for finite-element analysis. Int. J. Numer.
Meth. Engng. 2, 5-32.

Lawson, C.L., Hanson, R. J,, Kincaid, D.R., and Krogh, F.T. (1979). Basic linear algebra

subprograms for Fortran usage. ACM Trans. Math. Softw. 5, 308-323.

Ramage, A. and Wathen, A.J. (1993). Iterative solution techniques for the Navier-Stokes
equations. School of Mathematics, University of Bristol Report AM-93-01

Winters, K. H. (1985). ENTWIFE user manua (release 1). AERE R11577, HM SO, London.

Zhang, W. P. and Lui, E. M. (1991). A parallel frontal solver on the Alliant FX/80. Computers
and Structures 38, 203-215.

