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Abstract

In recent years, nested dissection has grown in popularity as the method of choice for computing

a pivot sequence for use with a sparse direct symmetric solver. This is particularly true for very

large problems. For smaller problems, minimum degree based algorithms often produce orderings

that lead to sparser matrix factors. Furthermore, minimum degree orderings are frequently

significantly cheaper to compute than nested dissection. In this report, we look at whether we

can predict which ordering will be better, using only the sparsity pattern of the matrix. Our

aim is to choose efficiently a good ordering for a wide range of large problems from different

application areas.
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1 Introduction

A direct method for solving a sparse linear system Ax = b involves the explicit factorization of

the system matrix A (or, more usually, a permutation of A) into the product of lower and upper

triangular matrices L and U . In the symmetric case, for positive-definite problems U = LT

(Cholesky factorization) or, more generally, U = DLT , where D is a block diagonal matrix

with 1 × 1 and 2 × 2 blocks. Many sparse direct solvers have three distinct computational

phases: analyse, factorize, and solve. The analyse phase (which is sometimes referred to as the

symbolic factorization or ordering step) determines a pivotal sequence and data structures for

the factorization. During the factorization phase, this sequence is used to compute the matrix

factors. Forward elimination followed by back substitution for each given right-hand side b is

performed during the solve phase using the stored factors.

The efficiency of a direct method, in terms of both the storage needed and the work performed,

is dependent on the order in which the elimination operations are performed, that is, the order

in which the pivots are selected. For symmetric matrices that are positive definite, the pivotal

sequence may be chosen using the sparsity pattern of A alone and so the analyse phase involves no

computation on real numbers and the factorization phase can use the chosen sequence without

modification. For symmetric indefinite problems, many codes again select a tentative pivot

sequence based upon the sparsity pattern (generally treating zeros on the diagonal as entries)

and then modify the sequence if necessary during the factorization phase to maintain numerical

stability.

Finding the optimal ordering is an NP-complete problem (Yannakakis 1981) so, instead of

looking for this, the aim is to find an ordering that is “good enough” using heuristics. Since the

original work of Markowitz (1957), this has been the subject of much research. For symmetric

problems, an important class of ordering methods is based upon the minimum degree algorithm,

which was first proposed as algorithm S2 by Tinney and Walker (1967). This uses a local

strategy: at each stage of the elimination process, the diagonal entry of the row in the remaining

submatrix with the least number of entries is chosen as the next pivot. Variants include the

multiple minimum degree algorithm (Liu, 1985) and the approximate minimum degree algorithm

(Amestoy, Davis and Duff, 1996). Other local strategies are based on selecting at each stage the

pivot that will introduce the least amount of fill-in, or an approximation to this (for example,

algorithm S3 of Tinney and Walker, 1967).

An alternative to this kind of local strategy is to choose the ordering using a global strategy. In

recent years, methods based on nested dissection, an approach pioneered by George (1973), have

become increasingly popular. Nested dissection has its roots in finite-element substructuring. The

central concept is the removal of a set of nodes (called a separator) from the graph of the matrix

that leaves the remaining graph in two (or more) disconnected parts. These parts are themselves

further divided by the removal of sets of nodes, with the dissection nested to any depth. The

quality of a nested dissection ordering depends crucially upon the quality of its separators; the

ordering of the nodes in the different levels of the separator is also important. Nested dissection

can be generalised to a multisection approach (Ashcraft and Liu, 1998), in which a separator is

constructed that splits the graph into a number of subgraphs.

It is worth stressing that both local and global ordering strategies do a very good job of

considerably reducing the amount of fill-in and the computational effort for the succeeding

factorization and much of the success of direct methods stems from the reliability and availability
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of good ordering algorithms and software. In general, the difference between the performance

of a direct solver using a good local ordering and a good global ordering is significantly less

than the difference between using one of these good orderings and not reordering at all. But for

some problems the “best” ordering allows an in-core factorization where a poorer ordering does

not. The qualification on the word “best” is a comment on the metric used to determine which

ordering is better. An ordering might be considered better if it takes less time to compute and

this might be important in a one-off situation, where only a single factorization and solve follows

the analysis. This cost is less important if many factorizations or solves are performed and indeed

the normal metric is to declare an ordering better if it results in a factorization with less fill-in or

fewer operations. In our subsequent discussions, an ordering will be declared “better” if it yields

less fill-in.

In this report, we briefly review the orderings that are currently offered by state-of-the-art

symmetric direct solvers. Many of these solvers offer more than one ordering but leave the user to

select which is an appropriate ordering for his or her problem. Our aim is to try and automatically

choose either a minimum degree or a nested dissection algorithm based on simple characteristics

of the matrix. We describe our criteria for selecting an ordering for use in the HSL (HSL, 2004)

sparse direct symmetric solver MA57 (Duff, 2004) and present numerical results for a wide range

of large problems from practical applications.

We end this section by describing our test environment and test examples. The experiments

were performed on a single Xeon 3.6 GHz processor of a Dell Precision Workstation 670. The NAG

Fortran 95 compiler was used with the compiler optimization flag -O. All reported timings are

CPU times, measured using the Fortran 95 intrinsic cpu time and are given in seconds. The set of

test examples is essentially that of Gould and Scott (2004) (see also Gould, Hu and Scott, 2005).

However, five problems (audikw 1, SPARSINE, AUG2D, AUG2DC and AUG3D) have been removed since

MA57 was unable to solve them with the 2.1 GByte memory limit on our test machine. A number

of new problems that have been made available to the community as part of the University

of Florida Sparse Matrix Collection (www.cise.ufl.edu/research/sparse/matrices/) have

been added so that the complete set comprises 94 positive-definite problems and 63 numerically

indefinite problems, all of order at least 10, 000. Application areas represented by the test set

include linear programming, structural engineering, computational fluid dynamics, acoustics, and

financial modelling.

We use performance profiles (see Dolan and Moré, 2002) as a means to evaluate and compare

the performance of MA57 with different orderings. The statistics we use are the CPU times

required to perform the analyse, factorize, and solve phases, and the number of nonzero entries

in the matrix factor. For each ordering and each problem, a CPU time limit of 30 minutes

for running the analyse, factorize and solve phases (with a single right-hand side) of MA57 was

imposed; any run of MA57 with a given ordering that had not completed after this time was

recorded as having failed for that problem. All MA57 control parameters (apart from that which

controls the choice of ordering) were used with their default settings.

2 Orderings offered by state-of-the-art solvers

A number of sparse symmetric solvers that were developed in the 1980s and early 1990s used

the minimum degree (MD) algorithm. For example, the well known multifrontal code MA27 of
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Duff and Reid (1983) used a minimum degree ordering. The wide acceptance of minimum degree

was largely due to its effectiveness in reducing fill-in and the efficiency with which it can be

implemented. Minimum degree is still offered by many packages (see Table 2.1) and variants

of approximate minimum degree (Amestoy et al., 1996, 2004) perform well on many small and

medium sized problems. However, in recent years nested dissection and hybrid algorithms have

become increasingly popular. In particular, nested dissection has been found to work well for

very large positive-definite problems, including those from 3D discretizations (see, for example,

the results presented by Gould and Scott, 2004). As a result, many direct solvers now offer

either their own implementation of nested dissection (ND in Table 2.1) or, more commonly,

include an explicit interface to the generalized multilevel nested-dissection routine METIS NodeND

(or a modification of it) from the MeTiS graph partitioning package of Karypis and Kumar

(1998, 1999). Table 2.1 summarizes the ordering options offered by the symmetric solvers that

Code Ordering options

MD AMD MMD ND MeTiS MS MF

BCSLIB-EXT × ×
√

×
√

∗ × ×

CHOLMOD ×
√√

∗ × ×
√

∗ × ×

MA57
√ √√

∗ × ×
√

∗ × ×

MUMPS
√ √√

∗ × ×
√

∗
√ √

Oblio × ×
√

×
√

∗ × ×

PARDISO × × × ×
√

∗ × ×

SPOOLES × ×
√ √

∗ ×
√

∗ ×

SPRSBLKLLT × ×
√

∗ × × × ×

TAUCS
√ √ √

×
√

∗ × ×

WSMP × × ×
√

∗ × ×
√

∗

Table 2.1: Orderings offered by state-of-the-art symmetric direct solvers. MD = minimum

degree; AMD = approximate minimum degree, MMD = multiple minimum degree; ND = nested

dissection; MeTiS = explicit interface to METIS NodeND (or a variant of it); MS = multisection;

MF = minimum fill.
√√

indicates AMD and one or more variant of AMD are available. ∗

indicates the default.

were compared in the recent study of Gould et al. (2005). An entry marked with ∗ indicates the

default (or recommended) ordering. Further details of each of the codes, together with references,

are given in the Appendix and in Gould et al. (2005).

We see from Table 2.1 that a number of codes, namely CHOLMOD, MA57, MUMPS, SPOOLES, and

WSMP, have more than one ordering marked as the default. The ordering routine within the
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package WSMP computes a minimum fill ordering in addition to an ordering based on recursive

graph bisection. It then computes the amount of fill-in that each ordering would generate in a

Cholesky factorization and chooses the pivotal sequence based on the better ordering. Similarly,

SPOOLES computes orderings using nested dissection and multisection and selects the better. By

default, MUMPS automatically chooses the ordering algorithm depending on the packages installed,

the size and density of the matrix, and the number of processors being used. On a single processor,

a variant of approximate minimum degree is used both for problems of size n < 104 and for larger

but very sparse matrices with quasi-dense rows. Otherwise, METIS NodeND is used. CHOLMOD also

automatically chooses between an AMD and MeTiS ordering and, in some cases, will perform

both orderings (further details are given in Section 3.1).

The first release of MA57 (Duff, 2004) used, by default, approximate minimum degree. The

code also offered the minimum degree ordering as implemented in the earlier MA27 package as well

as a variant of AMD called QAMD that is designed to deal with quasi-dense rows (Amestoy, 1997).

Our experience with different orderings (Gould and Scott, 2004) supported earlier observations

that, in general, the MeTiS ordering gave a faster factorization with less fill-in than an MD or

AMD ordering when the matrix was either very large or not very sparse. This led to Version 2.0.0

of MA57 offering an interface to the MeTiS package so that the user could use the METIS NODEND

ordering. To illustrate the potential benefits of using a nested dissection ordering, we present

in Table 2.2 the times for analysing, factorizing and solving a number of the positive-definite

examples taken from our test set using MA57. The number of entries in the factor are also given.

We see that, in some cases, the factorize and solve times, as well as the number of entries in the

factors, are substantially reduced by using MeTiS in preference to QAMD.

Identifier Analyse Factorize Solve Factor entries (∗106)

QAMD MeTiS QAMD MeTiS QAMD MeTiS QAMD MeTiS

3dtube 0.25 0.90 37.3 9.92 0.23 0.12 34.4 18.5

bmwcra 1 0.78 4.04 90.6 47.3 0.65 0.46 96.9 70.6

bodyy4 0.03 0.15 0.14 0.12 0.001 0.001 0.7 0.6

cfd2 0.62 4.18 74.9 26.2 0.47 0.27 70.2 41.1

OBSTCLAE 0.06 0.32 0.24 0.25 0.01 0.01 1.1 1.2

X104 0.45 1.32 10.3 13.0 0.16 0.18 23.6 27.1

Table 2.2: CPU times (seconds) for the different phases of MA57 and the number of entries in the

factor (∗106) when run with AMD and MeTiS orderings.

Of course, if the user has a range of ordering algorithms available, he or she can experiment

by running the analyse phase with different options and, on the basis of the statistics returned,

select which to use. Investing time in running several orderings may be beneficial if a number

of matrices with the same (or similar) sparsity patterns are to be factorized since the cost of

the repeated calls to the analyse phase can then be amortized over the calls to the factorization

phase. However, if only a single or small number of factorizations are required followed by a small

number of solves, more than one call to analyse (which not only computes the ordering but also

checks the user’s data and manipulates it to the form needed by the factorization) can represent

an unacceptable overhead. The overhead of performing multiple orderings was noted by Gould
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et al. (2005) for the code WSMP which, as we remarked earlier, performs two orderings by default.

For some problems, using a nested dissection ordering can be particularly expensive. This is

clear from the results in Table 2.2. We observe that, for bodyy4 and OBSTCLAE, the cost of the

analyse phase using MeTiS can exceed that of the subsequent factorization. In our experience,

many users (particularly those who regard themselves as non-experts) rely on the default settings

and are reluctant to try other values, possibly because they do not feel confident about making

appropriate choices. These considerations motivated us to look at the automatic selection of an

ordering within MA57.

3 Automatically choosing an ordering

3.1 Positive-definite problems

Our experiments with different orderings initially led us to follow the approach used by MUMPS,

that is, to decide a priori on the ordering depending upon the order n of the matrix A and

its density. In particular, for positive-definite matrices, if n is at least 50,000, Version 3.0.1 of

MA57 always chooses MeTiS. For smaller n, it computes the average number of entries per row

(avnum) in A and chooses the ordering based on n and avnum. In particular, if n ≤ 30000 and

avnum ≤ 100, or if 30000 < n < 50000 and avnum ≤ 46, MA57 chooses QAMD; in all other cases,

MeTiS is chosen. The critical values of n and avnum were selected on the basis of numerical

experiments.

Choosing between the QAMD and MeTiS orderings using only n and avnum is clearly a very

straightforward approach and, if minimising the time taken by the analyse phase is important,

it has the advantage that only a single ordering is ever performed. In our tests, it generally

performed well (that is, it successfully chose the ordering that led to the faster solution times

and the sparser factor) but we observed that for a minority of problems, the “wrong” choice was

made. In particular, on some large problems (order greater than 50,000) QAMD can outperform

MeTiS. The large test examples for which the MeTiS ordering produces factors that are at least

5 per cent denser than those computed using QAMD are presented in Table 3.1.

Problem n Analyse time AFS time Factors (∗106)

QAMD MeTiS QAMD MeTiS QAMD MeTiS

Fcondp2 201822 0.56 1.94 35.4 43.4 48.5 56.2

M T1 97578 0.43 1.50 18.8 18.7 31.6 34.3

Srb1 54924 0.15 0.42 3.83 4.28 10.2 10.8

X104 108384 0.45 1.32 10.9 14.5 23.6 27.1

Table 3.1: Large problems for which the QAMD factor are at least 5 per cent sparser than the

MeTiS factor. (AFS denotes analyse plus factorize plus solve with a single right-hand side).

An alternative is to exploit the fact that the QAMD ordering time is small in comparison with

the MeTiS ordering time and the overall solution time. Thus, a possible strategy for all problems

is to start by computing an QAMD ordering and, for this ordering, to compute the resulting

number of entries in the factors and the number of floating-point operations (flops) that will be

required by the numerical factorization. Then, based on these statistics, decide either to accept
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the QAMD ordering immediately or to compute a MeTiS ordering and its fill-in. If both orderings

are computed, the better (in terms of fill-in) can be selected. This is the approach adopted by

Davis in his package CHOLMOD. The algorithm used within CHOLMOD is outlined in Figure 3.1. Here

order = QAMD ordering

if (f1 > 5 ∗ nzl .and. flops > 500 ∗ f1) then

order2 = MeTiS ordering

if (f2 < f1) order = order2

end if

Figure 3.1: CHOLMOD strategy for selecting the ordering

n is the order of A, nzl is the number of nonzero entries in the lower triangular part of A, f1 and

f2 are the numbers of entries in the factors for the QAMD and MeTiS orderings, respectively,

and flops is the number of flops required by the factorization when using the QAMD ordering.

In our experiments using this strategy within MA57, we found the MeTiS ordering was computed

for 57 out of the 94 test problems and, in 7 cases, this ordering was subsequently rejected and

QAMD selected.

We have modified the analyse phase of MA57 to allow us to compare using different ordering

strategies (the rest of the analyse phase plus the factorize and solve phases of MA57 are unchanged).

The strategies we consider are:

• The default ordering within Version 3.0.1 of MA57 that automatically selects QAMD or

MeTiS ; we call this the MA57 ordering.

• MeTiS ordering.

• QAMD ordering.

• Always running both MeTiS and QAMD and selecting the better based on the number of

entries in the factor; we call this MeTiS +QAMD ordering.

• The CHOLMOD strategy.

We note that a number of implementations of minimum degree-based algorithms that attempt

to deal with quasi-dense rows are available (including the C version of the AMD algorithm of

Amestoy et al., 2004) but in this report, all reported experiments involving QAMD use the

MA57 implementation. In particular, the CHOLMOD strategy uses the MA57 version of QAMD, and

not the C implementation that is within the CHOLMOD solver. In Figures 3.2 to 3.4 we present

the performance profiles for the analyse, factorize, and solve times for MA57 run with each of

these strategies. As expected, computing a minimum degree ordering is significantly faster than

computing a nested dissection ordering. However, with the QAMD ordering there were two

problems (inline 1 and nd12k) that exceeded the time limit of 30 minutes for the complete

solution and so are reported as having failed. The analyse time for the default MA57 ordering

is slightly faster than for the CHOLMOD strategy (because MA57 allows a MeTiS ordering to be

computed without always first computing a QAMD ordering) and Figures 3.3 and 3.4 show that

both are essentially equally successful. Performing both orderings for each problem leads to the

fastest factorize and solve times and the sparsest factors (Figure 3.6). However, the additional

analyse cost results in the complete solution (AFS) time being slower than for the MA57 and

CHOLMOD strategies (Figure 3.5). It is clear that if a single or small number of factorizations and
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Figure 3.2: Performance profile, p(α): CPU time for the analyse phase (positive-definite

problems)
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Figure 3.4: Performance profile, p(α): CPU time for the solve phase (positive-definite problems)
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Figure 3.6: Performance profile, p(α): the number of entries in the factor (positive-definite

problems)

solves are to follow the analyse phase, it can be advantageous to use one of these automatic

ordering selection strategies.

3.2 Indefinite problems

For positive-definite problems, the fill-in and the flop counts predicted by the analyse phase

are exact but for indefinite problems, numerical pivoting can result in the predictions being

significantly less than the actual statistics returned by the numerical factorization. It is therefore

interesting to examine whether it is possible to predict which ordering will perform better, based

only on the sparsity pattern and statistics computed using the sparsity pattern alone. For

indefinite problems, we quickly found that choosing the ordering using only n and avnum is

quite effective at the extremes, but there is a large region in matrix characteristic space where

this simplistic approach fails to predict the best ordering. This led us to refine our strategy,

again with the aim of attempting to predict the better ordering while minimizing how often we

compute more than one ordering. For very large problems we continue to use MeTiS, unless the

matrix is very sparse, in which case, we use QAMD. For smaller problems, we first look at the

sparsity pattern of A and define the matrix to be an oxo matrix if it is of the form

(

0 A1

AT
1 0

)

,

where the (1,1) and (2,2) zero blocks are of order m1 and m2 with m1 ≥ m2. Our selection

strategy (see Figure 3.7) then depends on whether or not we have an oxo matrix. For oxo

matrices, our experience has been that QAMD is the best choice for MA57 if the (1,1) zero block

is significantly larger than the (2,2) zero block; otherwise, we use MeTiS. For non oxo matrices,

we first run the cheap QAMD ordering and compute its predicted fill-in. If this lies below a given
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threshold, we use QAMD, even though it is be possible that MeTiS may do even better (we want

to avoid the potentially costly overhead of running MeTiS). If QAMD does not do well, we run

MeTiS and compare its predicted fill-in with that for the previous QAMD run. If MeTiS predicts

a lower fill-in, we use it. Otherwise, we employ QAMD (although to do so within the current

Fortran 77 code MA57 we have first to rerun this ordering because to do otherwise would require

additional storage).

We present our algorithm in Figure 3.7. Here n is the order of A, nzl is the number of nonzero

entries in the lower triangular part of A, and, for an oxo matrix, m1 and m2 are the orders of the

(1,1) and (2,2) zero blocks. In addition, p1 and p2 are the predicted fill-in for the QAMD and

MeTiS orderings respectively; N and cj , j = 1, 2, 3 are parameters. For MA57 we have selected

these parameters using the results of numerical experiments to have the values N = 105, c1 = 3,

c2 = 1.8, c3 = 10. These were chosen on the basis of a single factorization and solving for a single

right-hand side. As already noted, if several factorizations or many repeated solves are required,

it may be worthwhile to always run both the QAMD and MeTiS orderings and choose the one

that predicts the lower fill-in.

if (n > N) then

if (nzl < c1 ∗ n) then

order = QAMD ordering

else

order = MeTiS ordering

end if

else if (oxo) then

if (m1 > c2 ∗ m2) then

order = QAMD ordering

else

order = MeTiS ordering

end if

else

order = QAMD ordering

if (p1 > c3 ∗ nzl) then

order2 = MeTiS ordering

if (p2 < p1) order = order2

end if

end if

Figure 3.7: Algorithm within MA57 for automatically selecting the ordering in the indefinite case

In our tests using this algorithm, MeTiS was called for 36 of the 63 test problems. In 24

instances, the call to MeTiS was preceded by a call to QAMD, and in 3 of these cases, the MeTiS

ordering was rejected.

We also ran tests using the simpler CHOLMOD strategy within MA57. Although this strategy was

designed with positive-definite problems in mind, it performed well on the indefinite problems.

This is clear from the performance profiles in Figures 3.8 to 3.12. The CHOLMOD strategy called

MeTiS for 34 problems; it was only rejected in favour of the previously computed QAMD ordering

in one instance. When used with a QAMD ordering, MA57 was not able to solve three problems
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(Andrews, DTOC and NCVXQP7) within the CPU time limit of 30 minutes. The CHOLMOD strategy

selected QAMD for problem DTOC and this accounts for the one reported failure for the CHOLMOD

ordering.

In Figures 3.8 to 3.10 we present the performance profiles for the analyse, factorize, and solve

times for MA57 run with the different ordering strategies. Again, computing a minimum degree

ordering is significantly faster than computing a nested dissection ordering. Over the indefinite
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Figure 3.8: Performance profile, p(α): CPU time for the analyse phase (indefinite problems)
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Figure 3.9: Performance profile, p(α): CPU time for the factorize phase (indefinite problems)

11



p(α)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

fra
ct

io
n 

of
 p

ro
bl

em
s 

fo
r w

hi
ch

 o
rd

er
in

g 
w

ith
in

 α
 o

f b
es

t

Performance Profile: Solve CPU − indefinite problems

MA57 ordering

Metis ordering

QAMD ordering (3 failed)

Metis + QAMD ordering

CHOLMOD ordering (1 failed)

Figure 3.10: Performance profile, p(α): CPU time for the solve phase (indefinite problems)

test set, the analyse time for the default MA57 ordering is comparable with that for the CHOLMOD

strategy and Figures 3.9 and 3.10 suggest there is little to choose between the two, with the MA57

ordering perhaps having a small advantage. Performing both QAMD and MeTiS orderings for

each problem leads to the fastest factorize and solve times and the sparsest factors (Figure 3.12).

This is interesting since the ordering is picked on the basis of the predicted fill-in based on sparsity

alone. CONT-201 was the only problem in our test set for which the analyse phase selected an

ordering that led to the number of entries in the factor being more than 5 per cent greater than

for the rejected ordering (and for this problem, the tentative pivot sequences chosen by both

QAMD and MeTiS were modified substantially during the factorization). Looking at the profile

for the complete solution (AFS) time (Figure 3.11), we again see the potential advantage of using

an automatic ordering selection strategy.

4 Concluding remarks

We have described in this paper the logic and rationale behind the automatic choice of ordering

strategy used by MA57 and we have compared this with other automatic and non-automatic

strategies. We conclude that it can be worthwhile to have an automatic selection strategy

particularly if only few factorizations or solves follow the analysis. The automatic strategy is

also a good option for users who wish to treat the software as a black-box and who have no

interest in understanding the use of orderings or in tuning the code for their problem. Sadly

there are all too many users in this category.

The strategy used by MA57 seems as good as alternatives although the attempts to use the

structure of some indefinite problems do not appear to yield any additional benefits. Indeed it is

not clear that differentiating between positive-definite and indefinite systems is of any benefit.

We note that many automatic selection strategies assume that the cost of generating the

nested dissection ordering is substantially more expensive than that of a local ordering such
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Figure 3.11: Performance profile, p(α): CPU time for the complete solution (indefinite problems)
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as QAMD. This is certainly the case when the MeTiS package is used to compute the nested

dissection ordering which is used by many sparse direct solvers. We plan to try to develop faster

nested dissection orderings and, if successful, may have to alter the parameters or strategy for

automatic choice of orderings within MA57.
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Appendix

We show, in Table A.1, a list of software for the direct solution of sparse symmetric matrices and

either a web or email contact for each.

Code Webpage / email contact

BCSLIB-EXT www.boeing.com/phantom/BCSLIB-EXT/index.html

CHOLMOD www.cise.ufl.edu/∼davis/
MA57 www.cse.clrc.ac.uk/nag/hsl

MUMPS www.enseeiht.fr/lima/apo/MUMPS/

Oblio dobrian@cs.odu.edu or pothen@cs.odu.edu

PARDISO www.computational.unibas.ch/cs/scicomp/software/pardiso

SPOOLES www.netlib.org/linalg/spooles/spooles.2.2.html

SPRSBLKLLT EGNg@lbl.gov

TAUCS www.cs.tau.ac.il/∼stoledo/taucs/
WSMP www-users.cs.umn.edu/∼agupta/wsmp.html

Table A.1: Contact details for the solvers discussed in Section 2
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