
Technical Report

RAL-TR-2004-006

Council for the Central Laboratory of the Research Councils

February 2004 (revised November 2004)

Iain S. Duff and Jennifer A. Scott

Stabilized block diagonal forms for

parallel sparse solvers

c© Council for the Central Laboratory of the Research Councils

Enquires about copyright, reproduction and requests for additional copies of this report should be

addressed to:

Library and Information Services

CCLRC Rutherford Appleton Laboratory

Chilton Didcot

Oxfordshire OX11 0QX

UK

Tel: +44 (0)1235 445384

Fax: +44(0)1235 446403

Email: library@rl.ac.uk

CCLRC reports are available online at:

http://www.clrc.ac.uk/Activity/ACTIVITY=Publications;SECTION=225;

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or damage arising from the

use of information contained in any of their reports or in any communication about their tests or

investigations.

RAL-TR-2004-006

Stabilized bordered block diagonal forms for parallel

sparse solvers1,2

Iain S. Duff and Jennifer A. Scott

Abstract

One possible approach to the solution of large sparse linear systems is to reorder the system

matrix to bordered block diagonal form and then to solve the block system in parallel. We

consider the duality between singly bordered and doubly bordered block diagonal forms. The

idea of a stabilized doubly bordered block diagonal form is introduced. We show how a stable

factorization of a singly bordered block diagonal matrix results in a stabilized doubly bordered

block diagonal matrix. We propose using matrix stretching to generate a singly bordered form

from a doubly bordered form. Matrix stretching is compared with two alternative methods for

obtaining a singly bordered form and is shown to be efficient both in computation time and the

quality of the resulting block structure.

Keywords: large sparse linear systems, unsymmetric matrices, ordering, partitioning, bordered

block diagonal form, matrix stretching, parallel processing.

1 Current reports available from “http://www.numerical.rl.ac.uk/reports/reports.html”.

2 This work was supported by the EPSRC grants GR/R46641 and GR/S42170.

Computational Science and Engineering Department

Atlas Centre

Rutherford Appleton Laboratory

Oxon OX11 0QX

November 26, 2004.

1 Introduction

Many large scale scientific and engineering computations require the solution of sparse linear

systems of equations. In most applications, it is important to solve these systems as accurately

and as rapidly as possible. In recent years, as the size of the problems of interest has increased,

parallel algorithms and parallel computers have become very important for the efficient solution

of these problems. Solving linear systems in parallel involves distributing the data and the

computation among the processors. If the problem is well structured this can often be done in

a straightforward way but the irregular structure of general large sparse unsymmetric systems

can make the distribution of the data and computation difficult. A good ordering of the rows

and columns of the matrix can significantly reduce the storage and computation time required

to factorize it in parallel. The efficient computation of good orderings that can be used to obtain

stable factorizations of unsymmetric problems is a major objective of this paper.

We are concerned with direct methods for solving linear systems of the form

Ax = b, (1.1)

where the n × n matrix A = {aij} is large, sparse and unsymmetric. One possible approach

to achieve coarse-grained parallelism is to preorder A to bordered block diagonal form. The

block diagonal form leads to subproblems that can be solved independently, leaving an interface

problem corresponding to the border that links the subproblems. The interface problem must

be solved to complete the solution of the original problem. For the method to work well in a

parallel environment, the order of the interface problem should be small compared with n so that

there is little communication between the blocks on the diagonal and the interface problem and

so that the cost of factorizing the interface problem is significantly less than that of factorizing

the blocks on the diagonal. Recently, four solvers that implement direct algorithms based on this

coarse-grained parallel approach have been developed for the mathematical software library HSL

(HSL, 2002). These include the frontal solver HSL MP43 (Scott, 2001b) and HSL MP48 (Duff and

Scott, 2004), which are both designed for solving sparse unstructured unsymmetric systems.

The matrix A is said to be in doubly bordered block diagonal (DBBD) form if the rows and

columns have been permuted to the form

PAQ = ADB =

















A11 C1

A22 C2

... .

ANN CN

R1 R2 ... RN E

















, (1.2)

where the blocks All are nl × nl matrices and the border blocks Cl and Rl are nl × p and p × nl

matrices, respectively, with p � nl. This form is also sometimes referred to as an arrowhead

form (see, for example, Ferris and Horn, 1998). For finite-element applications, the DBBD

form corresponds to partitioning the underlying finite-element domain into non-overlapping

subdomains; each block All, l = 1, 2, . . . , N , corresponds to the interior of a subdomain and

the variables in the borders are those that lie on an interface between two or more subdomains.

Each column of the column border (CT
1 , CT

2 , . . . , CT
N , ET)T is called a coupling (or linking) column

and each row of the row border (R1, R2, . . . , RN , E) is a coupling (or linking) row. The aim is to

1

permute A to DBBD form in such a way that the number p of coupling rows and columns is small,

while at the same time ensuring a good balance between the sizes of the blocks All, l = 1, 2, . . . , N .

Because we are interested in a coarse-grained parallel approach in which the diagonal blocks are

factorized in parallel, we assume N > 1 and typically N ≤ 32. In general, for larger values of N ,

p becomes unacceptably large and the solution of the interface problem then dominates the total

solution time.

Having ordered A into DBBD form, we can attempt to apply a linear solver to the blocks A ll.

However, there are potential problems in doing this. In particular, the All may be singular even

if A is nonsingular. It may be possible to use a direct solver that incorporates threshold-based

partial pivoting for stability and moves rows and columns into the border as necessary. This is the

approach adopted by the HSL parallel direct solver HSL MP42 (Scott, 2001a), which is designed

for the solution of linear systems from finite-element applications. Unfortunately, the border size

may grow unacceptably large. To avoid this problem, we propose using an alternative approach

in which A is ordered to singly bordered block diagonal (SBBD) form

PAQ = ASB =













A11 C1

A22 C2

... .

ANN CN













, (1.3)

where the blocks All are now rectangular ml × nl matrices with ml ≥ nl, and the border blocks

Cl are of order ml × p (p � nl). Again, the objective is to permute A into an SBBD form ASB

so that the number of coupling columns is as small as possible while maintaining well balanced

blocks All, l = 1, 2, . . . , N . Ideally the All should be well balanced in terms of factorization time,

but at the very least we would plan that they have a similar dimension. With this form, a direct

solver can be applied to factorize each of the rectangular blocks All. We will show (see Section 2)

that this in turn yields a stabilized DBBD form, that is, a DBBD form with nonsingular blocks on

the diagonal that can be stably factorized without the need to delay pivots. In practice, parallel

direct solvers such as HSL MP43 and HSL MP48 do not form the stabilized DBBD form explicitly,

but it can be used to provide a modified block Jacobi preconditioner for an iterative scheme on

the whole system (Duff, Golub, Kwok and Scott 2004).

This paper is organised as follows. In Section 2, we look at how the SBBD form may be used

with a direct solver to obtain a stabilized DBBD form. In Section 3, we discuss the reduction

of unsymmetric sparse matrices to SBBD form and, in particular, we propose using a two-phase

approach that is fast and yields a narrow border for a set of test problems arising from a range

of practical applications that includes both highly unsymmetric problems and problems with a

(nearly) symmetric sparsity structure. Our findings are summarised in Section 4.

All numerical experiments presented in this paper were performed on a single processor of a

dual processor Compaq DS20 Alpha workstation, with 3.6 GBytes of RAM. The Fortran codes

were compiled using the Compaq Fortran 90 compiler with the optimization flag -O; C codes were

compiled using the Compaq cc compiler with the flag -O4.

2

2 Stabilized DBBD forms

If we are factorizing a block All of a doubly bordered block diagonal form (1.2) with threshold

pivoting, then a potential pivot aij ∈ All must satisfy

|aij | ≥ u ∗ max{max
k

|(All)kj|,max
k

|(Rl)kj|}, (2.4)

where u ∈ (0, 1) is the threshold parameter. It is clear that large entries in the row border matrix

Rl can prevent potential pivots from being selected. Thus if we want to maintain the doubly

bordered structure, we would court instability by failing to satisfy the threshold test. In order to

maintain stability, we must move the rows and columns that cannot be eliminated to the borders

thus changing the structure of the doubly bordered form. This is exactly the situation that we

would encounter if we obtained such a DBBD form from a domain decomposition algorithm unless

the matrix had special numerical properties, for example was positive definite. The increase in

the border size could adversely affect the a priori data structures, will increase the size of the

interface problem, increase the work for the factorization, and reduce the potential for parallelism.

Furthermore, not being able to choose a full set of pivots from the blocks on the diagonal (in the

extreme case it is possible that no pivots can be stably chosen) may cause problems with load

balancing.

If, however, we are factorizing blocks All of a singly bordered block diagonal form (1.3) with

threshold pivoting, then the potential pivot aij ∈ All must satisfy

|aij | ≥ u ∗ max
k

{|(All)kj|}, (2.5)

(again u ∈ (0, 1) is the threshold parameter) and so, if the matrix A is nonsingular, there will

always be a numerically satisfactory pivot in column j of All. It is thus always possible to factorize

the submatrix All as the product of an ml × nl lower trapezoidal matrix L̄l =

(

Ll

L̃l

)

(where Ll

is an nl × nl lower triangular matrix) and an nl × nl upper triangular matrix, Ul.

We can look at the effect of this factorization on the SBBD matrix by considering the

factorization of the augmented system
(

All Cl

)

, which may be written in the form

(

All Cl

)

= Pl

(

Ll

L̃l I

)(

Ul Ũl

Sl

)(

Ql

I

)

, (2.6)

where Pl and Ql are permutation matrices of order ml × ml and nl × nl, respectively, and Sl is

an (ml −nl)×pl local Schur complement matrix. We note that pivots cannot be chosen from the

columns of Cl because these columns have entries in at least one other border block Cj (j 6= l).

Expressing the factorization in this way enables us to identify a doubly bordered block diagonal

form, where the coupling columns are as in the SBBD form and the coupling rows comprise the

rows in the L̃l blocks. We observe that this is a special case of the DBBD form (1.2) in which the

set of rows in each border block Rl = L̃l is disjoint from the rows in the other border blocks Rj =

L̃j (j 6= l). This is part of the reason that the borders of this “stabilized” DBBD form are larger

than for the DBBD form obtained directly using a graph partitioning tool such as the METIS

package of Karypis and Kumar (1998) (see www-users.cs.umn.edu/~karypis/metis/index.html).

For example, METIS with N = 4 gives doubly bordered block diagonal forms with border sizes

of 47 and 68 for problems bcircuit and nopoly, respectively (see Section 3.2 for details of our

3

test problems). For the stabilized DBBD forms the corresponding border sizes are 94 and 136.

However, the main point is that the DBBD form obtained via an SBBD form is stabilized in the

sense that pivots can be stably chosen from within the blocks on the diagonal and no further

alterations to the DBBD form will be necessary.

3 Ordering to SBBD form

The reduction of sparse unsymmetric matrices to SBBD form has been the subject of a number

of recent papers (see, for example, Camarda and Stadtherr, 1998, Hu, Maguire and Blake, 2000,

and Aykanat, Pinar and Çatalyürek, 2002 and the references therein). Hu et al. (2000) developed

the MONET (Matrix Ordering for minimal NET-cut) algorithm for ordering chemical process

engineering problems to SBBD form. MONET is based on applying a multilevel approach to

the weighted row connectivity graph of A (Mayoh, 1965). Given the original matrix, a series of

matrices are generated, each coarser than the preceding one and obtained by merging rows with

similiar sparsity patterns. The coarsest matrix is bisected. This bisection is prolonged to the finer

matrices and refined using the Kernighan-Lin algorithm (Kernighan and Lin 1970). Partitioning

into more than two blocks is achieved by recursive bisection. The net-cut is the number of columns

that lie in the border, that is, the number of coupling columns. The algorithm aims to minimise

the net-cut while ensuring good row balance (that is, each block All, l = 1, 2, . . . , N , has a similar

number of rows).

HSL offers a Fortran 95 implementation of the MONET algorithm as routine HSL MC66. This

code was used by Duff and Scott (2004) for preordering in their experiments with the parallel

unsymmetric direct solvers HSL MP43 and HSL MP48. They found that, for highly unsymmetric

problems, such as those that arise in chemical process engineering applications, HSL MC66 produces

high quality SBBD forms, that is, SBBD forms that are well balanced and have a narrow border.

In particular, the numerical experiments reported by Duff and Scott showed that for up to 8

submatrices, the border typically represents less than 5% of the total number of columns. The

narrow border and the balanced blocksize allows the parallel solvers to achieve good speedups

when run on a modest number of processors (experiments using up to N = 16 blocks on 16

processors were reported on). The main disadvantage of using the MONET algorithm is that it

is relatively expensive in terms of CPU time. In general, the CPU cost of computing the singly

bordered block form using HSL MC66 was found to be significantly greater than the cost of the

analyse phase of the direct solver applied to the blocks on the diagonal and, for some problems, it

dominated the total solution time. Clearly, if a large number of matrices with the same sparsity

pattern are to be factorized (such as when the linear solver is used within an iterative scheme

for solving a nonlinear system), the ordering cost may be justified as it can be amortized over

the repeated factorizations. But in some applications, only a single factorization is required and

it may then be essential for the ordering to SBBD form to be performed rapidly so that it does

not represent an unacceptable overhead. This is especially important if (as with HSL MC66) the

ordering is performed using a single processor.

The high cost of HSL MC66 for large problems prompted Hu and Scott (2003) to look at

developing alternative algorithms that avoid using the row graph of A. Their algorithms are

based on computing either a vertex separator or a wide separator of the symmetrized matrix

A + AT . A graph partitioning tool such as METIS is used to partition the graph of A + AT and

4

a vertex separator is extracted from the output. This is optionally widened to a wide separator

and used to partition the matrix. Hu and Scott (2003) report on a number of variants of the

separator approach. In this study, we use the method termed SEP VS(ND). This employs the

multilevel nested dissection routine METIS NodeND; the METIS output is used to compute an

SSBD form using both a vertex separator and a wide separator approach and the one that gives

the narrowest border is selected.

Numerical experiments presented by Hu and Scott show that for N ≤ 8 the number of

coupling columns obtained using the separator methods is generally competitive with results for

the MONET algorithm. Furthermore, employing the separator methods is significantly faster

than using the MONET algorithm. This makes them useful alternatives, particularly if the

required number of factorizations of matrices having the same sparsity pattern is small.

3.1 Two-phase A to ASB algorithm

The separator algorithms of Hu and Scott and the MONET algorithm are one-phase schemes,

that is, the SBBD form ASB is computed directly from A. An alternative approach that has

been used for LP problems is a two-phase algorithm (Ferris and Horn, 1998, see also Aykanat et

al., 2002). In the first phase, A is ordered to DBBD form ADB ; then, in the second phase, row

stretching is used to obtain an SBBD form ÂSB.

Stretching is a sparse matrix preprocessing technique that makes matrices sparser but, at the

same time, larger. The idea was first introduced by Grcar (1990) who proposed both row and

column stretching as an effective way of treating sparse matrices with dense rows or columns

before factorization. The technique has since been used by a number of authors, including

Alvarado (1997), Daydé, Décamps and Gould (1997), Ferris and Horn (1998), and Aykanat et al.

(2002). We use row stretching to associate with ADB a larger square matrix ÂSB in SBBD form.

As an illustration, consider the 5×5 2-block DBBD matrix given by

ADB =

















× ×

× ×

× ×

× × ×

× × ×

















. (3.7)

The stretching process has two steps. In the first step, a rectangular matrix is constructed where

the entries of the coupling rows (in this example, row 5 is the only coupling row) are split so that

after row permutations each new row has nonzero entries in only one non-border block:























× ×

× ×

× ×

× × ×

× ×

×























. (3.8)

The second step produces a square matrix by appending new columns to ensure the stretched

matrix is structurally nonsingular (provided ADB was structurally nonsingular). After reordering,

5

the stretched matrix becomes:

ÂSB =























× ×

× ×

× × +σ

× ×

× × ×

× −σ























. (3.9)

Here, +σ and −σ denote the added entries. More generally, suppose the row border

(R1, R2, ..., RN , E) of the DBBD form ADB (see (1.2)) has p rows and let row i be the first

row in the border. Assume row i has nonzero entries in blocks Ri1 , Ri2 , ..., Rik and E (k ≥ 2).

We start the stretching by removing the entries in blocks Ri2 , ..., Rik from row i and adding k−1

rows to ADB such that row n+ l contains the nonzero entries from row i belonging to block Ril+1
,

l = 1, ..., k − 1. Next, we append k − 1 columns to the border of ADB so that column n + l has

nonzero entries ±σil in rows i and n + l (l = 1, ..., k − 1). Finally, we permute the rows of the

stretched matrix so that row n + l is permuted to be a row of the block A î̂i, where î = il+1. We

now have a DBBD form ÂDB of order (n+k− 1)× (n+k− 1) with p− 1 rows in its border. The

process is repeated until finally the original DBBD has been stretched to a SBBD form ÂSB.

This technique of adding rows (and corresponding columns) to make the matrix sparser is

also called row splitting (see, for example, Ferris and Horn (1998)). An analysis of the numerical

properties of stretching is given by Grcar (1990). Assuming the original matrix A is well scaled,

the added entries ±σil should be chosen to ensure ÂSB is also well scaled. Typical values that

are used are ±1.

Note that when solving the system ADBx = b, the right-hand side b must also be stretched.

In our 5 × 5 example, if b = (b1, b2, b3, b4, b5)
T , after stretching and reordering the system to be

solved is ÂSBx̂ = b̂, where x̂ = (x1, x2, x3, x4, x5, y1)
T and b̂ = (b1, b2, c1, b3, b4, c2)

T . Here y1 is

the new ‘stretch’ variable and any numbers c1, c2 that sum to b5 can be chosen. Different choices

give different values to the new variable y1 but the original variables are unchanged. This is

discussed further by Grcar (1990)

3.2 One-phase and two-phase results for A to SBBD form

In this section, we present numerical results comparing the performance of the MONET algorithm,

the separator algorithm SEP VS(ND) of Hu and Scott, and the two-phase approach based on

row splitting. Our test problems are listed in Table 3.1. For the coarse-grained parallel approach

to be efficient, the test problems need to be reasonably large and so our selected examples are

all of order at least 10,000. A † indicates that the problem is included in the University of

Florida Sparse Matrix Collection (Davis, 1997). The remaining problems were supplied by Mark

Stadtherr of the University of Notre Dame and Tony Garrett of AspenTech, UK.

The symmetry index s(A) of a matrix A is defined to be the number of matched nonzero

off-diagonal entries (that is, the number of nonzero entries aij, i 6= j, for which aji is also

nonzero) divided by the total number nz of off-diagonal nonzero entries. Small values of s(A)

indicate the matrix is far from symmetric while values close to 1 indicate an almost symmetric

sparsity pattern. In Table 3.1, the test matrices are listed in order of increasing symmetry index.

A number of the matrices are highly unsymmetric and have a large number of zero diagonal

6

Identifier n nz s(A) s(PA) Description/Application area

Matrix35640 35640 146880 0.0001 0.0427 Chemical process engineering

bayer01† 57735 277774 0.0002 0.0719 Chemical process engineering

icomp 75724 338711 0.0010 0.0025 Chemical process engineering

Matrix32406 32406 1035989 0.0014 0.2643 Chemical process engineering

lhr34c
† 35152 764014 0.0015 0.3294 Chemical process engineering

bayer04
† 20545 159082 0.0016 0.0694 Chemical process engineering

lhr71c
† 70304 1528092 0.0016 0.3541 Chemical process engineering

poli large
† 15575 33074 0.0035 0.0035 Account of capital links

4cols 11770 43668 0.0159 0.0419 Chemical process engineering

10cols 29496 109588 0.0167 0.0471 Chemical process engineering

onetone2† 36057 227628 0.1129 0.3600 Harmonic balance method

ethylene-1 10673 80904 0.2973 0.2441 Chemical process engineering

ethylene-2 10353 78004 0.3020 0.2487 Chemical process engineering

circuit 3
† 12127 48137 0.7701 0.4093 Circuit simulation

circuit 4
† 80209 79566 0.8292 0.7894 Circuit simulation

Zhao2
† 33861 166453 0.9225 Electromagnetics

scircuit
† 170998 958936 0.9999 Circuit simulation

hcircuit
† 105676 513072 0.9999 Circuit simulation

bcircuit† 68902 375558 1.0000 Circuit simulation

garon2
† 13535 390607 1.0000 2D Navier Stokes

pesa† 11738 79566 1.0000 Unknown

venkat50
† 62424 1717792 1.0000 2D Euler

nopoly† 10774 70842 1.0000 Unknown

Table 3.1: Test problems. n, nz denote the order of A and the number of matrix entries,

respectively. s(A) denotes the symmetry index and s(PA) is the symmetry index after ordering

with MC21. Problems marked † are available from the University of Florida Sparse Matrix

Collection.

7

entries. For such problems, matching orderings generally increase the symmetry index of the

resulting reordered matrix (see, for example, Duff and Koster, 1999). The HSL routine MC21 uses

a relatively simple algorithm to compute a matching that corresponds to a row permutation of

A that puts nonzeros entries onto the diagonal, without considering the numerical values (for

details see Duff, 1981a, 1981b). The numbers in column 5 of Table 3.1 are the symmetry indices

after applying MC21 to the problems with s(A) ≤ 0.9. We see that, in general, s(A) is increased

by applying MC21 and for some of the highly unsymmetric problems (including Matrix32406,

lhr34c and lhr71c) the increase is substantial. There is no guarantee that MC21 will increase

s(A) and, for a number of the problems with a relatively large symmetry index, we find that

s(PA) (where P is the permutation returned by MC21) is smaller than s(A). These problems

have either no zero diagonal entries or a very small number of zeros on the diagonal (for example,

circuit 4 has only 21 zeros on the diagonal) and in such cases changes to s(A) resulting from

using MC21 are largely due to the tie-breaking within MC21.

For the test problems in the top half of the table with an unsymmetric sparsity pattern up

to and including problem onetone2, we let B = PA and for the remaining problems we set

B = A. Hu and Scott (2003) report that if A has a small symmetry index the vertex separator

methods yield narrower borders when applied to B instead of A; for highly unsymmetric problems

with many zeros on the diagonal, the reduction in border size by preordering with MC21 can be

substantial. Thus, in the remainder of this section, the separator methods are applied to B

(and, when used, the time for MC21 is included in the time needed to compute the SBBD form).

Note that the MONET algorithm is applied to A because it is designed particularly for highly

unsymmetric problems; experiments have shown that applying it to B generally results in wider

borders.

For the stretching methods, in the first phase we must permute A to DBBD form ADB .

For symmetrically structured matrices this is done by computing a vertex separator Vs of the

adjacency graph of A; the coupling rows and columns of ADB correspond to the vertices belonging

to Vs. In our experiments we use the METIS package and, in particular, the multilevel nested

dissection routine METIS NodeND. We note that minor modifications were needed in order to

extract the vertex separator information. The output from the modified METIS NodeND is an array

part of length n. If part(i) = 0 then vertex i ∈ Vs; otherwise, if part(i) = k (1 ≤ k ≤ N),

vertex i belongs to the kth block of ADB .

For problems with an unsymmetric sparsity pattern we report the results of applying

METIS NodeND to the graph of the matrix A + AT and to the bipartite graph of A. When

applied to A + AT , if vertex i ∈ Vs then the ith row and column of A are moved to the row and

column borders, respectively.

The bipartite graph of A consists of two distinct sets R and C of n vertices each and undirected

edges joining the vertices in R with those in C. The set R is associated with the rows of A and

the set C with the columns. There is an edge (ri, cj) if and only if ri ∈ R, cj ∈ C and aij is

nonzero. It is straightforward to show that the bipartite graph is equivalent to the adjacency

graph of the 2n × 2n matrix
(

0 A

AT 0

)

. (3.10)

8

METIS NodeND is applied to this graph. If vertex i ≤ n belongs to Vs then row i of A is permuted

to the row border, while if i > n belongs to Vs, column j = i − n is permuted to the column

border.

Once A has been permuted to a DBBD form ADB, stretching is used to obtain an SBBD

form ÂSB of order n̂× n̂. We are concerned that the difference between n̂ and n (the size of the

original matrix A) should be small relative to n. This is important because we now have a larger

(stretched) linear system of the form

ÂSB x̂ = b̂ (3.11)

to solve in place of the original system (1.1). In Table 3.2, n is compared with n̂ for each of our

test examples with N = 8 blocks. The size of n̂ depends on the method used to permute A to

DBBD form. The results of applying METIS NodeND to A+AT (n̂1), to the graph of B +BT (n̂2)

and to the bipartite graph (n̂3) are given in Table 3.2. A blank entry in the n̂2 column indicates

the problem was not preordered using MC21 (that is, B = A), and there is a blank in the n̂3 column

for the symmetric matrices because the bipartite graph is not used for these problems. For the

problems with a symmetric pattern (problems bcircuit onwards), the results are for applying

METIS to A + AT = A. The figures in parentheses are the percentage increases in the order of

the system. Comparing the n̂1 and n̂2 columns, we see that for the highly unsymmetric problems

the number of rows and columns added during the stretching process is significantly reduced by

preordering using MC21. If we compare the use of B + BT with that of the bipartite graph, we

note that, in general, the former results in a slightly smaller stretched matrix. However, for each

problem in the test set and N = 8, both approaches lead to an increase in the matrix size of less

than 6 percent. Further results for a subset of our test problems run with N = 4 and N = 16 are

given in Table 3.3. In each case, METIS is applied to B+BT (with B = A for the matrices below

problem onetone2). We see that as N increases so too does the order n̂ of the stretched matrix

but the increases are generally modest. In particular, with N = 16 the increase in matrix size is

less than 10 per cent for all our test problems (including those not reported on in Table 3.3) and

for most problems the increase is less than 3 per cent. These results are encouraging since such

a small increase is unlikely to add a significant overhead to the time needed to solve the linear

system.

We now compare the border sizes of the two-phase approach with those obtained using the

HSL MC66 implementation of the MONET algorithm and the separator method SEP VS(ND) of

Hu and Scott. Default setting are used for all HSL MC66 control parameters. For the two-phase

approach we apply METIS to the graph of B+BT and, for matrices with an unsymmetric sparsity

pattern, to the bipartite graph. Results are given in Table 3.4 for N = 8. We highlight in bold the

narrowest borders and those that are within 5 percent of the best. The results show that the two-

phase approach works well, both for the problems with an unsymmetric structure and those that

are symmetric. In particular, for the (nearly) symmetric problems it consistently outperforms the

SEP VS(ND) method, and there are only a small number of the highly unsymmetric problems for

which HSL MC66 produces significantly smaller borders. For the circuit simulation problems, the

two-phase approach succeeds in producing much narrower borders than the one-phase algorithms.

For problem circuit 4, both SEP VS(ND) and HSL MC66 give borders that are too wide for the

coarse-grained parallel approach to work well; the solution time will be dominated by the time

needed to solve the interface problem.

Comparing the two versions of the two-phase approach, using the bipartite graph for the

9

Identifier n n̂1 n̂2 n̂3

Matrix35640 35640 50361 (41.3) 35981 (0.96) 36605 (2.72)

bayer01 57735 61940 (7.28) 57916 (0.31) 57963 (0.39)

icomp 75724 75907 (0.24) 75864 (0.18) 75868 (0.19)

Matrix32406 32406 35823 (10.5) 33212 (2.48) 33241 (2.57)

lhr34c 35152 40662 (15.7) 35558 (1.15) 35670 (1.47)

bayer04 20545 23159 (12.7) 20770 (1.09) 20846 (1.46)

lhr71c 70304 74296 (5.68) 70764 (0.65) 70690 (0.55)

poli large 15575 15927 (2.26) 15927 (2.26) 16059 (3.10)

4cols 11770 11857 (7.39) 11841 (0.60) 11865 (0.81)

10cols 29496 29622 (0.43) 29602 (0.36) 29621 (0.42)

onetone2 36057 36377 (0.89) 36680 (1.72) 36458 (1.11)

ethylene-1 10673 10722 (0.46) 10730 (0.53)

ethylene-2 10353 10435 (0.79) 10437 (0.81)

circuit 3 12127 12197 (0.33) 12212 (0.70)

circuit 4 80209 81131 (1.15) 80924 (0.89)

Zhao2 33861 35696 (5.42) 35506 (4.85)

scircuit 170998 171327 (0.19) 171293 (0.17)

hcircuit 105676 105900 (0.21) 105937 (0.25)

bcircuit 68902 69099 (0.26)

garon2 13535 14302 (5.67)

pesa 11738 11934 (1.67)

venkat50 62424 63544 (1.79)

nopoly 10774 10925 (1.40)

Table 3.2: The order of the stretched matrix ÂSB (N = 8). The figures in parentheses are the

percentage increases in the order of the system.

Identifier n n̂

N = 4 N = 8 N = 16

Matrix35640 35640 35811 (0.48) 35981 (0.96) 36692 (2.95)

bayer01 57735 57829 (0.16) 57916 (0.31) 58022 (0.50)

lhr71c 70304 70411 (0.15) 70764 (0.65) 71129 (1.17)

10cols 29496 29534 (0.13) 29602 (0.36) 29688 (0.65)

onetone2 36057 36313 (0.73) 36680 (1.72) 36940 (2.45)

circuit 4 80209 80677 (0.58) 81131 (1.15) 81877 (2.08)

Zhao2 33861 34761 (2.66) 35696 (5.42) 37153 (9.72)

venkat50 62424 63096 (1.08) 63544 (1.79) 64356 (3.09)

nopoly 10774 10842 (0.63) 10925 (1.40) 11011 (2.20)

Table 3.3: The order of the stretched matrix ÂSB for different N . The figures in parentheses are

the percentage increases in the order of the system.

10

Identifier n SEP VS(ND) HSL MC66 Two-phase

B + B
T Bipartite

Matrix35640 35640 1599 1367 1514 1476

bayer01 57735 458 254 431 385

icomp 75724 332 229 239 409

Matrix32406 32406 1756 3514 1886 1469

lhr34c 35152 941 792 1062 767

bayer04 20545 404 542 547 367

lhr71c 70304 883 990 1163 832

poli large 15575 2200 713 473 492

4cols 11770 263 233 204 268

10cols 29496 313 279 263 361

onetone2 36057 1596 1745 1812 1310

ethylene-1 10673 190 217 215 168

ethylene-2 10353 201 217 95 191

circuit 3 12127 2015 1920 114 143

circuit 4 80209 19305 16417 1107 962

Zhao2 33861 3132 2773 3209 3036

scircuit 170998 1274 4353 581 649

hcircuit 105676 2350 2138 370 154

bcircuit 68902 495 951 394

garon2 13535 2043 2308 1516

pesa 11738 469 446 391

venkat50 62424 2492 2536 2232

nopoly 10774 310 337 302

Table 3.4: The size of the border in the 8-block SBBD form computed using the SEP VS(ND)

method, HSL MC66, and the two-phase approach.

11

unsymmetric problems seems to produce slightly narrower borders than using the graph of B+BT .

However, the reordering times given in Table 3.5 show that using the bipartite graph is generally

the more expensive approach. This is because it involves applying METIS to a graph with 2n

vertices while the graph of B+BT has only n vertices. The difference in CPU times is significantly

less for the unsymmetric problems that are preordered for the B +BT approach using MC21 since

employing MC21 incurs an overhead. There is little difference between the SEP VS(ND) and

Identifier SEP VS(ND) HSL MC66 Two-phase

B + B
T Bipartite

Matrix35640 1.57 6.93 1.54 2.02

bayer01 2.06 6.33 2.25 2.19

icomp 1.64 5.71 1.67 2.82

Matrix32406 5.27 324 5.45 9.48

lhr34c 3.12 9.64 3.30 3.47

bayer04 0.85 3.70 0.86 1.09

lhr71c 7.58 19.3 7.51 7.16

poli large 0.22 0.21 0.23 0.30

4cols 0.66 0.91 0.66 0.85

10cols 2.14 2.45 2.12 2.96

onetone2 1.35 8.12 1.51 1.34

ethylene-1 0.25 2.59 0.25 0.38

ethylene-2 0.24 3.07 0.21 0.35

circuit 3 0.20 51.6 0.20 0.35

circuit 4 3.29 2121 3.74 6.46

Zhao2 0.65 2.44 0.65 1.61

scircuit 2.83 54.7 2.70 7.78

hcircuit 1.23 16.1 1.19 2.91

bcircuit 0.95 5.34 0.97

garon2 0.27 2.35 0.34

pesa 0.14 0.75 0.14

venkat50 0.82 6.14 1.26

nopoly 0.12 0.68 0.12

Table 3.5: The CPU time (in seconds) to compute the 8-block SBBD form using the SEP VS(ND)

method, HSL MC66, and the two-phase approach.

two-phase B + BT times and both are significantly faster than HSL MC66.

Finally, we consider the row imbalance. We define the row imbalance to be the difference

between the maximum submatrix row dimension and the average submatrix row dimension,

divided by the average submatrix row dimension, expressed as a percentage. That is, if m l is the

row dimension of All, then

row imbalance =
max{ml} − n/N

n/N
× 100.

For our stretching approach, the row imbalance can increase significantly with N . For example,

for problem bayer04 the row balance is 4.2 per cent for N = 4, 8.8 per cent for N = 8 and

13.3 per cent for N = 16. For HSL MC66, the row imbalance increases more slowly with N and

for our test examples, the row imbalance was less than 5 per cent for N ≤ 16. We remark that

HSL MC66 has a parameter that may be set by the user to control the size of the row imbalance

12

and so, if the user is willing to allow a greater imbalance, it may be possible to obtain a narrower

border. We also note that the real metrics for load balancing should be the amount of work and

time required by the factorization and this is not necessarily proportional to the submatrix row

dimension.

We conclude that the two-phase approach is very successful at efficiently computing SBBD

forms with a narrow border. The method replaces the original linear system by a larger one, but

in our tests the increase in the order of the linear system was modest. However, we may need to

investigate in the future whether it is possible to improve the row imbalance as the number of

blocks is increased.

4 Concluding remarks

We have shown a duality between doubly and singly bordered block diagonal forms and have

used this, on the one hand, in an efficient algorithm to produce an SBBD form and, on the other

hand, have used a stable factorization of the SBBD form to define a stabilized DBBD form.

The stabilized form can either be used to effect a direct solution of the system of equations,

see for example Duff and Scott (2004), or as the basis for a block iterative technique, either using

a Schur complement approach or a variant of block Jacobi (Duff et al. 2004).

We have also shown how matrix stretching can be used to generate a singly bordered form from

a doubly bordered one. Numerical results have been presented for this approach and compared

with using the MONET algorithm (HSL MC66) and with methods based on vertex separators. The

results show that matrix stretching is significantly faster than MONET and leads to only a modest

increase in the order of the matrix. Moreover, matrix stretching produces border sizes that are

competitive with MONET for highly unsymmetric problems and are significantly narrower for

problems with a (nearly) symmetric sparsity pattern.

5 Acknowledgements

We are grateful to Yifan Hu of Wolfram Research for modifying METIS NodeND to output vertex

separator information and for commenting on a draft of this report. We would also like to thank

our colleague John Reid for helpful and constructive comments.

References

F.L. Alvarado. Matrix enlarging methods and their application. BIT, 37, 473–505, 1997.

C. Aykanat, A. Pinar, and Ü.V. Çatalyürek. Permuting sparse rectangular matrices into singly-

bordered block-diagonal form for parallel solution of LP problems. Technical Report BU-

CE-0203, Computer Engineering Department, Bilkent Univeristy, 2002.

K.V. Camarda and M.A. Stadtherr. Frontal solvers for process engineering: local row ordering

strategies. Computers in Chemical Engineering, 22, 333–341, 1998.

T. Davis. University of Florida Sparse Matrix Collection. NA Digest, 97(23), 1997. Full details

from www.cise.ufl.edu/research/sparse/matrices/.

13

M.J. Daydé, J.P. Décamps, and N.I.M Gould. Solution of unassembled linear systems using block

stretching: preliminary experiments. Technical Report TR/APO/97/3, ENSEEIHT-IRIT,

Toulouse, 1997.

I.S. Duff. Algorithm 575, permutations for a zero-free diagonal. ACM Trans. Mathematical

Software, 7, 387–390, 1981a.

I.S. Duff. On algorithms for obtaining a maximum transversal. ACM Trans. Mathematical

Software, 7, 315–330, 1981b.

I.S. Duff and J. Koster. The design and use of algorithms for permuting large entries to the

diagonal of sparse matrices. SIAM J. Matrix Analysis and Applications, 20, 889–901, 1999.

I.S. Duff and J.A. Scott. A parallel direct solver for large sparse highly unsymmetric linear

systems. ACM Trans. Mathematical Software, 30, 95–117, 2004.

I.S Duff, G. Golub, F. Kwok, and J.A. Scott. Combining direct and iterative methods to solve

partitioned linear systems. Technical Report, to appear, Rutherford Appleton Laboratory,

2004. Presented by Kwok at SIAM Meeting on Parallel Processing, San Francisco, February

2004.

M.C. Ferris and J.D. Horn. Partitioning mathematical programs for parallel solution.

Mathematical Programming, 80, 35–62, 1998.

J.F. Grcar. Matrix stretching for linear equations. Technical Report SAND90-8723, Sandia

National Laboratories, 1990.

HSL. A collection of Fortran codes for large-scale scientific computation, 2002. See

http://hsl.rl.ac.uk/.

Y.F. Hu and J.A. Scott. Ordering techniques for singly bordered block diagonal forms for

unsymmetric parallel sparse direct solvers. Technical Report RAL-TR-2003-020, Rutherford

Appleton Laboratory, 2003.

Y.F. Hu, K.C.F. Maguire, and R.J. Blake. A multilevel unsymmetric matrix ordering for parallel

process simulation. Computers in Chemical Engineering, 23, 1631–1647, 2000.

G. Karypis and V. Kumar. METIS: A software package for partitioning unstructured graphs,

partitioning meshes and computing fill-reducing orderings of sparse matrices - version 4.0,

1998.

B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell Systems

Tech. J., 49, 291–308, 1970.

B.H. Mayoh. A graph technique for inverting certain matrices. Mathematics of Computation,

19, 644–646, 1965.

J.A. Scott. A parallel solver for finite element applications. Inter. Journal on Numerical Methods

in Engineering, 50, 1131–1141, 2001a.

J.A. Scott. Two-stage ordering for unsymmetric parallel row-by-row frontal solvers. Computers

in Chemical Engineering, 25, 323–332, 2001b.

14

