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1 Introduction

Scaling or equilibration of data in linear systems of equations is a topic of great
importance that has already been the subject of many scientific publications, with
many different developments depending on the properties one wants to obtain after
scaling. It has given rise to several well known algorithms (see Duff, Erisman,
and Reid (1986), Schneider and Zenios (1990), for instance). Scaling consists in
pre- and post-multiplying our original matrix by two diagonal matrices,D1 andD2,
respectively. If we denote bŷA the scaled matrix

Â = D1AD2 ,

we then solve the equation
Âx̂ = b̂ ,

wherex̂ = D−1
2 x andb̂ = D1b.

Classical scalings are the well known row and column scaling. For row scaling,
each row in the original matrix is divided by the norm of the row. Different norms,
such as the infinity-norm or the 1-norm, may be considered, depending on the strategy
one wishes to develop. Column scaling is identical to row scaling, except that it
considers the columns of the original matrix. A more general purpose scaling method
is the one used in the HSL 2000 routineMC29, which aims to make the nonzeros of
the scaled matrix close to one by minimizing the sum of the squares of the logarithms
of the moduli of the nonzeros (see Curtis and Reid (1972)).MC29reduces this sum
in a global sense and therefore should be useful on a wide range of sparse matrices.
Any combination of these scalings is also a possibility. Scaling can also be combined
with permutations (see Duff and Koster (1999) and the HSL 2000 routineMC64).
The matrix is first permuted so that the product of absolute values of entries in on the
diagonal of the permuted matrix is maximized (other measures such as maximizing
the minimum element are also options). Then the matrix is scaled so that the diagonal
entries are one and the off-diagonals are less than or equal to one. This then provides a
useful tool for a good pivoting strategy for sparse direct solvers, as well as for building
good preconditioners for an iterative method.

In the 1960’s, Bauer (1963), Bauer (1969) and van der Sluis (1969), in particular,
showed some optimal properties in terms of conditions numbers for scaled matrices
with all rows or all columns of equal norm of 1.

The purpose of this article is to propose an iterative algorithm that will scale a
matrix so that it reaches asymptotically a state with all rows as well as all columns
with infinity-norm equal to one. This algorithm is introduced in detail in Section 2.
The convergence towards the stationary state mentioned above is at least linear, with
an asymptotic rate of convergence of1

2
, and this is clearly demonstrated and illustrated

in Section 3. From the theory developed by Bauer (1963) and van der Sluis (1969),
we also indicate in Section 4 the particular properties that this algorithm yields for
the scaled matrices and, in particular, we highlight the case of symmetric matrices
since the algorithm “naturally” preserves such numerical structures. In that respect,
we also mention the routineMC30in the HSL (2000) library, which is a variant of the
aboveMC29routine for symmetric matrices.
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Finally, we try in Section 5 to extend the algorithm to the case of other norms.
Following the discussion in Parlett and Landis (1982), we establish under which
hypothesis the algorithm is also convergent in the case of the one-norm, and we
comment on the generalisation of these results with respect to what was stated in
Parlett and Landis (1982). Concluding remarks as well as some additional extensions
are briefly discussed in Section 6.

2 The algorithm

Consider a generalm×n real matrixA, and denote byri = aT
i· ∈ IRn×1, i = 1, . . . , m,

the row-vectors fromA and bycj = a·j ∈ IRn×1, j = 1, . . . , n, the column-vectors
from A. Denote byDR andDC them×m andn× n diagonal matrices given by:

DR = diag(
√
‖ri‖∞)i=1,...,m and DC = diag(

√
‖cj‖∞)j=1,...,n (2.1)

where‖.‖∞ stands for the infinity-norm of a real vector (that is the maximum entry
in absolute value, and also sometimes called the max norm). If a row (or colum) inA
has all entries equal to zero, we replace the diagonal entry inDR (or DC respectively)
by 1. In the following, we will assume that this does not happen, considering that
such cases are fictitious in the sense that zero rows or columns should be taken away
and the system reduced.

We then scale matrixA on both sides, forming the scaled matrix̂A in the
following way

Â = D−1
R AD−1

C . (2.2)

Now, the idea of the algorithm we propose is to iterate on that process, viz.

Algorithm 2.1 (Simultaneous row and column iterative scaling)

Â(0) = A, D
(0)
1 = Im, andD

(0)
2 = In

for k = 0, 1, 2, . . . , until convergence do :

DR = diag(
√
‖r(k)

i ‖∞)i=1,...,m, andDC = diag(
√
‖c(k)

j ‖∞)j=1,...,n

Â(k+1) = D−1
R Â(k)D−1

C

D
(k+1)
1 = D

(k)
1 D−1

R , andD
(k+1)
2 = D

(k)
2 D−1

C

Convergence is obtained when

max
1≤i≤m

{
|(1− ‖r(k)

i ‖∞)|
}
≤ ε and max

1≤j≤n

{
|(1− ‖c(k)

j ‖∞)|
}
≤ ε (2.3)

for a given value ofε > 0. The properties of this algorithm, as well as its rate of
convergence, are discussed in the following section.
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3 Fast linear convergence and properties

The first property of the algorithm we would like to highlight, because it has been one
of the main reasons for the construction of this iterative scaling procedure, is that it
preserves symmetry. Indeed, if the given matrixA is symmetric, then the diagonal
matricesDR andDC in (2.1) are equal and, consequently, matrixÂ in (2.2) is still
symmetric, as is the case for the matricesÂ(k) at any iteration in Algorithm 2.1. This
is not the case for most scaling algorithms which alternately scale rows followed by
columns or vice-versa.

For instance, in the case of unsymmetric matrices, one may consider the use of the
Sinkhorn and Knopp (1967) iteration with infinity-norm (in place of the one-norm as
in the Sinkhorn-Knopp method). This method simply normalizes alternately all rows
and columns inA, and iterates on that process until convergence, although in the case
of the infinity-norm, this is obtained after one single step. Because of its simplicity,
this method is very appealing, but notice however that the Sinkhorn-Knopp iteration
may provide very different results when applied toA or to AT . As opposed to that,
and this is linked to the first comment above, Algorithm 2.1 does provide exactly the
same results when applied toA or AT in the sense that the scaled matrix obtained
on AT is the transpose of that obtained onA. We have quoted the Sinkhorn and
Knopp (1967) method in particular because it has been originally proposed by the
authors to provide so called “doubly stochastic” matrices, that is positive matrices
with all rows and columns of one-norm equal to 1, and we shall come back to this
issue with respect to Algorithm 2.1 in the next section.

The particular case when the matrixA has all its rows and columns with infinity-
norm equal to one is clearly a fixed point for the iterations in Algorithm 2.1. Also, if
A is a square matrix in which the absolute value of each diagonal element is greater
than or equal to the absolute value of any other entry in the corresponding row and
column, then it can easily be seen that the algorithm converges in one iteration, with
a resulting scaled matrix̂A(1) with all ones on the diagonal.

Concerning the rate of convergence of Algorithm 2.1 in the more general case, we
shall now verify that the algorithm converges in all cases towards the above mentioned
stationary point with an asymptotic linear rate of1

2
.

The first point in the demonstration of this is to notice that, after the first iteration
of the algorithm, all the entries in̂A(1) are less than or equal to one in absolute value.
This is very easy to see, since all entriesaij in A are divided by the square roots of
two numbers,‖r(k)

i ‖∞ and‖c(k)
j ‖∞ respectively, each one of them being greater than

or equal to|aij| itself.
Then, for any subsequent iteration (k ≥ 1), if we consider the infinity-norm of

any rowr
(k)
i or columnc

(k)
j , and if we denote bya(k)

ij0 the entry in rowi for which

the equality|a(k)
ij0 | = ‖r(k)

i ‖∞ holds, and bya(k)
i0j the entry in columnj such that

|a(k)
i0j | = ‖c(k)

j ‖∞ respectively, we can easily verify that both entriesa
(k+1)
ij0 anda

(k+1)
i0j

in the scaled matrix̂A(k+1) are greater in absolute value than the square root of the
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corresponding value at iterationk, and are still less than one. Indeed, we can write

1 ≥ |a(k+1)
ij0 | = |a(k)

ij0 |√
‖r(k)

i ‖∞
√
‖c(k)

j0 ‖∞
=

√
|a(k)

ij0 |√
‖c(k)

j0 ‖∞
≥

√
|a(k)

ij0 |

since|a(k)
ij0 | = ‖r(k)

i ‖∞ and‖c(k)
j0 ‖∞ ≤ 1 for anyk ≥ 1. A similar short demonstration

enables us to show that √
|a(k)

i0j | ≤ |a(k+1)
i0j | ≤ 1 ,

for any k ≥ 1. From this, we can finally write that the iterations in Algorithm 2.1
provide scaled matriceŝA(k), k = 1, 2, . . . , with the following properties

∀k ≥ 1, 1 ≤ i ≤ m,
√
‖r(k)

i ‖∞ ≤ |a(k+1)
ij0 | ≤ ‖r(k+1)

i ‖∞ ≤ 1 , (3.1)

and

∀k ≥ 1, 1 ≤ j ≤ n,

√
‖c(k)

j ‖∞ ≤ |a(k+1)
i0j | ≤ ‖c(k+1)

j ‖∞ ≤ 1 , (3.2)

which shows that both row and column norms must converge to 1. To conclude our
demonstration, we just need to see that

1− ‖r(k+1)
i ‖∞ =

1− ‖r(k+1)
i ‖2

∞
1 + ‖r(k+1)

i ‖∞
≤ 1− ‖r(k)

i ‖∞
1 + ‖r(k+1)

i ‖∞
,

similar results holding for any of the columns norms, and which fulfils the proof of
the linear convergence of Algorithm 2.1 with an asymptotic rate of1

2
.

To conclude this section, we would like to come back to a few remarks made by
Duff, Erisman, and Reid (1986, pages 86–87) about scaling, and which Algorithm 2.1
seems to address “naturally” well. As mentioned by the authors,

. . .equilibration , where diagonal matricesD1 andD2 are selected so
thatD1AD2 has the largest entry in each row and column of the same
magnitude, unfortunately allowsD1 andD2 to vary widely.

They also introduced a small2× 2 example

A =

(
1.00 2420
1.00 1.58

)
, (3.3)

and closed the discussion with the following comments:

If the unscaled matrix (3.3) had been caused by a badly scaled first
equation, then simple row scaling would be a proper choice. If it had
been caused by choosing units for variablex2 that are103 times too large,
then column scaling would be the proper choice.
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What we wish to stress here is that, if there happens to be a badly scaled row (or
column) in the unscaled matrixA then, despite the fact that the algorithm scales both
sides of the matrix simultaneously, it naturally recovers the situation and ends up with
an “appropriate” choice with regards to the comments above. To illustrate that, let us
just consider the following small example with a badly scaled row

A =

(
α α
1 1

)
. (3.4)

If α ¿ 1 in (3.4), then iterationk (k ≥ 1) of the algorithm provides the following
matrices:

D
(k)
1 =

(
α−(1− 1

2k ) 0
0 1

)
, Â(k) =

(
α

1

2k α
1

2k

1 1

)
, D

(k)
2 = I2,

converging to the situation wherêA is the matrix with all ones,D1 has its first
diagonal entry equal toα−1, andD2 stays the identity matrix.
If α À 1 in (3.4), then the first iteration yields

D
(1)
1 =

(
α−

1
2 0

0 1

)
, Â(1) =

(
1 1

α−
1
2 α−

1
2

)
, D

(1)
2 = α−

1
2 I2,

and subsequent iterations (k ≥ 2) will then give

D
(1)
1 =

(
α−

1
2 0

0 α
1
2
(1− 1

2k−1 )

)
, Â(1) =

(
1 1

α−
1

2k α−
1

2k

)
, D

(k)
2 = α−

1
2 I2,

with an asymptotic situation very similar to the previous one except that the scalar
factor α−

1
2 appears in the column scaling matrix. Similar reasoning on a matrix

with a badly scaled column would bring us to the same type of conclusions with
an appropriate column scaling instead. The above two examples also show that we
cannot expect (apart from some particular cases) to prove faster convergence than the
linear rate of1

2
. Finally, if we apply Algorithm 2.1 to the2 × 2 example (3.3) from

Duff, Erisman, and Reid (1986), convergence is achieved in 2 iterations, with the
following matrices

D
(2)
1 =

(
.0203 0

0 .8919

)
, Â(2) =

(
.0228 1

1 .0286

)
, D

(2)
2 =

(
1.1212 0

0 .0203

)
.

The 2-norm condition number ofA is 2421.6 and that of the scaled matrix̂A(2) is now
of 1.0528. We also notice that the algorithm has distributed part of the bad scaling
of this matrix into both the row and the column scaling matricesD1 andD2, ending
up with a situation where the scaled matrix can easily be permuted into a strongly
diagonally dominant matrix. This is a very favourable situation for a good pivoting
strategy in Gaussian elimination, for instance, if we refer to the motivations for scaling
in Duff, Erisman, and Reid (1986).
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4 Some comparisons with the symmetric scaling
algorithm of Bunch

We have stressed, at the beginning of Section 3, that Algorithm 2.1 is well suited for
symmetric scaling of symmetric matrices. Bunch (1971) also developed a symmetric
scaling algorithm for equilibration in the infinity-norm. He additionally gave detailed
explanations, by means of a small2 × 2 example, about the fact that there was no
assurance at all that his symmetric scaling algorithm would be optimal in minimising
the infinity-norm condition number of the scaled matrix over all possible choices of
positive diagonal scaling matrix. Uniqueness is not even guaranteed, except under
certain conditions as recalled by the author. Our aim, in the following text, is to
exploit the same2× 2 example to compare and discuss the main differences between
Algorithm 2.1 and the one of Bunch (1971) in the case of symmetric matrices.

Bunch (1971, Section 7) mentions that his symmetric scaling algorithm can
increase the condition number, but also highlights the fact that it is not always
possible to reduce it with equilibration in the infinity-norm. To illustrate this point,
he discussed the case of a simple2× 2 example where

A =

(
a b
b c

)
, D =

(
d 0
0 e

)
,

with a, b, c 6= 0, d, e > 0, anddetA 6= 0. The condition number in the infinity-norm
can be easily computed in this case, giving:

κ∞(A) = ‖A‖∞‖A−1‖∞ =
{|b|+ max (|a|, |c|)}2

|ac− b2| ,

and

κ∞(DAD) =
{|b|+ max (|a|d/e, |c|e/d)}2

|ac− b2| ,

with a minimum of

min
d,e>0

κ∞(DAD) =

{
|b|+

√
|ac|

}2

|ac− b2| ,

achieved with

D = λ




√
|c| 0

0
√
|a|


 , (λ > 0).

The scaled matrix then becomes

Â = λ2


 a|c| b

√
|ac|

b
√
|ac| c|a|


 ,

and we can see that there always exists a scaling matrixD such that̂A is equilibrated
and with minimal condition numberκ∞. Depending whether|ac| > b2 or not, one
can indeed fixλ to set to±1 the largest entries in̂A above.
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The algorithm of Bunch (1971) scales in fact the lower triangular part ofA, one
row at a time, starting with the first elementa11. In the case of this2× 2 example, it
first gives

D(1) =




1√
|a| 0

0 1


 , Â(1) =




sgn(a) b√
|a|

b√
|a| c


 ,

and then, depending which is the maximum of the two elements|b|/
√
|a| and

√
|c|,

gives the two following solutions:

Â =




sgn(a) b√
|ac|

b√
|ac| sgn(c)


 , D =




1√
|a| 0

0 1√
|c|


 , if |ac| > b2, (4.1)

and

Â =

(
sgn(a) sgn(b)

sgn(b) c|a|
b2

)
, D =




1√
|a| 0

0

√
|a|
|b|


 , if |ac| ≤ b2. (4.2)

Now, when applying Algorithm 2.1 to this2 × 2 symmetric matrix, we must
consider 6 different cases:

1. |a| > |b| > 0 and|c| > |b| > 0.
In this case, the algorithm converges in one iteration as already explained in the
beginning of this section, giving the same solution (4.1) as the Bunch algorithm
(because|ac| is obviously bigger thanb2), which corresponds to the optimal
scaling discussed above.

2. |a| > |b| > 0, 0 < |c| < |b|, and|ac| ≤ b2.
In this case, Algorithm 2.1 generates an asymptotically convergent sequence,
giving at iterationk ≥ 2

Â(k) =




sgn(a) sgn(b)
∣∣∣ b
a

∣∣∣
1

2k

sgn(b)
∣∣∣ b
a

∣∣∣
1

2k c
|b|

∣∣∣a
b

∣∣∣
(1− 1

2k−1 )


 , D(k) =




1√
|a| 0

0 1√
|b|

∣∣∣a
b

∣∣∣
1
2
(1− 1

2k−1 )


 ,

and converging to the situation (4.2), which again corresponds to the answer the
Bunch algorithm would give in this case. The scaled matrix is not the optimal
one. Its condition number isκ∞(Â) = 4b2/|b2 − ac|, since|ac| ≤ b2, and
is smaller than the condition number ofA, κ∞(A) = (|b| + |a|)2/|b2 − ac|,
because|a| > |b| > |c|.

3. |a| > |b| > 0, 0 < |c| < |b|, and|ac| > b2.
In this case, we are sure that there exists an iterationk0 such that

∣∣∣∣∣
b

a

∣∣∣∣∣

1

2k0

<

∣∣∣∣
c

b

∣∣∣∣
∣∣∣∣
a

b

∣∣∣∣
(1− 1

2k0−1 )
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and Algorithm 2.1 will then terminate at iterationk0 + 1 with exactly the same
solution as in (4.1). This corresponds again to the optimal scaling and is also
provided by the Bunch algorithm.

4. The cases where|c| > |b| > |a| > 0, with |ac| ≤ b2 or |ac| > b2, imply very
similar discussions to the two previous cases. The only difference is for the
asymptotic solution in the case|ac| ≤ b2, for which the two elements on the
diagonal of̂A in (4.2) are interchanged (and their signs set appropriately), and
differs from the solution provided by the Bunch algorithm which is still exactly
the same as in (4.2). At any rate, the condition numbers of the two solutions are
equal and less than that of matrixA.

5. Finally, in the case|b| > |a| > 0 and|b| > |c| > 0, Algorithm 2.1 converges in
one iteration and simply gives

Â =

( a
|b| sgn(b)

sgn(b) c
|b|

)
, D =




1√
|b| 0

0 1√
|b|


 , (4.3)

which does not correspond to the optimal scaling but still does not increase
the condition number. In this case, the Bunch algorithm still gives the same
solution as in (4.2), because|ac| is obviously smaller thanb2, but there the
resulting condition number is necessarily increased.

We observe that Algorithm 2.1 provides, in half the cases, a scaling with optimal
condition number and that, in all cases, it does not increase the condition number of
the original matrix, as opposed to the Bunch algorithm which can do so (see case
number 5 above). One of the major differences between Algorithm 2.1 and the Bunch
algorithm is that the latter always forces the first elementâ11 in the scaled matrix to
be equal to±1 (see Bunch (1971, page 572)). Because of that, the Bunch algorithm
is sensitive to a priori symmetric permutations applied toA that may change the first
element on the diagonal. In that respect, and this is easy to see, Algorithm 2.1 is
totally independent of any permutations onA, in the sense that the resulting scaling
on the permuted matrix would correspond to the permutation of the scaling matrices
obtained on the original matrix.

However, the algorithm of Bunch (1971) ensures termination inn steps,n being
the size of the symmetric matrix, whereas Algorithm 2.1 is only guaranteed, even
in the symmetric case (see the second case discussed just above), to converge
asymptotically to an equilibrated solution in the infinity-norm, with fast linear
convergence nevertheless. A final comment, just worth mentioning, is that
Algorithm 2.1 also has a natural parallelism, whereas the Bunch algorithm is more
intrinsically sequential.

5 Extensions to other norms

A natural idea would be to change the norm used in Algorithm 2.1, and to try for
instance the two-norm or the one-norm because of the optimal properties they induce
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(see van der Sluis (1969), Parlett and Landis (1982)), and still expect convergence
towards an equilibrated situation with all rows and columns of norm 1 in the
corresponding norm. We shall see, in the remainder of this section, that this will
usually, but not always, work and we investigate the potential and limitations of such
extensions.

The idea of equilibrating a matrix with both rows and columns of one-norm
equal to 1 in not new, and has been the subject of constant efforts since the 1960’s,
and even before. Sinkhorn and Knopp (1967) have studied a method for scaling
square nonnegative matrices todoubly stochasticform, that is a nonnegative matrix
with all rows and columns of equal one-norm. Sinkhorn (1964) originally showed
that: Any positive square matrix of ordern is diagonally equivalent to a unique
doubly stochastic matrix of ordern, and the diagonal matrices which take part
in the equivalence are unique up to scalar factors. Very recently, Borobia and
Cant́o (1998) gave a different proof for the existence part of Sinkhorn’s theorem with
some elementary geometric interpretations.

The above result was further extended to the case of nonnegative nonzero matrices
as follows. A squaren× n nonnegative matrixA ≥ 0 is said to havesupportif there
exists a permutationσ such thatai,σ(i) > 0, 1 ≤ i ≤ n. Note that matrices not having
support are matrices for which nofull transversalcan be found (see Duff, Erisman,
and Reid (1986, page 107)), that is a column permutation – or equivalently, a row
permutation – making the diagonal zero-free, and are thusstructurally singular. A
matrix A is said to havetotal supportif every positive entry inA can be permuted
onto a positive diagonal with a column permutation. A nonnegative nonzero square
matrix A of sizen > 1 is said to befully indecomposableif there does not exist
permutation matricesP andQ such thatPAQ is of the form

(
A11 A12

0 A22

)
,

with A11 andA22 being square matrices. Duff, Erisman, and Reid (1986, Chapter 6)
also use the term “bi-irreducible” for such a property. Sinkhorn and Knopp (1967)
established that their balancing algorithm, which simply iterates on normalizing all
rows and columns in the matrixA alternately, converges to a doubly stochastic limit
Â if and only if the matrixA has support. The doubly stochastic limit̂A can be
represented asD1AD2 (meaning thatA and Â are diagonally equivalent) if and
only if A has total support and, if the support ofA is not total, then there must be
a positive entry inA converging to 0. Additionally, Sinkhorn and Knopp (1967)
proved that the diagonal matricesD1 andD2, when they exist, are unique up to some
scalar factors if and only if the matrixA is fully indecomposable. Brualdi, Parter,
and Schneider (1966) independently showed the same diagonal equivalence between
A and a doubly stochastic matrix whenA is a direct sum of fully indecomposable
matrices, and according to Soules (1991), Mirsky and Perfect (1965) showed that a
matrix A has total support if and only if there exist permutation matricesP andQ
such thatPAQ is a direct sum of fully indecomposable matrices.

Different contributions have also been made in the study of convergence of
the Sinkhorn-Knopp method under various hypothesis. Sinkhorn (1967) proved
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geometric convergence for positive starting matrices, and Soules (1991) extended
the result to matrices with total support. Finally, Achilles (1993) has established
the converse of the above, that is that geometric convergence of the Sinkhorn-Knopp
method implies total support for the nonnegative starting matrixA.

Parlett and Landis (1982) describe three new iterative scaling algorithms, with
experimental evidence of better average and worst-case convergence behaviour than
the Sinkhorn-Knopp method for at least one of the three. They also gave a generalized
version of the convergence theorem of Sinkhorn and Knopp (1967), including a
characterisation of scaling algorithms that will converge to a doubly stochastic
situation when the starting matrixA has support. Such algorithms are called by Parlett
and Landis “diagonal product increasing (DPI)” algorithms, and we shall comment
on this characterisation in the end of this section since our algorithm also verifies the
DPI hypothesis stated by Parlett and Landis (1982). It must be mentioned beforehand
that the discussion in the rest of this section follows very closely that of Parlett and
Landis (1982), with a few slight differences worth mentioning.

We now state our main result, which concerns the convergence of Algorithm 2.1
with the one-norm in place of the infinity one and, to do so, we will use the same
notation as in Parlett and Landis (1982). Algorithm 2.1 produces a sequence of
iteration matrices diagonally equivalent to the starting matrixA = A(0):

A(k) =
(
a

(k)
ij

)
= D(k)AE(k), k = 1, 2, . . . ,

D(k) = diag
(
d

(k)
1 , . . . , d(k)

n

)
,

E(k) = diag
(
e
(k)
1 , . . . , e(k)

n

)
,

(5.1)

(so, for example,a(k)
ij = d

(k)
i aije

(k)
j ) and we setD(0) = E(0) = I. We denote byr(k)

i ,

i = 1, . . . , n, andc
(k)
j , j = 1, . . . , n, the one-norm of rows and columns respectively,

thus:

r
(k)
i =

n∑

j=1

|a(k)
ij |,

c
(k)
j =

n∑

i=1

|a(k)
ij |.

(5.2)

We also assume for simplicity thatA ≥ 0, since scalingA or |A| will be the
same. Under this simplification, the one-norm of rows and columns reduces to
row and column sums respectively,r

(k)
i =

∑n
j=1 a

(k)
ij and c

(k)
j =

∑n
i=1 a

(k)
ij , and to

generalize our results to any matrix, one just needs to extend the definition of a
“doubly stochastic matrix” so that the absolute value of the matrix under consideration
is doubly stochastic in the usual sense.

THEOREM 5.1 Given the sequence (5.1) of diagonal equivalents forA, in which

a
(k+1)
ij =

a
(k)
ij√

r
(k)
i

√
c
(k)
j

, 1 ≤ i, j ≤ n,

with r
(k)
i andc

(k)
j given by (5.2):

10



1. If A has support, thenS = limk→∞A(k) exists and is doubly stochastic.

2. If A has total support, then bothD = limk→∞D(k) andE = limk→∞E(k) exist
andS = DAE.

Proof of point (1) in Theorem 5.1: We recall from Parlett and Landis (1982)the
arithmetic-geometric mean inequalitywhich states that, ifxi ≥ 0 for i = 1, . . . , n
then

n∏

i=1

xi ≤
(

n∑

i=1

xi

n

)n

, (5.3)

with equality holding if and only ifx1 = x2 = . . . = xn.
Now, using (5.3), we can write for allk

n∏

i=1

r
(k+1)
i ≤

(
1

n

n∑

i=1

r
(k+1)
i

)n

=




1

n

∑

1≤i,j≤n

a
(k)
ij√

r
(k)
i

√
c
(k)
j




n

,

with the same inequality for
n∏

j=1

c
(k+1)
j since

n∑

i=1

r
(k+1)
i =

n∑

j=1

c
(k+1)
j =

∑

1≤i,j≤n

a
(k+1)
ij .

Additionally, using the Cauchy-Schwarz inequality on the dot-product of the twon2-

vectorsv = (
√

a
(k)
ij /

√
r
(k)
i )1≤i,j≤n andw = (

√
a

(k)
ij /

√
c
(k)
j )1≤i,j≤n, we can write that

∑

1≤i,j≤n

a
(k)
ij√

r
(k)
i

√
c
(k)
j

≤
√√√√√

∑

1≤i,j≤n

a
(k)
ij

r
(k)
i

√√√√√
∑

1≤i,j≤n

a
(k)
ij

c
(k)
j

=
√

n
√

n,

and thus, for allk ≥ 0, we have

n∏

i=1

r
(k+1)
i ≤

(
1

n

n∑

i=1

r
(k+1)
i

)n

≤ 1 and
n∏

j=1

c
(k+1)
j ≤


1

n

n∑

j=1

c
(k+1)
j




n

≤ 1. (5.4)

Finally, if we introduce

sk =
n∏

i=1

d
(k)
i e

(k)
i , k = 1, 2, . . .

we easily see that
sk

sk+1

=
n∏

i=1

√
r
(k)
i c

(k)
i ≤ 1, (5.5)

which shows that the sequence(sk)k=1,2,... is monotonically increasing (unless all row
and column sums are equal).
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SinceA has support, there exists a permutationσ such thatai,σ(i) > 0, 1 ≤ i ≤ n.
Let a = min

1≤i≤n
(ai,σ(i)). Then, for allk ≥ 1,

n∑

i=1

d
(k)
i e

(k)
σ(i)a ≤

n∑

i=1

d
(k)
i e

(k)
σ(i)ai,σ(i) =

n∑

i=1

a
(k)
i,σ(i) ≤ n,

the last inequality being simply due to the fact that, after the first iteration, all the
entries in matrixA(k) are less than or equal to 1. Then, by the arithmetic-geometric
mean inequality (5.3),

sk =
n∏

i=1

d
(k)
i e

(k)
i ≤ a−n, k = 1, 2, . . .

and the monotonically increasing sequence(sk)k=1,2,... is bounded. Therefore

lim
k→∞

sk = L > 0

exists, and
lim
k→∞

sk

sk+1

= 1. (5.6)

Using (5.3) and (5.4), we can write

sk

sk+1

=
n∏

i=1

√
r
(k)
i c

(k)
i ≤

{
n∑

i=1

1

2n

(
r
(k)
i + c

(k)
i

)}n

≤ 1,

and because of (5.6) we can conclude both that

lim
k→∞

n∏

i=1

r
(k)
i c

(k)
i = 1 and lim

k→∞

n∑

i=1

1

2n

(
r
(k)
i + c

(k)
i

)
= 1. (5.7)

Now, since all the elements inA(k) are less than 1 after the first iteration, we know
that each of the two sequences(r

(k)
i )k=1,2,... and(c

(k)
j )k=1,2,..., for all 1 ≤ i, j ≤ n,

are bounded (note that this is also implied by (5.4)). Let us introduce the sequence
(v(k))k=1,2,... of the2n-vectors

v(k) = (r
(k)
1 , . . . , r(k)

n , c
(k)
1 , . . . , c

(k)
1 ),

which is also bounded inIR2n of finite dimension. Consider then any convergent
subsequence(v(k̂))k̂ and denote by

xi = lim
k̂→∞

r
(k̂)
i , 1 ≤ i ≤ n,

and
yj = lim

k̂→∞
c
(k̂)
j , 1 ≤ j ≤ n.

From (5.7), we can write

n∏

i=1

xiyi =

{
n∑

i=1

1

2n
(xi + yi)

}2n

= 1,
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and since the arithmetic-geometric meanequality only holds if all the elements are
equal, we easily see thatx1 = . . . = xn = 1 = y1 = . . . = yn. Therefore any
convergent subsequence of the bounded sequence(v(k))k=1,2,... in finite dimensional
space must have the same limit (made with all ones), which implies that the sequence
(v(k))k=1,2,... is necessarily convergent and that

lim
k→∞

r
(k)
i = 1 and lim

k→∞
c
(k)
j = 1, 1 ≤ i, j ≤ n. (5.8)

Again, since alla(k)
ij are less than 1 after the first iteration, the sequence of matrices

(A(k))k=1,2,... is also bounded in the finite dimensional spaceMn(IR). Let us consider
any convergent subsequence(A(k̂))k̂ of (A(k))k=1,2,..., and denote by

S = lim
k̂→∞

A(k̂).

Then, paraphrasing the results in Parlett and Landis (1982) for the proof of their
Corollary 1, we can state the following: because of (5.8),S is doubly stochastic
and, since the set ofn × n doubly stochastic matrices is the convex hull of the set
of n× n permutation matrices (see Birkhoff (1946)),S must thus have total support.

Therefore,sij = limk̂→∞ a
(k̂)
ij = 0 wheneveraij > 0 cannot be permuted onto a

positive diagonal. Now, consider the matrix̂A in which all entriesaij > 0 in A
that cannot be permuted onto a positive diagonal have been set to zero, the others
remaining the same. From the previous remark, it is clear thatS = limk̂→∞A(k̂) is
also equal to

S = lim
k̂→∞

D(k̂)ÂE(k̂).

Additionally, from the proof in Parlett and Landis (1982, pages 67-68) of
THEOREM 1, point (2), which simply exploits properties (5.3), (5.4), (5.5), and the
fact that any nonzero element in̂A can be permuted onto a positive diagonal, since by
construction̂A has total support, we know that there exists a strictly positive constant
γ such that, for each nonzero entryaij in Â, we have:

∀k ≥ 1, d
(k)
i e

(k)
j ≥ γ > 0. (5.9)

We mention, however, a very little difference in (5.4) and the hypothesis exploited
by Parlett and Landis, which comes from the fact that they were considering “scaled
algorithms” in general, thus imposing the property

(P3) µk =
1

n

n∑

i=1

r
(k+1)
i = 1,

which in our case holds just as an inequality in (5.4). However, since they only use
property (P3) as an upper bound in some parts of their demonstration, the inequality
(5.4) is sufficient and all conclusions remain the same. Note also that result (5.9) is
valid for the entire sequence and not just the subsequence indexed byk̂. Consequently,
for each nonzero entryaij in Â, we can write:

lim
k̂→∞

d
(k̂)
i e

(k̂)
j =

sij

aij

> 0.
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Then, applyingLEMMA 2 in Parlett and Landis (1982) (which is itself paraphrased
from Sinkhorn and Knopp (1967, page 345)) we know that there exist positive

sequences(x(k̂)
i )k̂ and(y

(k̂)
i )k̂ with positive limits such that

d
(k̂)
i e

(k̂)
j = x

(k̂)
i y

(k̂)
j , ∀aij > 0 in Â, and ∀ ˆ(k).

Then, taking

X(k̂) = diag
(
x

(k̂)
1 , . . . , x(k̂)

n

)
,

Y(k̂) = diag
(
y

(k̂)
1 , . . . , y(k̂)

n

)
,

X = limk̂→∞X(k̂) and Y = limk̂→∞Y(k̂),

we have
S = lim

k̂→∞
D(k̂)ÂE(k̂) = lim

k̂→∞
X(k̂)ÂY(k̂) = XÂY,

showing that̂A is diagonally equivalent toS. Now, consider any other convergent
subsequence in(A(k))k=1,2,.... For the same reasons as above, its limits will also
be doubly stochastic and diagonally equivalent toÂ, and since doubly stochastic
equivalents are unique (see Sinkhorn and Knopp (1969)), the two limits must be the
same. Therefore, we can conclude thatlimk→∞A(k) exists and is doubly stochastic,
which fulfils the proof of point (1).

Proof of point (2) in Theorem 5.1: As a direct consequence of the demonstration
of point (1), we can state that, ifA has total support, thenS = limk→∞A(k) is
diagonally equivalent toA, since in this caseA = Â in the previous discussion.

To prove that, under the same hypothesis, bothD = limk→∞D(k) and E =
limk→∞E(k) exist andS = DAE, we first make the assumption thatA not only
has total support but is also fully indecomposable. In this case,A is not only
diagonally equivalent to the doubly stochastic limitS = limk→∞A(k), but we also
know from Sinkhorn and Knopp (1967) that the diagonal matrices which take place
in this equivalence are unique up to a scalar factor.

Without loss of generality, we can consider that the matrixA has a full diagonal,
sinceA has support and since Algorithm 2.1 is independent of any permutations on
A. Let us suppose now that one of the sequences(d

(k)
i )k=1,2,... is unbounded for some

i (the same could be done with one of the(e
(k)
i )k=1,2,...). In such a case, there exist a

subsequence(d(k̂)
i )k̂ such that

lim
k̂→∞

(d
(k̂)
i )k̂ = +∞.

As the matrix is fully indecomposable, for any indexj, 1 ≤ j ≤ n, there exist a
subset of nonzero entries inA

aij1 , aj1j2 , . . . , ajq−1jq , ajqj

“connecting” index i to index j. Consequently, because of (5.9), we can show by
using each of the nonzero intermediate entriesajpjp+1 in the subset above as well

14



as each of the corresponding nonzero diagonal pivots, that there existαij > 0 and
βij > 0 such that

lim
k̂→∞

d
(k̂)
j

d
(k̂)
i

= αij and lim
k̂→∞

d
(k̂)
i e

(k̂)
j = βij.

Since this can be done for any indexj, we can conclude that the subsequence

(
∏n

j=1 d
(k̂)
j )k̂ goes to infinity as(d(k̂)

i )n ∏n
j=1 αij and that the subsequence(

∏n
j=1 e

(k̂)
j )k̂

(which is strictly positive) goes to zero as(d
(k̂)
i )−n ∏n

j=1 βij, and the last conclusion

is in contradiction with (5.4) which shows that both sequences(
∏n

j=1 d
(k)
j )k=1,2,... and

(
∏n

j=1 e
(k)
j )k=1,2,... are monotonically increasing. Consequently, each of the sequences

(d
(k)
i )k=1,2,... and(e

(k)
i )k=1,2,... are bounded.

Now, since the two sequences(D(k))k=1,2,... and(E(k))k=1,2,... are bounded in the
finite dimensional spaceDn(IR), let us consider two convergent subsequences:

(
D(k̂),E(k̂)

)
−→

k̂→+∞
(D1,E1) ,

and (
D(k̃),E(k̃)

)
−→

k̃→+∞
(D2,E2) .

Obviously, D1AE1 = S = D2AE2, and thus, because of the unicity shown
by Sinkhorn and Knopp (1967), there existsα > 0 such thatD1 = αD2 and
E1 = (1/α)E2. Then, as mentioned above, since both sequences(

∏n
p=1 d(k)

p )k=1,2,...

and(
∏n

p=1 e(k)
p )k=1,2,... are monotonically increasing, it is clear thatα must be equal

to 1 and the two limits must be equal. Therefore, we can conclude thatD =
limk→∞D(k) andE = limk→∞E(k) exist and point (2) in Theorem 5.1 holds for
fully indecomposable matrices.

Finally, we know from Mirsky and Perfect (1965) that matrices with total support
can be permuted into a direct sum of fully indecomposable matrices. Now, since
Algorithm 2.1 is independent of any permutation, we get the result from what
precedes by applying it independently to each fully indecomposable matrix in such a
direct sum. This fulfils the proof of point (2).

We would like to recall some of the results contained in Parlett and Landis (1982),
which can also be collected from the proof of Theorem 5.1 above.

COROLLARY 5.1

1. If A is diagonally equivalent to a doubly stochastic matrix,S, then

S = lim
k→∞

A(k).

2. If A has support and is not diagonally equivalent to a doubly stochastic matrix,
then for each pair of indices(i, j) such thataij cannot be permuted onto a
positive diagonal by a column permutation,

lim
k→∞

a
(k)
ij = 0.
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Parlett and Landis (1982), in theirTHEOREM 1, additionally gave some
characterisations for iterative scaling algorithms that would converge to doubly
stochastic situations when matrixA has support. Namely, they introduced three
properties (P1), (P2), and (P3) which, when they hold for the iterates (5.1), enable
one to prove convergence of the sequence(A(k))k=1,2,... to a doubly stochastic limit.
Property (P1) is simply equation (5.5), or equivalently that the sequence(sk)k=1,2,...

is monotonically increasing. Property (P2) implies that, under the hypothesis (5.6),
both (5.8) and

lim
k→∞

d
(k+1)
i /d

(k)
i = lim

k→∞
e
(k+1)
j /e

(k)
j = 1, 1 ≤ i, j ≤ n, (5.10)

hold. Property (P3) is simply to consider that the algorithm is scaled, with

(P3) µk =
1

n

n∑

i=1

r
(k+1)
i = 1

at each iteration. In our case, this only holds as an inequality and, as we already
mentioned, it is sufficient to complete the proof. It is important to note also that we
did not need to establish the second set of conclusions (5.10) contained in (P2) to
complete the proof of Theorem 5.1. This was the main reason why we wanted to
rederive the proof of the convergence which, as one may easily see, can be extended
to any algorithm that satisfies (P1), the first part of (P2), and just an inequality in (P3).
Strictly speaking, (P3) is not even necessary and it is only sufficient to prove that all
the elementsa(k)

ij are bounded. However, the inequality in (P3) was necessary in our
case to prove (5.8), and even if (P2) is a consequence of (P3), it has to be shown by
some means.

Finally, the proof that each of the sequences(d
(k)
i )k=1,2,... and (e

(k)
j )k=1,2,...

converges under the hypothesis thatA has total support is not contained in Parlett
and Landis (1982, Theorem 1), and relies on the added property induced by (5.4),
which we may call (P4), and which says that both sequences(

∏n
p=1 d(k)

p )k=1,2,... and
(
∏n

p=1 e(k)
p )k=1,2,... are monotonically increasing and also implies (P1). It also relies on

the property (P5) that the iterates (5.1), are permutation independent, otherwise these
results only hold a priori for fully indecomposable matrices. Now, looking carefully at
the convergence proof above, it is clear that we can extend the results in Theorem 5.1
to all sequences (5.1) of diagonal equivalents forA satisfying the first part of (P2),
the inequality in (P3), and (P4)+(P5) instead of (P1).

A last comment for the symmetric case. Considering the fact that Algorithm 2.1
preserves symmetry, we can state the following additional results:

COROLLARY 5.2

1. If A is symmetric and has support, then Algorithm 2.1 in the one-norm builds
a sequence of symmetric scalings ofA converging to a symmetric doubly
stochastic limit.

2. If A is symmetric and has total support, thenA is symmetrically equivalent
to a symmetric doubly stochastic matrixS, and Algorithm 2.1 in the one-
norm builds a convergent sequence of diagonal matricesD(k) such thatS =
limk→∞D(k)AD(k).
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We did not investigate the speed of convergence of Algorithm 2.1 in the case
of the one-norm, and we have not yet performed enough experiments to add any
pertinent comment on that. We can mention however that we have seen cases where
Algorithm 2.1 outperforms the Sinkhorn-Knopp method by a factor of 10 or more,
and cases where it is the opposite. We still need to investigate in detail what can be
the reasons for such varying behaviour in Algorithm 2.1, in order to determine if it is
possible to accelerate the convergence of Algorithm 2.1 in some way.

6 Conclusions

One particular issue concerns the extension of Algorithm 2.1 to any of thelp norms,
1 ≤ p < ∞. and in particular to the 2-norm as mentionned in the introduction. If
the discussion in Rothblum, Schneider, and Schneider (1994) (see Section 8, page 13)
was applied to Algorithm 2.1, then scaling a matrix with thelp norm of each row and
column is equivalent to applying Algorithm 2.1 in the one-norm to thepth Hadamard
power ofA, that is the matrix whoseijth entry is(aij)

p, and to take theHadamard
pth root of the resulting iterates. Therefore, all the convergence results shown in the
previous section still hold with any of thelp norms,1 ≤ p < ∞.

Extensions of Algorithm 2.1 to the scaling of multidimensional matrices (see
Bapat (1982), Raghavan (1984), Franklin and Lorenz (1989), for instance) can also be
done in a very simple manner. Consider for example a three dimensional nonnegative
matrixA = (aijk), and suppose that its one-dimensional marginalsxi =

∑
j

∑
k aijk,

yj =
∑

i

∑
k aijk, andzk =

∑
i

∑
j aijk are all positive, then the idea is to scaleA to

Â by setting

âijk =
aijk

3
√

xi 3
√

yj
3
√

zk

for all i, j, k, and to iterate on that. Generalization top-dimensional matrices can be
done with thepth root of each of thep corresponding one-dimensional marginals. We
must mention, however, that we did not investigate these extensions at all, and we
cannot state whether they are convergent of not.
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