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1 Introduction

In electromagnetic calculations, a classic problem is to compute the currents
generated on the surface of an object illuminated by an given incident plane
wave.  Such calculations, relying on the Maxwell’s equations, are required
in the simulation of many industrial processes coming from antenna design,
electromagnetic compatibility, computation of back-scattered fields, and so on.
Recently the Boundary Element Method (BEM) has been successfully used in the
numerical solution of this class of problems. The formulation considered in this
paper is the EFIE (Electric Field Integral Equation) as it is the most general and
does not require any assumption about the geometry of the object. The matrices
associated with the resulting linear systems are large dense, non—Hermitian and
complex. With the advent of parallel processing, this approach has become viable
for large problems and the typical problem size in the electromagnetics industry
is continually increasing. Nevertheless, nowadays, problems with a few hundred
thousand variables can no longer be solved by direct solvers even if they are parallel
and out—of—core because they require too much memory, CPU and disk resources.
Iterative solvers appear as the only viable alternative since techniques based on
multipole expansion (Darve 2000a, Darve 2000b) have been developed to perform
fast matrix-vector products without forming all the entries of the dense matrices. In
particular, the fast multipole method (FMM) performs the matrix—vector product in
O(nlogn) floating—point operations and can efficiently be implemented on parallel
distributed platforms with some out—of-core techniques in order to tackle huge
industrial problems (Sylvand 2002). The industrial problem we focus on in this paper
is the monostatic radar cross section calculation of an object. The procedure consists
in considering a set of waves with the same wavelength but different incident angles
that illuminate the object. For each of these waves we compute the electromagnetic
field backscattered in the direction of the incident wave. This requires the solution of
one linear system per incident wave. For a complete radar cross section calculation,
from a few tens up to a few hundred waves have to be considered. We have then to
solve a sequence of linear systems having the same coefficient matrix but different
right-hand sides. The problem can be written

A(:rl,...,xp) = (bl,...,bp).

In this context it is particularly important to have a numerically efficient and
easily parallelizable preconditioner. A preconditioner suitable for implementation
in a multipole framework on parallel distributed platforms has been proposed
by Alléon, Benzi and Giraud (1997) and Carpentieri (2002). It is based on a
sparse approximate inverse using a Frobenius norm minimization with an a priori
sparsity pattern selection strategy. It has been shown (Carpentieri, Duff and
Giraud 2000, Carpentieri, Duff, Giraud and Magolu monga Made 2001) that on
medium size problems this technique gives rise to an effective preconditioner that



outperforms more classical approaches like incomplete factorizations or other general
purpose approximate inverses (Benzi, Meyer and Tuma 1996, Benzi and Tuma
1998, Grote and Huckle 1997). However, for large problems the preconditioner
becomes sparser and sparser when the problem size increases and eventually
performs poorly. Unfortunately, making it denser is not feasible due to memory
and disk constraints (Carpentieri, Duff, Giraud and Sylvand 2003b). In this paper,
we investigate the use of a spectral low rank update (Carpentieri, Duff and Giraud
2003a) that attempts to shift by one the smallest eigenvalues of the preconditioned
systems resulting in a faster convergence rate. The paper is organized as follows. In
Section 2, we recall the main features of the spectral low rank update preconditioner
and describe the real-life test problems we consider for the numerical experiments.
Then, in Section 3, we illustrate the effect of the size of the update on the convergence
rate of GMRES (Saad and Schultz 1986) for one right-hand side and show the gain
for a complete radar cross section in the following section. Since the spectral low
rank update compensates for some possible weaknesses of the approximate inverse,
we illustrate in Section 5 that a balance has to be found between the two components
of the resulting preconditioner. In Section 6, we show that the gain induced by the
low rank update becomes larger as the size of the restart in GMRES decreases.
Finally, since many right-hand sides have to be solved, we illustrate in Section 7
the benefit of using the preconditioner in the context of seed GMRES that is a
Krylov solver designed to deal with multiple right-hand sides. We conclude with
some conclusions and comments on future work in Section 8.

2 Background and test examples

For the solution of large linear systems using fast multipole techniques on parallel
distributed memory computers, we consider an approximate inverse preconditioner
based on a Frobenius norm minimization procedure and we denote it by Mpg,.p.
Information from the underlying physical problem is exploited to prescribe in
advance the sparsity pattern of the preconditioner (Alléon et al. 1997, Carpentieri
et al. 2000). We note that its density in terms of number of nonzero entries
per column can be adjusted through a simple parameter. For further details on
its implementation in the fast multipole code as well as its behaviour on large
problems we refer to Carpentieri et al. (2003b) and Sylvand (2002). In this paper,
we investigate the behaviour of the low rank update preconditioner described by
Carpentieri et al. (2003a) that attempts to improve the convergence rate of the
Krylov solver by shifting by one the smallest eigenvalues that Mg, leaves close
to the origin. On these linear systems, GMRES has shown itself to be the most
robust Krylov solver (Carpentieri et al. 20035, Sylvand 2002). We note that other
related approaches that attempt to remove the effect of the smallest eigenvalues are
available in the literature. In the context of adaptive preconditioners for restarted



GMRES, we refer the reader to Baglama, Calvetti, Golub and Reichel (1999), Erhel,
Burrage and Pohl (1996), and Kharchenko and Yeremin (1995).

Let us describe the spectral low rank update for the right preconditioner that
we use later in our experiments. Given the right preconditioned linear system:

AMp,pu = b with © = Mpppu,

where the matrix A is m x n complex nonsingular and Mg, is the right
preconditioner, the spectral low rank update is as follows. For the sake of simplicity,
we assume that the preconditioned matrix AMp,, is diagonalizable. That is,

AMFT’Ob - VAV*I 3

with A the diagonal matrix formed by the eigenvalues {Ai};c(,,, ordered by
increasing magnitude, and V' the matrix whose columns correspond to the right
eigenvectors. Let us consider the k£ smallest eigenvalues of AMp,.., denoted by A;
with ¢ = 1,..., k. We denote by V} the set of the right eigenvectors associated with
these k smallest eigenvalues. In Carpentieri et al. (2003a), it is shown that, if W is
a m by k matrix such that 4g = W AMp,,, V) has full rank, then setting

Mo = MprapViAg'WH and Mgy, puy = Mepros + Mo,

we have that AMgy gy () is similar to a matrix whose eigenvalues are:

{nz-:1+)\,- if i<k (21)

The matrix M, is a rank-k correction of Mg, ., which ensures that the new system:
AMSLRU(k)U = b with x = MSLRU(k)u.

no longer has eigenvalues with magnitude smaller than |\t ;|. Note that we can
choose other shifts in other contexts. In our case, as most of eigenvalues are already
close to one, this shift makes sense. Furthermore, we set W = V}, in our experiments.
In Carpentieri et al. (2003a), some promising results in the context of BEM are
shown on small examples with a few hundred unknowns; the spectral low rank
update is combined with the GMRES method preconditioned by a Frobenius norm
minimizer preconditioner. In this work, we investigate the same solver using the
same combination of preconditioners but on large real industrial applications. The
test geometries are shown in Figure 2.1. They consist of a wing with a hole referred
to as Cetaf, an Airbus aircraft, an air intake referred to as Cobra, and finally an
Almond. The Cetaf and Almond cases are classic test problems in the computational
electromagnetics community; the other two have been kindly provided to us by
EADS-CCR. Given these four geometries, the sets of angles of interest for the
monostatic radar cross section vary. In Table 2.1 we indicate, for each geometry, the
number of unknowns associated with each linear system, the density of Mg, ., the
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Figure 2.2: Spherical coordinates

multiprocessors. The stopping criterion consists in reducing the original residual by
1072 that can then be related to a norm-wise backward error. Although this value
may appear to be large, it is sufficient to obtain accurate radar cross section results.
Finally, the initial guess is set to the zero vector.

3 Efficiency of the preconditioner with respect to
the rank of the update

In Figure 3.1, we plot using the symbol “x” the spectrum of Mpg,.,, the matrix
preconditioned with the Frobenius preconditioner, for the Cetaf case. As can be
observed, Mg, succeeds in clustering most of the eigenvalues around (1.0,0.0).
Such a distribution is highly desirable to get fast convergence of Krylov solvers.
Nevertheless the remaining eigenvalues nearest to zero can potentially slow down
the convergence. Using the symbol “0” we plot, in Figure 3.1, the spectrum of the
matrix preconditioned with Mg gy (20)- We observe that the 20 smallest eigenvalues
of the matrix AMp,., have been shifted close to one, in agreement with (2.1).
Consequently, we expect the Krylov solver to perform better with Mgz ry(20) than
with Mp,e. In Figure 3.2, we plot the convergence histories obtained by varying
the size of the low rank update. It can be observed that the larger the rank, the
faster the convergence of full GMRES. However, in going from 15 to 20 the gain is
negligible and going beyond 20 does not give further improvements.

As we mentioned earlier, we have used this technique for monostatic calculation.
As many linear systems with the same coefficient matrix but different right-hand
sides have to be solved, some are easier to solve than others. In Figure 3.3, we
illustrate an important feature of the low rank update by showing the number of
iterations for convergence for a difficult right-hand side and an easy one. It can
be observed that, when the number of shifted eigenvalues increases, the number of
iterations to reach convergence decreases. Furthermore, there is not much difference
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Figure 3.2: Convergence history when varying the rank of the update on the Cetaf
example.

between a difficult right—hand side and an easy one when the rank of the update
increases. Later in this paper, we illustrate the advantage of this feature in the
context of restarted GMRES and seed GMRES.
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4 Results on a complete monostatic calculation

The use of a preconditioner is often beneficial, however its usefulness depends not
only on its effect on convergence but also its construction time and the time spent
in applying it at each step. In Table 4.1, we give the construction time for the FMM
operator, for Mg, and for Msp gy ). In our experiments, the eigenvalue calculation
is performed in a preprocessing phase using ARPACK (Lehoucq, Sorensen and Yang
1998), that represents the main part of the time required to setup Mgpryk). In
that table, we also display the average time spent in one FMM operation, one
product by Mg, and one application of Mg ryx). We expect to reduce the overall
number of iterations, but each new iteration is more expensive. One application of
M1 ru (k) compared with one application of M, introduces around 4.k.n additional
flops, where £ is the chosen number of eigenvalues and n the size of the problem.
On our test examples the extra cost per iteration in elapsed time ranges from 6%
(Cobra case) to 35% (Almond case), but it remains small in comparison to the FMM
application times.

In Figure 4.1, we show the number of full GMRES iterations for each right-hand
side using either Mp,o (solid line) or Mgyryx) (dashed line). For each geometry
the value of k is given in the caption. While without the spectral preconditioner,
the numbers of iterations from one right-hand side to another vary a lot, with the
spectral preconditioner the number of iterations per right—hand side is more similar
and almost constant for some geometries. This behaviour was already observed in
Figure 3.3.



Construction Times Application Times
geometry | # proc. | k | FMM | Mprop | Mspru@r) || FMM | Mprop | Msprur
Cetaf 8 20 | 13s 258 45 s 0.208 s | 0.035 s 0.041 s
Airbus 32 20 | 27s 51s 19 m 0.830s | 0.118 s 0.147 s
Cobra 32 15| 36s 73 s 28 m 1.259s | 0.110 s 0.117 s
Almond 32 60 | 59s 3m 2h 1.914s | 0.138 s 0.187 s

Table 4.1: Average elapsed time per matrix-vector product.
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Figure 4.1: Number of full GMRES iterations with Mg, and Mgrryx) for the
different incident angles for each geometry.

Table 4.2 summarizes the cumulated numbers of matrix—vector products and the
total elapsed solution time for a complete radar cross section calculation for each
geometry using full GMRES. For all geometries except the Cetaf, 181 linear systems
are solved; only 91 are considered for the Cetaf test problem. Depending on the
geometry, the overall gain ranges from a factor of 1.6 to 3 for both CPU time and



Mprop Msrrur)

Geometry | # procs. | # iter | times # iter | times
Cetaf 8 16391 | 1h40m | 5 349 47 m
Airbus 32 87121 | 46 h 47 385 | 18h 40 m
Cobra 32 29777 |21 h 16 921 | 8h 30 m
Almond 32 34375 | 25h30m || 21 273 | 14h 40 m

Table 4.2: Cost for a complete monostatic calculation.

total number of GMRES iterations. It should be pointed out that this could be
improved on some examples if more eigenvalues were shifted. Our purpose in these
experiments is to illustrate the potential of Mgrryk), and we did not try to find
the best values of k for each geometry. For example, by shifting 10 more small
eigenvalues for the Cobra case, we move from a factor 1.6 to a factor 3.

The extra cost for computing the eigenspace during the preprocessing phase in
terms of matrix—vector products by AMp,.. as well as the corresponding elapsed
time is displayed in Table 4.3. In that table, we also give the number of right-hand
sides in the monostatic calculation, denoted # rhs, for which the gain introduced
by Msrruk) compensates for the cost of computing the preconditioner. It can be
seen that the preprocessing calculation is quickly amortized when a few right-hand
sides need to be solved.

Geometry | # procs. | # mat-vec | times | # rhs
Cetaf 8 170 45 s 3
Airbus 32 1 000 19 m 6
Cobra 32 1 000 28 m 6

Almond 32 2 200 2 h 32

Table 4.3: Cost of the eigencomputation preprocessing phase.

In addition, we should mention that the quality of the eigenvectors in terms
of backward error does not needs to be very accurate: using eigenvectors with a
backward error of less than 10~ does not significantly improve convergence if at all.

5 Balancing the two components of the
preconditioner

Although we save a significant number of iterations using Mgrryx), we might
ask whether it could be more effective to use a better Mg, by allowing the
preconditioner to have more nonzero entries, combined with a migration of only
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some smallest eigenvalues, or a worse Mg, but combined with a migration of many
smallest eigenvalues. To deal with this, we first investigate the effect of the quality
of Mg, on the calculation time of the smallest eigenvalues of AMpg, . In that
respect, we vary the number of nonzeros per column leading to different densities
of Mpro- In Figure 5.1, we display the spectrum of AMp,.. on the Cetaf example
for various values of the density. As we might expect, the denser Mg, is, the
better the clustering around one and the fewer eigenvalues close to zero; moreover
these are better separated. A consequence for the eigensolver is that the few well
separated eigenvalues that are near zero for the largest density of the preconditioner
are more easily computed. When the density is relaxed, the eigenvalue cluster close
to zero becomes wider and the eigensolver has more difficulty in computing those
near zero. Indeed, it needs extra effort to identify the eigenvalues in a cluster. To
illustrate this claim we show, in Table 5.1, the number of matrix—vector products
and the corresponding elapsed time required by ARPACK to find the eigenvectors
associated with the 60 smallest eigenvalues as the density increases. As expected,
we observe that the denser the preconditioner is, the easier it is for the eigensolver
to find the smallest eigenvalues.

(a) 0.7 % (b) 3.3 % (c) 15.7 %

Figure 5.1: Spectrum of AMp,, for various density of Mg,

density | # mat-vec | times
0.7% 365 ATT s
3.3% 240 281 s
15.7% 152 172 s

Table 5.1: Number of matrix—vector products and elapsed times (one processor)
required to compute the 60 smallest eigenvalues of AMp,, for the Cetaf when the
density of Mg, is varied.

A question that seems natural to raise is: how many eigenvalues should be
shifted for these three densities of Mg, to get convergence in the same number of

10



full GMRES iterations ? On the Cetaf for a difficult angle and a density equal to
3.3 %, full GMRES needs 98 iterations to converge. Using Mgz rp(200 GMRES needs
31 iterations to converge. The number 31 is taken as a reference value to compare
the performance with the three densities. Table 5.2 shows the cost for ARPACK
to compute the corresponding number of eigenvalues for each density and the total
cost of computing the preconditioner.

To obtain the same number of full GMRES iterations, we need to shift more and
more eigenvalues as we decrease the density. On the other hand, the construction
cost of Mg, with a low density is cheaper than with a higher density. There is a
trade-off to be found between a cheap Mg, that requires shifting many eigenvalues
that might be difficult to compute, and a more expensive Mg, where only a few
eigenvalues need to be shifted to get a similar convergence behaviour. As Table 5.2
shows, the medium density 3.3% offers the best trade-off among the three densities
considered. The preconditioner already works well and only a few eigenvalues need
to be shifted. In each case shown in Table 5.2, 31 iterations of preconditioned full
GMRES are needed for convergence. The symbol “k” is the number of eigenvalues
computed by ARPACK.

Mpg,. construction | eigensolver
density times k | times | Total
0.7% 41 s 54 | 469 s | 510 s
3.3% 143 s 20 | 161s | 304 s
15.7% 1114 s 2| 64s | 1178 s

Table 5.2: Construction times when varying the Mg, density on the Cetaf test
problem.

Let us illustrate, on another example, the advantage of using Mg gy ) rather
than increasing the density of Mp,.,. We consider now the Almond test problem,
that is the biggest, using two densities for Mp,,. The targeted number of iterations
of full GMRES is 157 that is obtained with a density of 0.19% and by shifting 30
eigenvalues using Mgy rr(30)- To get the same number of iterations without shifting
eigenvalues, we need to increase the density of Mg, to 1.76 %. In Table 5.3,
we show the computation cost for both preconditioners. It can be seen that the
eigencalculation in the preprocessing phase of Mgpry(30) combined with the low
cost of its Mp., component is significantly less expensive than the denser Mg,
that exhibits the same convergence property. We compare the application times for
these two approaches and the time to obtain solution. The second approach is four
times as expensive needing 1.21 s per application as opposed to the first with 0.38 s.
The use of Mg, with a density of 0.19% in the first case would have cost 0.36 s; it
means that Mg ry(30) yields an extra cost of only 0.02 s per application. Moreover,
it gives a smaller solution time and a much cheaper setup time. Setup time appears

11



to be too much important towards solution time, but these results are obtained on
just one angle. For solutions on an angular section, we will pay this Setup time for
just one time.

Setup Solution
Mgrop Eigencalculation Total Application Times | Total
Density | Times | # Eigen. | Times | Times Mprop | Mspruo) | Times
0.19% 6 m 30 3h |[3h06m - 0.38 s 510 s
1.76% | 5h 40 m 0 - 5h40m || 1.21s - 648 s

Table 5.3: Comparison of a denser Mg, with a sparser Msrry(30) on 8 processors
on the Almond test example to obtain 157 iterations with full GMRES.

6 Sensitivity of the restarted GMRES

All the numerical experiments reported on so far have been obtained with full
GMRES. In this section we will investigate the effect of restarted GMRES on
the efficiency of the preconditioners. For each value of the restart, we show in
Table 6.1 the number of GMRES iterations of Mg, and Mgpryk) on a easy and
a hard right-hand side. The symbol “-” means that convergence is not obtained
within 5000 iterations. As can be seen, the smaller the restart is, the larger
the improvement with Mgpgy). With Mgpry(20) on the Cetaf example, we see
that GMRES converges quickly and that GMRES(10) behaves very similarly to
GMRES(o0). This observation is no longer true for the other geometries. It might
depend on the number of eigenvalues that are computed: the choice is the best for
the Cetaf example but not for the other geometries.

| FEasy case |
Restart Cetaf Airbus Cobra Almond
Mprob | MsLru(20) | MFrob | MsLru20) | Mrrob | MsLru@as) | Mrrob | Msrru(60)
10 271 30 - 639 514 378 492 95
30 128 27 - 439 280 196 149 67
50 100 27 - 390 264 188 118 68
o0 74 27 421 242 222 172 109 63
| Difficult case |
Restart Cetaf Airbus Cobra, Almond
MFrob | Msrruo) | Mrrob | MsrLru@o) | MFrob | Msrru@s) | Mrrob | Msrru(s0)
10 669 37 - 1200 2624 481 - 1497
30 275 31 - 688 1031 232 429 163
50 197 31 - 608 760 207 334 144
0o 98 31 490 283 367 187 232 126

Table 6.1: Sensitivity to the GMRES restart parameter.
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The Mg ry k) preconditioner allows us to use a smaller restart than usual; this
might be a significant asset on very large problems where using a large restart
becomes a severe bottleneck because of the prohibitive memory requirements. There
are some problems where Mg, does not converge, for instance on the Airbus case
with a restart between 10 and 50, or on the Almond example with a restart of
10, while Mgrry k) does converge in a reasonable number of iterations. On that
later example, as we see in Figure 6.1, the convergence rate of GMRES increases
with the restart whatever the chosen preconditioner. Furthermore, the slope of
the convergence history for Mgy gy k) becomes quickly comparable to that for full
GMRES, while for Mg, this phenomenon takes more time to appear. Although
not reported here, the same behaviour was observed on the other geometries.

. .
__ Frob GMRES(10)
o SLRU (60) GMRES(10)
1 Frob GMRES(30)
& SLRU (60) GMRES(30)

Frob GMRES(50)
v SLRU (60) GMRES(50)
107 — Frob GMRES(w) ||
SLRU (60) GMRES(w)

Normwise backward error

I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000
# iterations

Figure 6.1: Convergence history varying the restart for a “difficult” angle of the
Almond test problem.

7 Complementarity of Mgy and the seed
GMRES algorithm

As mentioned already for a complete monostatic calculation, several linear systems
with the same coefficient matrix but different right-hand sides have to be solved.
In that framework, it is crucial not only to use an efficient preconditioner but also
a suitable Krylov solver. There are basically two classes of techniques designed for
this purpose. These are the seed techniques and the block approaches (Freund and
Malhotra 1997, O’Leary 1980, Vital 1990). In this section, we investigate the benefit
of using Mspry(x) in the context of seed GMRES.

13



For the sake of simplicity of the notation, we describe below the method for the
solution of only two right-hand sides. The problem can be written:

A(.’L'l,.’L'Q) = (bl,bg), with
(2%, 29) as the initial guesses.

The seed GMRES method starts by solving the first system Az; = b; using the
GMRES algorithm. Once that is converged, it computes an orthonormal basis of
the Krylov space (V,;,,,) and the upper-Hessenberg matrix (H,,) such that AV, =

- m
Vi 1Hp. The idea consists in updating the initial guess 29, by minimizing the norm
of the residual r = by — Az} of the second system on the basis V,;.,,. We search a
new initial guess £ such as:

{ 2 =123+ V iy
Yy = argmlny||b2 —A@S+Viy)lle
Using the fact that:
162 — A(zz + Vpy)ll = [I75 — AVlyHg,
= [|(In (Vi 1
_H(In_leH—l( +1
= |(Ln — anm(
= [(In = Viun (V,

T

)78 + Vit (Vi) '3 — AVyll5,

) )y + Vi ((V1+1)T7"3 — Hoy)llz,

D)+ Via (Vi) 72 — Hey)|[5,
) )l + 11 m+1)T7“3 — Hoyllz,

we finally should solve the least-squares problem: argmin,|[(V,,,,)"r) — Hpyllo,

where we already have a QR factorization of H! given by the GMRES algorithm.

Once the new initial guess is computed, we simply run a new GMRES method for

the second-right hand side. When more than two right-hand sides are considered,

the same algorithm can be applied but we have to solve a least-squares problem for

each previous right-hand side after the first.

In order to illustrate the advantage of using Mgy gy (x) in this context, we consider
eleven right-hand sides: ¢ = 15° : 1° : 25° for § = 90°, involved in the radar
cross section calculation of the Airbus. On these right-hand sides, seed GMRES
combined with Mg, ., behaves rather poorly. To illustrate this, we first compare the
numerical behaviour of GMRES with three strategies for defining the initial guess:
first using the zero vector, second using the solution of the previous linear system,
and finally the initial guess computed by the seed technique. In Table 7.1, we
display the number of iterations for each right-hand side for the three initial guess
strategies. In the case of zero as initial guess, the initial backward error ||ro|2/]|0]|2 =
||b— Azo||2/]|b]|2 is equal to one. In Table 7.1, we see that the seed GMRES method
does a good job of decreasing the initial residual norm; it is always by far the
smallest. Unfortunately, starting from the seed initial guess that is the closest (in
the backward error sense) to the solution does not guarantee fast convergence. That
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Moo preconditioner
Z€ro guess simple strat. seed GMRES
(6, ¢) # iter | # iter [/rolla/l[bll | # iter [[roll2/lIb]l2
(90,15) 474 474 1 474 1
(90,16) 474 443 0.284 440 0.13
(90,17) 483 435 0.298 338 0.05
(90,18) 491 442 0.311 387 0.023
(90,19) 491 438 0.325 458 0.008
(90,20) 490 438 0.338 543 0.004
(90,21) 492 436 0.352 605 0.003
(90,22) 497 418 0.365 599 0.003
(90,23) 499 424 0.379 589 0.003
(90,24) 499 431 0.392 601 0.003
(90,25) 499 406 0.406 573 0.003
# iterations 5389 4785 5607
elapsed time (s) | 17400 s 15438 s 28804 s

Table 7.1: Number of iterations per right-hand side using three strategies for the
initial guess on the Airbus example with M., preconditioner on 8 processors.

is, from that good initial guess, GMRES performs rather poorly. It performs only
slightly better than starting from zero and is outperformed by the approach that
starts from the initial guess provided by the simple strategy of using the solution
to the previous system. In other words and surprisingly enough, the approach that
gives the smallest initial residual norm is not the method that gives the smallest
number of iterations.

We have observed this behaviour of the seed GMRES method on some other
difficult problems. Intuitively, it seems to us that an analogy exists between this
behaviour and the observed stagnation of the classical restarted GMRES method.
In the two cases, an initial guess is extracted from a Krylov space to generate a new
Krylov space. As illustrated in the previous section, one possible remedy for the
restarted GMRES method is to replace Mg,y by Msrru(x)-

In Table 7.2, we investigate this possibility. We keep the same strategies as in
Table 7.1 but now use Mgrry(20) rather than Mp,q. The initial guess computed
by the seed GMRES method becomes the best performing strategy. In Figure 7.1,
for each right-hand side, ¢ = 15° : 1° : 25°, we plot the convergence history of the
seed GMRES method with the two preconditioners. It can be seen that although the
norm of the initial residuals are about the same for the two preconditioners, the rate
of convergence is significantly improved by Mgrry(20)- The seed GMRES method
provides a small initial residual and Mgy (k) ensures a fast rate of convergence of
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GMRES iterations: in a race starting close to the finish (seed strategy) and running
fast (Mgsrru(k) preconditioner) this ensures we finish first!

MSLRU(ZO) preconditioner
ZEero guess simple strat. seed GMRES
(0, ) # iter | # iter |[rollo/|[bll2 | # iter [[roll2/|b]2

(90,15) 280 280 1 280 1
(90,16) 275 198 0.284 201 0.14
(90,17) 275 188 0.298 145 0.052
(90,18) 276 190 0.311 167 0.025
(90,19) 280 198 0.325 165 0.009
(90,20) 283 205 0.338 171 0.006
(90,21) 284 208 0.352 171 0.005
(90,22) 286 212 0.365 170 0.005
(90,23) 289 214 0.379 172 0.005
(90,24) 291 218 0.392 176 0.005
(90,25) 292 219 0.406 171 0.005

# iterations 3111 2330 1989

elapsed time (s) 8348 s 6252 s 5518 s

Table 7.2: Number of iterations per right-hand side using three strategies for the
initial guess on the Airbus example with Mgz rir(20) preconditioner on 8 processors.
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Figure 7.1: Convergence history of seed GMRES for the right-hand sides associated
with ¢ = 15° : 1° : 25° using Mpre (O, in dashed line) and Mgy, ru(20) (X, in solid
line) on the Airbus test problem.
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8 Conclusions and prospectives

In this paper, we have shown that the Mgy gy (k) preconditioner based on the Mg,
preconditioner is effective for solving large linear systems arising in challenging real-
life electromagnetics applications. It is important to point out that, to be effective,
the spectral low rank update should be built on top of a good enough preconditioner
that already succeeds in clustering most of the eigenvalues close to a point far
from the origin (one in our case). There are two main reasons that motivate this
observation. Firstly, if only a few eigenvalues are left close to the origin, a small rank
update will be sufficient to significantly improve the convergence. Secondly, these
few isolated eigenvalues will be easily found by an eigensolver. Of course a trade-off
between the two components of Mgz gy k) should be found as the low rank update
might be unnecessary if Mg, is very dense, or it might be too expensive to improve
a poor Mp,.,, because too many eigenvalues, potentially difficult to compute, have
to be shifted.

We observe that the convergence of GMRES using Mgy ry(x) only weakly depends
on the choice of the initial guess. This is particularly useful in the seed GMRES or
restarted GMRES contexts.

When several right-hand sides have to be solved with the same coefficient matrix,
the extra cost of the eigencalculation preprocessing phase is quickly amortized by
the reduction in the number of iterations as the extra cost per iteration is negligible.
However, the cost of the preprocessing phase can be decreased in different ways.
The first approach would consist in constructing the preconditioner as we solve
different right-hand sides by extracting the spectral information from previous
GMRES solutions. Another possibility, as the accuracy of the eigenvectors in terms
of backward error does not need to be very good, would be to still compute them
in a preprocessing phase but with a less accurate FMM. Implementing this idea for
the Cobra example leads to the plot reported in Figure 8.1. In that figure, it can
be seen that using either a high or the medium accuracy FMM leads to the same
quality of the Mg ry(x) preconditioner, while using a low accuracy only deteriorates
the efficiency by less than 20% in terms of iteration number. Consequently, using
a low accurate FMM for the eigencalculation might also be a way of reducing the
cost for the preprocessing phase.

A question that remains open is the a priori identification of the optimal number
of eigenvalues to be shifted. We have seen that increasing this number is always
beneficial, but the relative gain tends to vanish when this number becomes large. If
the eigenvalue information was extracted at run-time, a possible strategy might be
to increase the size of the rank from one right-hand side to the next as long as an
improvement is observed. Further investigations deserve to be undertaken to study
this possibility in the framework of the monostatic radar cross section calculations.
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Figure 8.1: Influence of the multipole precision (prec) in ARPACK on the iterations
on a difficult range for the Cobra test problems; the most accurate precision is prec 3.
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