Use of Computational Kernels in full
and Sparse Linear Solvers, Efficient
Code Design on High-Performance

RISC Processors!

Michel J. Daydé? and Iain S. Duff®

Technical Report TR/PA/96/47

CERFACS
42 Ave G. Coriolis
31057 Toulouse Cedex
France

ABSTRACT

We believe that the availability of portable and efficient serial and parallel
numerical libraries that can be used as building blocks is extremely important
for both simplifying application software development and improving reliability.
This is illustrated by considering the solution of full and sparse linear systems.
We describe successive layers of computational kernels such as the BLAS,
the sparse BLAS, blocked algorithms for factorizing full systems, direct and
iterative methods for sparse linear systems.

We also show how the architecture of the today’s powerful RISC processors
may influence efficient code design.

Keywords: Level 3 BLAS, matrix-matrix kernels, RISC processors, blocked Eskow-
Schnabel, parallel BLAS, sparse direct methods, solution linear systems, element-by-
element preconditioning, sparse BLAS.

AMS(MOS) subject classifications: 65F05, 65F50.

'Part of this study was funded by Conseil Régional Midi-Pyrénées under project
DAE1/RECH/9308020. This paper was presented by the authors in two invited talks
at the meeting VECPAR’96 in Porto from 25th to 27th September, 1996.

Also appeared as ENSEEIHT-IRIT Report RT/APO/96/4.

?Email: dayde@enseeiht.fr. ENSEEIHT-IRIT, 2 rue Camichel, 31071 Toulouse
CEDEX, France.

3Email: duff@cerfacs.fr. Also at Atlas Centre, RAL, Oxon OX11 0QX, England.

Contents

1

2

Introduction 1

Impact of the Memory Hierarchy of RISC Processors on

Performance 2
The BLAS Computational Kernels 3
3.1 Design of a Fast . GEMM for RISC Processors 3
3.2 Use of .GEMM in Designing the Kernel SYRK 9
3.3 Parallel Versions of the BLAS 10
Solution of Full Linear Systems 14
4.1 Introduction 14
42 Useof Parallel BLAS 14
4.3 Blocked Eskow-Schnabel Modified Cholesky Factorization 14

4.3.1 The Eskow-Schnabel Modified Cholesky Factorization. . 16

4.3.2 Numerical Experiments. 17

Use of Level 3 BLAS in the Direct Solution of Sparse Linear

Systems 19
Solution of Partially Separable Linear Systems Using Element-
by-Element Preconditioners 20
6.1 Introduction 20
6.2 Element-by-Element Preconditioners 21
6.3 Preprocessing of Unassembled Linear Systems 22
6.3.1 Amalgamation Algorithm. 23
6.4 Numerical Experiments 23
6.4.1 Use of Sparse Storage. 25
The Sparse BLAS 27
7.1 Definition of Sparse BLAS oL, 27
7.2 Use in Iterative Methods 31

Conclusion 31

1 Introduction

One of the common problems for application scientists is to exploit as efficiently
as possible the hardware of high-performance computers (either serial or
parallel) without totally rewriting or redesigning existing codes and algorithms.
We believe that the availability of portable and efficient serial and parallel
numerical libraries that can be used as building blocks is extremely important
for both simplifying application software development and improving reliability.

The availability of powerful RISC processors is of major importance in
today’s market since they are used both in workstations and in the most recent
parallel computers. They are usually more efficient than vector processors
on scalar applications. The main reason for their success in the marketplace
is their very good cost to performance ratio. They are used as a CPU
both in workstations and in most of the current MPPs (DEC Alpha in the
CRAY T3D, SPARC in the CM5 and PCI CS2, HP PA in the CONVEX
EXEMPLAR, and POWER processors in the IBM SP1 and SP2). We report
in Table 1.1 the uniprocessor performance of some current RISC processors
on the double precision 100-by-100 and 1000-by-1000 LINPACK benchmarks
(Dongarra, 1992). We also record their peak performance.

Computer LINPACK | LINPACK Peak
100*100 1000*1000 | performance

DEC 8400 5/300 140 411 600

IBM POWER2-990 140 254 286

HP 9000/755 41 107 200

SGI POWER Challenge 104 261 300

Table 1.1: Performance in MFlops of RISC processors on the double precision
LINPACK benchmarks

We briefly consider the impact of the memory hierarchy on the performance
of RISC architectures in Section 2. In Section 3, we show how portable and
efficient serial and parallel versions of the Level 3 BLAS can be designed for
RISC-based computers using code tuning techniques such as blocking, copying,
and loop unrolling. In Section 4, we give an example of a blocked factorization
algorithm of special interest for optimization algorithms. This block version of
the modified Cholesky factorization of Eskow and Schnabel is designed to make
intensive use of the Level 3 BLAS in the same way as other block algorithms.
In Section 5, we indicate how BLAS for full matrices can be used within
codes for the direct solution of sparse linear equations. In Section 6, we show
how an efficient preconditioned conjugate gradient algorithm for symmetric,
partially separable, unassembled linear systems can be designed to make use of
the previously described computational kernels. We use Element-by-Element

preconditioners to exploit the structure of the problems. We demonstrate how
a numerical preprocessing step can dramatically improve both the numerical
behaviour and the performance of the preconditioners. We describe, in Section 7,
an extension of the BLAS for handling sparse matrix operations and indicate
its use in the iterative solution of sparse equations. We present some concluding
remarks in Section 8.

2 Impact of the Memory Hierarchy of RISC
Processors on Performance

The ability of the memory to supply data to the processors at a sufficient rate
is crucial on most modern computers. This necessitates a complex memory
organization, where the memory is usually arranged in a hierarchical manner.
The minimization of data transfers between the levels of the memory hierarchy
is a key issue for performance (Gallivan, Jalby and Meier, 1987, Gallivan, Jalby,
Meier and Sameh, 1988).

Most of the RISC-based architectures use a more complex memory hierarchy
than is usually the case for vector processing units. This normally involves one
or several levels of cache. Calculations are pipelined over independent scalar
operations instead of vector operations. This is why the design of codes for
RISC processors may substantially differ from that of code for vector processors.
A high reuse of the data located at the highest levels of the memory hierarchy
is required for efficient codes for RISC-based architectures. The use of tuned
computational kernels that can be used as building blocks is crucial for both
simplifying application software development and achieving high performance.

The cache memory is used to mask the memory latency (typically the cache
latency is around 1-2 clocks while it is often 10 times higher for the memory).
The code performance is high so long as the cache hit ratio is close to 100%. This
will happen if the data involved in the calculations can fit in the cache or if the
calculations can be organized so that data can be kept in cache and efficiently
reused. One of the most commonly used techniques for that purpose is called
blocking and an example of this is reported in the following section. Blocking
enhances spatial and temporal locality in computations. Unfortunately, blocking
is not always sufficient since the cache miss ratio can be dramatically increased
in quite an unpredictable way if the memory accesses use a stride greater than
1 (see Bodin and Seznec, 1994).

Some strides are often called critical because they generate a very high cache
miss ratio (for example, when referencing cache lines that are mapped into the
same physical location of the cache). These critical strides obviously depend on
the cache management strategy. For example, if the cache line length is equal
to four words and the cache is initially empty, the execution of the loop

do i=1,n,4

temp = temp + a(i)
enddo

will cause a cache miss on each read of a(i), assuming that a(i) is one word.

Copying blocks of data (for example submatrices) that are heavily reused
may help to improve memory and cache accesses (by avoiding critical strides
for example). However, since such copying may induce a large overhead, it is
not always a viable technique. We illustrate the use of copying in our blocked
implementation of the BLAS in Section 3. We note that blocking and copying
are also very useful in limiting the cost of memory paging.

3 The BLAS Computational Kernels

As we have previously discussed, it is very important to use standard building
blocks in application codes. They are extremely useful for simplifying the design
of codes while guaranteeing portability and efficiency. The building blocks for
much of our work, both in the solution of sparse as well as full systems, and in
more complicated areas of scientific computation, are the Basic Linear Algebra
Subprograms known as the BLAS. For reasons of efficiency, we are interested in
the higher level BLAS, in particular the Level 3 BLAS (Dongarra, Du Croz, Duff
and Hammarling, 1990) that include kernels like the matrix-matrix multiply
routine _GEMM. Indeed, in Daydé, Duff and Petitet (1994a) and Kégstrom,
Ling and Loan (1993), it is shown how all the Level 3 BLAS routines can
be designed for high performance using the _GEMM kernel. We consider the
performance and the implementation of _GEMM here and show, in Section 3.2,
how it can be used to design the other Level 3 BLAS kernels on one example:
the symmetric rank-k update -SYRK. The effect of using BLAS in the solution
of linear equations, first when the coefficient matrix is full, then when it is sparse
will be discussed respectively in Sections 4 and 5.

A tuned manufacturer-supplied version of the BLAS is today available on
most high-performance computers and, in cases when it is not provided, a
standard Fortran implementation is available on the netlib electronic server
(Dongarra and Grosse, 1987).

3.1 Design of a Fast GEMM for RISC Processors

We have developed a set of Level 3 BLAS computational kernels in single and
double precision for efficient implementation on RISC processors (Daydé and
Duff, 1996). This version of the Level 3 BLAS is an evolution of the one
described by Daydé et al. (1994a) for MIMD vector multiprocessors. They
report on experiments on a range of computers (ALLIANT, CONVEX, IBM
and CRAY) and demonstrate the efficiency of their approach whenever a tuned
version of the matrix-matrix multiplication routine _GEMM is available.

Our basic idea for efficient implementation of the BLAS on RISC processors
is to express all the Level 3 BLAS kernels in terms of subkernels on submatrices
that involve either _.GEMM operations or operations involving triangular
submatrices. Additionally, all the calculations on blocks are performed using
tuned Fortran codes with loop-unrolling. Copying is occasionally used. Of
course, the relative efficiency of this approach depends on the availability of a
highly tuned .GEMM kernel.

This approach is relatively independent of the computer: only the block size
parameter, here called NB, and in some cases the loop-unrolling depth should be
tuned according to the characteristics of the target machine. NB is determined
by the size of the cache and the loop-unrolling depth from the number of scalar
registers.

We describe only the blocked implementation of . GEMM in this subsection.
The other kernels are designed in the same way and we consider, as an example,
_SYRK in Section 3.2. Further details can be found in Daydé and Duff (1996).

_GEMM performs one of the matrix-matrix operations

C=a op(A) op(B)+4C,

where o and (3 are scalars, A and B are rectangular matrices of dimensions
mxk and kxn, respectively, C is a m x n matrix, and op(A) is A or A’.

We consider the case corresponding to op equal to “No transpose” in both
cases and block the computation as:

Cip Cip |\ _ o A A By B +8 Cip Cip
Cara2 (a2 A1 Aspo By1 Bjo Co1 Chp
-GEMM can then obviously be organized in terms of a succession of matrix-
matrix multiplications on submatrices as follows:

1. Cip < BC1y +aA1 1B _GEMM

2. C11 « Ci1+ad12By) _GEMM

Cip+ BCr2+aAi1Bip

()
()
(_GEMM)
Ciz ¢ Cio+adisBys (_GEMM)
()
()
()
()

Cy1 ¢ BCo1 +0Ay 1By _GEMM

Coq + Co1 +adhsr2Bs; _GEMM

)

Cy2 < BCs2 + 0Ay 1B 2 _GEMM

© N o oo W

Cop + Cop+adsr2Bs 9 _GEMM

The ordering of these eight computational steps is determined by
consideration of the efficient reuse of data held in cache. We have decided to
reuse the submatrices of A as much as possible and we perform all operations
involving a submatrix of A before moving to another one (see Figure 3.1). For
our simple example, it means that we perform the calculations in the order: Step
1, Step 3, Step 5, Step 7, Step 2, Step 4, Step 6, and Step 8. This approach
is similar to that used by Dongarra, Mayes and Radicati di Brozolo (1991b).
In practice, NB is usually chosen so that all the submatrices of A, B, and C
required for each submultiplication fit in the largest on-chip cache. On some
machines, access to off-chip caches has so low latency that we can improve
performance by using a larger block size. This is true, for example, on the SGI
Power Challenge. Since all the computational kernels call _GEMM, the block
size NB is always determined as the most appropriate block size for _ GEMM,
that is, NB is the largest even integer such that

3(NB)*prec < CS,

where prec is the number of bytes corresponding the precision used (4 bytes for
single precision and 8 bytes for double precision in IEEE format) and C'S is the
cache size in bytes. We choose an even integer to facilitate loop-unrolling. For
example with a 64Kbytes cache, NB is set to 52 using 64-bit arithmetic.

Part of the double precision blocked code is shown in Figure 3.1. Its main
features are the following:

e The multiplication of C by 3 is performed before all other calculations.

e The submatrix of A is multiplied by « and transposed into array AA to
avoid non-unit strides because of access by rows in the innermost loops of
the calculations. These are organized in such a way that AA is kept in
cache as long as required.

We use two tuned Fortran codes to perform calculations on submatrices
(see Figure 3.2): DGEMML2X2 is a tuned code for performing matrix-matrix
multiplication on square matrices of even order; and DGEMML is a tuned code
that includes additional tests over DGEMML2X2 to handle matrices with odd
order. It is occasionally slightly less efficient than DGEMML2X2.

We have used two versions for all the tuned codes: the TRIADIC option
for computers where triadic operations are either supported in the hardware
(for example the floating-point multiply-and-add on IBM RS/6000) or are
efficiently compiled, and the NOTRIADIC option for other computers. The
use of triadic operations should not normally degrade the performance severely
on processors that do not support these operations since efficient code generation
can transform them into dyadic operations. However, in early versions of
SPARC compilers, we saw that there was sometimes such a degradation. Thus

Form C := beta*C

IF(BETA.EQ.ZERQ)THEN
D0 20 J=1, N
DoO10 I =1, M
C(I, J) = ZERO
10 CONTINUE
20 CONTINUE
ELSE
DO 40 J =1,
DO 30 I =
c(I,J
30 CONTINUE
40 CONTINUE
END IF

N
1, M
) = BETA*C(I, J)

* Form C := alpha*A*B + betax*C.

DO 70 L =1, K, NB
LB =MINC(K-L + 1, NB)
DO 60 I =1, M, NB
IB = MIN(M - I+ 1, NB)
DOII=I,I+1IB-1
DOLL =L, L+1LB-1
AA(LL-L+1,II-I+1)=ALPHA*A(II,LL)
ENDDO
ENDDO
DO 50 J =1, N, NB
JB=MIN(N-J+ 1, NB)

* Perform multiplication on submatrices

IF ((MOD(IB,2).EQ.O).AND.(MOD(JB,2).EQ.0)) THEN
CALL DGEMML2X2(IB,JB,LB,AA,NB,B(L,J),LDB,C(I,J),LDC)

ELSE
CALL DGEMML(IB,JB,LB,AA,NB,B(L,J),LDB,C(I,J),LDC)
END IF
50 CONTINUE
60 CONTINUE

70 CONTINUE

Figure 3.1: Part of the blocked code for DGEMM

C := alpha*A*B + C.

D070 J=1, N, 2
D060 I =1, M, 2
Ti1 = C(I,D)
T21 = C(I+1,D)
T12 = C(I,J+1)
T22 = C(I+1,J+1)
D050 L =1, K

B1 = B(L,J)
B2 = B(L,J+1)
A1 = A(L,T)

A2 = A(L,I+1)
T11 = T11 + Bi1xA1l

T21 = T21 + B1*A2
T12 = T12 + B2*A1l
T22 = T22 + B2%A2
50 CONTINUE
C(I,D = T11
C(I+1,J) = T21
C(I,J+1) = T12
C(I+1,J+1) = T22
60 CONTINUE

70 CONTINUE

Figure 3.2: Part of the tuned code for DGEMML2X2 (TRIADIC option)

! !
o)
6001 % DGEMM std
* DGEMM tuned
+ DGEMM lib.
500 X... Peak:perf. 4
400 : -
[%2]
g +
[
= 300 X i
*
200 + : i
*
X X «
100 0 X i
% 0]
* + X
®
) X o) ¥
| | Q | | Q |
DEC3000 DEC8400 HP 715 IBM 750 SGI POW SUN2050 CS2-HA
Computers

Figure 3.3: Average performance of DGEMM from RISC BLAS (“No
transpose”, “No transpose”).

T T
6001 « O SGEMM std
* SGEMM tuned
+ SGEMM lib.
500 X ... Peak:perf. 1
400} * A
0
Q.
o
LL
= 300 X i
*
£
200 : B
X N «
100 o & X i
% + o
¥ *
o %
0 | | | | | | |
0 1 2 3 8 4 5 6 7 8
Computers

Figure 3.4: Average performance of SGEMM from RISC BLAS (“No transpose”,
“No transpose”).

we prefer to offer both options. Part of the tuned code for DGEMML2X2 using
the TRIADIC options is shown in Figure 3.2.

In Figures 3.3 and 3.4, we illustrate respectively the double and single
precision average performance of the standard and the blocked versions of
_GEMM (averaged over square matrices of order 32, 64, 96, and 128 when A and
B are not transposed). We also include the peak performance of the computer
and the performance of the manufacturer-supplied version when available to us.
This tuned subset of the BLAS — called the RISC BLAS — is publically available
via anonymous ftp at ftp.enseeiht.fr in pub/numerique/BLAS/RISC.

This blocked implementation of _GEMM gives a gain in performance of
greater than a factor of two compared with the standard Fortran coded version.
Furthermore, we have observed that the performance is even better if the
matrices are already held in the cache (which was not the case in these
experiments).

3.2 Use of _.GEMM in Designing the Kernel _SYRK

We now consider the use of _GEMM in designing other kernels as in Daydé et
al. (1994a). We use the kernel SYRK to illustrate this.
SYRK performs one of the symmetric rank-k operations:

C=aAA'+3C, or C=aAtA+3C

where a and (3 are scalars, C is an n X n symmetric matrix (only the upper or
lower triangular parts are updated), and A is a n x k matrix in the first case
and a k X n matrix in the second case.

We consider the case corresponding to C:aAAt+ﬂC where only upper

triangular part of C is updated (that is, “Upper”, and “No transpose”), and we
block the computation as

Ciqn Cip -« A Ao A'i,l Aé,l +5 Cip Cip
0 02’2 Ag,l A2,2 A’i’z Aé’Q 0 02,2 ’

1. Ci1 ¢ BCL1 + aA1,1A§,1 (.SYRK)
2. C11 ¢ Cr1 +adpAl, (.SYRK)
3. C12 ¢ BC1 2 + Ay 1 AL, (_GEMM)
4. Ci9 + Cip +ad; AL, (_GEMM)
5. Oy < BC2 + ady 1 Ab (.SYRK)
6. Oz < Cop+adsAb, (.SYRK)

The symmetric rank-k update is expressed as a sequence of SYRK for
updating the submatrices C;; and .GEMM for the other blocks. The updates
of the submatrices of C can be performed independently. The _GEMM updates
of off-diagonal blocks can be combined. We note that, at the price of extra
operations, we could perform the update of the diagonal blocks of C using
_GEMM instead of -SYRK.

Part of the corresponding blocked code is shown in Figure 3.5. We note that
it is more efficient to perform the multiplication of matrix C by 8 before calling
_GEMM rather than performing this multiplication within _GEMM. The codes
for DSYRKL2X2 and DSYRKL are designed using loop unrolling and copying.

In Figures 3.6 and 3.7, we illustrate respectively the double and single
precision average performance of the standard and the blocked versions of
SYRK (averaged over square matrices of order 32, 64, 96, and 128 for the
case “Upper” and “No transpose”). We also include the peak performance of
the computer and the performance of the manufacturer-supplied version when
available to us.

For this kernel, our gains over using standard BLAS are significant, usually
by a factor of close to two. We consistently outperform the vendor code on the
SGI by a significant amount in single precision. Our blocked code is substantially
better than the vendor kernel on the DEC 8400 and would be even faster if we
used the vendor-supplied _GEMM.

3.3 Parallel Versions of the BLAS

The increased granularity of higher Level BLAS also allows more efficient
parallelization because of a reduction in the synchronization overheads (Daydé
et al., 19944 and Amestoy, Daydé, Duff and Morere, 1995). A parallel version
of the Level 3 BLAS is easily obtained using the loop-level parallelism available
on most of the shared and virtual shared memory multiprocessors.

We have developed parallel versions of the Level 3 BLAS for two virtual
shared memory computers: the BBN TC2000 and the KSR1. On matrices of
order 1536, our SGEMM code executes at 150 Mflops on 24 processors on the
BBN TC2000, and it is possible to obtain 1320 Mflops with 72 processors on
the KSR1 for matrices of order 768 (Amestoy et al., 1995). The RISC BLAS
are used as the tuned serial codes.

Two additional libraries have been designed in order to make a parallel
BLAS available on message-passing systems: the BLACS (Basic Linear Algebra
Communication Subprograms, see Dongarra and Whaley, 1995) that are used as
a communication layer (on top of message passing libraries such as PVM, NX,
MPI, CMMD,..), and the PBLAS (Parallel Basic Linear Algebra Subprograms,
see Choi, Dongarra, Ostrouchov, Petitet, Walker and Whaley, 1995b).

We indicate, in Figure 3.8, the performance of the parallel matrix-matrix
product from PBLAS (we consider both the single and double precision kernels,
that is PSGEMM and PDGEMM respectively) on the MEIKO CS2-HA installed

10

DO 130, T = 1, N,KNB
NB_LIG_C=MIN(NB,N-I+1)

* Multiplication of diagonal block of C

IF (BETA.EQ.ZERO) THEN
DO J =1, NB_LIG_C
DO II =1, J
C(II+I-1,J+I-1)
ENDDO
ENDDO
ELSE
DO J = 1, NB_LIG_C
DO II =1, J
C(II+I-1,J+I-1)
ENDDO
ENDDO
END IF

ZERO

BETA*C(II+I-1,J+I-1)

DO 90, L=1,K,NB
NB_COL_A=MIN(NB,K-L+1)

IF ((MOD(NB_LIG_C,2).EQ.0).AND.(MOD(NB_COL_A,2) .EQ.0))THEN
CALL DSYRKL2X2(NB_LIG_C,NB_COL_A,ALPHA,

$ A(I,L),LDA,ONE,C(I,I),LDC)
ELSE
CALL DSYRKL(NB_LIG_C,NB_COL_A,ALPHA,
$ A(1I,L),LDA,ONE,C(I,I),LDC)
END IF
90 CONTINUE

NB_COL_C=N-NB_LIG_C-I+1
NB_COL_A=K

CALL DGEMM(‘N’,‘T’,NB_LIG_C,NB_COL_C,NB_COL_A,
$ ALPHA,A(I,1),LDA,A(I+NB_LIG_C,1),LDA,
$ BETA, C(I,I+NB_LIG_C),LDC)

130 CONTINUE

Figure 3.5: Part of the blocked code for DSYRK

11

600k “ O DSYRKstd
* DSYRK tuned
+ DSYRK lib.
500 X - Peak perf. .
400+ : , .
1)
o
(o]
[
= 300 X |
2001 ; , |
*
X X X %
+
100 o ¥ : X .
% i © X %
(\) | é | | é \o
DEC3000 DEC8400 HP 715 IBM 750 SGI POW SUN2050 CS2-HA

Computers

Figure 3.6: Average performance of DSYRK from RISC BLAS (“Upper”, “No
transpose”).

T
600 X O SSYRKstd |
¥ SSYRK tuned
+ SSYRKlib.
500 x. . Peak perf. - -
400 : : 8
[%2]
Q.
(o]
[
= 300 X i
P
200 : : |
*
X X %
100 ® i + X A
* x K o} X *
o ® o é 0
| | | | | | |
DEC3000 DEC8400 HP 715 Iﬁj/l 750 SGI POW SUN2050 CS2-HA
Computers

Figure 3.7: Average performance of SSYRK from RISC BLAS (“Upper”, “No
transpose”).

Perf. of P_GEMM from PBLAS on MEIKO CS2-HA, NX version of BLACS using RISC BLAS (nb=64)

1200 T T T T T T T T T
%
X Double prec., N=500 PR -
1000 | o Double prec., N=1000 - g 1
+ Single prec., N=500 e
* Single prec., N=1000 P
800 ~ o7 T
12
5
2 600F
=
400
200
O 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Number of processors

Figure 3.8: Performance of parallel matrix-matrix product from PBLAS on
MEIKO CS2-HA

13

at CERFACS, using square matrices of order 500 and 1000. The processor is a
100 Mhz HyperSPARC of peak performance equal to 100 MFlops. We use the
version of BLACS on top of the NX message passing library. The tuned serial
BLAS used is the RISC BLAS.

4 Solution of Full Linear Systems

4.1 Introduction

The BLAS can be used successfully in designing codes for the solution of the
linear system

Ax =b. (4.1)

when A is full.

The LAPACK library (Anderson, Bai, Bischof, Demmel, Dongarra, DuCroz,
Greenbaum, Hammarling, McKenney, Ostrouchov and Sorensen, 1992) uses
block algorithms as much as possible to take advantage of the higher level of
BLAS. LAPACK contains subroutines to solve systems of linear equations, linear
least-squares problems, eigenvalue problems, and singular value problems. It is
designed to give high efficiency on vector processors, RISC-based computers,
and shared memory multiprocessors.

4.2 Use of Parallel BLAS

We have used parallel versions of the BLAS mentioned in Section 3.3 to exploit,
in a transparent manner, parallelism in codes from the LAPACK Library on
shared and virtual shared memory computers (see Daydé and Duff, 1991 and
Amestoy et al., 1995).

The ScaLAPACK library (Choi, Demmel, Dhillon, Dongarra, Ostrouchov,
Petitet, Stanley, Walker and Whaley, 1995q) is an extension of LAPACK for
distributed memory computers. It illustrates the importance of building blocks
for reusing existing software as much as possible in the development of portable
and efficient codes. ScaLAPACK is based on the BLAS, LAPACK, PBLAS
and BLACS libraries. We show, in Figure 4.1, the performance of the LU,
Cholesky and QR factorizations from ScaLAPACK version 1.0 using both single
and double precision on relatively small matrices of order 1500 on the MEIKO
CS2-HA at CERFACS.

4.3 Blocked Eskow-Schnabel Modified Cholesky

Factorization

The modified Cholesky factorization modifies an indefinite matrix to obtain a
Cholesky factorization of a nearby positive definite matrix. It is an important

14

SCALAPACK on MEIKO CS2-HA, NX version of BLACS using RISC BLAS,N=1500

700 T T T
X LU Double - g
600 -
% LU Single .7
O LLT Double 7
500l | ¥ LLT Single 7 *
— QR Double -7
/
» — — QR Single
s
2 400
=
300
7,
_E LT
200y T
100 - 1 1 1 1 1 1 1
4 6 8 10 12 14 16 18 20

Number of processors

Figure 4.1: Performance of full matrix factorizations from ScaLAPACK on
MEIKO CS2-HA

15

computational kernel in optimization. It was introduced by Gill and Murray
(1974) and improved by Gill, Murray and Wright (1981) and more recently by
Eskow and Schnabel (19915, 1991a). It is particularly useful in optimization
algorithms —both in unconstrained and constrained optimization (Gill et al.,
1981)—to generate a descent direction when the Hessian matrix is not sufficiently
positive-definite. It is also used in some trust region techniques (see Dennis and
Schnabel, 1983, Schnabel, Koontz and Weiss, 1985), in the LANCELOT package
(Conn, Gould and Toint, 1992), and in sparse preconditioners (Schlick, 1993). It
has also been used to build Element-by-Element preconditioners for large scale
optimization applications (Daydé, L’Excellent and Gould, 19945, 1995).

We refer here to the Eskow-Schnabel Modified Cholesky Factorization. Let
A be a symmetric n-by-n, not necessarily positive-definite matrix, then the
Eskow-Schnabel factorization computes:

PT(A +E)P = LL”

where P is a permutation matrix and E is the n-by-n zero matrix if A is
sufficiently positive definite. Otherwise E is a non-negative diagonal matrix
chosen so that A + E is sufficiently positive-definite. There is no need to know
a priori if A is positive-definite and the matrix E is determined during the
factorization process. The Eskow-Schnabel Modified Cholesky Factorization
exhibits better properties in terms of computational costs and an a priori upper
bound on ||E||« than those described by Gill and Murray (1974) and Gill et al.
(1981).

4.3.1 The Eskow-Schnabel Modified Cholesky Factorization.

The Eskow-Schnabel Modified Cholesky factorization is based on a simple idea,
namely that once an approximation of the most negative eigenvalue of A is
determined (using the Gerschgorin circle theorem bounds), it is easy to compute
E as a diagonal matrix that shifts the most negative eigenvalue towards a
sufficiently positive value. Of course, it is desirable that the eigenvalues be
shifted towards the positive values by a quantity that is not substantially greater
than the most negative eigenvalue of A.

The algorithm for the Modified Cholesky Factorization is organized in two
phases. The first phase corresponds to a standard Cholesky factorization.
The algorithm switches to a second phase to perform a modified factorization
when the matrix is detected to be not sufficiently positive-definite. Its
main characteristic is that diagonal pivoting is used based on the maximum
diagonal element. When the matrix is found to be not positive-definite (some
diagonal element becomes non-positive), an approximation of the most negative
eigenvalue of A is computed using the Gerschgorin Circle Theorem bounds in
order to determine the amount to add to the diagonal of A. It is exactly the
Cholesky factorization if A is sufficiently positive-definite, and in that case the
number of flops of the modified factorization is the same as standard Cholesky

16

(%3 flops, plus order of n operations to precalculate the new diagonal entries).
When A is not sufficiently positive-definite, the cost of this factorization is at
most 2n? additions and "2—2 multiplications greater than the standard Cholesky
factorization.

The blocked version of the modified Cholesky factorization performs exactly
the same factorization as the original non-blocked one. It is designed in the
same way as other block algorithms (Anderson et al., 1992, Daydé and Duff,
1989, Daydé and Duff, 1991, and Dongarra, Duff, Sorensen and van der Vorst,
19914). It is organized using block columns of the matrix. At the k th step,
the block column k is factorized using Level 1 and Level 2 BLAS with an
unblocked algorithm derived from the standard Eskow-Schnabel factorization.
The subsequent updates are effected using Level 3 BLAS. Of course the diagonal
pivoting and update of Gerschgorin bounds complicate things since this implies
that the diagonal values and the bound estimates must be updated after each
column factorization. Also, the switch from Phase 1 to Phase 2 may imply
stopping the factorization of a block column to perform all updates resulting
from the last steps in Phase 1 before moving to Phase 2. More details can be
found in Daydé (1996).

4.3.2 Numerical Experiments.

We report on experiments on 3 types of full matrices built using the genmat
procedure available in the software from Eskow and Schnabel. This generates a
random matrix that has eigenvalues in a range of prescribed values: matrix of
type 1 has eigenvalues in the range -1. to 100, matrix of type 2 has eigenvalues
in the range -10000. to -1, and matrix of type 3 has eigenvalues in the range 1.
to 10.

We show, in Table 4.1, the performance of the Level 1 and Level 2
BLAS version of the Modified Cholesky factorization (called dsymd2) and the
performance of the block version (called dsymdf) on two RISC workstations:
the HP 715/64 and the IBM RS/6000-750. We give the performance achieved
using different block sizes (16, 32, and 64) and for matrices of order 100 and 500.
We also give the peak performance in MFlops of each computer in parentheses.
We use the manufacturer-supplied BLAS on these computers. We observe that
the blocked factorization is at least twice as fast as the unblocked one. The codes
described here are available using ftp anonymous to ftp.enseeiht.fr in directory
pub/numerique/ MODCHOL.

17

Computer Order | Type dsymd?2 dsymdf
16 | 32 | 64
HP 715/64 100 1 8.3 16.7 | 16.7 | 33.3
2 8.3 11.1 | 16.7 | 33.3
(128 MFlops) 3 8.3 16.7 | 16.7 | 16.7
500 1 4.2 177 | 184 | 14.9
2 4.2 17.6 | 18.3 | 14.8
3 4.2 17.8 | 18.5 | 14.9
IBM RS/6000-750 100 1 16.7 33.3 | 16.7 | 33.3
2 16.7 33.3 | 33.3 | 33.3
(125 MFlops) 3 16.7 33.3 | 33.3 | 16.7
500 1 19.3 46.8 | 43.9 | 46.8
2 20.0 448 | 45.8 | 41.3
3 19.2 47.3 | 48.4 | 43.8

Table 4.1: Performance in MFlops of the double precision Modified Cholesky
Factorization.

18

5 Use of Level 3 BLAS in the Direct Solution
of Sparse Linear Systems

We refer to the studies of Amestoy and Duff (Amestoy and Duff, 1989,Amestoy,
1991, Amestoy and Duff, 1993,Amestoy et al., 1995) on the sparse LU
factorization of square matrices on shared memory multiprocessors. They use
a multifrontal approach for the factorization. Further background on this
approach can be obtained from the original papers by Duff and Reid (1983,
1984).

In a multifrontal method, the sparse factorization proceeds by a sequence
of factorizations on small full matrices, called frontal matrices. The ordering
for the sequence of computations and the frontal matrices are determined by
a computational tree, called assembly tree, where each node represents a full
matrix factorization and each edge the transfer of data from child to parent
node. This assembly tree is determined from the sparsity pattern of the matrix
and from a reordering that reduces the fill-in during the numerical factorization
(such as the minimum degree ordering that we use here). During the numerical
factorization, eliminations at any node can proceed as soon as those at the
child nodes have completed and the resulting contributions from the children
have been summed (assembled) with data at the parent node. This is the only
synchronization that is required and means that operations at nodes that are not
ancestors or dependants are completely independent. The parallelism resulting
from this observation will be referred to as tree parallelism.

We note that the factorization at each node is done using full linear algebra
and direct addressing so that factorization computations within a node can use
the BLAS. All the indirect addressing is confined to the assembly process.

Amestoy and Duff have developed a parallel multifrontal code for the solution
of symmetrically structured unsymmetric equations (Amestoy and Duff 1989,
Amestoy 1991, Amestoy and Duff 1993, Amestoy et al. 1995). Recently, a library
version of the experimental code called MUPS, has been included in Release 12
of the Harwell Subroutine Library (HSL, 1996). This HSL code is called MA41,
and the results in this section are from runs with this code.

During the LU factorization, if only the tree parallelism is exploited, the
speed-up is very disappointing. The actual speed-up depends on the problem
but is typically only 2 to 3 irrespective of the number of processors. This poor
performance is caused by the fact that the tree parallelism decreases as the
computation proceeds towards the root of the tree. Moreover, Amestoy and
Duff (1993) have observed that typically 75% of the work is performed in the
top three levels of the assembly tree. It is thus necessary to obtain further
parallelism within the large nodes near the root of the tree by using parallel
versions of the BLAS in the factorizations within the nodes. Amestoy and Duff
call this node parallelism. When both tree and node parallelism are combined
the situation becomes much more encouraging.

19

In Table 5.1, we show typical performance of MA41 for a range of RISC-based
computers. The RISC BLAS is used on the DEC and the MEIKO and the
manufacturer-supplied one in the other cases. A medium size sparse matrix,
BCSSTK15 from the Harwell-Boeing set (Duff, Grimes and Lewis, 1992), is
used in this table. This is a matrix of order 3948 with 117816 nonzeros from
a structural analysis application. A minimum degree ordering is used and the
number of floating-point operations for the factorization is 443 million. The
performance achieved by MA41 is usually more than 60% of that of DGEMM.

Peak perf. DGEMM MA41

Computer Mflops Mflops Mflops
DEC 3000/400-AXP 133 49 34
HP 715/64 128 55 30
IBM RS6000/750 125 101 64
IBM SP2 (thin node) 266 213 122
MEIKO CS2-HA 100 43 31

Table 5.1: Performance summary of the multifrontal LU factorization MA41 on
matrix BCSSTK15 on a range of RISC processors. The average performance of
DGEMM is also shown (averaged over square matrices of order 32, 64, 96, and
128).

Although we have concentrated in this section on the use of higher level
BLAS in a multifrontal method designed for symmetrically structured sparse
matrices, the use of such computational kernels in sparse direct codes is now
very widespread and is arguably the main contributor to the efficiency of modern
codes for the direct solution of sparse equations. They have also been used
in, for example, the multifrontal factorization of unsymmetric matrices (Davis
and Duff 1993) and in supernodal codes for unsymmetric problems (Demmel,
Eisenstat, Gilbert, Li and Liu 1995). A fuller discussion on the use of high level
computational kernels in sparse direct methods can be found in Duff (1996).

6 Solution
of Partially Separable Linear Systems Using
Element-by-Element Preconditioners

6.1 Introduction

We study the solution of large unassembled partially separable systems by
methods that aim to exploit their inherent structure. In particular, we consider

20

the linear systems that arise from the minimization of the partially separable
(Griewank and Toint, 1982) objective function

fx) =D fixh), (6.1)

where each set of local variables, x* € R®™, is a subset of the global variables,
x € R", and n; K n.

In unconstrained optimization, we often require an (approximate) solution,
d, to the Newton equations

V:c:cf(x)d = _vwf(x) (62)

When f has the form (6.1), equation (6.2) can be expressed as

The Hessian matrix of each f; is a low-rank, sparse matrix. The overall Hessian
is thus frequently also sparse. Putting this in a more general context, we consider
the solution of structured systems of linear equations of the form

Ax =b, (6.4)

where »
A=A, (6.5)
=1

and A is large and normally positive definite. Similar linear systems arise
when solving constrained optimization problems using augmented Lagrangian
methods, and, of course, when using finite-element methods to solve elliptic
partial differential equations.

Although direct methods may be appropriate for solving (6.4), we consider
here the use of the conjugate gradient method combined with Element-by-
Element preconditioners. Additionally, we show that amalgamating elements
before constructing such a preconditioner can dramatically improve the speed
and numerical behaviour of the method.

6.2 Element-by-Element Preconditioners

Element-By-Element (EBE) preconditioners were introduced by Hughes, Levit
and Winget (1983) and Ortiz, Pinsky and Taylor (1983) and have been
successfully applied in a number of applications in engineering and physics (see,
for example, Hughes, Ferencz and Hallquits (1987), and Erhel, Traynard and
Vidrascu (1991)). A detailed analysis of this technique is given by Wathen

21

(1989). These preconditioners have some nice features. They can be computed
element-wise and most of them do not require assembly. Furthermore, they
permit efficient parallelization.

We describe here only the EBE preconditioner since, in our experience, this
is one of the most promising. Further details can be found in Daydé et al.
(1994b).

Assuming that A is positive definite, we may rewrite A as:

/4

A= iMﬁ-i(Az’ —M;) =M+) (A; - My), (6.6)

i=1

where M; = diag(A;) and M = Y% M;. Now, let M = L, L% be the
Cholesky factorization of M (Ljy is simply a diagonal matrix). Then,

p
A=L, <I+ > Lyt (Ai - MLy,) Ll =L, <I+ ZEZ) LY, (6.7)
i=1 i=1

where E; = Ly (A; — M;)L;/. Using the approximation T + P E
?_1(I+E;), we obtain:

Q

/4
A~ Ly [[@+E;)Lj;. (6.8)

i=1

A further approximation gives the EBE preconditioner

Pppr =Ly, (H L;) (H D;) f[L7 | LT, (6.9)

i=1 i=p

where the L; and D; factors come from the LDLT factorization of the matrices
I+ E; (also known as the Winget decomposition).

Clearly, the efficiency of the EBE preconditioner depends on the the
partitioning of the initial matrix and on the magnitude of the off-diagonal
elements of the elementary matrices. As the decomposition of A is, in general,
not unique, different decompositions may significantly affect the performance of
the preconditioner.

6.3 Preprocessing of Unassembled Linear Systems

The effectiveness of the preconditioner depends crucially on the overlap between
elements. Daydé et al. (1994b) show that amalgamating elements before
constructing such a preconditioner can dramatically improve the speed and
numerical behaviour of the method. The amalgamation process typically
reduces the overlap between elements, and it is this that leads to improvements
in performance.

22

Our preprocessing step consists of grouping the elements into sets,
assembling the elements within each set into a super-element, and then applying
an Element-by-Element technique to the super-elements instead of the original
A;. Although, as we have already said, we focus on the use of the EBE
preconditioner, most of the conclusions are true for the other ones.

6.3.1 Amalgamation Algorithm.

A variety of amalgamation techniques are considered in detail by Daydé et al.
(1994b). Here, we only consider the most successful of these.

Let G; denote an element, V; denote the set of indices of variables used by
the element G;, and |V;| denote the cardinal of V;. Let tim(¢) refer to the time
spent:

e in a matrix-vector product of order ¢ for the diagonal (DIAG)
preconditioner (strategy amalgl in Table 6.2); or

¢ in a matrix-vector product and in two triangular solves of order ¢ for the
EBE preconditioner (strategy amalg2 in Table 6.2).

The amalgamation process we have used computes the benefit
b(Gs, G;) = tim(|Vi]) + tim(|V;]) — tim(]V: U V}), (6.10)

for all pairs of elements and amalgamates the pair with the largest benefit so
long as it is larger than a threshold value.

We note that tim(i) only depends on 4 and can be computed once and for
all. These machine-dependent costs are stored in files and determined during
the installation of the software. If we are only interested in reducing the time
per iteration, the best value for the threshold would be zero, but negative values
will result in further amalgamations and, hence, possibly better preconditioners.

6.4 Numerical Experiments

We describe, in Table 6.1, a set of test matrices that will be used in our
experiments. 7 is the order of the matrices, p the number of elements, and
£ the condition number. The matrices come either from the Harwell-Boeing
collection, see Duff et al., 1992 (CEGB2802), or are problems in SIF format from
the CUTE collection, see Bongartz, Conn, Gould and Toint, 1993 (CBRATU3D,
NOBNDTOR, and NET3).

The pattern of CEGB2802 arises from a structural engineering problem,
NOBNDTOR is a quadratic elastic torsion problem arising from an obstacle
problem on a square, NET3 is a very ill-conditioned example from the
optimization of a high-pressure gas network, and CBRATU3D is obtained by
discretizing a complex 3D PDE problem in a cubic region.

23

Min Max Mean Degree
Problem n P elt elt elt of K
name size size size overlap
CBRATU3D 4394 4394 5 8 7.5 7.5 3.4 x 101
CEGB2802 2694 108 42 60 58.7 2.4 5.7 x 10*
NET3 512 531 1 6 2.6 2.7 2.4 x 10°
NOBNDTOR 480 562 1 5 4.2 4.9 1.8 x 10?

Table 6.1: Summary of the characteristics of each test problem

One important characteristic is the degree of overlap. It is defined as the
average number of elements sharing each variable and is an indicator as to how
well Element-by-Element preconditioners will behave.

In practice, we use a Modified Cholesky factorization close to the one
described in Section 4.3 to guarantee that the preconditioners are positive
definite.

Detailed results of amalgamation for various preconditioners can be found
in Daydé et al. (1994b, 1995, and 1996). These results indicate that
Element-by-Element preconditioners are effective in terms of the numbers of
iterations required and the clustering of eigenvalues of the preconditioned
Hessian, particularly if the overlap between blocks is small. But, except for
ill-conditioned problems, EBE is not significantly more efficient than diagonal
preconditioning. One reason is because of the structure of the elements.
When there is low overlap, EBE appears much more efficient than diagonal
preconditioning. Amalgamating elements may reduce the number of iterations
by decreasing the degree of overlap in the new partition.

We show, in Table 6.2, the effect of amalgamating elements for diagonal and
EBE preconditioning with a threshold equal to 0 for runs on an HP 715/64. The
solution time, #5447, includes the time for computing the preconditioner and the
time for iterating to convergence. The time for computing the preconditioners
(both diagonal and EBE) is negligible on all the problems (less than 0.03
seconds) except when using EBE on CBRATU3D and CGEB2002 where it is
around 0.5 and 0.7 seconds respectively.

Large gains in execution time are obtained using amalgamation when the
elements are initially small and overlap significantly. With amalgamation,
EBE is more efficient than diagonal preconditioning as soon as the problem
is sufficiently hard to solve. For diagonal preconditioning, the gains from
amalgamation are due to the better execution rates whereas, for EBE, the gains
are due both to a better execution rate and a smaller number of iterations.

The amalgamation procedure is currently rather costly, but it is hoped that
good heuristics will decrease this preprocessing cost with roughly the same effect.

24

Avg Diagonal EBE

Problem Amalg. Amalg. P size
time elt Fits tsol MF F#its tsol MF
CBRATU3D none 4394 7.5 53 3.5 9.5 20 5.1 4.6
amalgl 4.9 3400 9.1 53 3.5 10.7 23 5.6 5.6
amalg?2 8.0 1950 14.0 53 3.8 13.0 24 5.8 7.6
CEGB2802 none 108 58.7 661 31.3 16.7 120 15.6 12.4
amalgl 0.2 108 58.7 661 31.5 16.6 120 16.0 12.1
amalg2 0.2 106 59.4 660 31.7 16.5 111 14.6 12.3
NET3 none 538 2.6 1559 5.2 4.9 723 8.7 1.9
amalgl 0.1 143 5.6 1580 3.2 8.8 268 1.5 4.9
amalg2 0.2 57 11.1 1668 3.2 12.2 216 1.0 8.7
NOBNDTOR none 562 4.2 68 0.3 7.2 30 0.5 3.0
amalgl 0.2 107 11.7 68 0.2 | 13.4 36 0.3 8.2
amalg?2 0.3 57 17.3 68 0.3 15.3 32 0.3 9.8

Table 6.2: Comparison of DIAG and EBE preconditioners without
amalgamation and with amalgamation strategies amalgl and amalg2 on HP
715/64. Amalg. time is the time for performing the symbolic amalgamation
plus the numerical assembly of the super-elements. p is the number of elements
and MF is the performance expressed in Mflops.

As we may have to solve many systems with the same structure in the course
of a nonlinear optimization calculation, a good preprocessing step may pay
handsome dividends in the long run.

6.4.1 Use of Sparse Storage.

When using such an algorithm, the super-elements are stored as full matrices
and thus some zeros may be explicitly stored. The density of the super-elements
depends on the structure of the initial elements and, because of the dependence
of the amalgamation on tim(.), also on the target computer. For example, on an
ALLIANT FX/80 vector computer using a threshold equal to zero, we typically
obtain elements with a density around 0.3, which is quite large for the elements
to be treated as sparse. On RISC architectures, the density of the elements
obtained can be larger, since the amalgamation process is stopped earlier (long
vectors are not required for efficiency as on a vector processor). However, we
have suggested that continued amalgamation is often beneficial to the quality
of the preconditioner, and this results in a reduction in the density of the super-
elements. Thus it may well be advantageous to use a sparse representation of
the super-elements. We define the average density to be the ratio

_1Nnz;
a= S50 (6.11)
1= 1

25

where p is the number of elements, nz; is the number of nonzero entries in
element ¢, and s; is the number of variables in the element 4.

In Table 6.3, we show the construction time and the time spent in the
solves of the EBE preconditioner using both full and sparse storage of the
super-elements for the test problem NET3. As matrix-vector products and
dot-products are performed in the same way in both cases — using the full
initial elements, the construction time and the time spent in the solves are
the more meaningful parameters to compare. When using sparse storage, the
factorization of the Winget decomposition of each super-element is obtained
using the sparse symmetric solver MA27 (Duff and Reid, 1983) from the Harwell
Subroutine Library. We compare two different orderings for the elimination of
the variables: the minimum degree ordering and the natural ordering of the
elements. Except for very small and full elementary matrices, it appears that
minimum degree is always better.

Dense storage Sparse storage

Min. deg. Nat. ord.
Nb | Avg Avg # Cons. Time # Cons. Time Cons. Time
Thresh. elt size dens. its time solve its time solve time solve
0.01 465 2.7 1.00 684 0.01 3.58 675 0.14 6.49 0.12 6.49
0.0 104 7.0 0.51 243 0.02 0.76 231 0.07 1.29 0.06 1.29
-0.00004 52 | 11.9 0.34 187 0.02 0.75 183 0.07 0.87 0.05 1.02
-0.00012 39 | 15.1 0.26 142 0.02 0.63 138 0.06 0.63 0.06 0.79
-0.0002 29 | 19.6 0.19 123 0.02 0.69 122 0.06 0.54 0.07 0.76
-0.001 19 | 28.7 0.11 87 0.04 0.71 84 0.06 0.36 0.08 0.64
-0.004 13 | 40.9 0.06 57 0.07 0.87 58 0.06 0.23 0.16 0.63
-0.02 9 | 57.6 0.02 17 0.22 0.65 16 0.06 0.08 0.77 0.41
-1000.0 8 | 64.0 0.01 1 0.66 0.14 1 0.07 0.02 2.35 0.06

Table 6.3: Results of amalgamation obtained for the problem NET3 using
different thresholds on a SPARC-10 workstation using full and sparse kernels in
the the factorizations and triangular solves.

The sparse storage becomes more efficient than full storage for threshold
values smaller than -0.00012, which corresponds to a density smaller than 0.26.
This is especially true for the triangular systems for which there is less overhead
using sparse storage than for the factorization.

If we consider a vector computer, such as the ALLIANT FX/80,
amalgamation is useful with full super-element storage. But again, there is
a significant overhead in using sparse elements since the number of iterations is
initially small and not significantly reduced by amalgamation, and because of
the large amount of fill-in during the factorizations. Therefore, in this case, we
prefer to use long vectors rather than sparse elements.

When solving a well conditioned problem, sparse elements do not appear to
be very useful. For an ill-conditioned problem, amalgamation often reduces the

26

number of iterations. Sparse elements can then be effective provided a lot of
amalgamation occurs. We believe that the main use of sparse super-elements is
in those large scale ill-conditioned problems for which direct factorization gives
rise to too much fill-in.

Element-by-Element preconditioners may be extremely effective for sparse
structured systems of linear equations that arise in partial differential equations
and partially separable nonlinear optimization applications. Furthermore, they
seem to offer great possibilities of vectorization /parallelization on multiprocessor
architectures. They also allow for the use of efficient computational kernels
such as the BLAS and blocked factorizations. @~ We believe that further
experimentation is necessary to assess the full potential of the methods. The
amalgamation technique can also be applied to other Element-by-Element
preconditioners or to block methods.

7 The Sparse BLAS

Dodson, Grimes and Lewis (1991) proposed a sparse extension of the BLAS
some years ago, but this only considered the Level 1 BLAS for vector-vector
operations, such as a sparse SAXPY. In keeping with the theme of this paper, we
do not discuss these kernels here but concentrate instead on proposals for sparse
extensions to higher level BLAS that offer the promise of providing efficient
building blocks in a similar fashion to the full kernels discussed earlier.

It is important to stress at the outset that such kernels are not designed
for use within sparse direct codes. Indeed it is firmly our belief that the most
efficient way to design sparse direct codes is to remove all indirect addressing
from the innermost loop and to use full BLAS for the actual elimination
operations as we indicated in Section 5. Instead, we envisage the most common
use of the sparse BLAS kernels in the iterative solution of sparse equations, and
we illustrate such use in Section 7.2.

7.1 Definition of Sparse BLAS

We concentrate here on the User Level definition of the higher level sparse
BLAS as defined by Duff, Marrone, Radicati and Vittoli (1995). The actual
implementation for a particular data structure on a particular architecture
would be performed using the lower level toolkit codes of Carney, Heroux and
Li (1993).

The proposal of Duff et al. (1995) defines standard interfaces for the following
functions:

(1) a routine for performing the product of a sparse and a dense matrix,

(2) a routine for solving a sparse upper or lower triangular system of linear
equations for a matrix of right-hand sides,

27

(3) a routine to check the input data, to transform from one sparse format to
another, and to scale a sparse matrix, and

(4) a routine to permute the columns of a sparse matrix and a routine to
permute the rows of a full matrix.

We note that (1) and (2) define an extension of the Level 3 BLAS, but they
include operations on vectors as a trivial subset. These may be coded separately
at the machine dependent level.

The data preprocessing routine (3) is essential to this proposal. It is intended
that this routine be called before the body of the computation. The interface
is designed to accept many different data formats and produce many others. In
particular, it can interrogate the machine it is running on and transform the
data into a format that is particularly suited for that machine.

Many algorithms require the permutation of matrices. Additionally, some
efficient implementations of sparse matrix-vector products, and of the solution
of sparse triangular systems on vector or parallel processors, require the vectors
to be reordered. If high efficiency is required, it is necessary to avoid explicit
vector permutations in the inner loops and, to enable this, routines have been
added (4) to permute sparse matrices and full matrices appropriately. The
permutation routines can also be called outside the body of the computation in
order to increase efficiency by avoiding permutations within the main loop of
the algorithm. This facility is discussed more by Duff et al. (1995).

Although the routines in (3) and (4) are an integral and important part of
the proposal, we will here confine ourselves to a further discussion of the routines
in (1) and (2).

The main additional issue for the sparse case over the dense one lies in the
data format used for the matrices. In the sparse case, there are many different
formats which are chosen as natural for the application, for compactness, for
clarity, or for efficiency. Indeed, the data structure used may change depending
on which criterion is emphasized.

In a Fortran 77 environment, we choose to represent the sparse matrix using
no less than six arrays in order to accommodate most commonly used data
formats. The principal arrays are the real entries and two integer arrays which
may, for example, hold the row and column indices of the respective entries if
a coordinate storage scheme were being used. In the following, these arrays
are designated by A, TA1, and TIA2. A character string, FIDA, indicates the
storage scheme being used (for example, FIDA = “COQ?” for coordinate format)
and a character array, DESCRA, gives attributes of the matrix (for example,
symmetry, triangularity). Finally, a further short integer array, INFOA, supplies
further information concerning the matrix, for example the number of entries in
the case of the coordinate scheme. In the Fortran 90 environment, also defined
by Duff et al. (1995), all these arrays are included in a derived data type to
which is also added left and right permutation arrays, PL and PR, respectively.

28

This Fortran 90 derived data type is shown in Figure 7.1. The sparse matrix
has order M by K.

MODULE TYPESP
TYPE SPMAT
INTEGER M,K
CHARACTER#*5 FIDA
CHARACTER*1 DESCRA(10)
INTEGER INFOA(10)
DOUBLE PRECISION,POINTER :: A(:)
INTEGER,POINTER :: IA1(:),IA2(:),PL(:),PR(:)
END TYPE SPMAT
END MODULE TYPESP

Figure 7.1: Fortran 90 derived data type for sparse matrices

With this definition of a sparse matrix, the routines for the matrix-matrix
products in (1), which are defined by

e C + aPRrAP:B + C
o C «+ aPrATP-B + BC

and for solving triangular systems of equations with multiple right-hand sides
in (2), which are defined by

o C «— aDPRT'P-B + 8C

o C < aDPRT-TP:B + 3C

e C « aPrT~'Pc:DB + 8C

o C + aPrT-TP-DB + 3C
where

e A is a sparse matrix

e T is a triangular sparse matrix

e B and C are dense matrices

e D is a diagonal matrix

e Pp and Pg are permutation matrices

e « and [are scalars,

are as shown in Figures 7.2 and 7.3 respectively.

29

_CSMM (TRANS, M, N, K, ALPHA, PR, FIDA, DESCRA, A, IA1, IA2, INFOA, PC,
B, LDB, BETA, C, LDC, WORK, LWORK, IERROR)

TRANS = ‘N’ | TRANS = ‘T’ |

C+ aPr APs B+ p8C | C+ aPr AT Pc B+ C

Figure 7.2: _.CSMM, sparse matrix times dense matrix kernel

_CSSM(TRANS, M, N, ALPHA, UNITD, D, PR, FIDT, DESCRT, T, IT1, IT2, INFOT,
PC, B, LDB, BETA, C, LDC, WORK, LWORK, IERROR)

| TRANS = ‘N’

TRANS = ‘T’

UNITD = ‘U’
UNITD = ‘I’
UNITD = ‘R’
UNITD = ‘B’

C+aPrT ! Pc:B+pC
C+«+aPr DT ! Pc B+3C
C+ aPrT™' D Po B+ pC
C « aPrD:T 'D3P:B + AC

C+aPrT T P: B+p3C
C+aPr DTT P: B+C
C+aPrT T D P: B+pC
C « aPrD3T TD3P:B + C

Figure 7.3: _CSSM, solution of sparse triangular systems of equations

30

7.2 Use in Iterative Methods

As we mentioned earlier, the primary reason for the design of the sparse high
level BLAS is for use in the iterative solution of sparse linear equations. We note
that our proposal will fit equally well whether the iterative software performs
a call to a matrix-vector multiply routine or whether reverse communication is
used since in either case a call can be made to a given sparse matrix-full matrix
multiplication routine; the call is made by the routine in the former case and
by the user in the latter.

We feel that the best interface for iterative solvers, particularly for flexibility
and efficiency is to use reverse communication so that the typical use of our
sparse BLAS within an iterative solver would be as indicated in the skeleton
code in Figure 7.4.

8 Conclusion

The studies described in this paper demonstrate how portable and efficient
mathematical software can be designed on high performance computers by
making heavy use of computational kernels. The main computational kernels
that we consider are the Level 3 BLAS, and we show how they can be used,
not only in the solution of full systems of linear equations but also in the direct
solution of sparse equations. For the iterative solution of sparse equations, we
show how advantage can be taken of full blocks within an Element-by-Element
preconditioner and how an extension of the BLAS for sparse matrices can be
used in the iterative solution code.

Acknowledgements

The authors are very grateful to Patrick Amestoy and Jérome Décamps for their
support in getting some of the results displayed in the paper.

31

Perform an iteration of the BiConjugate Gradient method

IFLAG = 0
DO 10 ITER=1, MAXIT

Call to solve routine
CALL SOLVER(IFLAG,

Successful termination
IF (IFLAG.EQ.1) THEN
GO TO 20
END IF

Error return
IF (IFLAG.LT.0) THEN
GO TO 30
END IF

IF (IFLAG.EQ.2) THEN
Perform the matrix-vector product
CALL DCSMM(.....
GO TO 10
END IF

IF (IFLAG.EQ.2) THEN
Perform the preconditioning operation
CALL DCSSM(.....
GO TO 10
END IF

10 CONTINUE

Code to handle successful termination
20

Code executed if error returns
30

Figure 7.4: Use of kernels in iterative solution of sparse equations

32

References

Amestoy, P. R. (1991), Factorization of large sparse matrices based on a
multifrontal approach in a multiprocessor environment, Phd thesis, Institut
National Polytechnique de Toulouse. Available as CERFACS report
TH/PA/91/2.

Amestoy, P. R. and Duff, 1. S. (1989), ‘Vectorization of a multiprocessor
multifrontal code’, Int. J. of Supercomputer Applics. 3, 41-59.

Amestoy, P. R. and Duff, I. S. (1993), ‘Memory allocation issues in sparse
multiprocessor multifrontal methods’, Int. J. of Supercomputer Applics.
7, 64-82.

Amestoy, P. R., Daydé, M. J., Duff, I. S. and Morere, P. (1995), ‘Linear algebra
calculations on a virtual shared memory computer’, Int Journal of High
Speed Computing 7, 21-43.

Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., DuCroz, J.,
Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S. and
Sorensen, D. (1992), LAPACK Users’ Guide., STAM.

Bodin, F. and Seznec, A. (1994), Cache organization influence on loop blocking,
Technical Report 803, IRISA, Rennes, France.

Bongartz, I., Conn, A. R., Gould, N. I. M. and Toint, P. L. (1993), CUTE:
Constrained and Unconstrained Testing Environment, Technical Report
TR/PA/93/10, CERFACS, Toulouse, France.

Carney, S., Heroux, M. A. and Li, G. (1993), A proposal for a sparse BLAS
toolkit, Technical Report TR/PA/92/90 (Revised), CERFACS, Toulouse,
France.

Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrouchov, S., Petitet, A.,
Stanley, K., Walker, D. and Whaley, R. C. (19954), ScaLAPACK: A
portable linear algebra library for distributed memory computers - design
issues and performance, Technical Report LAPACK Working Note 95, CS-
95-283, University of Tennessee.

Choi, J., Dongarra, J., Ostrouchov, S., Petitet, A., Walker, D. and Whaley, R. C.
(1995b), A proposal for a set of parallel basic linear algebra subprograms,
Technical Report LAPACK Working Note 100, CS-95-283, University of
Tennessee.

Conn, A. R., Gould, N. I. M. and Toint, P. L. (1992), LANCELOT: o Fortran
package for large-scale monlinear optimization (Release A), number 17
in ‘Springer Series in Computational Mathematics’, Springer Verlag,
Heidelberg, Berlin, New York.

33

Davis, T. A. and Duff, I. S. (1993), An unsymmetric-pattern multifrontal
method for sparse LU factorization, Technical Report RAL 93-036,
Rutherford Appleton Laboratory.

Daydé, M. J. (1996), A block version of the eskow-schnabel modified cholesky
factorization, Technical Report RT/APO/95/8, ENSEEIHT-IRIT.

Daydé, M. J. and Duff, I. S. (1989), ‘Level 3 BLAS in LU factorization on
the CRAY-2, ETA-10P and IBM 3090-200/VEF’, Int. J. of Supercomputer
Applics. 3, 40-70.

Daydé, M. J. and Duff, I. S. (1991), ‘Use of level 3 BLAS in LU factorization
in a multiprocessing environment on three vector multiprocessors, the
ALLIANT FX/80, the CRAY-2, and the IBM 3090/VF’, Int. J. of
Supercomputer Applics. 5, 92-110.

Daydé, M. J. and Duff, I. S. (1996), A block implementation of level 3 BLAS
for RISC processors, Technical Report RT/APO/96/1, ENSEEIHT-IRIT.

Daydé, M. J., Duff, I. S. and Petitet, A. (1994a), ‘A parallel block
implementation of Level 3 BLAS kernels for MIMD vector processors’,
ACM Transactions on Mathematical Software 20, 178-193.

Daydé, M. J., L’Excellent, J. Y. and Gould, N. I. M. (1994b), On the
use of element-by-element preconditioners to solve large scale partially
separable optimization problems, Technical report, ENSEEIHT-IRIT,
Toulouse, France. RT/APO/94/4, to appear in STAM Journal on Scientific
Computing.

Daydé, M. J., L’Excellent, J. Y. and Gould, N. I. M. (1995), Solution
of structured systems of linear equations using element-by-element
preconditioners, in ‘Proceedings 2nd IMACS International Symposium on
Iterative Methods in Linear Algebra’, pp. 181-190. also ENSEEIHT-IRIT
Technical Report, RT/APO/95/1.

Daydé, M. J., L’Excellent, J. Y. and Gould, N. I. M. (1996), Preprocessing of
sparse unassembled linear systems for efficient solution using element-by-
element preconditioners, in ‘Proceedings of Euro-Par 96, Lyon’. To appear.

Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S. and Liu, J. W. H.
(1995), A supernodal approach to sparse partial pivoting, Technical Report
UCB//CSD-95-883, Computer Science Division, U. C. Berkeley, Berkeley,
California.

Dennis, J. and Schnabel, R. (1983), Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice Hall, Englewood Cliffs,
N.J.

34

Dodson, D. S., Grimes, R. G. and Lewis, J. G. (1991), ‘Sparse extensions to
the Fortran Basic Linear Algebra Subprograms’, ACM Transactions on
Mathematical Software 17, 253-263.

Dongarra, J. and Whaley, R. C. (1995), A users’ guide to the blacs, Technical
Report CS-95-281, University of Tennessee, Knoxville, Tennessee, USA.

Dongarra, J. J. (1992), Performance of various computers using standard linear
algebra software, Technical Report CS-89-85, University of Tennessee,
Knoxville, Tennessee, USA.

Dongarra, J. J. and Grosse, E. (1987), ‘Distribution of mathematical software
via electronic mail’, Comm. ACM 30, 403—-407.

Dongarra, J. J., Du Croz, J., Duff, I. S. and Hammarling, S. (1990),
‘Algorithm 679. a set of Level 3 Basic Linear Algebra Subprograms.”, ACM
Transactions on Mathematical Software 16, 1-17.

Dongarra, J. J., Duff, I. S., Sorensen, D. C. and van der Vorst, H. A. (1991a),
Solving Linear Systems on Vector and Shared Memory Computers, STAM,
Philadelphia.

Dongarra, J. J., Mayes, P. and Radicati di Brozolo, G. (1991b), Lapack working
note 28 : The IBM RISC System/6000 and linear algebra operations,
Technical Report CS-91-130, University of Tennessee.

Duff, I. S. (1996), Sparse numerical linear algebra: direct methods and
preconditioning, Technical Report RAL 96-047, Rutherford Appleton
Laboratory. Also CERFACS Report TR-PA-96-22.

Duff, I. S. and Reid, J. K. (1983), ‘The multifrontal solution of indefinite sparse
symmetric linear systems’, ACM Transactions on Mathematical Software
9, 302-325.

Duff, I. S. and Reid, J. K. (1984), ‘The multifrontal solution of unsymmetric sets
of linear systems’, SIAM Journal on Scientific and Statistical Computing
5, 633-641.

Duff, I. S., Grimes, R. G. and Lewis, J. G. (1992), Users’ guide for the Harwell-
Boeing sparse matrix collection (Release I), Technical Report RAL 92-086,
Rutherford Appleton Laboratory.

Duff, I. S., Marrone, M., Radicati, G. and Vittoli, C. (1995), A set of Level 3
Basic Linear Algebra Subprograms for sparse matrices, Technical Report
TR-RAL-95-049, RAL.

Erhel, J., Traynard, A. and Vidrascu, M. (1991), ‘An element-by-element
preconditioned conjugate gradient method implemented on a vector
computer’, Parallel Computing 17, 1051-1065.

35

Eskow, E. and Schnabel, R. B. (1991a), ‘Algorithm 695: Software for a
new modified cholesky factorization’, ACM Transactions on Mathematical
Software 17, 306-312.

Eskow, E. and Schnabel, R. B. (19915), ‘A new modified cholesky factorization’,
SIAM Journal on Scientific and Statistical Computing 11, 1136-1158.

Gallivan, K., Jalby, W. and Meier, U. (1987), ‘The use of blas3 in linear algebra
on a parallel processor with a hierarchical memory’, STAM J. Sci. Stat.
Comput. 8, 1079-1084. Timely communications.

Gallivan, K., Jalby, W., Meier, U. and Sameh, A. (1988), ‘Impact of hierarchical
memory systems on linear algebra algorithm design’, Int Journal of
Supercomputer Applications 2(1), 12-48.

Gill, P. and Murray, W. (1974), ‘Newton-type methods for unconstrained and
linearly constrained optimization’, Mathematical Programming 28, 311—
350.

Gill, P., Murray, W. and Wright, M. (1981), Practical Optimization, Academic
Press, London and New York.

Griewank, A. and Toint, P. L. (1982), On the unconstrained optimization
of partially separable functions, in M. J. D. Powell, ed., ‘Nonlinear
Optimization’, Academic Press, London and New York.

HSL (1996), Harwell Subroutine Library. A Catalogue of Subroutines (Release
12), AEA Technology, Harwell Laboratory, Oxfordshire, England. For
information concerning HSL contact: Dr Scott Roberts, AEA Technology,
552 Harwell, Didcot, Oxon OX11 ORA, England (tel: +44-1235-434714,
fax: +44-1235-434136, email: Scott.Roberts@aeat.co.uk).

Hughes, T. J. R., Ferencz, R. M. and Hallquits, J. O. (1987), ‘Large-scale
vectorized implicit calculations in solid mechanics on a CRAY X-MP /48
utilizing EBE preconditioned conjugate gradients’, Computational Methods
in Applied Mechanics and Engineering 61, 215-248.

Hughes, T. J. R., Levit, I. and Winget, J. (1983), ‘An element-by-element
solution algorithm for problems of structural and solid mechanics’,
Compututational Methods in Applied Mechanics and Engineering 36, 241—
254.

Kagstrom, B., Ling, P. and Loan, C. V. (1993), Portable high performance
GEMM-based Level-3 BLAS, in ‘Proceedings of the Sixth STAM Conference
on Parallel Processing for Scientific Computing’, STAM, pp. 339-346.

36

L’Excellent, J. Y. (1995), Utilisation de préconditionneurs élément-par-élément
pour la résolution de problemes d’optimisation de grande taille, PhD thesis,
INPT-ENSEEIHT.

Ortiz, M., Pinsky, P. M. and Taylor, R. L. (1983), ‘Unconditionally stable
element-by-element algorithms for dynamic problems’, Compututational
Methods in Applied Mechanics and Engineering 36, 223-239.

Schlick, T. (1993), ‘Modified Cholesky factorizations for sparse preconditioners’,
SIAM Journal on Scientific and Statistical Computing 14, 424-445.

Schnabel, R. B., Koontz, J. E. and Weiss, B. E. (1985), ‘A modular system
of algorithms for unconstrained minimization’, ACM Transactions on
Mathematical Software 11, 419-440.

Wathen, A. J. (1989), ‘An analysis of some element-by-element techniques’,
Computational Methods in Applied Mechanics and Engineering 74, 271—
287.

37

