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The Solution of Augmented Systems
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ABSTRACT
We examine the solution of sets of linear equations for which the coefficient matrix has

the form
H A
AT o

where the matrix H is symmetric. We are interested in the case when the matrices H and
A are sparse.

These augmented systems occur in many application areas, for example in the solution
of linear programming problems, structural analysis, magnetostatics, differential algebraic
systems, constrained optimization, electrical networks, and computational fluid dynamics.
We discuss in some detail how they arise in the last three of these applications and consider
particular characteristics and methods of solution.

We then concentrate on direct methods of solution. We examine issues related to condi-
tioning and scaling, and discuss the design and performance of a code for solving these
systems.
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1 Introduction

The augmented matrix

(j; gl) (1.1)

is ubiquitous in the numerical solution of problems in applied mathematics (see, for ex-
ample, [Strang, 1988]). Since we assume that H and A are sparse, then clearly the matrix
(1.1) is even more so. We review a few simple properties of the matrix (1.1) in Section 2
and discuss, in Section 3, applications which give rise to the associated linear system

(*‘ﬁ"ﬁ) (y) - (b) (1.2)

For historical or technical reasons, different approaches to the solution of system (1.2)
are used in different application areas. We examine three major application areas and
indicate system characteristics and usual solution techniques in each case. In many cases,
H is positive definite and is often even diagonal. Also c¢ is very often zero. This additional
structure will also be exploited.

We introduce a direct method for the solution of system (1.2) in Section 4 and, in
Section 5, consider issues related to the conditioning and scaling of the system. In Section
6, we describe briefly a new code, based on a multifrontal approach but respecting the
structure of (1.1). We study the performance of this new code, MA47 from the Harwell
Subroutine Library, in Section 7 and present some concluding remarks in Section 8.

2 Basic properties of augmented systems

There are some important facts that should be mentioned concerning the augmented
system (1.2). We will assume throughout this paper that H is a square matrix of order
m and that A has dimensions m X n with m > n. We will use the term aspect ratio to
denote the ratio of m to n. We will see in Section 3 that the aspect ratio can have a strong
influence on the choice of solution technique.

Clearly the matrix (1.1) is symmetric and indefinite. If A has full rank and H is
nonsingular, then (1.1) is clearly nonsingular. Indeed, if H is positive definite, we see from

the identity
H A\ ( H o H? 0 H A
AT o )\ AT 1 0 —ATH-'4 0o I

that, by Sylvester’s Law of Inertia, we have m positive eigenvalues and n negative eigen-
values. Indeed, if py and g, are the largest and smallest eigenvalues of H and oy and
0, the largest and smallest singular values of A, then Rusten and Winther [Rusten and
Winther, 1991] show that the spectrum of the matrix (1.1) is contained in the union of
the intervals I~ and It, where

I™ = [3(m = 1d, + 401), 50m = \/nd + 407)] and IT = [, 5001 + /13 + 407)].

It is not necessary for H to be positive definite or even nonsingular for the augmented
matrix to be nonsingular. A sufficient (and necessary) condition is that A has full column

rank (rank(A4)=n) and the columns of ( jé« ) are linearly independent. In this paper, we



will assume that the matrix (1.1) is nonsingular. A good reference for the basic properties
of augmented systems, which includes the case where A4 is not full rank, is given by Wedin
[Wedin, 1985].

Although we will never want to compute the inverse explicitly, it is useful to display
it to help later in the understanding of ill conditioning. If H is nonsingular, the inverse of
(1.1) is given by

S BT
( B —(ATH14)™" ) (2:3)

where B is a left-generalized inverse of A given by (ATH_lA)_lATH_l and S can be
written as H~'(I — AB), where (I — AB) is the orthogonal projector onto range(A)* (the
null space of AT).

In many cases, the second component in the right-hand side of system (1.2), ¢, is
zero. Although this does not affect the augmented matrix or the properties that we have
just described, it can have a significant effect on solution techniques for (1.2). A simple
indication of this is that the (2,2) matrix of (2.1) will have no influence on the solution of
the system. Some solution techniques fail to respect this and can suffer the consequences,
particularly if the (2,2) block is ill conditioned. We return to this theme in Section 5.

3 Occurrence of augmented systems

Several authors (for example, [Fortin and Glowinski, 1983], [Strang, 1986], [Strang, 1988],
and [Vavasis, 1993]) have emphasized the importance of the system (1.2) in applied math-
ematics, indeed Strang [Strang, 1986)] calls this system the “fundamental system” and
claims that it is indeed so. Principal areas in which such a system arises naturally are
optimization, computational fluid dynamics, and electrical networks. We study these in
more detail in Sections 3.1 to 3.3. Other important application areas include structural
analysis, differential algebraic systems, heat equilibrium, and magnetostatics.

The language for systems of the form (1.2) is also highly dependent on the application
area under consideration. In general, we have used the nomenclature from constrained
optimization.

3.1 Optimization

Systems of the form (1.2) abound in applications in optimization. The most obvious
example is in the minimization

min(1(Hz,z) — (b,z)) subject to ATz = ¢

where (-, -) denotes the Euclidean inner product. The role of the variable y in (1.2) is
more clearly seen if the above constrained minimization is expressed as finding the saddle
point of the Lagrangian form

H(Hz,z)— (bz)+ (y,AT:c —c)

where the variables y are clearly the Lagrange multipliers.

A common name for system (1.2) in optimization is the KKT system, for three people
involved in obtaining necessary optimality conditions for differentiable problems using this
system, Karush, Kuhn, and Tucker [Kuhn and Tucker, 1951]. More generally, iterative
methods for linearly and nonlinearly constrained minimization problems frequently solve
a sequence of such quadratic minimization problems. Such techniques are normally known



as recursive (RQP) or successive (SQP) quadratic programming methods, see for example
Gill, Murray, and Wright [Gill et al., 1981]. In general, A is a matrix of constraint normals
while H is a second derivative matrix or an approximation to it. In many cases H is
diagonal, for example when solving linear programming problems by interior point methods
[Karmarkar, 1984] or when solving weighted least-squares problems using the augmented
system approach. Since we are normally solving a nonlinear system and the solution to the
quadratic minimization gives the direction along which the current estimate is adjusted,
we force this direction to be in the subspace orthogonal to the constraint normals so that ¢
is zero. We will assume that this is so for the remainder of this subsection. Usually A has
full column rank and H is symmetric semi-definite. The aspect ratio can occasionally be
quite large but usually it is less than 4. Because optimizers like to use A as the Jacobian
of the constraint matrix, they perversely use a notation for (1.1) with the transpose on
the (1,2) block rather than on the (2,1) block.

There are two main methods for solving these systems in optimization, the range-space
method and the null-space method. In range-space methods, variables corresponding to
the (1,1) block are eliminated and the variables y are obtained from the equation

(ATH Ay = (ATH M) (3.4)

which, of course requires H to be nonsingular. The equations (3.1) are then solved by
either an iterative method (for example, conjugate gradients) or a direct method (for
example, sparse Cholesky). The main problems with this approach are that the system
(3.1) can be much more ill conditioned than the original system and the coefficient matrix
can be much denser than the augmented system.

In the null-space method use is made of the fact that, since 472 = 0, z lies in the
null space of AT and so can be written as a linear combination of basis vectors of this null
space. If these basis vectors are denoted by the matrix Z, then x can be written as Zs,
for some vector s. If we then substitute in the equations in the first block of (1.2) we get
the system

(ZTHZ)s = Z7b. (3.5)

The coefficient matrix of (3.2) is called the reduced or projected Hessian. Potential prob-
lems with this approach are to obtain a good basis Z and the lack of sparsity in the
reduced Hessian.

There are two cases where augmented systems arise in optimization that are so im-
portant that it is worth mentioning them explicitly. The first is in the subproblem at
each stage of an interior point method for the solution of linear programming problems
([Karmarkar, 1984]). The matrix in this case has the form

D™? A
AT o

where the diagonal matrix D has entries {zq,29,...,2,} which are all greater than zero.
However, as we approach a solution, many of these components (which are the current
estimate of the solution) will tend to zero so that the scaling of the D matrix can become
very bad, although work of Stewart [Stewart, 1989] shows that the overall system is not
so ill conditioned (see also discussion in [Vavasis, 1993]). Largely because of the economic
importance of linear programming, this application has received great attention and many
methods of solution have been proposed; including methods based on normal equations,
QR, and conjugate gradients, as well as augmented systems. The use of the latter approach
in this context is discussed by [Duff, 1990] and [Fourer and Mehrota, 1992] inter alios.



Another special case is (unweighted) linear least-squares where the (1,1) matrix is the
identity. This case and that of the weighted least-squares just discussed in the interior
point subproblem are extensively discussed in works by Bjorck (for example, [Bjérck, 1990],
[Bjorck, 1991]). We will consider this special case further in our discussions in Sections
5-8.

Iterative methods are used widely in solving linear systems arising in optimization
although they have not been used so often on system (1.1) because it is indefinite. Recent
work, for example [Arioli et al., 1993], has investigated extensions of conjugate gradients
for this case.

3.2 Computational fluid dynamics

Although we concentrate in this section on applications from computational fluid dynam-
ics, there are many other areas in differential equations giving rise to augmented systems.
They occur in elasticity and heat equilibrium problems and indeed whenever second order
elliptic equations are solved using a mixed formulation. There are several ways in which
system (1.1) arises in computational fluid dynamics. The most obvious way is in the
solution of the Stokes’ equations for incompressible fluid flow

—V?u + Vp = f
Vu = 0

with appropriate boundary conditions. The matrix H corresponds to the Laplacian and
A comes from the discretization of the convective term that also appears in the continuity
equations. The variables  are the velocity variables (u) and y are the pressure variables
(p). Since in the finite element discretization the velocity function bases are typically
quadratic over each element, while the pressure function bases are usually linear, the
aspect ratio is sometimes as much as 20, particularly for three-dimensional problems (see,
for example [Ng et al., 1993]). Another characteristic of CFD equations is that the matrix
H has very large order, often in the hundreds of thousands.

In these applications, in contrast to the general optimization case, the projected matrix
ATH='4 is not only well conditioned but has a condition number independent of the
mesh size used in the discretization. The reduced system (3.1), used in pressure correction
methods, is commonly solved using an iterative method like conjugate gradients. Omne
problem with this approach is that it involves solving systems with H as coefficient matrix
at every iteration of the conjugate gradient iteration. Since the system in H is often
itself solved using an iterative method, we obtain an inner-outer iteration. If conjugate
gradients is used for the outer iteration then an accurate answer is required from the inner
iteration. However, recently Elman and Golub [Elman and Golub, 1993] view the so-called
Uzawa method as a Richardson iteration on the reduced system and show that there is
no need for an accurate solution of the inner iteration. Because the reduced system is
not formed explicitly (it would involve too much work and would normally be dense), it
is hard to obtain a good preconditioner. Elman and Golub use diagonal and tridiagonal
approximations to the factors of the mass matrix associated with the pressures. Another
possibility is to use the matrix AT A as a preconditioner. Since this matrix is symmetric
but otherwise not easy to solve, another iteration is normally used to implement this
preconditioner. Recently, Ng et al. [Ng et al., 1993] have advocated using a direct method
to solve the preconditioning equations since, unlike the reduced systems themselves, they
can be very ill conditioned. A nice discussion of preconditioning the full augmented system
is presented in [Rusten and Winther, 1991]. Ramage and Wathen [Ramage and Wathen,



1993] have experimented with solving the complete augmented system using the method
of conjugate residuals with diagonal scaling.

3.3 Electrical networks

We comment on the application of electrical networks more briefly because they can pro-
duce augmented systems with quite different characteristics from those of the previous
applications. We consider the case of purely resistive networks and show that augmented
systems arise quite simply through an application of Ohm’s Law and Kirchhoff’s Law.
The first Law relates resistances to current and voltages and the corresponding equations

can be written
Dz — Au=0,

while the second Law, which ensures current conservation at the nodes, can be written
ATz = 0,

where the variables z, u, and b are the currents in the edges, voltages at the nodes, and
external voltages (batteries) respectively, D is a diagonal matrix of resistances, and 4 is
the adjacency matrix for circuit connectivity (a;; = 1(—1) indicates that edge 7 originates
(ends) at node j).

There are several differences between the augmented system consisting of the above
equations and those we have considered earlier. The matrix A has only -1 or 1 as possible
nonzero entries and its sparsity structure is determined by the physical connectivity of
the network. Usually, the matrix D is very badly scaled (if an open circuit is included
the corresponding value of D would be infinite while components corresponding to short
circuits would be zero (or nearly so)).

Both Strang [Strang, 1988] and Vavasis [Vavasis, 1993] use electrical networks to in-
troduce augmented systems and the latter develops a variant of his method particularly
designed for the numerical character of A. Traditional solution methods are to use an
LDLT factorization with pivoting, but this can be very unstable if the scaling in D is bad
enough.

4 Direct methods of solution

As we have seen earlier, particularly in Section 3.2, sometimes the systems can be so
large that a direct solution technique by itself is impractical. However, there are many
problems, even in computational fluid dynamics, where direct methods are competitive
and additionally it is possible to combine such methods with iterative ones when problem
sizes become huge. We restrict the rest of our discussion to direct methods of solution.

The most common approach is to form and solve the reduced equations (3.1), us-
ing a Cholesky or LDL” factorization on H to generate the Schur complement matrix
—ATH-'A. Cholesky or LDLT factorization is then used to factorize the Schur comple-
ment matrix. This method is only applicable if H is nonsingular and even then can be
unstable. Additionally the Schur complement is usually quite dense (and would be full if
A had a full row), so that sparse techniques may be inefficient in the second factorization.
It is, however, the basis for many of the methods discussed earlier and sometimes the
dimensions of the Schur complement are small so the fill-in to the Schur complement is
not a problem.

Another approach is to ignore symmetry and use an unsymmetric sparse solver. At
first glance this may appear daft but it looks more attractive if the structure of the overall



system is considered. In particular, if we are solving a (weighted) least-squares problem,
¢ is zero and we normally wish to solve (1.2) only for the variables y. If the residual,
corresponding to variables z, is required we would normally obtain it from the direct
computation b — Ay. Note that if we choose early pivots in Gaussian elimination from
rows corresponding to zero right-hand side components and later pivots from columns
corresponding to the variables y then much of the factorization need not be used to
obtain the solution. Unfortunately, taking advantage of this in our pivoting algorithm
may conflict with preserving sparsity so a compromise must be achieved. In some early
experiments [Duff and Reid, 1976] this method did show promise but was generally inferior
to symmetric factorization of augmented systems or normal equations.

QR based methods will normally suffer from too much fill-in but they are of interest
for cases with particular structure in A, for example if A is block diagonal. This class has
been examined recently by [Gulliksson and Wedin, 1992] who have developed a modified
form of QR factorization although they have not been concerned with sparsity.

The system (1.2) is indefinite so it would be possible to use a modified Cholesky scheme
similar to those proposed for such systems in the optimization context (for example, [Eskow
and Schnabel, 1992]). However, these methods do not produce an accurate solution of (1.2)
and do not respect the structure.

We conclude this section by introducing the approach that we will consider in the
remainder of this paper. That is to use an LDLT factorization of (1.1) where the matrix
D is block diagonal (blocks of order 1 and 2) and L is block lower triangular. Our method
will inherit much of the stability of the scheme for full systems proposed by Bunch [Bunch,
1971], [Bunch and Parlett, 1971]. Clearly the use of 2 x 2 pivots is necessary, as can be

seen from the matrix
0 X
. 4.6
(2 (46)

The above papers show also that 2 X 2 pivots are sufficient to ensure stability assuming
numerical pivoting is used. As usual with sparse factorizations, we relax the numerical
pivoting controls in order to preserve sparsity better. If the augmented matrix (1.1) is
denoted by the matrix M with entries m;;, we choose a 1 X 1 pivot if

|mae| > u-l?;?g(|mkj|a (4.7)

and a 2 X 2 pivot

-1
Mg, Mg k1 MaX £k k41 |0 < u™t (4.8)
Mi41k  Mkt+1k+1 max;sk k1 M1y /) — \ vt )7
where u is a threshold parameter (0 < u < 0.5), subject to the entry being suitable on
sparsity grounds. We will discuss some aspects of sparsity pivoting later in Section 7.

5 Conditioning and Scaling

Clearly the use of the augmented system should be better for stability than the normal
equations. We can see this trivially by observing that the pivot choice of selecting pivots
down the diagonal of H first gives the normal equations; so normal equations are a par-
ticular case of using the augmented systems. On another level, we note that, although
the normal equations appear in the inverse of the augmented system (the (2, 2) block in
(2.1)), it was already observed that this block is not involved in the solution if ¢ is zero.
We now study the conditioning and error estimation for systems (1.1) where we assume H



is diagonal and ¢ is zero. We would like any condition number or error estimate to reflect
the structure, and we find that the work in [Arioli et al., 1989] is ideally suited since most
of the second block of equations will lie in their category 2 because often the residual is
close to zero and we have assumed that ¢ is. If we then define two scaled residuals w; and
wgy, where wy corresponds to the category 1 equations and wg to the others, with corre-
sponding condition numbers K, and I, then the estimate of the error in the solution
is given by wy Ky, + wo K, .

As an example, we compare this estimate on a sequence of three problems where H is
vI,v =1,103, 10% and A is the matrix WELL1850 from the Harwell-Boeing test set [Duff
et al., 1992]. We have the results shown in Table 5.1, where K, is the classical co-norm
condition number.

Table 5.1: Comparison of error estimation

Ko w1K,, + waK,, actual error
3.1018 9.10° 1 1.10~1
1.1016 2.10~10 8.10-12
2.1010 1.10~10 7.10-12

The scaling of such systems that arise in the solution of sparse least-squares problems
was addressed at length by Bjorck at the last Dundee meeting [Bjorck, 1992]. He uses an

a scaling of the form
I o I A al 0
0 a7 'I AT o 0 I

(3 )()=(5)

The main unresolved issue is how to choose a priori a suitable value for a. We are currently
experimenting with some ideas for this and presently favour a scheme that uses a crude
method to choose an initial @ which is then refined if necessary using information from the
first attempted solution. We will report on this separately [Duff et al., 1993] but should
mention here that we have found it very beneficial to first scale the matrix (1.1) using the
Harwell Subroutine Library scaling routine MC30 (a symmetric variant of the algorithm
described in [Curtis and Reid, 1972]) before applying the «a scaling.

For example, we consider the problem where H is the identity matrix and A is the
matrix FFFFFS800 from the test set of LP problems distributed by David Gay [Gay, 1985].
FFFFF800 is of dimensions 1028 x 524 and has 6401 nonzero entries. The resulting
augmented matrix is scaled to create 5 matrices which are increasingly ill conditioned,
with classical condition numbers shown in Table 5.2. We then ran a range of scaling
options on these matrices. We denote these five strategies by:

to give the scaled system

1. Just a scaling.
2. Just scaling by MC30.
3. «a scaling followed by MC30.

4. Row scaling of A followed by « scaling.



5. Scaling by MC30 and then « scaling.

Note that when we row scale A in strategy 4, the augmented matrix has the form

D? C
cT o

where C is the row-equilibrated A (4 = DC, D diagonal). This is the strategy recom-
mended by Bjorck [Bjorck, 1992] when A is badly scaled. We obtain the results in Table
5.2 which clearly indicate that it is vital to scale A prior to using the « scaling and illus-
trates the advantage of strategy 5. We study various scaling strategies and their effect on
the solution of augmented systems in [Duff et al., 1993].

Table 5.2: Error in solution for various scalings

Matrix Condition number Scaling
Ko None 1 2 3 4 5
FFFFF_02 1.1009 4.10-13 | 3.10-13 | 5.1013 | 4.10~13 | 1.10712 | 5.10~13
FFFFF_04 1.1013 1.10798 | 6.10~13 | 4,102 | 1.10-'2 | 5.10~13 | 5.10~13
FFFFF_06 1.1016 4.107% | 5.10~13 | 2.10796 | 2,107 | 3.10-13 | 1.10~13
FFFFF_08 1.102%0 6.107°2 | 2.10- 1 | 5.10793 | 3.10793 | 6.1013 | 2.10°13
FFFFF_10 1.10%3 5.107% | 9.10-9% | 4.10793 | 9.107°2 | 2,101 | 2.10°13

6 MAA47, a sparse structured symmetric indefinite solver

We will use a multifrontal approach in designing our algorithm for the LDLT factoriza-
tion of sparse symmetric indefinite matrices. The details of such an approach are not
necessary to understand this paper but further background can be obtained from the
original papers by Duff and Reid [Duff and Reid, 1983], [Duff and Reid, 1984]. We now
describe the features of multifrontal methods that are needed to follow the subsequent
discussion. As is common in sparse elimination, the factorization is split into a symbolic
phase, which performs an analysis using only the sparsity pattern of the matrix, and a
numerical factorization phase.

In a multifrontal method, the sparse factorization proceeds by a sequence of factoriza-
tions on small dense matrices, called frontal matrices. The frontal matrices and a partial
ordering for the sequence are determined by a computational tree where each node repre-
sents a full matrix factorization and each edge the transfer of data from child to parent
node. This tree, which can be obtained from the elimination tree ([Duff, 1981], [Liu,
1990]), is determined solely by the sparsity pattern of the matrix and an initial pivot or-
dering that can be obtained by standard sparsity preserving orderings such as minimum
degree. When using the tree to drive the numerical factorization, eliminations at any node
can proceed as soon as those at the child nodes have completed, giving added flexibility
for issues such as exploitation of parallelism. Normally, the complete frontal matrix can-
not be factorized but only a few steps of Gaussian elimination are possible, after which
the remaining reduced matrix (the Schur complement) needs to be summed (assembled)
with other data at the parent node before further factorizations can take place. Thus the

frontal matrices can be written
Fiy Fiy
FL, Fy



where the matrix Fiy is factorized and the Schur complement Fyy — ngFl_llFlz is assem-
bled with other Schur complements and original data at the parent node. Note that the
elimination is done using full linear algebra and direct addressing while all the indirect
addressing is confined to the assembly.

Since the symbolic phase chooses pivots only on the basis of the structure of the
system, it is quite possible that they cannot be used during the numerical factorization
because of the failure of the pivots to satisfy the criterion (4.2) or (4.3). If there are
pivots rejected in this way during the numerical factorization, all that happens is that the
corresponding block Fy is smaller than forecast by the analysis and the Schur complement
correspondingly larger. Thus the amount of work and storage for the factorization can rise
although the factorization can always be performed since, at the root node, any entry in
the frontal matrix can be chosen as pivot and all the matrix can be factorized respecting
inequalities (4.2) or (4.3).

In our original code [Duff and Reid, 1983, the symbolic phase used a minimum degree
ordering that assumed any diagonal entry could be chosen as pivot. This did not cause
many problems with the numerical factorization in our early experiments with indefinite
systems, the overheads because of delayed pivots being seldom more than 10%. However,
the situation with augmented systems is quite different since the symbolic phase might
choose a sequence of pivots from the (2,2) block early in the factorization. If there has not
been fill-in to these positions, then they will be zero during numerical factorization and
the effect on subsequent frontal matrix sizes can be very significant. We were alerted to
this problem by Gill, Murray, and Saunders (personal communication, 1989) and designed
an analysis and factorization scheme that took account explicitly of the zero block [Duff
et al., 1991]. In this work, we were concerned not only to avoid choosing zero diagonal
entries as pivots during the analysis but also to take into account the structure of the
matrix during subsequent factorization. Based on the work in [Duff et al., 1991], we have
recently developed a new code which has been released in the Harwell Subroutine Library
[Anon, 1993] under the name MA47.

The earlier code, MA27 [Duff and Reid, 1982] in the Harwell Subroutine Library, was
run on the matrix

Im—n Al
0, A, (6.9)
AT AT o,

where the matrix A is a nonsingular n X n submatrix of the matrix FFFFF800 that was
used in the experiments in Section 5. The symbolic phase of MA27 forecasts that 1.5
million floating-point operations are needed for the numerical factorization. However, the
subsequent numerical factorization of MA27 requires 16.5 million floating-point operations
when the threshold parameter u of (4.2) and (4.3) has the value 0.1.

In MA47, not only do we avoid pivoting on zeros in the symbolic phase but we also
take account of the block structure. For example, in the matrix

X X X X X
0 0 0 0 O

X X X X X X X
o O oo o o X

if the (1,1) entry is chosen as pivot, the whole matrix is thereafter full. However, if the
top right block of order two is chosen first (mathematically and structurally equivalent to



pivoting on the (1,2) entry followed by the (2,1) entry), the remaining Schur complement
is completely zero. Notice that this pivot choice and that of (1,1) followed by (2,2) are
mathematically equivalent although the sparse code will not recognize the cancellation
caused by the (2,2) pivot. In our new code, we want to choose 2 X 2 pivots of this form,
called tile pivots and pivots of the form (4.1), called ozo pivots.

In general, the Schur complement from these structured systems will not be either zero
or full but they can all be represented by the block form

0 X X
X X X |. (6.10)
X X 0

Our new code thus allows for non-full frontal matrices of this type and chooses pivots in
symmetric pairs based on an unsymmetric Markowitz count.

One consequence of our strategy of allowing non-full Schur complements is that a front
matrix is not always absorbed by the parent node and can propagate up the tree. For
example, if an ozo pivot is chosen at the parent node, where the (1,1) entry is not in
the Schur complement but the (2,2) entry is in the (1,1) block, then the resulting Schur
complement will comprise two overlapping matrices of the form (6.2). Our alternatives
are to store the Schur complement as a general sparse matrix or to exploit structure but
then have multiple fronts. We choose the second alternative but notice that either causes
our new code to be much more complicated than the old. A second issue, the effect of
which we will observe in the next section, is that our sparsity criterion will seldom choose
structured pivots when H is diagonal and the aspect ratio is high because normally the
Markowitz cost for an off-diagonal will be significantly higher than for the entry on the
diagonal. Thus we would not expect many tiles to be chosen in such cases. Since, in such
examples, MA27 is likely for similar arguments to pivot first in the (1,1) block of (1.1), we
would expect little improvement for the new code and in fact possibly worse performance
because of the much more complicated structure of the MA47 code.

We now examine this performance briefly in the following section.

7 Preliminary experiments with M A47

There are some good reasons for favouring the selection of tiles or ozo pivots because the
structure of the augmented system is unchanged.
We adapted the symbolic phase of MA47 to force the selection of more tiles and show

the performance on the problem
I A

where the matrix A is the aforementioned FFFFF800 matrix.

We can see from the results in Table 7.1 that the performance is very flat over a wide
range of forcing tiles. Also, although not noted in the table, the numerical accuracy was
essentially unchanged. From this run and several others, we conclude that there is little
point in modifying MA47 but that approaches that favour selecting tiles (for example,
[Gould, 1993]) should not be too disadvantaged from a point of view of sparsity unless
they severely overdo the amount of forcing.

Finally, when we ran M A47 on the example (6.1) of Section 6, only 7,954 floating-point
operations were forecast by the symbolic phase, nearly a two-hundred fold improvement.
The subsequent numerical factorization of MA47 also required only 7,954 floating-point
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Table 7.3: Forcing of tiles

number tiles Ops Storage Time
Forecast Actual (x1000) (Kwords) (SPARC-1 secs)
89 77 6.8 69.3 10.1
150 137 8.7 78.6 12.3
230 217 6.7 66.2 10.0
249 234 7.0 69.2 11.0
371 302 12.1 85.7 21.9

operations, now an improvement of over two thousand fold! Additionally, the accuracy was
slightly better with MLA47 although, because of the more complicated code, the factoriza-
tion times for MA27 and MA47 on a SPARC-10 were 3.15 and 0.07 seconds respectively,
for a still creditable ratio of 45.

We show in Table 7.2, results comparing MA47 with MA27 on a range of matrices
of this form, where the threshold parameter for both codes has been set to 0.001. These
results emphasize that significant gains can be obtained with the new code. However,
unfortunately sometimes a penalty is paid for the extra complications in the new code
and, on unconstrained problems of the form of (7.1) with the same LP matrices as in
Table 7.2, MA27 usually outperforms MA47. For example, on problem (7.1) where A4
is equal to the FFFFF800 problem, the numerical factorization of MA47 requires .95
seconds on a SPARC-10 while MA27 needs only .57 seconds. It was results of this kind
that prevented us making MA27 an obsolescent routine in the Harwell Subroutine Library.
I should stress that, although not recorded in the table, the solution was obtained with a
similar satisfactory accuracy for all the runs of both MA27 and MA47.
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Table 7.4: Comparison between MA27 and MA47 on constrained least-squares problems.
Time in secs on Sun SPARC-10.

CPU time No. Operations Nonzeros

matrix A Method | Symb | Fact | Total | Forecast Actual | in factors
ADLITTLE MA47 | 0.020 | 0.010 | 0.030 771 771 619
MA27 | 0.010 | 0.020 | 0.030 4356 12533 1303

AFIRO MA47 | 0.010 | 0.000 | 0.010 180 180 180
MA27 | 0.000 | 0.000 | 0.000 518 1297 283

ISRAEL MA47 | 0.140 | 0.020 | 0.160 3129 3129 2961
MA27 | 0.070 | 0.120 | 0.190 103528 | 333566 8247

CAPRI MA47 | 0.080 | 0.020 | 0.100 2612 2612 2604
MA27 | 0.050 | 0.140 | 0.190 134972 | 415996 11188

SHARE1B MA47 | 0.070 | 0.030 | 0.100 4487 4482 1743
MA27 | 0.020 | 0.040 | 0.060 32741 58287 3834

VTPBASE MA47 | 0.040 | 0.020 | 0.060 1471 1471 1471
MA27 | 0.030 | 0.060 | 0.090 16566 60992 3742

E226 MA47 | 0.110 | 0.030 | 0.140 3463 3463 3463
MA27 | 0.080 | 0.210 | 0.290 189126 | 583512 12913

BEACONFD | MA47 | 0.150 | 0.030 | 0.180 3876 3876 3876
MA27 | 0.130 | 0.160 | 0.290 152572 | 438060 10941

FFFFF800 MA47 | 0.290 | 0.060 | 0.350 7954 7954 7954
MA27 | 0.380 | 1.030 | 1.410 | 1512220 | 4336104 44377
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8 Conclusions

We have reviewed the use of augmented systems illustrating application areas in which
they appear and commenting on a range of solution techniques used. We have described
a general approach for their solution based on a direct method using 2 X 2 pivoting and
have illustrated that it could prove useful in certain cases. Sometimes our new code yields
a substantial improvement over an earlier code that did not respect the structure.
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