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Abstract

We present in this paper a class of trust region algorithms in which the structure
of the problem is explicitly used in the very definition of the trust region itself. This
development is intended to reflect the possibility that some parts of the problem may
be more “trusted” than others, a commonly occurring situation in large-scale nonlin-
ear applications. After describing the structured trust region mechanism, we prove
global convergence for all algorithms in our class. We also prove that, when convex
constraints are present, the correct set of such constraints active at the problem’s

solution is identified by these algorithms after a finite number of iterations.

1 Introduction

Trust region algorithms have enjoyed a long and successful history as tools for the solution
of nonlinear, nonconvex, optimization problems. They have been studied and applied to
unconstrained problems (see [6], [16], [24], [28], [29], [30], [31], [33], [34], [38]) and to
problems involving various classes of constraints: simple bounds ([5], [10], [11], [27], [32]),
convex constraints ([1], [2], [9], [41]), and also nonconvex ones ([4], [7], [15], [35], [42]).
This long lasting interest is probably justified by the attractive combination of a solid
convergence theory, a noted algorithmic robustness, the existence of numerically efficient
implementations and an intuitively appealing justification. The main idea behind trust
region algorithms is that, if a nonlinear function (objective and /or constraints) is expensive
to compute or difficult to handle explicitly, one can replace it by a suitable model. This
model may be “trusted” within a certain trust region around the current point, whose size
(the trust region radius) is then expanded if the model and function sufficiently agree,
or decreased if they differ too much. The minimization then proceeds by replacing the
difficult nonlinear function(s) with the corresponding easier model(s).

It is remarkable that, up to now, all algorithms that we are aware of use a single trust
region radius to measure the degree of trustworthiness of the models employed, even if
several different functions are involved. This choice is somewhat surprising if one admits
that some of the modelled functions could be substantially “better behaved” than others
in the same problem, which means that the region in which their models can be trusted

might also be substantially larger. In this context, the single trust region choice might



be viewed as a conservative strategy ensuring that all models may be trusted in what
amounts to a “safe minimal” region. This might be reasonable for small problems where
each involved function depends on all the problem’s variables, but the strategy becomes
clearly questionable for large-scale applications, where each of the problem’s function
typically depends only on a small number of variables. For instance, one might consider
the minimization of an unconstrained objective function consisting of many quadratic
terms and just a few very nonlinear parts involving a small subset of the variables. If a
classical single trust region algorithm with quadratic model is used, the quadratic terms
are perfectly modelled, but the steps that one can make are (unnecessarily) limited by the
very nonlinear behaviour of a small subset of the variables!

It is the purpose of this paper to present and analyze a class of algorithms that use
the problem’s structure in the very definition of the trust region, allowing large steps in
directions in which the model has proved to be adequate while restricting the movement in
directions where the model seems unreliable. To be more precise, we will consider the prob-
lem of minimizing a partially separable objective function subject to convex constraints;
we will then use the decomposition of the objective function into element functions as
the basis for our structured trust region definition. The choice of the partially separable
structure, a concept introduced in [20], is motivated by the very general geometric nature
of this structure and by the increasing recognition of its practical use (see [3], [8], [12], [13],
[17], [18], [19], [21], [26], [39], amongst others). Furthermore, partial separability already
provides a decomposition of the considered nonlinear function into a linear combination
of smaller element functions which can then be modelled separately (see [40]). It is then
quite natural to assign one trust region radius per element functions and to decide on
their increase or decrease separately. Because different element functions typically involve
different sets of variables, each elemental trust region only restricts the components of the
step corresponding to its elemental variables.

A first approach to this idea could use the freedom left in the scaling matrices present
in the available theory ([41], for instance), reflecting the difference in model adequacy
between elements in the scaling (shape) of the trust region. This would be satisfactory if
the theory did not require that the scaling matrices be of uniformly bounded condition
number. In fact, this last condition prevents the trust region radius of well-modelled
elements (linear, for instance) from increasing to infinity while other radii, corresponding
to more nonlinear element functions, remain bounded. Furthermore, this strategy would
probably cause numerical difficulties: we will indeed see below that additional algorithmic
safeguards may be important for simultaneously handling trust regions of vastly different
sizes. Hence, we do not pursue this first approach any further.

Section 2 of the paper presents the problem in more detail and the new class of algo-
rithms using the principle of structured trust regions. Global convergence for all algorithms
in the class is proved in Section 3. We discuss the identification of active constraints in

Section 4. We finally give some comments and perspectives in Section 5.



2 Structured trust region for partially separable problems

2.1 A structured model of the objective and the corresponding struc-

tured trust region
2.1.1 The problem
The problem we consider is that of minimizing a smooth objective function subject to
convex constraints, i.e. we wish to solve the problem

min f(z) (2.1)

zeX

where X is a closed convex subset of R n. We will denote by (-,-) the Euclidean inner
product on R n and by || - ||2 the associated {3-norm. Given Y a closed convex subset of
R n, we also define the operator Py (-) to be the orthogonal projection onto Y. We now

list our further assumptions on (2.1).
AS.1 X has a non-empty interior.
AS.2 fis bounded below on X.

AS.3 f is partially separable, which means that

fl&) = Y file) 22)

and that, for each i € {1,...,p}, there exists a subspace N; # {0} such that, for all
weN; and all z € X,

filz + w) = fi(z). (2.3)

AS.4 For each 7 € {1,...,p}, f; is continuously differentiable in an open set containing

X and its gradient is uniformly bounded on X.

Note that we admit the case where X is unbounded or even identical to R n itself, in
which case we obtain an unconstrained problem. In relation to the partial separability of
the objective function, we also consider the range subspace (see [22]) associated with each
element function f;, which is defined as

R; AL (2.4)

k3

We are mostly interested in the case where the dimension of each R; is small compared
to n. A commonly occurring case is when each element function f; only depends on a
small subset of the problem’s variables: R; is then the subspace spanned by the vectors
of the canonical basis corresponding to the variables that occur in f; (the elemental vari-
ables). For each z € R n, the range of the projection operator Pg,(z) is therefore of low
dimensionality. The reader is referred to [12] for a more detailed introduction to partially

separable functions.



2.1.2 The element models

The algorithm we have in mind is iterative and we will associate, at iteration k, a model
m; ; with each element function f;. This model, defined on R; in a neighbourhood of the
projection of the k-th iterate z; on this subspace, is meant to approximate f; for all z in

the element trust region

Bix © {z e X | ||Pri(z — 2)lig) < mAin}, (2.5)
where 7 is a positive constant?®, A; i is the i-th trust region radius at iteration k& and the
norm || - [|(; x) is a norm defined on the range subspace R; and associated with iteration
k. In what follows, we will slightly abuse notation by writing m; x(z) for an 2 € R n,
instead of the more complete m; x(Pgr;(z)). We will furthermore assume that each model
mix (1 € {1,...,p},k = 0,1,2,...) is differentiable and has Lipschitz continuous first

derivatives on an open set containing B, , and that

mhk(ack) = f,(ack) (l €e{1,...,p}h,k= 0,1,2,...). (2.6)

Moreover, we assume that g; def Vm; k(zr) € R; approximates V fj(zx) € R; in the sense
that g;x — V fi(zx) def eik, where, for all 2 € {1,...,p} and all %,

llei klliizg < F1lmink (2.7)

for a non-negative constant x; > 0 and A,;, r is defined by

def .
Apingk = min A, . 2.8
ok 1e{1,...,p} ok ( )
The norm || - [|; ] is any norm that satisfies
[z, v < 2l ey 1] 5 (2.9)
for all z,y € R n. In particular, one can choose the dual norm of || - ||; x) defined by
def LY
[yl gy = sup Ha )l (2.10)
a0 ||Z] (3,k)

Condition (2.7) is quite weak, as it merely requires that the first order information on
the considered element function be reasonably accurate whenever a short step must be
taken. Indeed, one expects this first order behaviour to dominate for small steps. Further
arguments supporting a choice similar to (2.7) for problems with convex constraints are
presented in [9].

Amongst the most commonly used element models, linear or quadratic approximations
are pre-eminent. One can, for instance, consider the quadratic model given by the first two
terms of the element function Taylor series around the current iterate. Another popular
choice is a quadratic model where the second derivative matrix is recurred using quasi-

Newton formulae.

We could use positive constants v; > 0 depending on the element, but we will restrict ourselves to the

case where they are all equal for the sake of simplicity.



2.1.3 Consistent norms

With iteration k, we also associate an overall norm || - [|(x) defined on the whole of R n,
whose purpose is to reflect the relative weighting of the different elemental norms || - [|(; x)
in a global measure.

Clearly, for the above conditions to be coherent from one iteration to the next, we
need to assume some relationship between the various norms that we introduced. More
precisely, we will assume that all the norms associated to the same subspace are uniformly

equivalent in the following sense.

AS.5 There exist constants o1,09,03 > 1 such that, for all £y > 0 and k9 > 0 and all
z€Rn,
2] er) < o1ll2 i gs) (2.11)
and

2[5 k0] < 2|2 |3 o] (2.12)

for all 7 € {1,...,p} and all z € R;, and also that
2/l (ky) < T3]l (k2)- (2.13)

We observe that the equivalence of all norms in finite dimensional spaces implies the

existence of a g4 > 1 such that

1Pr; ()l k) < aallz|lr)- (2.14)

for all z € R n. We also note that (2.11)-(2.13) necessarily hold if the norms || - || z),
|| - ls,x) and || - [|(x) are replaced by the £,{ or {5, norms. We simplify the notation by
defining

o & max{oy,02,03,04} (2.15)

which can then play the role of “universal” norm equivalence constant for all the norms

so far considered.

2.1.4 The overall model and trust region

With all the elemental models at hand, we are now in position to define the overall model
at iteration k, denoted my, whose purpose is to approximate the overall objective function
f in a neighbourhood of the current iterate z;. From (2.1), it is natural to use the overall

model

mg(z) & imi7k(x) (2.16)

for all z in the overall trust region whose definition is now discussed.

First consider the set

Dy ¥ {ie{1,....p} | Pri(gx) # 0}, (2.17)



where g is the vector

p
def
gk = mG(ack) = Zgivk' (2.18)
=1
Next define
def
Agr = max A, (2.19)

the largest trust region radius associated with this set of elements, the associated “feasible
ball” in R n
BY ={x € X |||z — |l < v2Bgi} (2.20)

where v3 > 0 is a constant. In addition, define

BZ= () B (2.21)
1e{1,....,p}

the intersection of all elemental trust regions. We then define the overall trust region By,
by

B, ¥ BPnBP = ( N B,,k) n (B,f? n N BM) (2.22)

i€Dy, igDy

We now interpret this definition. First observe that Dy, is the set of elements in the ranges
of which a descent direction for the overall model can be found. The first term on the
last right hand-side of (2.22) thus guarantees that all descent directions at z} on my can
be used up to the point where the involved models cease to be trusted. The second term
does not impose any additional restriction on descent directions, but merely prevents too
large steps that are orthogonal to the gradient. It should be noted that its effect is quite
different from that of an angle test of the type

[{gx> sk} > Cllgllxllsellxy (¢ € (0,1)) (2.23)

because it does not prevent the steps being orthogonal to the steepest descent direction,
but only restricts the size of such steps. This is useful because these steps may occur
when moving away from a saddle point of the objective function. A similar restriction is
obviously present in the case where the objective has only one element, the role of Ay

being played by the (unique) trust region radius in this case.

2.1.5 Curvature

We now follow [9] and [41] and define the generalized Rayleigh quotient of f at x along

s # 0 by
2

115

where the subscript in w,, indicates the norm used in the definition. Obviously, this

def
wn(f7$73) =

[f(z +5) = f(z) = (Vf(2),9)], (2.24)

definition is valid only if s is such that « + s belongs to the domain of definition of f. Note
that, by convention,
wn(f,z,8) =0 whenever s = 0. (2.25)



If we assume that f is twice continuously differentiable, the mean-value theorem (see [23])

wn(f,z,8) = 2/01 /Olt<s,V2f(ac +tvs)s) dv dt. (2.26)

[Is]1%

Furthermore, if f is quadratic and the f/9-norm is used, then omne easily verifies that

implies that

wa(fi,x,s) is independent of z and is equal to the Rayleigh quotient of the matrix V2f in
the direction s. We note that, because of AS.4, wy(fi,z,s) is bounded by some constant
L; > 0 (see [23]). Hence we obtain that

w(ik)(fi,,s) < max o max IL;,1 ef (2.27)
! 1e{1,...,p}

forallz,z+s € X,alli € {1,...,p} and all k. The quantity that we need in our algorithm

statement and analysis is an monotonically increasing upper bound on the generalized

Rayleigh quotient w; x)(m; x, Tx, 8; ) defined by

def
=14 Gl{Tllan} {max(0, w; g(miq, T4, Siq)]} (2.28)
q€{1,...,
i€{L,....p}

where sj, is defined below as the actual trial step computed by the algorithm and s; def

Pr,(sr). This quantity measures the curvature of the model my in the direction of the
trial step si. If a quadratic model my is considered, an upper bound on fi is given by
the largest positive eigenvalue of its Hessian matrix, plus one. We will assume that our
choice of models is such that this curvature does not increase too fast, which could lead to
premature convergence of the algorithm to a non-critical point (see [41]). More precisely,

we make the following assumption, as in [9], [10], [34] and [41].

AS.6
Z — = 400. (2.29)

This condition is weaker that the common assumption that the model’s second deriva-
tive matrices are uniformly bounded [32], which holds, for instance, for the classical New-
ton’s method, where quadratic models using analytical second derivatives are used on a

compact domain. It also weaker than the condition
w(i k) (M k> Tk, 8) < ok (2.30)

for some constant ¢g > 0, which holds in the case where quadratic element models are
used and updated using either the BFGS or the safeguarded Symmetric Rank One quasi-

Newton formulae.

2.1.6 Criticality

Before we can describe our algorithm in detail, we also need a criticality criterion for our

problem. A critical point of our problem is a feasible point z where the negative gradient



of the objective function —V f(z) belongs to the normal cone of X at z € X, which is
defined by
N(@)E {y e Rn|(y,u—12)<0,Yue X}. (2.31)

The associated tangent cone of X at z € X is the polar of N(z), that is
T(z) % N(2)° = closure{A(u — 2) | A > 0 and u € X}. (2.32)

Thus every measure of criticality has to depend on the (differentiable) objective f and
on the geometry of the feasible set at the current point. We will use the symbol a(z, f, X)

to denote such a criticality measure.

AS.7T The criticality measure a(z,h,X ) is non-negative for all z € X and all i differen-
tiable in a neighbourhood of z. Moreover a(z,h,X) = 0 if and only if « is critical

for the problem

;Iéi)I{l h(z). (2.33)

But, within the algorithm, only approximate gradient vectors might be available, namely

the vectors g and g; , the gradient of the models. It is therefore natural to use

def
ar = a(zg,my, X), (2.34)

the criticality measure for the problem

min mg(z). (2.35)

as an “approximate” criticality measure for (2.1).

In unconstrained optimization, one typically chooses

ar = |\gxll, (2.36)

the obvious criticality measure (see [31] or [33]). When bound constraints are present, the

choice
ar = ||Px (2 — gx) — zk|] (2.37)
is made in [10]. For the infinite dimensional case, the definition

ap = || Px(zx — gx) — |- (2.38)

is used in [41]. For the case where convex constraints are considered,

_ ||P(zk =t gr) — ]
- 9

2.39
e (2:39)

ag

is chosen in [32], where t,? > 0 is the line coordinate of the so-called “generalized Cauchy

Point” to be discussed below. In a similar context,

ok =| min (gx,d)- (2:40)
[ldll(x)<1

is used in [9].



2.2 Ensuring sufficient model decrease
2.2.1 An overview of the classical sufficient decrease condition

A key to trust region algorithm is to choose a step si at iteration k that is guaranteed to
provide a sufficient decrease on the overall objective function model my. In other words,
a step such that

dmy déf mk(a:k) — mk(ack + Sk) (2.41)

is sufficiently positive, given the value of the criticality measure ay. This concept of “suffi-
cient decrease” is usually made more formal by introducing the notion of the (generalized)
Cauchy point. This remarkable point, denoted xg, is typically computed by the trust
region algorithms as a point on (or close to) the projected gradient path Px(zx — tgx)
(t > 0) that is also within the trust region and sufficiently reduces the overall model in

the sense that

2
g

Ev

where Ry > 0 is a constant. However, such a point may not exist when the trust region

mi(zr) — mp(z$) > Ry (2.42)

radius Ay is small compared with af/3;. In this case, the generalized Cauchy point is
chosen as (or close to) the intersection of projected gradient path with the boundary of

the trust region, yielding an inequality of the form
m(zg) — m(z) > RoarAg. (2.43)

One then ensures the “sufficient decrease” by requiring that the chosen step s; produces
at least a fixed fraction of the overall model reduction achieved by the generalized Cauchy
point, which is to say that
. ay
dmy > Kooy mm{@,Ak} , (2.44)
where k3 € (0, Rz
Many variants on the above scheme exist in the literature for the single trust region
case. The best known is for unconstrained problems when the £o-norm is used to define the
trust region shape. In that case, the projected gradient path is simply given by all negative
multiples of the gradient g and the Cauchy point is simply the point that minimizes the
model my, in the intersection of the steepest descent direction and the trust region. When
other norms are used, for example the /,, norm, one can then choose either to minimize
the model in the intersection of this steepest descent direction and the trust region, as
before, or to “bend” the projected gradient path onto the boundary of the trust region and
to choose the generalized Cauchy point as a point which satisfies classical Goldstein-type
linesearch conditions along that path while staying within the trust region. This latter
strategy is used in the LANCELOT software [13], for instance. When additional convex
constraints are present, the projected gradient path is additionally “bent” to follow the
boundary of the intersection of the feasible domain. Thus the philosophy is the same, in
that (2.44) is guaranteed in any case. This last condition has indeed been obtained for all
the choices for aj, given in (2.36), (2.37), (2.38), (2.39) and (2.40) in the paper where they

were respectively introduced.
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2.2.2 Sufficient decrease for structured model and trust region

We will use the same approach in our structured model and trust region framework. We
first observe that

v Agk = lim || Ppo(er — tgr) — okllk), (2.45)
where Ay i is defined in (2.19). Hence A,y can be viewed as the distance from zj to the
farthest point from 2z that lies on the projected gradient path defined by PBE(ka — tgk)
for t > 0. Recall that By is defined in (2.21) as the intersection of the feasible domain

and the region where all relevant element models can be trusted. It is therefore natural

to choose a generalized Cauchy point such that for some constant x; € (0,1)
mp(zg) — ma(z) > KoarAgp (2.46)

(asin (2.43)) when a point satisfying (2.42) cannot be found in (or close to) the intersection
of the gradient path projected on By with the structured trust region. If we again request
that the final step s; produces at least a fraction of the decrease at the generalized Cauchy
point, we obtain the condition that

dmy, > Kooy min{%,Agk} . (2.47)
k

This is the condition that will be used in our algorithm. Note that condition (2.47) reduces
to (2.44) in the case where only one trust region radius is considered.
2.3 A class of structured trust region algorithms

We now describe the class of algorithms that we consider for solving (2.1). Besides k1 used
in (2.7), k2 used (2.47), v; used in (2.5) and v, used in (2.20), it depends on the constants

0<7m <72 <1<, (2.48)
O0<m<me<m<l (2.49)

and
0< pp < pg < 1. (2.50)

In addition to the above conditions, we also require a compatibility condition between the

7;’s and the pu;’s. Specifically, we request that
p—1
n2—m > T(m + H2)- (2.51)

Typical values for these constants are Ky = 0.1, kg = 0.01, 1y = vy =1, v = 0.1, 79 = 0.5,
v3 =2, 1 = 0.01, 170 = 0.25, 53 = 0.75, py = 0.05 and pg = 0.1,

Algorithm

step 0: initialization.
The starting point z¢9 € X is given, together with the element function values
{fi(z0)}’_, and the initial trust region radii {A;o}>_,. Set k = 0.
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step 1: model choice.
For i € {1,...,p}, choose the model m;; of the element function f; in the trust
region B;j centered at zj (as defined in (2.5)), satisfying (2.6) and (2.7).

step 2: determination of the step.
Choose a step s such that (2.47) holds and

Tk + sp € By. (2.52)
step 3: measure overall model fit.
If

6 © flak) = Flak + s) > mbmy (2.53)

then
Th41 = Tk + Sk, (2.54)

else
Thtl = Tk (2.55)

step 4: update the elemental trust region radii.

Denote the achieved changes in the element functions and their models by

ofik © fi(er) - filex + 1), i€ {l,...,p} (2.56)

and
def .
Smig = mip(ar) — mig(ze +s), 1€ {1,...,p}, (2.57)
respectively. Then define the set of negligible elements at iteration k as

Ny E i {1,..p) | [6migl < %amk} (2.58)

and the set of meaningful elements as its complement, that is

]\/[kz{l,...,p}\Nk. (2.59)

Then, for each 7 € {1,...,p}, perform the following.

Case 1: 1 € M.

o If )
Ofin > 6m; g — — s dmy, (2.60)
and (2.53) both hold, then choose
Ajkt1 € [Ai g, 130 k). (2.61)

e If (2.60) holds but (2.53) fails then choose

A,’7k+1 = A,’Jc. (2.62)
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e If (2.60) fails, but

1—
8fik > 6mip — —Z8my, (2.63)
holds, then choose
Aigs1 € [128i0 5, Aig]- (2.64)
e If (2.63) fails, then choose
Ai,k+1 € [’)’1Ai,k7’)’2Ai,k]- (2.65)
Case 2: 1 € N
o If
&finl < 2oy, (2.66)
p
and (2.53) both hold, then choose
Aikt1 € [Aiks 1300 k] (2.67)
e If (2.66) holds but (2.53) fails, then choose
Ajkt1 = Ajk. (2.68)
e If (2.66) fails, then choose
Ajk+1 € Ak, V200 k] (2.69)

Increment k& by one and return to step 1.

End of Algorithm

As is traditional in trust region algorithm, we will call an iteration successful if the
test (2.53) is satisfied, that is when the achieved objective reduction §f is large enough
compared to the reduction §my predicted by the overall model. If (2.53) fails, the iteration
is said to be unsuccessful. In what follows, we will denote by S the set of all successful
iterations.

We now comment on various aspects of the algorithm.

1. The choice of the element models m; ; is left rather open in the above description. It
clearly needs to be made precise for any practical implementation of the algorithm.

One common choice would be to set
m;k(zx + 3) = fi(zr) + (gik,s) + L(s, Hirs), (2.70)

where H; j is a symmetric approximation to V2 f;(zy) whose nullspace contains the
subspace A;. In particular, Newton’s method corresponds to the choice g, =
Vfi(zx) and H;; = V?f;(z), which is guaranteed to satisfy this latter condition.
Another possible choice is m; (2 +s) = fi(zx + s), which may be attractive for the
simpler element functions. In this case, the model’s fit to the true function is always

good for the i-th element, and A; ; is a non-decreasing sequence.
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2. We note that (2.7) gives a practical rule for determining the required element gradient
accuracy before it is actually needed in the computation to form the model m; ;. A
decreasing elemental trust region radius might impose a higher accuracy requirement

on the corresponding model.

3. If the model change for an element is negligible, that is small compared to the overall
predicted change, we do not need to restrict its element trust region size unless the
true element change is relatively large compared with the same overall predicted
change. We can therefore afford to ignore negligible items until they stop being
relatively negligible, something which is inevitable when convergence occurs. Hence
our distinction between “negligible” elements (in Nj) and “meaningful” ones (in

My).

4. The apparent intricacy of (2.60) and (2.63) is caused by two complications which
arise in the context of multiple elements. The first is that ém; ; cannot be assumed
to be positive in general, even if émy, always is (because of (2.47)). The second is that
possible cancellation between elements makes it necessary to consider the “accuracy
of model fit” for an element to be relative to the overall model fit. Indeed, requiring
small relative errors for models with very large values may result in large absolute
errors. If §my is small, these large errors will then cause dmy to be a poor prediction
of 6f;, and the iteration might be unsuccessful. This explains why the perhaps more

intuitive tests
Ofike = dmik — (L —mj)lémig| (J =2,3) (2.71)

cannot not be used instead of (2.63) (7 = 2) and (2.60) (5 = 3).
Observe also that conditions (2.60) and (2.63) reduces to the familiar

when p = 1.

5. Note again the consistency between the trust region radii updates in step 4 and the
case where p = 1. In this latter case, the set Nj is always empty and (2.63) then
implies (2.53), because of (2.49). Equation (2.62) is thus never invoked.

6. No stopping criterion has been explicitly included in our algorithm description. This
is adequate for the theoretical analysis that we consider in the present paper, where
we are interested in the asymptotic behaviour of the method, but is should be com-
pleted for any practical use. The choice of a particular stopping criterion will depend

on the type of models being used.

7. The mechanism that we specified for updating the trust region radii does not exclude
the additional requirement that the radii be uniformly bounded, if that is judged
suitable for the type of models used. In practice, keeping the radii bounded is

essential to prevent numerical overflow.
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Before starting our global convergence analysis, we first state, for future reference,

some properties that result from the mechanism of the algorithm.

Lemma 1 Assume that AS.3 holds. At iteration k of the algorithm,

1. My contains at least one element. Furthermore

-1 -1
(1 _P ,u1> dmy < Z dm;p < (1 + P ,u1> dmy; (2.73)
p i€My p
2.
[skllky < A (2.74)
def
where v = max{vy,vs};
3.

Y1Aik < Ajkt1 < 7300k (2.75)

foralli e {1,...,p}.

Proof.  The first result immediately follows from the definition of N and the in-
equality g1 < 1. One then deduces that N contains at most p — 1 elements. Hence,
P — | Vi
m =Y fmik+ Y dmix < D mig+ p—bmy (2.76)
€M, iEN, iEM, p
from which the first part of (2.73) may be deduced. The second inequality in this result

is obtained from

Z om; = omy — Z dmix < dmy + Z |om; k|, (2.77)
1€EMy, 1EN,, 1€EN
the relation (2.58) and |Ni| < p — 1. The bound (2.74) immediately follows from (2.52)
and (2.22). The bound (2.75) results from (2.61), (2.65), (2.67) and (2.69). O
We also investigate the coherency between the measure of fit for individual elements
and that for the overall model.

Lemma 2 Assume AS.3 holds and that, at iteration k of the algorithm, (2.63) holds for
all i € My, and that (2.66) holds for all i € Ny.. Then iteration k is successful, i.e. k € S.
Proof. Because (2.63) holds for ¢ € My, one has that

|11\/Ik| p— 1

dmy > <n2 — ,u1> dmy, (2.78)

S Sk > D dmix—(1—n)

1€EM,, 1€EM},

for all such 7, where we used the inequality |My| < p and Lemma 1 to deduce the second
inequality. On the other hand, since (2.66) holds for ¢ € Ny, one obtains for these ¢ that

-1
> 16fikl < P s6my, (2.79)
€N p
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where we used Lemma 1 again to bound |Ng|. Now,

Sfe =3 Sfix+ D 8fix>= D Sfix— D |6fikl- (2.80)

i€My, iEN, i€M;, iEN},

Combining this last inequality with (2.78) and (2.79) gives that

-1 -1
8 > <772 o - P ; m) s (2.81)

which then yields (2.53) because of (2.51). O
We therefore see that (2.53) is coherent with the measure of the fit between the element

models and element functions.

3 Global convergence

We now study the convergence properties of the class of algorithms that we introduced in
the preceding section. Our analysis follows the pattern of similar proofs with a single trust
region (see [9] or [41]). The central idea in the proof is that the algorithm will continue
to make progress as long as a critical point is not reached. We first start by bounding
the error between the true element functions and their models. We next derive a lower
bound on the size of the smallest trust region radius at a non-critical point. This lower
bound ensures that the trust region constraint will not prevent further progress towards
a critical point. Only with this bound can we then prove that limit points of the sequence
of iterates produced by the Algorithm are indeed critical for the models used. We close
the section by deriving some simple consequences of these results on the criticality of the
limit points for the true objective function.

We first start by bounding the error made between the model of any element function

and the element function itself at zy + si.

Lemma 3 Assume that AS.J holds and consider a sequence {zy} of iterates generated by

the algorithm. Then there exists a positive constant ¢; > 1 such that,

|fi(zr + sk) — mig(zr + si)| < 1By (3.1)
forallie {1,...,p} and all k.

Proof. We first observe that, for each ¢ € {1,...,p} and for all k, (2.6), the
inequality (2.9) and the definition (2.24) imply that

|filzr + sk) — mik(zre +sk)| < UVfi(zk) = gik,Sik)l
‘|‘%||5i,k||%i,k)|w(i,k)(fz'a$k’ Sik)— w(i,k)(mi,kaxk’ Sik)]
llei kel oy I 2116 1)

+1 ||3i,k||?i,k) (looga,ky (fis Try S0k )| + w0 gy (M k5 Tk, Sik)])-
(3.2)

But [[s; x[|(ik) < ¥Ai, and hence we obtain from (2.7), (2.8), (2.27) and (2.28) that

IN

|fi(zr + sk) — mi(zr + s6)| < K1V Amin g Aig + sV2(L + Br) Afy. (3.3)
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This then yields (3.1) with

o & max{1, kv + v*(L + 1)} (3.4)

We now examine the relation between the change predicted by the overall model and

that predicted for an element at a non critical point.

Lemma 4 Assume that AS.1, AS.3-AS.5 hold. Consider iteration k of the algorithm and

assume that

BrAix < min{1, %} (3.5)
and
Aping < 1 (3.6)
Then one has that
|6mi k| < callsikll ik (3.7)

foralli e {1,...,p} and for some constant c; > 0 independent of i and k.
Proof. Using (2.28) and (2.7), we obtain that
1610 k| < [(gi ks siae )|+ 20klI8i k[ iy < UV Filzn)s si) + [{eiks sipd |+ EBklsikl[fi ) (3:8)
Remembering now AS.1, (2.7), (3.5) and (3.6), we can deduce that

6mig] < omaxeex ([[VFi(@)l2) sinllin) + F1lmingllsikllan + 58ellsikllfin
<

[0 maxeex ([|[Vfi(2)ll2) + #1 + 3llsikllin)-
(3.9)

Inequality (3.9) then gives (3.7) with

e = o(omax (|Vfi(2)]2) + s + §). (3.10)

We next prove the important fact that the trust region radii stay bounded away from
zero as long as a critical point is not reached, therefore allowing further progress to be

made.

Theorem 5 Assume that AS.1-AS.5 hold. Consider a sequence {zy} of iterates generated

by the algorithm and assume that there exists a constant € > 0 such that
ap > € (3.11)

for all k. Then there is a constant cs > 0 such that

C3

Amin,k > @

(3.12)

for all k.
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Proof. Assume, without loss of generality, that
€< VﬁOAmin,O- (3.13)

In order to derive a contradiction, assume that there exists a k such that

2

. € prcg(l—m3) ca(pe — p1) | def
BreAmink <11 mm{l,—, il 5 ), ( )} = c3, (3.14)
v C1CVD c1p

where ¢4 def koy1€. Now define 7 to be the smallest iteration number such that (3.14)
holds. (Note that r > 1 because of (3.13) and the inequality 71 < 1.) Also fix ¢ such that
Apingy = A ,. The bound (2.75) and the monotonic nature of the sequence {/3;} then

ensure that
Bir £ & o

€
N 2! v
where we used the bound 5,A;, < vy1€/v from (3.14). We note that, because of (2.47),
(3.11), (3.15) and the relation Apyipr—1 € (A, Aiyr_1],

ﬁr—lAi,‘r—l < ﬁr

(3.15)

omy_1 > K€ min{ 7Amin,r—1} > K2€Aming—1 > K2€liy, (3.16)

€
ﬁr—l
which implies, because of (2.75), that
6mr_1 Z C4Al’7,«_1. (317)

But (3.15) and (3.14) imply that
Amin,r—l < ﬁr—lAi,r—l <1 (318)

Hence, this inequality together with (3.15) and (3.16) now allow us to apply Lemma 4 and
to deduce that

|6mir—1] < eal[sir-1llGr1) < c2vAir—1 < C—(Smr—l- (3.19)
4

Assume first that ¢ € M, _;. Then, using (2.58) and (3.17),

|6mir 1| > %5%«—1 > %Am_y (3.20)

Because of (2.6), (3.1), (3.20), (2.8) and (2.5), we therefore obtain that

‘ i1

-1
6mi,r—1

_ |fi($r—1 + Sr—l) - mi,r—l(mr—l + 5r—1)| < c1p ﬁr—lAi,r—l- (321)
|5mi,r—1| H1Cq

But (3.14) and the first inequality of (3.14) together give that

r—12g,r—1 > 73 Lo 2 .
which, with (3.21), implies that
‘ or ! - 1‘ < 7( 773) 4 . (3.23)

om; 1 covp
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Consider first the case where ém;,_; > 0. We may then apply (3.19) and deduce that

6mipt — B,y = bmipy (1 _(=m) bmy ) < by (1 - w) |
p

po [omiyi covp
(3.24)
Using (3.23), we now deduce that
Ofir— 1-—
fir—1 >1- ( 13)Ca (3.25)
dmir_1 CaVp
and therefore, because of (3.24), that
1- 1-—
Wfires > bmipoy (1 M) > Smip_y — ——bm, (3.26)
CaVp b

which implies that (2.60) holds for element ¢ at iteration r — 1. Now turn to the case where
ém; ,_1 < 0. Because of (3.19), we deduce that

1- 1-— dm,_ 1—
dmiy_1 — i Omy_1 = 0m; 1 (1 + ( 773) Mr—1 ) < ém; <1 + ( 773)C4> )
p

p o [0mip_ Cavp
(3.27)
As above, we use (3.23) to obtain that
Of; 0 1-—
fir—1 <14 (1—m3)eq (3.28)
dmir_1 CaVp
and therefore, because of (3.27), that
1-— 1-—
6firo1 > Smip1 <1 + w) > bmip_y — ——Pém,_y (3.29)
c2vp p
which again implies that (2.60) holds for element 7 at iteration r — 1.
Assume now that ¢ € N,_;. Then, because of (2.58) and (3.1), we have that
|6fi,7"—1| S |6mi,r—1| + |fi(~rr—1 + Sr—l) - mi,r—l(xr—l + 5r—1)| (3 30)
S %6’”’47‘—1 + Clﬁr—lAlZﬂ«_l- .
Now, multiplying (3.17) by A, ,_1, we obtain that
AV
A2 <2 (3.31)
k) C4
Gathering (3.30) and (3.31), we deduce that
c
|6fir—1] < <& + —1ﬂr—1Ai,r—1> omy_q. (3.32)
p
Observing now that (3.14) and the first inequality of (3.14) imply that
BraAipq < 22 (3.33)
1 p

we obtain from (3.32) that
16 r—1| < E26m,_y. (3.34)
b
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But this inequality implies that (2.66) holds for element ¢ at iteration r — 1. Thus either
(2.60) or (2.66) holds for element ¢ at iteration 7 — 1 and the mechanism of the algorithm
then implies that A;, > A;,_;. But we may deduce from this inequality that

ﬁr—lAmin,r—l < ﬁr—lAi,r—l < ﬁrAi,r (335)

which contradicts the assumption that r is the smallest iteration number such that (3.14)
holds. The inequality (3.14) therefore never holds and we obtain that (3.12) is satisfied
for all k. O

We now turn to one of the main results in this section, which proves a weak form of

global convergence. The technique is inspired by [34].

Theorem 6 Assume that AS.1-AS.7 hold. Consider a sequence {zy} of iterates generated
by the algorithm. Then
liminf ag = 0. (3.36)

k—oo

Proof.  Assume, for the purpose of obtaining a contradiction, that there exists an
€ € (0,1) such that (3.11) holds for all £ > 0. Then

DresOfk > M D kes Omy
> MEK2EDY pes Mmin {ﬁ%’ Ag,k} (3.37)
> K€Y pes Min {i,Amin,k .
> mkgemin{e, ez} Y pes év

where we used successively (2.53), (2.47), (3.11), (2.19) and Theorem 5. We note that
AS.2 then implies that

1
d — < 4. (3.38)
kes Ok
Now let r be an integer such that
sy TP g (3.39)
and define
S(k) ¥ sn{1,...,k}, (3.40)

the number of successful iterations up to iteration k (k > 1). Then define

Fr Yk |k <rS(k)} and F < {k | k> rS(k)}. (3.41)

We now wish to show that both sums

1 1
> — and > — (3.42)

keF, ﬁk’ keF, ﬁk
are finite. Consider the first. If it has only finitely many terms, its convergence is obvious.
Otherwise, we may assume that F; has an infinite number of elements, and we then

construct two subsequences. The first consists of the indices of F; in ascending order and

the second, F3 say, of the set of indices in S (in ascending order) with each index repeated
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r times. Hence the j-th element of F3 is no greater than the j-th element of F;. This
gives that
Z Zﬁ —rz—<+oo (3.43)
kefl keF, Pk kes
because of the nondecreasing nature of the sequence {5} and (3.38). Now turn to the
second sum in (3.42). Lemma 2 implies that, at each unsuccessful iteration, at least one
element trust region radius satisfies (2.65) or (2.69) and none of them is allowed to increase.
Hence ) )
T2k <8705 O T Avo (3.44)
i=1 i=1

which immediately implies that

S(k) ,(k=5(k)/p o

Amink <73 72 maz.05 (3.45)

where Apaz0 def maxX;e(y,.. p» Aio. We deduce from this inequality that, for k € 7,

¢ - r —k/r e k/r
= < Amin,k < 7§(k)7£k S(k))/pAmaz,O < 7§/ ng * )/pAmaw,O < [737£ 1)/p] A

ﬁk mazx,0
(3.46)
where we have also used Theorem 5 and the definition of F; in (3.41). This gives that
1 Amaw r— k/r
Yy =l [“mvé 1)/”] < 400 (3.47)

C3

keFs Pr keFs

and the second sum is convergent. Therefore the sum

oo
Zﬁi—zﬁ—JrZ (3.48)
= keF keFs

is finite, which contradicts AS.6. Hence condition (3.11) is impossible and (3.36) follows.

O

Notice that the relation between ag, the criticality measure for problem (2.35), and
a(zg, f,X), the criticality measure for problem (2.1), has been left rather unspecified up
to this point. It is indeed remarkable that we can prove Theorem 6 assuming so little on

a. In order to derive convergence properties for the original problem from Theorem 6, we

have to be slightly more specific and request that, if both function and model have the

same first order information, then the criticality measures on the original problem and on

the model problem agree.

AS.8 Let hy and hy be two continuously differentiable functions in the intersection of a
neighbourhood of the feasible point # and X, such that hy(z) = ha(z). Then, the
difference a(z,hy,X) — a(z,he, X) tends to zero when Vhi(2) — Vhy(z) tends to

Zero.

In other words, we require the criticality measure to be continuous (near zero) in the
gradient of its second argument. Again, this is true for the choices (2.36)-(2.37) and
(2.40).
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With this additional assumption, we are now ready to examine the criticality of the
limit points of the sequence of iterates generated by the algorithm for the original problem
(2.1).

Corollary 7 Assume that AS.1-AS.8 hold. Consider a sequence {x}} of iterates gener-
ated by the algorithm and assume that

Hm {|e; |k, =0 (3.49)
k—o0
foralli e {1,...,p}. Then this sequence has at least one critical limit point z..

Proof. From AS.8 and (3.49), we obtain that

klim [a(zk, f,X) —ax] =0, (3.50)
which, with (3.36), guarantees
likminf a(zg, f,X)=0. (3.51)

The desired conclusion then follows by taking a subsequence of {z} if necessary. O
Condition (3.49) is important, otherwise the situation might arise that an iterate is
critical for the current overall model (because its gradient is inexact) while not being
critical for the original problem. There are various ways in which (3.49) can be achieved
in a practical algorithm, the simplest being to make the norm of e;; also depend on ay,

itself, ensuring that the first goes to zero if the latter does.

Corollary 8 Assume that AS.1-AS.8 hold. If S, the set of successful iterations generated
by the algorithm is finite, then all iterates xj, are equal to some x, for k large enough, and

T, 18 critical.

Proof. Assume indeed that S is finite. It then clear from (2.55) that z is unchanged
for k large enough, and therefore that z, = 2,41, where j is the largest index in §. Note
now that Lemma 2 implies that, if ¥ ¢ S, then (2.63) or (2.66) must be violated for at
least one element. Hence we obtain that A,,;, x converges to zero. But (2.7) then implies
that e, also converges to zero for all i € {1,...,p} and g converges to V f(z). Thus
AS.8 and Theorem 6 then guarantee the criticality of z,. O

As in existing theories for the single trust region case, it is possible to replace the limit
inferior in (3.36) by a true limit, therefore ensuring (if the gradients are asymptotically
exact) that all limit points are critical. As in these theories, a slight strengthening of our

assumptions is however necessary.

AS.9 We assume that
khm ﬁkéfk = 0. (3.52)

This assumption is identical to that used in [9] and [41], where it is motivated in detail.
We only mention here that (3.52) holds for Newton’s method on bounded domains.
With this additional assumption, we are now able to replace the limit inferior by a

true limit.



22

Theorem 9 Assume that AS.1-AS.9 hold. Consider the sequence {x} of iterates gen-
erated by the algorithm and assume that there are infinitely many successful iterations.
Then

li =0 3.53
lim o = 0, (3.5

where S is, as above, the set of successful iterations.

Proof. We again proceed by contradiction. Assume therefore that there exists
an €; € (0,1) and a subsequence {¢;} of successful iterates such that, for all ¢; in this
subsequence

ag; > €. (3.54)

Theorem 6 guarantees the existence of another subsequence {/;} such that
ar > € for ¢; <k <l; and o; < €, (3.55)
where we have chosen €3 € (0,€;). We may now restrict our attention to the subsequence

of successful iterations whose indices are in the set

KE¥{k|kes and ¢; <k <1}, (3.56)

where ¢; and [; belong, respectively, to the two subsequences defined above. Applying
now (2.47) for k € K, we obtain from (2.53) that

Ofr > miKko€g min {;—Z,Ag’k} . (3.57)
k

But AS.9, the inequality (2.74) and [; > 1 imply that

khm ﬁkHSkH(k) S I/khm ﬁkAg,k = 0. (3.58)
kex kex
and also that
lim Amin,k S lim ﬁk’Ag,k =0. (3.59)
k—oo k—oo
keKx kek

Therefore, we can deduce from (3.57) and (3.58), that, for j sufficiently large,

lzg; =zl < 0 S0, loksr — 2l

o X2y, Ollskll g

ov Y32, O A (3.60)
es Xy ®F(ar) = Flane)]

CS[f($Qj) - f(wlj)]a

where the sums with superscript (K) are restricted to the indices in /IC, and where

IAN AN A

- (3.61)
Thko€2

But AS.2 implies that the last right-hand side of (3.60) converges to zero as j tends to
infinity. Hence the continuity of V f and AS.8 give that

(a(ag;, ,X) — ala,, £, X)| < £ (e — ) (3.62)
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for j sufficiently large. On the other hand, (3.59), the inequality G > 1, AS.8 and (2.7)
imply that g,, is arbitrarily close to V f(z,;) when j is large enough, and hence that

1
|aqj — a(:cqj,f,X)| < 6(61 —€) (3.63)
for j sufficiently large. We note also that, because of (2.7), (2.12) and (2.75),
P
g, = VI (z)ll2 < lleig;lla < 0r1PpAming; < 0K173PAmink;» (3.64)
=1

where k; is the largest integer in C that is smaller than [;. We now deduce from (3.59)
that the left-hand side of (3.64) tends to zero when j tends to infinity, and therefore that,
for j sufficiently large,

1
|alj — a(:vlj,f,X)| < g(q —€) (3.65)
because of AS.8. Combining (3.62), (3.63) and (3.65), we obtain that

ag; < ap; + e — ) < Le +e) < e, (3.66)

which is impossible because of (3.54). Hence our initial assumption cannot hold and the
theorem is proved. O
As above, we now consider the case where we impose that the element gradient are

asymptotically exact.

Corollary 10 Assume that AS.1-AS.9 hold. Consider the sequence {z}} of iterates gen-
erated by the algorithm and assume furthermore that (3.49) holds for all i € {1,...,p}.

Then all limit points of this sequence are critical.

Proof. If the set S is finite, the conclusion immediately follows from Corollary 8. If,
on the other hand, § has an infinite number of elements, (3.49) implies that g is arbitrarily
close to V f(zy) and the combination of AS.8 and Theorem 9 ensures the criticality of any
limit point of the sequence of successful iterates. The desired conclusion then follows from
(2.55). O

Of course, (3.49) might be impossible to achieve in practice, and one might consider

the case where we can only assert that

limsup | max |le;k|l2| = ks, (3.67)
k—oo ie{1,...,p}

for some small constant x3 > 0.

Corollary 11 Assume that AS.1-AS.7 and AS.9 hold. Consider the sequence {z} of
iterates generated by the algorithm. Assume furthermore that (3.67) holds and that the

criticality measure a satisfies
la(z,h1, X) — a(z,hy, X )| < Lo||Vhi(z) — Vhe(z)|2 (3.68)

for all 2 € X and all functions hy and hy continuously differentiable in a neighbourhood

of « such that hy(z) = ha(z). Then, for each limit point z. of the sequence,

a(z., f,X) < K3pLy. (3.69)
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Proof. As in Corollary 10, the desired conclusion immediately follows from Corol-
lary 8 if § is finite. Assume therefore that S has infinitely many elements. We then deduce
that, for all k € S,

a(zg, f,X) a + |a(zg, me, X) — oz, f, X))
ar + Lallgr — Vf(21)|l2 (3.70)

ar + Lopmaxe(y . p) €3k ll2-

INIACIA

Taking the limit for k tending to infinity in S and using Theorem 9 and (3.67) then gives
the desired conclusion. O

Finally observe that (3.68), although stronger than AS.8, is not a very strong condition.
For instance, it is satisfied with L, = 1 for the choices (2.36), and also for (2.37) and
(2.38) because of the non-expansive character of the projection operator Px (see [41], for

example). The same property also holds for the choice (2.40), as discussed in [9].

4 Finite identification of the correct active set

When applied to constrained problems, trust region algorithms typically use the notion
of projected gradient or projected gradient path in order to identify a subset of inequality
constraints that are satisfied as equalities. Ultimately, the aim thereby is to identify
the constraints satisfied as equalities at the solution well before the solution is reached.
The methods then reduce to an unconstrained calculation in the manifold defined by the
currently “active” constraints. As a consequence, it is possible to guarantee fast asymptotic
rates of convergence when using accurate models, as is the case when analytical second
order information of the objective and constraint functions is available.

The main purpose of the present paper is to show that structured trust regions do
not upset the theory developed in the unstructured case. Thus we will consider the active
constraint identification problem from a quite general point of view. Our main observation
is that a number of the existing theories for constraint identification are based on the
definition of a special criticality measure that satisfies AS.7 while not satisfying AS.8. Let
us denote this measure at iteration k by ai. The steps leading to constraint identification

are then as follows.

1. The first step is to prove that a sufficient decrease condition of the type (2.44) also
holds with &y, instead of «y.

2. One then proceeds to prove that

liminfax =0 (4.1)

k—oo
much in the same way as for (3.36).
3. The measure ay, is also constructed to ensure that it is asymptotically bounded away

from zero for all points such that their active set is not identical to that of a (close)

critical point. (This, in particular, prevents AS.8 from holding.)
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4. Some contradiction is then deduced from these last two properties.

We now make our assumptions on the problem structure, algorithm and criticality
measure more precise.
4.1 Assumptions on the constraints

We first make our definition of the feasible set more precise. In what follows, we will

assume that the convex set X is described by a finite collection of convex inequalities.

AS.10 We have that
X={zeRn|hi(z)>0 (Ge{l,...,n})}, (4.2)

where each function h; is from R n into R and is continuously differentiable and

convex.

We are interested by the active set at a given point 2 € X, which we define as
A(z) € {i € {1,...,nc} | hi(z) = 0}. (4.3)

If the sequence of iterates {z} converges to z,, the question we wish to analyze can then
be phrased as “Is A(zx) = A(zx) for k large enough?”. We note that linear equality
constraints could be added to our description of the set X without altering what follows
(see [37] for details).

We recall here that we defined a point . to be critical for problem (2.1) if and only if
—Vf(z«) € N(z.), where N(z) is the normal cone to X at the point z, € X. If

- Vf(e.) € V()] (4.4)

where the notation ri [A'(z)] denotes the relative interior of the normal cone N(z,) (see

[36, Section 6], then the critical point z. is said to be non-degenerate (see [14]).
AS.11 We assume that all limit points of the sequence {2} are finite and non-degenerate.

If we additionally assume the stronger constraint qualification where

AS.12

{Vhi(z«)}icA(z,) are linearly independent for any limit point z., (4.5)

AS.11 is then equivalent to the existence of a set of strictly positive Lagrange multipliers
at z.. That is

Vi) = 3 AVhi(a.) (4.6)

1€A(zx)

for some uniquely defined \; > 0.
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4.2 Geometric analysis

Given these assumptions, we recall here some results obtained in [9] for the unique con-
nected component of critical points of the problem containing a given critical point z,,

which we denote by C..

Lemma 12 Assume AS.3, AS./ and AS.10-AS.12 hold. For each connected component
of critical points C., there exists a set A(C.) C {1,...,n.} such that A(z.) = A(C,) for
all z,. € C.,.

Interpreting this result in the case where X is polyhedral, this indicates that a con-
nected component of critical points cannot “spread” over more than a single face. We
next note that different connected components of critical points are “well separated”.

This result uses the notion of distance between a vector z and a set Y defined by

. def .

dist(z,Y) = inf ||z — . 4.7

ist(2,1) = inf [lz —y]2 (4.7)
Lemma 13 Assume AS.3, AS./ and AS.10-AS.12 hold. There exists a constant ¥ €

(0,1) such that dist(z.,CL) > ¢ for every critical point z. and each connected component
of critical points C!, such that A(C.) # A(CL).

The reference [9] uses a slightly more restrictive definition of distance where the “inf”
is replaced by a “min”, and causes the version of Lemma 13 presented therein to be
restricted to compact connected components of critical points. The extension stated here
easily results from the definition of connected components ([25, p. 54]) and will not be
discussed in detail.

The next result states that if we consider bounded sequences whose limit points are

critical, then each member of such a sequence lies in the neighbourhood

V(C.,8) © {2 € R n | dist(z,Cy) < ¢} (4.8)

of a well defined connected component of critical points.

Lemma 14 Assume AS.3, AS.4 and AS.10-AS.12 hold. Assume that {y} is any bounded
sequence of feasible points whose limit points are critical. Then there ezist a ¢1 € (0, %1/)),
where 1 is as in Lemma 13, and a ky > 0 such that, for all k > ki, there exists a connected

set of critical points C.(yx) such that

Uk € V(Cu(yr), 1) (4.9)

and

A(2) C A(Cu(wh) (4.10)
for all x € V(Cy(yr), 1) N X.

We complete our geometric analysis by the following result.
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Lemma 15 Assume AS.3, AS./ and AS.10-AS.12 hold. Consider a sequence {z;} of
points in X such that
lim dist(zg,Cx) =0 (4.11)

k— o0
for some connected component of critical points C, and a sequence {y} of points in X
such that

iz = gillgy = 0 (4.12)
and
A(ye) = A(Cy) (4.13)
for all k. Then
Jim Pr,, (V (1)) = 0, (4.14)

where PT(yk)(') is the orthogonal projection on the tangent cone at yy.

4.3 Yet another criticality measure

Instead of entering in the details of a definition of a3 suitable for the different kinds
of constraints we might consider (bounds, polyhedral sets, general convex sets), we will
instead assume the generic properties of this measure and then proceed along the lines

described above. We now describe in detail our assumptions.

AS.14 We assume that a; > 0 for all £ and that a; = 0 if and only if x; is critical
for problem (2.1). Furthermore, we will assume that the step s; in our class of

algorithms is computed to ensure that

my(zr) — mp(Tk + Sk) > K2 min {%,Ag’k} , (4.15)
k

where we have re-used the constant kg € (0,1).

Because of (4.15) and (2.47) are identical, one can use the theory presented in the
preceding Section with @ replacing o and therefore deduce the analog of Theorems 5 and
(6), including (4.1), as required.

We now assume that our new criticality measure is bounded away from zero in the

neighbourhood of critical points, so long as the correct active set has not been identified.

AS.15 Given ? and ¢; as in Lemma 14, there exists a ¢z € (0,¢1] and an &, > 0 such
that, if 23 belongs to V(C,, ¢2) for some connected component of critical points and
Az 4 sx) C A(Cy), then o > .

Observe that, because of Lemma 14 and ¢ < ¢1, one has that C, = Cy(z) and that
A(zg) C A(C).

AS.14 and AS.15 are not as strong as they might appear at first sight. Indeed, they are
satisfied by existing criticality measures in the literature. They typically depends on the

generalized Cauchy point whose definition varies with the considered algorithm and the
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problem solved. For instance, a framework similar to that presented above is considered

in [9]. The criticality measure used is defined by

ar=| min (gg,d)|, (4.16)
zk+dexkc
[ldll(xy<1
where
x{¥ N x, (4.17)
iEA(zE)

with z{ being the generalized Cauchy point and X; = {z € R n | hi(z) > 0}. The
reader is referred to [9, Lemma 31] or to [37, Lemmas 29 and 35] for more details, and in
particular for the proof that this measure indeed satisfies both AS.14 and AS.15. Other

choices of @ satisfying the same properties are possible. For example,

_ def
ar = [[Prcy(—g)ll (4.18)

is considered in [2] and in [10, Theorem 14| to measure the criticality of the generalized

Cauchy point acg

4.4 Constraint identification

Before starting our constraint identification analysis, we also slightly strengthen our as-

sumption on model choice by assuming that the model’s and objective’s gradients coincide.

AS.13
V(@) = gix (4.19)
for all 7 € {1,...,p} and all £ > 0.

This is not the weakest assumption one can make on the gradient accuracy in order to
obtain constraint identification results, but AS.13 considerably simplifies the exposition.
A weaker alternative is discussed in Section 5.

We start our finite constraint identification theory by stating a simple variation on

Lemma 3 in our new framework.

Lemma 16 Assume AS.3, AS.4 and AS.13 hold. Consider a sequence {x} of iterates
generated by the algorithm. Then, there exists a cg > 1 such that

|F(zk + sk) — mi(zx + si)| < el (4.20)
for all k.

Proof. We first observe that, for each ¢ € {1,...,p} and for all k, (2.6), AS.13 and
the definition (2.24) imply that

|fi(zk + sx) — mig(zk + i) sllsikll gy lwip) (fis 2k 8ik) — @ p) (Migs Tk, Sik)]
%||3i,k||?i,k)(|w(i,k)(fiaxka sig )|+ w0 k) (M ks Tk, sik)|)-

(4.21)

INIA
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We now sum all the element contributions and obtain

p
|f(zr+sk)—mu(zr+se)| <D 1 filzetsi) —mip(ee+si)| < ov?p(L+1)5RAY,, (4.22)

=1

where we used (2.27), (2.28), (2.74) and the inequality L + G < (L + 1)fk. This yields
(4.20) with
g max{1, Lov?p(L + 1)}. (4.23)

We also show that, for Sr A, small, the iteration must be successful at a noncritical
point.

Lemma 17 Assume AS.3, AS.4, AS.13 and AS.14 hold, and that &y > 0 and that

Koo Y1(1 — 1)

Brlgr < (4.24)
Ce
for some k > ky. Then iteration k is successful.
Proof. Observe first that

Ce

where we used (2.48), (2.49), and the inequalities k3 < 1 and ¢g > 1. But this inequality
and (4.15) then imply that
dmy, > szkAg,k. (4.26)

We can then verify that, because of (4.24),

f
IR
‘5mk ‘

|f(zk + s&) — ma(zp + si)

dmy, K

IN

Ce
— ﬂkAch S 1- m, (4.27)
20

which implies (2.53) and hence proves the lemma. O
We are now ready to prove our first identification result, namely that the maximal

active set is identified by a subsequence of iterates.

Theorem 18 Assume AS.1-AS.7 and AS.9-AS.15 hold. Consider the sequence {z} of
iterates generated by the algorithm. Then there exists a subsequence {k;} of successful
iterates such that

A(zy;) = As, (4.28)

where A, is the mazimal (largest) active set defined by any limit points of the sequence

{71}

Proof. We define the subsequence {k;} as the sequence of successful iterations

whose iterates approach limit points with active set equal to A,, that is

{k;} Efires| A(C,) = A, and dist(z,Cy) < ¢a}, (4.29)
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where C, is the a connected component of critical points with maximal active set. We

also assume, for the purpose of obtaining a contradiction, that

A(zg; 1) # A. (4.30)

for all j large enough. Because of Lemma 14, our definition of A, and k; € S, we deduce
that
A(zg; + sp;) C A (4.31)

for j sufficiently large. But AS.15 then implies that
ay > . (4.32)
for all k € {k;} sufficiently large. Now, using (4.15) and (2.53), we obtain that

ﬁkj [f( kj) - f(wk’j-f—l )] = /Bk’jéfk’j > M1 Kg O min{a*vﬁijg,kj} (433)
for j large enough. Because the left hand-side of this inequality must converge to zero as
a result of AS.9, we have that

1
llssllny) < vAgR; < G2 < 20 (4.34)

for 7 larger than j; > 1, say. But this last inequality, Lemma 13 and Lemma 14 imply
that 2y, 41 cannot jump to the neighbourhood of any other connected component of critical
points with a different active set, and hence that x4, belongs to V(C\, ¢2) again. The
same property also holds for the next successful iterate, zy;4, say, and we have that
Ci(Tk;4q) = Cx for all ¢ > 0. Therefore, the subsequence {k;} is identical to the complete

sequence of successful iterates with k£ > k. Hence we may deduce from (4.33) that
lim BrAgr = 0. (4.35)
k—o0

As a consequence of (2.74), we deduce that, for k large enough, 2y and zx + s both belong
to V(Cy, ¢2)-

The next step in our proof is to show that ultimately all iterates must be successful.
Suppose therefore that this is not the case. One can therefore find a subsequence K such
that

k¢S and k+1€S. (4.36)

for all k£ € K. Note that, because of (4.35), (2.75) and the nondecreasing nature of the
sequence {fx}, one has that

K2Y10(1 —m1)

1
BrAgr < —Br418g k41 <
g 7 + g,k+ 26

(4.37)
for k sufficiently large. Now, if one has that

Az + sx) C Ay, (4.38)
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then AS.15 implies that & > &, and we may thus apply Lemma 17 to deduce from (4.37)
that £ € S, which contradicts (4.36). Hence (4.38) cannot hold and we must have that

A(%k + Sk) = A, (4.39)

for all £ € K sufficiently large. Observe now that, since k ¢ S, one has that x4 = a%
and g; 41 = ¢i for all ¢ € {1,...,p}. Hence, for all such 7,

M k1 (Tt + k1) — Mik(Tk +55) = (Giger Sker — k) — 3180kl [Fy @i ) (M, T, Sik)
51180 k41 [ 1) 041 (M k15 T Sikeg1)-
(4.40)

Summing over all elements and using (2.74), (2.75) and the definition of i, we obtain
that

(k> k41 = sk) — 5v°0%p [ﬁk+1Ag2;,k+1 + ﬁkAg,k]
(=9 s = swa) — jvi0’p [1 + 71_%] Brpr A2 jiq-
(4.41)

Mpt1(Thy1 + Sk41) — me(Tr + Sk) >
>

We now note that, using the Moreau decomposition, —g;, is given by
— 9k = Pr(apts)(—9%) T PN (@pts0) (98, (4.42)
and, since k € S,
Skl — Sk = Tr41 + Skp1 — (Tr + sk) € T(2x + s), (4.43)

which is the polar of AV(zg + si). Now from (2.74) and (2.75), we obtain that, for all
k € K large enough,

(—Gky Sk — Sk41) (PT(2r+5) (=K )58k = Sk41) + (Pr(aptsi) (— Ik )5 Sk — Sky1)

> |1 Pray4s) (=g lm sk = sk+1ll k)
PN (@p451) (= 9K)s PT (2 455) (Sk+1 — Sk))
>~ Pr(eptse) (=90l llsk — skt llr)
> —V||Pr(zqe) (—90)|Ix1(Agk + Agit1)
> (1 + )Pyt (—98) I Ag k1

(4.44)
Combining this last inequality with (4.41) gives that

Mig1 (kg1 + Skg1) — mp(Tr + Sk) >
2 92

veo 1
5 (Lt )Pk Ay | - (445)
1

1
—Agktr [(1+ ;)VHPT(szk)(—gk)H[k] +
for all k € K sufficiently large. Now observe that, because of (2.74) and (2.75),
1
llskllry < Agx < ZAgJHl- (4.46)

Therefore, from (4.35), si tends to zero. Using (4.39), we may now apply Lemma 15 with
Yk = T + Sk to the subsequence K and deduce from (4.45) that

M1 (Thg1 + Skg1) — Mi(Tr + 81) > —5K20 A0 k41 (4.47)
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for all £ € K sufficiently large, where we also used (4.35). On the other hand, AS.15,
(4.15), (4.36), the fact that (4.32) holds for all successful iterations and (4.35) imply that

6mk+1 Z I{zd*Ag7k+1. (448)
for k € K large enough. We therefore obtain, for such &, that
dmp = Ompp1 + Mgt (Thg1 + Skg1) — Me(2p + 1) > ko0 Ag k41 > bhav10Ag g, (4.49)

where we again used (2.75) to deduce the last inequality. This, together with Lemma 16
and (4.37), yields that

Ce
— -1 < A <1-—m. 4.50
By b S BrAgr < m (4.50)

‘ ofk ‘ _ [f (e + s) — ma(zr + si)| 2

But this implies again that iteration k is successful, which is impossible because of (4.36).
Hence (4.36) cannot hold for sufficiently large k. This in turn implies that all iterations
are eventually successful and that the sequence {k;} defined at the beginning of the proof
is the complete sequence of all iterates. The limit (4.35) then contradicts Theorem 5 (with
ay, playing the role of ag). As a consequence our initial assumption is impossible and the
theorem is proved. O

We now prove that, for large enough k&, once found, the correct active set cannot be

abandoned.

Theorem 19 Assume AS.1-AS.7 and AS.9-AS.15 hold. Then there exists a unique ac-
tiwe set A, such that
A(zy) = Ax (4.51)

for all limit points z. of the sequence {xy}. Furthermore
A(zy) = A (4.52)
for all sufficiently large k.

Proof.  Let {k;} be the subsequence of successful iterates such that (4.28) holds,
as given by Theorem 18. Assume furthermore that this subsequence is restricted to suffi-
ciently large k, that is k; > ky for all ¢. Assume finally that there exists a subsequence of
{ki}, {k;} say, such that for each j there is an {; with

l; € A(zy;) and {; & A(zg;41)- (4.53)
Because k; € S, we deduce that
l; & A(zg; + sx;)- (4.54)

Now Lemma 14 and (4.28) together with the maximality of the connected component A,
imply that A(C.(zy;)) = A«. Now AS.15 and (4.54) then ensure that

. > (4.55)
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for all j. Combining this inequality with (4.15), one obtains again that
Br;0fk; > m ko min{au, Br; Ag; }- (4.56)
Using AS.9, we then deduce that

lim By, Agx; = 0. (4.57)

]—)OO
As a consequence, we may deduce from (4.15) that
6mkj > Kzﬁ*Achj (4.58)
for all j sufficiently large. On the other hand, we have that, for all i € {1,...,p} and all
k,
§mik = (giks sk) + Hllsinllfs pywiin) (M, zrs sik) (4.59)

because of (2.24) and the fact that g; x € R;. Summing on all elements, we obtain that

dmy gk, i)l + 5 oy Isi k[ @ik (M, e, sik)
IPr ) (—gi)llpallskll ) + 50°PBllsl[ (4.60)

V|| Pr () (=9 l1 Qg k + 307V pBRAT 4,

VAN VAR VA

where we used (2.14), (2.15), (2.74) and the fact that s; € 7 (). Combining (4.58) and
(4.59) (with k = k;) and dividing by Ay, yields that

K@ < V|| Pr(g, ) (—g1)ll + 307V PO A k- (4.61)

Assuming that the sequence {z};} converges to some z, in some C, (or taking a further
subsequence if necessary) and using Lemma 15 on the subsequence {k;} (with yx = zy;)
and (4.57), we deduce that (4.61) is impossible because its left-hand-side is a positive
constant and its right-hand-side tends to zero. Hence, no such subsequence {k;} exists

and the maximality of A, then implies that
A= ATk 41) (4.62)

for all ¢ large enough. Therefore
Al@hitq) = A (4.63)

for ¢ sufficiently large, where k; + ¢ is the index of the next successful iteration after
iteration k;. Hence k; + ¢ € {k;}. Using this argument repeatedly, we thus deduce
that {k;} is the sequence of all successful iteration with sufficiently large index. As a
consequence, A(zr) = A, for all such k, which proves (4.52). Moreover, A, is then the
only possible active set for all limit points, which gives (4.51). O

5 Extensions

We examine in this section some extensions and variants of the results presented above.
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5.1 A hybrid technique

One of the possible drawbacks of our Algorithm is that steps might be constrained to be
unnecessarily small in directions corresponding to very nonlinear element functions. In-
deed, the negative effect of inaccurate models for these elements might be compensated by
a successful step in directions corresponding to less nonlinear elements. This compromise
between the different parts of the objective is, of course, inherent to the classical method
using a single trust region.

We might try to obtain the best of both classical and structured approaches by using
a hydrid technique. In this technique, a global trust region radius Ay is recurred for the
objective function considered as a single element (using the Algorithm given above, which
is then equivalent to the classical one), along with the individual radii A;;. We then
define the individual “hybrid” radii by

Ah d:ef max AkaAzk 5.1
i,k )

for each 2 € {1,...,p} and redefine B, as

def
Bix = {x € X | |Pr;(x — ai)|liny < 1AM, (5.2)

Similarly, A, is then replaced by

def h
Agr = max Al 5.3
gk = TAXAjy (5.3)

We can then apply our Algorithm with these new quantities, to the effect that gentle
elements have their associated trust regions possibly extended without having to contract
those corresponding to more nonlinear ones, as long as the global result is satisfactory.

It is not difficult to verify that the theory presented above still holds for his hybrid
modification. The key points are to observe that the definition of Ay in (5.3) implies
that

dmy > Kooy min {%,Ak} , (5.4)
k

which is the classical sufficient decrease condition (2.44), that the inequalities (2.75) are
still valid with A; j replaced by Aﬁk, and also that an analogous to Theorem 5 also holds
for the global trust region radius, as is already well known from the single trust region
case (see [9], for instance).

Some extremely preliminary numerical tests indicate that this modification might be
computationally advantageous compared to both the single trust region case and the

original formulation of Section 2.3.

5.2 An alternative definition of success

An immediate consequence of inequality (2.73) in Lemma 1 is that it would be possible to

replace the condition for an iteration to be successful (2.53) by

fe > m Y dmix(ar), (5.5)
i€M,
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without altering the developments presented above. Indeed, (2.73) shows the equivalence
(2.53) and (5.5). We have chosen to use (2.53) above, because it seems natural to consider

the same collection of elements on both sides of the inequality.

5.3 Weaker sufficient decrease conditions

It is remarkable to note that Theorems 5 and 6 can be proved in a weaker context. Indeed,

we could define the overall trust region as
By = B, (5.6)

(a possibly larger region than that defined by (2.22)), require the weaker sufficient decrease

condition

dmy, > Kooy min{%,Amm’k} (5.7)
k

instead of (2.47), and still prove Theorems 5 and 6. However, we have not been able to
prove Theorem 9 nor active constraint identification with these assumptions, because (5.7)
only controls the length of the step in a possibly small subspace of R n. If we replace
(5.7) by the stronger condition

[«
dmy, > Koo min {ﬁ—:,max [Amin,kal/?)HSkH(k)] } (5.8)

for some v3 > 0, it is then possible to obtain the conclusion of Theorem 9 as well ,
namely that all limit points of the sequence of iterates are critical. But the strengthening
introduced by (5.8) has not been sufficient for the authors to prove active constraint

identification for general convex constraints.

5.4 Inexact gradients and constraint identification

As we have mentioned already, AS.13 is not the weakest possible assumption for proving
finite active constraint identification. Weaker conditions are presented in [37]. As shown
in this reference, it is sufficient to assume that all limit points of the sequence of iterates
converges to a single limit point z, and that the sequence of approximate gradients itself

has a single limit point g, such that
— g« € Ti[N(z4)]. (5.9)

The technique of proof for this extension is very similar to that discussed above.

5.5 Constraint identification without linear independence

of constraints normals

The linear independence assumption AS.12 can be somewhat restrictive in practice, espe-
cially for problems where X is a polyhedron defined by many linear inequality constraints.
Fortunately, the “weak constraint identification” result of [9] can be applied in our context

when AS.12 does not hold. This result implies the following useful consequence.
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Theorem 20 Assume AS.1-AS.7, AS.9-AS.11 and AS.13-AS.15 hold. Assume also that
all functions h; of (4.2) are linear and consider a sequence {xy} of iterates generated by
the Algorithm. Then the active constraints are identified (i.e. (4.52) holds) for all k
sufficiently large.

We refer the reader to [9] or [37] for further details.

5.6 Convergence to a single limit point

As the results obtained above for structured trust regions are identical to those obtained
in the unstructured case in [9] and by Sartenaer in [37], the theory developed in these
papers for the convergence of the iterates to a minimizer (as opposed to a mere critical

point) holds with only minor modifications. The main result is the following.

Theorem 21 Assume AS.1-AS.7 and AS.9-AS.15 hold. Consider a sequence {z} of
iterates generated by the Algorithm. Assume that there are infinitely many successful

iterations and that there exists an € > 0 such that

liminf min wg (M e, Tk, S; 1) > €. 5.10
RS o (i) (M ks Ty Si k) > (5.10)
— 00

Assume furthermore that all limit points of the sequence {si}res belong to the subspace
P Ri. Assume finally that, for some limit point z., V*f(z.) is positive definite on the

tangent plane to X at x.. Then
lim 2y = z.. (5.11)

k—oo

Proof. The only modification needed to apply the theory developed in [9] and [37]
is to deduce from our assumptions that w(k)(mk,xk,sk) is asymptotically bounded away
from zero. To obtain this result, we first note that our condition on the limit points of the

sequence {si} implies that, for k € S sufficiently large,

P
lsellz <2 llsikll3- (5.12)
i=1
We can then deduce, for k € S large enough, that

Wiy (e, Te,sk) = 2[00 mig(@r + se) — Xy max(@r) — (i gi(@x), s6)] /sl
Sy [wiiay (mi ke s sig) ik |24/l k |
min,, 20 Wi k) Mk, Tk, $i k) [Zhey ik ll3] /o5l

: 4
min; ), , 20 Wi k) (Mg, Tk Si k) /20

vV v

(5.13)
where we successively used (2.24), (2.25), (2.14) and (5.12). Combining (5.13) and (5.10)

yields that
. €
lim inf o) (my, 2k, 81) 2 55 (5.14)
k—oo

which is the desired bound. O
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Note that both f(-) and all models m; x(-) are invariant for any component of the step
in the subspace (}-F_, Ri)J‘. Our assumption on the limit points of successful steps is thus
very weak, because any nonzero component of the steps along this subspace is irrelevant
for the minimization the objective function. Moreover, sensible implementations of the

algorithm would typically yield that

p
sk € > Ri. (5.15)
=1

This last condition would, for instance, be automatically fulfilled if s is the classical New-
ton’s step —[V?f(z4)] "'V f(2) or, more generally, any step chosen in a Krylov subspace
derived from V f(z;) and V? f(=},), as would be the case with a truncated conjugate gradi-
ent technique. Our assumption is however necessary because, if the sequence of successful
step has a limit point with a nonzero component along that subspace, then the sequence of
iterates then remains in the subspace, preventing convergence of the algorithm to a single
limit point.

As in [37], we can also deduce the convergence of the iterates to a single critical point

whenever the feasible set is polyhedral.

Theorem 22 Assume AS.1-AS.7 and AS.9-AS.15 hold. Consider a sequence {x} of
iterates generated by the Algorithm. Assume that there are infinitely many successful
iterations, that all limit points of the sequence {si}res belong to >F_| R; and that there
exists an € > 0 such that (5.10) holds. Assume furthermore that, for some limit point .,
V2f(x,) is nonsingular on the tangent plane to X at z. and that X is polyhedral. Then
lim 2y = z.. (5.16)

k—oo

Again, we only need to deduce (5.14) from (5.10) and (5.15) to use the proof of [37].
This last results shows that convergence can occur to a critical point which is not a

minimizer if the element models are asymptotically uniformly convex.

5.7 Noisy functions

In contrast to the description of [9], we have not extended in the present paper the appli-

cation of trust region to noisy functions. However we believe this extension to be possible.

6 Conclusions

We have shown in this paper that the trust region concept, one of the most powerful tools
for building efficient and robust algorithms for optimization, can be extended in a very
natural way to reflect the structure of the underlying problem. The algorithm proposed
above is indeed a direct generalization of the more usual case where only a single uniform
trust region is considered. Similar global convergence properties can be proved for the
new algorithm, including the case where dynamic scaling is performed on the variables

and the situation where the gradients are only known approximately.
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It remains to see if this modification of a trust region algorithm will prove efficient
in practice and justify the slight additional complexity of the method. We will report on
this issue later. However, we note that the results of preliminary numerical experiments
have been extremely encouraging, especially those based on the hybrid method proposed
in Section 5.1.

One of the nice features of the partially separable functions considered in the present
theory is that the objective is a linear combination of its elements. While group partially
separability, as used in [12] or [13], has computational advantages in terms of economy of
derivative calculation, this structure involves a nonlinear relationship between the elements
and the overall function. This makes exploiting the link between local and global models
much harder. While we would be interested in deriving structured trust-region methods for
group partially separable functions, the methods would undoubtedly be more complicated
and less amenable to analysis. Thus, we are content, in the present paper, to consider the
simpler, but nonetheless very general, partially separable structure.

Finally, there might be other ways to introduce structure in trust region methods than
considering (group) partially separable objective functions. In particular, trust region
methods for nonlinearly constrained problems seems attractive candidates for an alterna-
tive approach that would separate the trust region(s) on the objective from those on the

constraints.
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