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1 Introduction

In this note, we consider solving the problem

minimize f(x) subject to ¢;(x)>0 for ¢=1,...,m (1.1)
zeR"

using a sequence of (logarithmic) barrier functions
¥(x,w,s) = f(x)— Zw, log(ei(x) + si), (1.2)
=1

where the w; are termed weights and the s; called shifts. Traditional, unshifted (i.e., s = 0),
barrier functions of this form were first considered by Frisch (1955), popularized by Fiacco
and McCormick (1968) and extensively studied by Wright (1976), Murray and Wright
(1978), Karmarkar (1984), Gill et al. (1986), Gould (1986), McCormick (1991), Nash
and Sofer (1993) and Wright (1992b) amongst others. Variations on the theme include
the modified (unshifted) barrier function of Jittorntrum and Osborne (1980), the shifted
barrier functions of Gill et al. (1988) and Freund (1991), the modified (shifted) barrier
function of Polyak (1992) and the Lagrangian barrier function of Conn et al. (1992a).

A typical barrier function method attempts to solve (1.1) by (approximately) mini-
mizing a sequence of barrier functions ¥(x, wk), s(k)) for appropriate sequences of weights
{w®} and shifts {s*)}. The approximate minimizer x(*) of ¥(x, w(*) s(*)) is generally



found by applying an iterative unconstrained minimization method — the inner iteration
— to U. Usually, the approximate minimizer x(*) is required to satisfy an inner-iteration
stopping rule

1V, ¥(x®), wk) s < w*) (1.3)

for some sequence of positive tolerances {w(*¥)} which converge to zero.

The bulk of the work is performed in the inner iteration. As each inner iteration
is clearly influenced by the choice of starting point, there is some interest in trying to
determine good starting points. Since, under relatively mild conditions, it can be shown
that the sequence {x*)} converges to a first-order stationary point for (1.1), one might
imagine that x*) provides a good starting point for the & + 1-st inner iteration. In some
sense this is true. However, Wright (1993) has shown that if one naively uses Newton’s
method to solve the inner iteration subproblem starting from this point, difficulties may
arise. In particular, she shows that it is highly likely that a full Newton step will be
impossible as this step crosses the constraint boundary.

In this note we show that this difficulty arises because the naive Newton method is
actually an inappropriate member of a whole class of Newton methods for the subproblem.
A different member of the class is then proposed which aims to alleviate the aforementioned
difficulty. We indicate that the proposed alternative is effective in practice in the context
of three barrier function methods for solving bound-constrained quadratic programs.

After stating our notation in Section 2, we consider the difficulties associated with the
normal Newton method and propose some alternatives in Section 3. These alternatives are
considered in detail for a number of common barrier functions in Section 4 and numerical
results indicating their effectiveness are provided in Section 5.

2 Notation

We let g(x) denote the gradient V, f(x), a;(x) denote the gradient V,¢;(x), A(x) be the
Jacobian matrix whose rows are a;(x)7 and H(x,A) = V. f(x) — 27, \;Vaeci(Xx) be
the Hessian matrix of the Lagrangian function associated with (1.1). We shall denote the
diagonal matrix whose i-th diagonal component is d; by D[d;]; the dimension of D should
be obvious from the context. We then have that

V.U (x,w,s) = g(x) — A(x)TA(x,w,s) (2.1)
and
Ve ¥(x,w,s) = H(x, A(x,w,s)) + A(X)TD[/\,'(X, w,s)/(ci(x) + s;)]A(x), (2.2)

where the Lagrange multiplier estimates A(x,w,s) satisfy
w;

e [ p=1,... . 2.3
%) T 5 or 1% N 7} (2.3)

Ai(x,w,s) =

We also need to compare the relative rates of convergence of sequences of numbers. If

{w®)} and {n¥)} are two sequences of positive numbers converging to zero as k tends to

infinity, we say that w(®) = O(n(k)) if there exists a constant x such that w®) < ky®) for

all k. If o®) = O(n®) and ) = O(w®)), we say that w®) = ©(n*¥)). We also say that

w®) = o(n¥)) if there is a third sequence {k®)} of positive scalars converging to zero as
k tends to infinity such that w®) < k®) 5 for all k.



3 Motivation

Suppose that we have obtained x(*¥) satisfying (1.3) and now wish to solve the k + 1-
st inner iteration subproblem (with some given w*t1) and s(**1) starting from x*),
Furthermore, suppose also that we intend using Newton’s method — or, more precisely,
a globally convergent Newton method — to solve the inner iteration subproblem. That
is, we obtain our first correction to x(*) by determining the Newton search direction §xV

from the Newton equations,
Voo U(xF) wlk+1) skt)y55N — v g (x0) wlk+1) gk+1)y (3.1)

and subsequently performing a linesearch in this direction. There are a number of potential
dangers.

1. There is no guarantee that, just because (1.3) ensures that V,¥(x(*), w(k) s()) is
small, the same is true for V,¥(x*) wk+1) s*k+1)) " Hence, an undamped (unit
stepsize) Newton process may require a significant number of steps before a suitable
x*+1) is determined.

2. Vm\I/(X(k),W(kH),S(kH)) may be badly conditioned making an accurate solution of
the Newton equations difficult.

3. The Newton step may not be possible as the value x(*) + §xV may violate one or more
of the “shifted” constraints c(x) + s*) > 0. Thus a restricted step will be necessary
and, once again, the rapid convergence of Newton’s method will be thwarted.

We consider the following alternative, based on the method proposed by Gould (1989) for
obtaining superior starting points for the quadratic penalty function. Ideally, we wish to
determine a value x for which

Vo O (x, whtD) sty = g(x) — A(x)TA(x, wk+D) s+ = g, (3.2)
where
(ke1)_g(k4)) D 33)
Ai(x, w ,S =—2——— for 1=1,...,m, 3.3
( ci(x) + sl(»kH)

for then the inner-iteration stopping rule (1.3) will be satisfied for any choice of w(k+1),
The Newton direction (3.1) is obtained by computing the Newton correction for (3.2) while
directly eliminating A(x) via (3.3). Suppose instead that we treat x and A as independent
variables which are required to satisfy the equations

g(x) — A(X)TA =0, (3.4)

and

(ci(x) + sl(»kﬂ))/\,- — wl(»kﬂ) =0, for i=1,...,m, (3.5)
and write down the Newton correction for the pair of values x and A. Then the corrections
o0x and 6 satisfy the equations

H(x, ) —A(x)" §x g(x) — A(x)TA
( D[\JA(x) Dlei(x) + st Y] ) ( 2 ) o ( D[(ci(x) + s )N — wl*F]e ) ’
(3.6)
where e is a vector of ones. Eliminating the variables 6\ and rearranging, we obtain

(H(x,A) + A(2) D/ (ci(x) + s A ) 6x = —V, 0 (x, whtD), s4D) - (3.7)



Thus we see that, although the choice of A does not affect the right-hand-side of (3.7), it
most certainly influences the left-hand-side. Moreover, the effect on the right-hand-side
of (3.6) may be significant.

The Newton direction (3.1) corresponds to the choice x = x(¥) and
(k+1)
A=AV e D for i=1,...,m (3.8)

(c.f. (2.1)-(2.3)). Notice that, with this choice, the first term on the right-hand-side of
(3.6) may be quite large while the second term vanishes.
An alternative, and potentially better, choice is obtained by selecting x = x®) and
k
_ A def wl( :

N AR T e i1 m 3.9

For then, we see from (1.3) that the first term on the right-hand-side of (3.6) is arbitrarily
small for sufficiently large k. Furthermore, each component of the second,

k+1)  def (k) ci(x®) +8£k+1)

ci(x(k)) + sk

: 3.10
B G A AT AL LA W B
- c,-(x(’“))+s§k) o w®) s®) w® )

k3 k3

BN

. Z

k3

for ¢ = 1,...,m, will be small if {sgk)} and {wl(-k)} converge while the remaining terms
remain finite. Thus, in this case, one would expect the Newton iteration (3.6) to converge
rapidly.

We note that the unshifted variant of the equations (3.6) form the basis of a whole
class of nonlinear primal-dual methods for convex optimization problems proposed by
McCormick (1991). Unlike the methods considered here, such methods explicitly use the
the corrections 6\ to construct improved Lagrange multiplier estimates but may require
extra precautions to ensure that such estimates are strictly positive.

We must also consider the value of the shifted constraints after such a Newton correc-
tion, c(x(k) + 6x) + s(k+1) A Taylor’s expansion around x(*) yields

c(x®) + 6x) + s+ = ¢(xF)) + s*+D) 1 A(x*))ox + O(]|6x]|?). (3.11)

In order to assess the (shifted) feasibility (or otherwise) of x(*) 4+ ¢x, it is thus important
to determine the size of A(x(*))éx. We now consider various methods in detail.

4 Shifts and weights

A large variety of shifts and weights have been proposed for barrier function methods. Our
concern here is the relationship between the shifts and weights for one inner iteration and
the next and its implication for the ease of solving successive inner-iteration subproblems.

In this section, we consider a number of different barrier functions. For each, we
analyze the size of the right-hand-side of the expanded Newton system (3.6). We next
consider the feasibility of the constraints after taking Newton steps (3.7) corresponding
to the two choices (3.8) and (3.9) for A. We show that the former choice often leads to
infeasibility and thus prohibits the use of an undamped step. We then show that the latter
choice does not suffer from this drawback and an analysis of the size of the gradient of



the barrier function after such a step indicates that the new point is a good point to start
a normal Newton iteration. Indeed, for the last class of methods considered, this new
point will asymptotically satisfy the inner iteration stopping rule and thus a single inner
iteration will eventually suffice for each outer iteration.

4.1 Traditional barrier function methods

In these methods the shifts are zero. The weights are typically given as

wl(kﬂ) = u* ) for i=1,...,m, (4.1)

where the positive sequence of penalty parameters {,u(k""l)

zero. In this case, (3.10) is

(k+1)
(k+1) _ A (%) -
T = (1 PG ) 'V, ofor 1=1,...,m, (4.2)

and hence one would expect the Newton iteration (3.6)/(3.9) to yield a significant im-
provement for sufficiently large k.

In particular, if, as is normal, w(®) = k; (%) for some constant 1, (1.3), (3.10) and (4.2)
imply that the right-hand-side of (3.6) is O(,u(k)). Consequently, in this case, provided the
coefficient matrix of (3.6) has a bounded inverse, one would expect that éx = O(u*)) and

6X = O(p™) and that

} monotonically converge to

g(x® + 6x) — Ax®) 4 6x)T (A + 6X) = 0(u®)?) (4.3)
and
ci(x® + 6x)(Ai + 60) = w4+ 0(u®2), (4.4)
for i = 1,...,m. It then follows from (2.3) and (4.4) that
(k+1) (k)2
X+ 8N = — +o|—*4
* i (x) 4 6x) ( (x®) 4 6x)
()2 (4.5)
-\ k+1) (k41 I Al
= /\l(x( ) + 6x, wk+1) gl )) +0 ( (x(k) n 6x))
fore=1,...,m.

Now consider ¢(x®) + 6x). For the inactive constraints at a limit point x* of {x(F)},
that is, those constraints for which ¢;(x*) > 0, it follows that ¢;(x*) 4 6x) is bounded
away from zero for all k sufficiently large. We thus have that

Lei(x®)) < ¢i(x®) 4 8x) < 2¢;(xF)), (4.6)

for all inactive constraints and all sufficiently large k. It remains to consider the active
constraints, that is those for which ¢;(x*) = 0. We argue in the same way as Wright
(1993).

Consider (3.7) as u¥) converges to zero. The coefficient matrix will be dominated by

A s(x®)TD 4[N ei(xF)] A (x ), (4.7)

where A 4 is the matrix whose rows are the a’ (x(¥)) corresponding to the active constraints
and D4 is the diagonal matrix whose entries are those of D for the active constraints.
Likewise, because of the relationship (1.3), the right-hand-side of (3.7) is dominated by

— AAxI)TD 4w — 0D fei(xP)e, (4.8)



for small *) and thus (3.7) is (approximately)

AT AR ei(x M)A ox & A ) TD AL -0l ei(x D). (49)
Now assume that A(z)4 is full-rank. Then it follows from (4.9) that

Aa(x®)sx ~ D 4[(w® — w1/ Ae. (4.10)
As Wright (1993) observes, the relationships (3.8), (4.1) and (4.10) imply that
A (xF)exN ~ (1 — p B/ EFDYe 4 (xR, (4.11)

when \; = AV, where §x" is the normal Newton correction and where c4 denotes the
vector of active constraints, In this case, (3. 11) and (4.11) then give that

ea(x® 4 6x) & (2= 8 1) e 4 (x(0)), (412)

which will be negative if pk+1) §g signiﬁcantly smaller than %,u(k). As it is normal to reduce
1®) by significantly more than a half, it must be expected, as Wright (1993) indicated,
that a full Newton step (3.1) will be infeasible.

If, on the other hand, we choose A; = AA, the relationships (3.9), (4.1) and (4.10)
imply that

A(xF)oxA 2 —(1 = p*+D 4 F)ye g(x*)), (4.13)

where 6x“ is the alternative Newton correction. Combining (3.11) and (4.13), we see that
(k+1)

ca(x® + 5x4) ~ 'MMTCA(X(IC)), (4.14)

which indicates that a step in the alternative direction will be safely feasible. Moreover,

in this case, as both the inactive and active constraints are bounded away from zero at

( ) + (5XA for fixed, but sufficiently large k, we have from (4.14) and the convergence of
k) /¢;(x(¥)) to the Lagrange multiplier \* (see e.g. Wright, 1992b) that

I I

ci(x®) + 6x4) T ci(xR)) pkA1) T i (1) (4.15)
for all active constraints. Likewise, from (4.6),
(k) (k) (k)
. 5 ) (4.16)

< <2
2¢;(x®)) = ;(x®) 4 §xA) T Tep(x())
for the inactive constraints, and all such terms converge to zero as the Lagrange multipliers
for these are zero. Thus, combining (4.5), (4.15) and (4.16), we see that

Ai + 00 = Ai(xF) 4 ox, wik+) sk+1)) 4 g, )2, (k1) (4.17)
for i =1,...,m, and hence, from (2.1) and (4.3), that
Vo (x® 4 6x, wlkt) sk+1)) = g, k)27, k1)), (4.18)

In view of the estimate (4.18), one now expects the traditional Newton iteration to
converge fast when started from x(*) + §x# so long as the sequence {,u(k)} does not converge
to zero too fast. In particular, following (4.18), one would expect that the gradient of the
barrier function after a single normal Newton step from this point would be asymptotically
O(u!l 4//L (k+1)2) and thus the stopping rule (1.3) to be satisfied at such a point so long
as ) = o(u(+1)3
Gould (1989).

Although the Hessian of the barrier function is likely to be ill-conditioned near the
constraint boundaries, a number of schemes have been proposed for accurately solving the
Newton equations. We refer the interested reader to the papers by Wright (1976), Murray
and Wright (1978), Gould (1986), McCormick (1991) and Wright (1992a).

1). An analogous result for the quadratic penalty function was given by



4.2 Jittorntrum and Osborne’s modified barrier function method

In this method, the shifts are zero and the weights satisfy the relationship

(
(k+1) M ( -
w, = T(X(k))wl , for 1=1,...,m, (4.19)

k+1

where the positive sequence of penalty parameters {,u( )} monotonically converge to

zero. In this case, (3.10) is

P o) e

k3

for i=1,...,m. (4.20)

Moreover, under mild conditions, one has that each wl(»k) = O(p™) and {wl(»k)/c,'(x(k’))}

converges to a Lagrange multiplier A7 (see, Jittorntrum and Osborne, 1980). Therefore
(k+1)
2
significant improvement for large k.

If, as in the previous section, w(®) = k; ) for some constant k;, much of the analysis
of that section remains valid. In particular, (4.3)-(4.6) and, under the same full-rank

assumption, (4.10) hold. Combining (4.10)and (4.19), we obtain

T = O(u®)) and, once again, one expects the Newton iteration (3.6)/(3.9) to yield a

(k+1) (k)
*)Vx ~r — SRR
A 4(x\")ox D4 (1 c,-(x(k’))) y ] e. (4.21)
Hence, if \; = AV, (4.19) and (4.21) give the relationship
(k+1) (k)
FNexN  ~ — (x(F) _ K w;
Aa(D)ox D |eilx) (1 c,-(x(k))) w,k+1)] © (4.22)

(
= (x) = D 4lei(x¥) /D] )e(x ),
where 6x” is the normal Newton correction. As before, (3.11) and (4.22) then give that

)

ca(x® + 6xN) ~ 2c4(xF)) — —ar P Alei(xF)/Fe 4 (x ). (4.23)
H

Dividing both sides of the relationship (4.19) by ¢;(x(*t1)) and using the convergence of
the sequence {wl(k)/c,'(x(k))} to A¥, we see that ¢;(x(*¥))/u®*) converges to one provided A:
is not zero. Thus (4.23) will be negative if pF+1) g significantly smaller than %,u(k). But,
as before, it is normal to reduce p*) by significantly more than a half and therefore a full
Newton step (3.1) will be infeasible.

On the other hand, if we choose A; = A#, the relationships (4.19) and (4.21) imply
that

AA(xF)oxA & —Dgle(x®)(1 — p* 1D /e (x))]e = —e(x®)) + p*tDe,  (4.24)

for the alternative Newton correction, 6x4. Thus, combining (3.11) and (4.24), we have
that
ca(x®) 4+ §x4) ~ p* e 4 O(u0?), (4.25)

which indicates that a step in the alternative direction will be safely feasible so long as
1
pk) = o(u(k+1)§). Moreover, in this case, as both the inactive and active constraints are



bounded away from zero at x(*¥) 4+ §x4 for fixed, but sufficiently large k, we have from
(4.25) that
k k
p) o 1Y : (4.26)
ci(x(®) 4+ 6xA)  plkt1)
for all active constraints. Furthermore (4.16) holds for the inactive constraints. Thus,
combining (4.5), (4.16) and (4.26), we see once again that (4.17) and (4.18) hold.

The comments at the end of Section (4.1) then apply equally here, namely that one
would expect that the gradient of the barrier function after a single normal Newton step
from the point x*) 4+ §x4 will be O(u¥)4/u*+1)2) Again, the stopping rule (1.3) will be
satisfied at such a point so long as p(F) = o(u(k"'l)%).

4.3 The shifted barrier function methods

In this method, it is intended that the shifts and weights are chosen so that
wl(»k)/sgk) — A7 for i=1,...,m, (4.27)

where A* are a set of Lagrange multipliers associated with the problem (1.1). In this case,
it follows that

) 1 ® — A; for i1=1,...,m. (4.28)
Thus, using (4.27) and (4.28), (3.10) gives
(k+1) weax®) 50 g
7 = w:
’ ei(x¥)) + s (4.29)
~ (M) 457 -t |
~ cl(x(k))/\*,

which tends to zero because of the complementary slackness condition ¢;(x*)Af = 0. It
is difficult to say more about this method without more specific information on the shifts
and weights.

4.4 Polyak’s modified- and the Lagrangian barrier function methods

If the algorithm has not entered its asymptotic phase, or perhaps if the problem is degen-
erate, the shifts and weights satisfy the relationships

S£k+1) _ M(kH)

(k1) _ 1Y

(k) ( B !
2 k) 2 )

and w for 1=1,...,m, (4.30)

where the adjacent penalty parameter values are such that 0 < u(k+1)/u(k) <7<l In
this case, (3.10) is

(k) k+1
pHD - w;ci(x(k)) (1 — M) for i=1,...,m. (4.31)
’ ci(x®)) + 5P p®
Moreover, under mild conditions one has that each {wl(k)/(ci(x(k)) + sl(»k))} converges to
a Lagrange multiplier A7 and thus, because of the complementary slackness condition
¢;(x*)AF = 0, (4.31) may be made arbitrarily small. We need to be cautious here as there
is no guarantee that x(*) is feasible for the shifted constraints once the updates (4.30)



have been applied. It may then be necessary to find an alternative starting point for the
k + 1-st inner iteration. Suitable methods are given by Conn et al. (1992a).

If the asymptotic phase of the algorithm is reached, the penalty parameter ;(¥) remains

k+1)

fixed at some value /L > 0 and the Lagrange multiplier estimates Al are defined by

(k)
AR = B for i=1,...,m (4.32)
c,-(x(k)) + 51(' )

(c.f. (3.9)). Here, the shifts and weights are defined to be

sgkﬂ) =i ()\gk-l_l))CYA and wl(-k-l_l) = /\Z(»kﬂ)sl(»kﬂ) for :=1,...,m, (4.33)
and some constant 0 < a) < 1 — the choice a)y = 0 gives Polyak’s method while any

0 < ay <1 defines a Lagrangian barrier function. We note that the theory given by Conn
et al. (1992a) does not hold for the case a) = 0. Both Polyak (1992) and Conn et al.
(1992a) indicate that this asymptotic behaviour will occur under certain non-degeneracy
assumptions. In this case (3.10), (4.32) and (4.33) give

k) _ e+ s ) e
r = S
P C,(X(k)) 4 Sgk) p P
et + s gy s
a ei(x) + sgk) ‘ ci(x®) + sgk) (4.34)

for each ¢ = 1,...,m. Under mild conditions, Polyak (1992) and Conn et al. (1992a) show
(k+1)

i

that limit points of {x(k)} are Kuhn-Tucker points and that the corresponding A
converge to Lagrange multipliers. Hence, one expects /\EkH)ci(x(k)) to be small because
of the limiting complementary slackness condition at a Kuhn-Tucker point.

In particular, the asymptotic phase of the Lagrangian barrier function algorithm of

Conn et al. (1992a) is entered whenever the condition
DG A el /5 el < o, (4:35)

for another positive sequence {7*)} whose limit is zero. In this case, (4.33) and (4.35)
imply that
AR (x®)) < @) 5B/ fic oy ®), (4.36)

(3

where k3 = 2max;—1,  ,(AJ)** for each i = 1,...,m and all k sufficiently large. To
proceed further, we need to consider the exact form of the sequences {w®)} and {5(*¥)}.
These are given by

and 7% =g, o Puk (4.37)
where 0 < f3,, < min(1, ).
Consider first the choice (3.8), A; = AN. In this case, Conn et al. (1992b, equation

(4.47)), ensures that the first component of the right-hand-side of (3.6) is O(I*t Pk=1)" As
the second is, by definition, zero, we would then expect that, so long as the coefficient

matrix of (3.6) has a bounded inverse, 6xV = O(l*i Bok=1) and 6AN = O(l*i Pnk=1) and that

g(x® 4 5xN) — AP + 8Vx)T(A+ 6AN) = O(1u 2Pr+=2) (4.38)



and

(ci(x® + 6xM) + sFFY O + 6AN) = w4 o 2k-2), (4.39)
for i = 1,...,m. It then follows from (2.3) and (4.39) that
(k+1) * 08, k—2
: N _ w; =P
At ok c,-(x(k) + 6XN) + s(k+1) O (c,-(x(k) + 6XN) + s(k'l'l))
i A (4.40)

(k) 1 5V D) gD
AZ(X + 6x W »S )+O C,’(X(k) +6XN)+S£]€+1) ;

fore=1,...,m.

But, now consider the values of the shifted constraints ¢(x) 4 s(**1) at the perturbed
point x = x*) 4+ §x, where éx = 0(1) Suppose, furthermore that strict complementary
slackness holds at limit points of {x(®)}. For the inactive constraints, c¢(x*) + 6x) is

bounded away from zero for all k sufficiently large and thus ¢;(x*) 4 6x) + sl(»kﬂ) = 0(1).
For the active constraints, the sl(»k) converge to i (Ar)®* and thus ¢;(x*) 4 §x) + sl(»k-l_l) =
O(i).

Hence, as 6xV = o(1), (4.40) shows that

A+ AN = Ax® 4 §xN, wktD) sk 4 o 2nk=3), (4.41)
and thus (2.1), (4.38) and (4.41) yield that
Vo U (x® 4 6xN wlkt) gk+1)y = (i 2ak=3). (4.42)

But then, as ,l*t k=3 — 0(w<k+1)) for all k£ sufficiently large, one would eventually expect
a single iteration of Newton’s method to suffice for each inner iteration. This is made
rigourous by Conn et al. (1992b).

Now consider the choice (3.9), A; = A3, In this case, (1.3), (4.34) and (4.36) imply that

the right-hand-side of (3.6) is O(max(w®),7(*))) = O(l*i Aqk). Consequently, provided the
coefficient matrix of (3.6) has a bounded inverse, one would expect that 6x4 = O(,l*t Pk
and §A% = O(j %%), and that

g(x™) + 6xt) = A(x® 4 63T (A4 623%) = O *) (4.43)

and

(ci(x® + 8x4) + sFFD ) 4+ 622) = w4 o1 2P0k, (4.44)
for i = 1,...,m. It then follows from (2.3) and (4.39) that

(k+1) * 98,k
N+ oAt = b 10 pu 2P
ei(x® 1 6x*) 4 s T\ (x® 1 oxt) 4 5[ (4.45)
* 2B,k )
=\ x(k) 1+ (5XA,W(k+1),S(k+1) 10 | ’
( ) ci(x®) 4+ 6x4) + sl(»kﬂ)
for:=1,...,m.
Argumg as before that c(x®) 4+ 6x4) 4 s(k+1) = G)(ﬁ), (4.45) shows that
A+ A% = Ax® 4 sxA, wktD) gkt)y 4 o 2Bnk-1y, (4.46)
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and thus (2.1), (4.38) and (4.46) yield that

V. ¥ (x® 4 x4 wlktl) sk+1)y = O(l*i 2nk=1y, (4.47)
But then again, as ,l*t k=1 — o(w(k"'l)) for all k sufficiently large, one would eventually
expect a single iteration of Newton’s method to suffice for each inner iteration.

Thus, we see that it is not crucial to use the alternative model for the methods consid-
ered in this section to achieve a reasonable second inner iterate. None the less, there are
differences in the estimates (4.42) and (4.47) and the slightly better asymptotic estimate
provided by (4.47) sometime manifests itself in practice.

5 Numerical experiments

In this section, we indicate the effect of using the alternative initial model discussed in
the previous sections. We illustrate the effect using an algorithm for solving bound-
constrained quadratic programming problems that incorporates a variety of shifts and
weights, as implemented in the Harwell Subroutine Library (1993) code VE14.

method normal alternative
inner outer time inner outer time
iterations | iterations | (secs) || iterations | iterations | (secs)
Trad 96 8 27.03 87 8 25.18
Jand O 80 5 21.73 75 5 21.26
LBF 76 8 21.57 63 8 19.17
method normal alternative
number of number of number of number of
factorizations | backtracks || factorizations | backtracks
Trad 49 159 46 93
J and O 41 216 39 143
LBF 41 148 34 115

Table 1: BQPGAUSS (n = 2003), optimal value = —0.36258

We consider three variants which are included in VE14. These are the traditional
barrier function method (“Trad”, see Section 4.1), the proposal by Jittorntrum and Os-
borne (1980) (“J and O”, see Section 4.2) and the Lagrangian barrier function method
(“LBF”, see Section 4.4) with the parameter choice ay = 0.5. As we have suggested,
each method comprises an outer iteration in which the shifts, weights and tolerances are
adjusted according to predefined rules (see Section 4) and a sequence of inner iterations
which conclude as soon as a value z(¥) satisfying (1.3) is obtained. The inner iteration
subproblem is solved using a simple backtracking linesearch method. In this, a search
direction is computed by minimizing a quadratic model of the barrier function; the model
is such that the gradients of the model and barrier function agree and the Hessian of the
model is the matrix

H(x, A) + A(2)" D[A/(ci(x) + s{*)]A(x) (5.1)

of (3.7), modified (if necessary) to be positive definite. The model is minimized by solving
the linear system which define its stationary point, using the sparse, multifrontal code

11



method normal alternative
inner outer time inner outer time
iterations | iterations | (secs) | iterations | iterations | (secs)
Trad 82 9 356.96 72 9 303.62
J and O 61 5 261.44 55 5 231.45
LBF 51 9 223.91 35 8 159.50
method normal alternative
number of number of number of number of
factorizations | backtracks || factorizations | backtracks
Trad 45 81 38 31
Jand O 33 135 29 81
LBF 28 47 20 32
Table 2: JNLBRNGA (n = 15625), optimal value -0.26851
method normal alternative
inner outer time inner outer time
iterations | iterations | (secs) || iterations | iterations | (secs)
Trad 81 9 335.95 81 9 323.17
J and O 95 6 369.22 86 6 343.81
LBF 56 10 250.66 49 10 219.55
method normal alternative
number of number of number of number of
factorizations | backtracks || factorizations | backtracks
Trad 45 110 43 50
Jand O 49 223 46 146
LBF 32 45 29 19

Table 3: 0BSTCLBM (n = 15625), optimal value = 7.2958

MA27 (Duff and Reid, 1982) from the Harwell Subroutine Library (1990) and, if necessary,
modifying the factorization to ensure a convex model using the techniques described by
Gill et al. (1990). Then, a step along this direction is found as the smallest non-negative
power of 0.5 which is both feasible for the “shifted” comstraints c(x) + s*) > 0 and
satisfies the Armijo sufficient-decrease condition (see, for example, Dennis and Schnabel,
1983 or Fletcher, 1987). We appreciate that a more sophisticated linesearch, such as those
specifically proposed for barrier functions by Lasdon et al. (1973) or Murray and Wright
(1992), may be beneficial, but note that the simple backtracking strategy performed well
in practice.

Before the minimization commences, a good symbolic ordering is found for the rows
of the Hessian matrix. The Hessian of the model may remain fixed for a number of
inner iterations. In tests, we have found that changing (and consequently refactorizing)
the matrix every couple of iterations achieves a good compromise between the cost of
the factorization and the effectiveness of an outdated model, although we also choose to
delay refactorization if the ratio of norms of successive gradients of the barrier function is

12



method normal alternative
inner outer time inner outer time
iterations | iterations | (secs) | iterations | iterations | (secs)
Trad 84 9 304.71 74 9 251.54
Jand O 75 5 256.41 55 5 192.65
LBF 60 9 220.88 58 9 206.74
method normal alternative
number of number of number of number of
factorizations | backtracks || factorizations | backtracks
Trad 46 83 38 36
J and O 39 138 29 72
LBF 33 79 28 115

Table 4: TORSION1 (n = 14884), optimal value —0.42570

decreased by more than a fixed factor (0.1 in the tests performed here).

We consider two possible choices for Ain (5.1), those given by (3.8), denoted “normal”,
and (3.9), denoted “alternative”. We only choose A as (3.9) for the first model/step
of each inner iteration in the “alternative” method, reverting to (3.8) for the second
and subsequent models/steps. In Tables 1-4 we give the numbers of outer and inner
iterations and the cpu times required to solve four large examples from the CUTE test
collection (Bongartz et al., 1993) — all of the remaining large examples in the collection
for which direct methods are appropriate! are variants of these and similar performances
were observed. We also report the number of factorizations that are required to solve
the problems and the total number of times the stepsize was reduced in the backtracking
linesearch. All tests were performed on a SUN Sparc 10 workstation in double precision
and were stopped when the norm of the projected gradient of the objective function within
the feasible region was smaller than 1076,

We draw the following conclusions from these experiments:

e The alternative choice of A pays respectable dividends in both the number of itera-
tions and the required cpu times to solve the problems. In some of the cases, as much
as a twenty five percent improvement is possible. For the two unshifted methods, the
number of backtracks performed is significantly reduced indicating that the alterna-
tive choice helps in producing good initial search directions — a closer examination
of the runs indeed reveals that this is so. For the shifted method, the payoff is not as
high but this may be explained by the theory of Conn et al. (1992b) which indicates
that the normal choice also provides acceptable steps in many cases. However, there
is a slight, but noticeable, improvement in the “close-to” asymptotics, in that the
gradient of the barrier function after the first Newton step of each inner iteration
is almost always slightly smaller in the alternative method and this appears to be
beneficial for the second and, if required, subsequent Newton steps.

o As these are the first reported results for Lagrangian barrier function methods, we
also observe that such methods outperform the unshifted barrier function methods
in almost all of our tests. While we cannot infer that this is a general trend, it is

!The Hessian of the one other large problem from the collection, ODNAMUR, is too dense to assemble and
store on our machine.
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at least an indication that the theory provided by Conn et al. (1992a) is of use in
producing good algorithms for bound-constrained quadratic programs.

6 Conclusions

We have presented a class of alternatives to the usual Newton direction for calculating an
initial improvement to each of a sequence of barrier function minimizations. The method
has proved to be effective in practice within the Harwell Subroutine Library (1993) bound
constrained quadratic programming subroutine VE14 and shows similar signs within a (as
yet, unfinished) related, general quadratic programming code VE19.
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