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ABSTRACT
We consider the global and local convergence properties of a class of augmented Lagrangian
methods for solving nonlinear programming problems. In these methods, linear and more general
constraints are handled in different ways. The general constraints are combined with the objective
function in an augmented Lagrangian. The iteration consists of solving a sequence of subproblems;
in each subproblem the augmented Lagrangian is approximately minimized in the region defined by
the linear constraints. A subproblem is terminated as soon as a stopping condition is satisfied. The
stopping rules that we consider here encompass practical tests used in several existing packages
for linearly constrained optimization. Our algorithm also allows different penalty parameters
to be associated with disjoint subsets of the general constraints. In this paper, we analyze the
convergence of the sequence of iterates generated by such an algorithm and prove global and fast
linear convergence as well as showing that potentially troublesome penalty parameters remain
bounded away from zero.
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1 Introduction

In this paper, we consider the problem of calculating a local minimizer of the smooth function���	��
�
(1.1)

where
�

is required to satisfy the general equality constraints��� ����
�� 0
�

1 ������� (1.2)

and the linear inequality constraints � ����� �
0 � (1.3)

Here
�

and ��� map !#" into ! ,
�

is a $ -by- % matrix and
� & !(' .

A classical technique for solving problem (1.1)–(1.3) is to minimize a suitable sequence of
augmented Lagrangian functions. If we only consider the problem (1.1)–(1.2), these functions are
defined by
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where the components
* � of the vector

*
are known as Lagrange multiplier estimates and

,
is

known as the penalty parameter (see, for instance, Hestenes, 1969, Powell, 1969 and Bertsekas,
1982). The question then arises how to deal with the additional linear inequality constraints (1.3).
The case where

�
is the identity matrix (that is when (1.3) specifies bounds on the variables)

has been considered by Conn, Gould and Toint (1991) and Conn, Gould and Toint (1992b).
They propose keeping these constraints explicitly outside the augmented Lagrangian formulation,
handling them directly at the level of the augmented Lagrangian minimization. That is, a sequence
of optimization problems, in which (1.4) is approximately minimized within the region defined
by the simple bounds, is attempted. In this approach all linear inequalities other than bound
constraints are converted to equations by introducing slack variables and incorporated in the
augmented Lagrangian function. This strategy has been implemented and successfully applied
within the LANCELOT package for large-scale nonlinear optimization (see Conn, Gould and
Toint, 1992a). However, such a method may be inefficient when linear constraints are present as
there are a number of effective techniques specifically designed to handle such constraints directly
(see Arioli, Chan, Duff, Gould and Reid, 1993, Forsgren and Murray, 1993, Toint and Tuyttens,
1992, or Vanderbei and Carpenter, 1993, for instance). This is especially important for large-scale
problems. The purpose of the present paper is therefore to define and analyze an algorithm where
the constraints (1.3) are kept outside the augmented Lagrangian and handled at the level of the
subproblem minimization, thus allowing the use of specialized packages to solve the subproblem.

Our proposal extends the method of Conn et al. (1991) in that not only bounds but general
linear inequalities are treated separately. Fletcher (1987, page 295) remarks on the potential
advantages of this strategy.

Furthermore, it is often worthwhile from the practical point of view to associate different
penalty parameters to subsets of the general constraints (1.2) to reflect different degrees of non-
linearity. This possibility has been considered by many authors, including Fletcher (1987, page
292), Powell, 1969 and Bertsekas (1982, page 124). In this case, the formulation of the augmented
Lagrangian (1.4) can be refined: we partition the set of constraints (1.2) into 6 disjoint subsets798#:<;>=: 4

1, and redefine the augmented Lagrangian as

Φ
�	�)�*+�-,)
)�.���	��
0/ =3: 4

1

3�@?9ACB D * �E��� �	��
F/ 1
2
, : ��� �	�G
 2 H � (1.5)

1



where
,

is now a 6 -dimensional vector, whose I -th component is
, :KJ

0, the penalty parameter
associated with subset

8 :
. Because of its potential usefulness, and because its analysis is difficult

to directly infer from the single penalty parameter case, this refined formulation will be adopted
in the present paper.

The theory presented below handles the linear inequality constraints in a purely geometric
way. Hence the same theory applies without modifications if linear equality constraints are also
imposed and all the iterates are assumed to stay feasible with respect to these new constraints. It
is indeed enough to apply the theory in the affine subspace corresponding to this feasible set. As a
consequence, linear constraints need not be included in the augmented Lagrangian and thus have
the desirable property that they have no impact on the structure of its Hessian matrix.

The paper is organized as follows. In Section 2, we introduce our basic assumptions on
the problem and the necessary terminology. Section 3 presents the proposed algorithm and the
definition of a suitable stopping criterion for the subproblem. The global convergence analysis
is developed in Section 4 while the rate of convergence is analyzed in Section 5. Second order
conditions are investigated in Section 6. Section 7 considers some possible extensions of the
theory. Finally, some conclusions and perspectives are outlined in Section 8.

2 The problem and related terminology

We consider the problem stated in (1.1)–(1.3) and make the following assumptions.

AS1: The region L � 7 �KM � ����� � 0
;

is nonempty.

AS2: The functions
���	��


and ��� �	�G
 , ( � � 1
� �<�<� � � ), are twice continuously differentiable for

all
�N& L .

Assumption AS1 is clearly necessary for the problem to make sense. We note that it does not
prevent L from being unbounded.

We now introduce the notation that will be used throughout the paper.
Let O �	�G
 denote the gradient PRQ ���	�G
 of

���	�G

and S �	�G
 denote its Hessian matrix PTQUQ ���	��
 .

We also define V �	�G
 to be the � -by- % Jacobian of � �	�G
 , where� �	�G
W�YX �
1
�	��
�<Z<Z[Z\� � 1 �	�G
�]E^ �

Hence V �	��
_^`�aX PTQ � 1 �	�G
U� �[�<� � PTQ � 1 �	�G
�] �
Let S � �	�G
 denote the Hessian matrix PTQUQ ��� ����
 of ��� �	�G
 . Finally, let Ocb �	�)�*C
 and SNb ���)�U*�
 denote
the gradient, PTQd �	�0�U*�
 , and the Hessian matrix, PTQUQ[d ���)�U*�
 , of the Lagrangian functiond ���)�U*�
��.���	��
F/213�54

1

* � � � ����
 �
We note that d �	�0�U*�
 is the Lagrangian solely with respect to the ��� constraints. If we define
first-order Lagrange multiplier estimates componentwise as

¯*)�	�0�U*Fe AfB@g �\, : 
�e ACB	g �h*Fe ACBig / � ����
�e ACBigEj , : � I � 1
� �<�[� � 6 
U� (2.1)

where k e l g denotes the
M m�M

-dimensional subvector of k whose entries are indexed by the set
m

, we
shall use the identityPRQ Φ ���)�U*)�-,+
0� PRQ ���	�G
F/on =: 4 1

n �@?9ACBqp * � PTQ ��� ����
)/ 1r B ��� �	�G
 PTQ ��� �	��
_s� Otb ���)� ¯*����)�U*)�-,+
-
 � (2.2)
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Now suppose that
7 �Guv& L ; , 7 *�u ; and

7 ,)u ;
are infinite sequences of % -vectors, � -vectors

and positive 6 -vectors, respectively. For any function w , we shall use the notation that w u denotesw evaluated with arguments
��ux�U*�u

and/or
,)u

as appropriate. So, for instance, using the identity
(2.2), we have that PTQ Φ u � PTQ Φ �	�Guy�U*�uz�-,+u[
�� O b �	�Guy� ¯*�uU
U� (2.3)

where we have written (2.1) in the compact form

¯*�u{� ¯*F�	��ux�U*�uz�\,)u[
 � (2.4)

We denote the vector k at iteration | by k u and its � -th component by k u � � . We also use k u � e l g to
denote the

M m�M
-dimensional subvector of k u whose entries are indexed by

m
.

Now let
7 ��u ; � | &~} , for some subset

}
of the natural numbers � , be a convergent subse-

quence with limit point
���

. Then we denote the matrix whose rows are those of
�

corresponding
to active constraints at

� �
— that is the constraints which are satisfied as equalities at

� �
— by

� �
.

Furthermore, we choose � � to be a matrix whose columns form an orthonormal basis of the null
space of

� �
, that is � � � ��� 0 and � ^� � ���.� �

We define the least-squares Lagrange multiplier estimates (corresponding to
� �

)*)�	��
 def�����\� V �	��
 � � 
-�W
 ^ � ^� O �	��
 (2.5)

at all points where the right generalized inverse� V �	�G
 � � 
 � def� � ^� V �	�G
_^�� V �	��
 � � � ^� V �	��
�^W
�� 1

of V ����
 � � is well defined. We note that, whenever V �	��
 � � has full rank,
*)�	�G


is differentiable
and its derivative is given in the following lemma

Lemma 2.1 Suppose that AS2 holds. If V �	��
 � � � ^� V ����
 ^ is nonsingular,
*)�	�G


is differentiable
and its derivative is given byP Q *)�	��
��Y���\� V �	�G
 � �U
\��
 ^ � ^� S b �	�0�U*)�	��
-
F�o� V �	��
 � � � ^� V �	�G
 ^ 
 � 1 � �	�G
 (2.6)

where the i-th row of � ����
 is
� � ^� O �	��
G/ � ^� V ����
 ^ *)�	��
-
 ^ � ^� S � �	��
 .

Proof. The result follows by observing that (2.5) may be rewritten as� �	��
�� � ^� V ����
 ^ *)�	�G
W� � ^� O �	�G
 and V ����
 � � � �	�G
�� 0 (2.7)

for some vector � �	�G
 . Differentiating (2.7) and eliminating the derivative of � ����
 from the resulting
equations gives the required result.

We stress that, as stated, the Lagrange multiplier estimate (2.5) is not directly calculable as it
requires a priori knowledge of

� �
. It is merely introduced as an analytical device.

Finally, the symbol � Z � will denote the d 2-norm or the induced matrix norm. We are now in
position to describe more precisely the algorithm that we propose to use.

3 Statement of the algorithm

We consider the algorithmic model we wish to use in order to solve the problem (1.1)–(1.3). This
model proceeds at iteration | by computing an iterate

� u
which satisfies (1.3) and approximately

solves the subproblem
minQ ?�� Φ

���)�U*�uz�-,+u[
U�
(3.1)
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where the values of the Lagrange multipliers
*Cu

and penalty parameters
,)u

are fixed for the
subproblem. Subsequently we update the Lagrange multipliers and/or decrease the penalty pa-
rameters, depending on how much the constraint violation for (1.2) has been reduced within each
subset of the constraints. The motivation is simply to ensure global convergence by driving, in
the worst case, the penalty parameters to zero, in which case the algorithms essentially reduce to
the quadratic penalty function method (see, for example, Gould, 1989). The tests on the size of
the general constraint violation are designed to allow the multiplier updates to take over in the
neighbourhood of a stationary point.

The approximate minimization for problem (3.1) is performed in an inner iteration which is
stopped as soon as its current iterate is “sufficiently critical”. We propose to base this decision on
the identification of the linear constraints that are “dominant” at

�
(even though they might not

be active) and on a measure of criticality for the part of the problem where those constraints are
irrelevant. Given � � 0, a criticality tolerance for the subproblem, we define, for a vector

�`& L ,
the set of dominant constraints at

�
as the constraints whose indices are in the set� �	�)� � 
 def� 7 � & 7 1 � �[�<� � $ ; Mz� ^� ����� � �o� 0 � ; � (3.2)

for some � 0
J

0. Here
� ^� & !�" is the � -th row of the matrix

�
and

� � is the corresponding
component of the right-hand side vector

�
. Denoting by

����� Q � �c� the submatrix of
�

consisting of
the row(s) whose index is in

� �	�0� � 
 , we also define� �	�0� � 
�� 7 � ^��� Q � �c��� M � & !�� ��� Q � �c� � and � � � 0
� � � � 1

� �<�[� �>M � �	�0� � 
<M�
 ; �
the cone spanned by the outwards normals of the dominant constraints. The associated polar cone
is then � �	�0� � 
�� � �	�)� � 
 0 � cl

7>� M � ^¡  � 0 for all
  & � �	�0� � 
 ; �

where cl
�	¢�


denotes the closure of the set
¢

. The cone
� �	�)� � 
 is the tangent cone with respect

to the dominant constraints at
�

for the tolerance � . Note that
� �	�)� � 
 might be empty, in which

case
����� Q � �c� is assumed to be zero,

� �	�0� � 
 reduces to the origin and
� ���)� � 
 is the full space.

We then formulate our “sufficient criticality” criterion for the subproblem as follows: we
require that �£ ^ � Q<¤ � � ¤ � ( � PRQ Φ u ) � �~� ut� (3.3)

where £W¥ �\Z¦
 is the projection onto the convex set
¢

and � u is a suitable tolerance at iteration | .
Once

�Gu
satisfying (3.3) has been determined by the inner iteration, we denote� u � � ����uy� � u<
� � u�� � �	��ux� � u[
 and

� u§� � �	��ux� � u[
 � (3.4)

For future reference, we define � u to be a matrix whose columns form an orthonormal basis of¨ u
, the null space of

� � ¤ , and © u to be a matrix whose columns form an orthonormal basis ofª u�� ¨�«u
. As above, we have that

� u
is the full space and

� u
reduces to the origin when

� u
is

empty. We note that, in this case, � u�� £ ^ ¤ �Y� , the identity operator, and © u�� £0¬W¤ � 0. We
also note that

¨ u� � u
, and hence that�U� ^u PTQ Φ u � � �U� u � ^u PTQ Φ u � �®�U£ ^ ¤ �\� PTQ Φ u>
 � � (3.5)

since � u � ^u is the orthogonal projection onto
¨ u

.
It is important to note that the stopping rule (3.3) covers a number of more specific choices,

including the rule used in much existing software for linearly constrained optimization (such as
MINOS by Murtagh and Saunders, 1978, LSNNO by Toint and Tuyttens, 1992, or VE14 and
VE19 from the Harwell Subroutine Library). The reader is referred to Section 7.2 for further
details.

We are now in position to describe our algorithmic model more precisely. In this model, we
define ¯ u to be the maximum penalty parameter at iteration | (see (3.10)). At this iteration, the
parameters � u and ° u represent criticality and feasibility levels, respectively.

4



Algorithm 3.1

Step 0 [Initialization]. A partition of the set
7
1
� �<�[� � � ; into 6 disjoint subsets

798#:z; =: 4
1 is given,

as well as initial vectors of Lagrange multiplier estimates
*

0 and positive penalty parameters,
0 such that ,

0 � :{± 1
� � I � 1

� �<�[� � 6 
 � (3.6)

The strictly positive constants � 0, � �³² 1, ° �³² 1, ´ ± 1, ¯0µ ± 1, and ¶Fµ ± 1 are
specified. Set ¯ 0

�
max: 4

1 �¸·¸·¸· � = , 0 � : , � 0
� ¯ 0, ° 0

� ¯�¹yº0 and | � 0.

Step 1 [Inner iteration]. Find
��u»& L that approximately solves (3.1), i.e. such that (3.3) holds.

Step 2 [Test for convergence]. If �£ ^ ¤ (
� PTQ Φ u ) �»�~� � and � � �	�GuU
 � ��° � , stop.

Step 3 [Disaggregated updates]. For I � 1
� �[�<� � 6 , execute Step 3a if� � �	�GuU
�e AfB�g � ��° uy� (3.7)

or Step 3b otherwise.

Step 3a [Update Lagrange multiplier estimates]. Set* u � 1 � e AfB�g � ¯*)�	��ux�U* u � e ACB@g �-,)u � : 
¼e AfB�g �, u � 1 � : � , u � : �
Step 3b [Reduce the penalty parameter]. Set* u � 1 � e ACB	g � * u � e AfBig �,)u � 1 � : � ´ u � : ,)u � : � (3.8)

where ´ u � : �¾½ ´ if
,)u � : � ¯ ux�

min
� ´ � ¯ uU
 otherwise.

(3.9)

Step 4 [Aggregated updates]. Define ¯ u � 1
�

max: 4
1 �¸·¸·¸· � = ,)u � 1 � : � (3.10)

If ¯ u � 1
± ¯ ux� (3.11)

then set � u � 1
� ¯ u � 1

�° u � 1
� ¯ ¹yºu � 1

� (3.12)

otherwise set � u � 1
� � u ¯ u � 1

�° u � 1
� ° u ¯)¿<ºu � 1 � (3.13)

Increment | by one and go to Step 1.

Algorithm 3.1 is specifically designed for the first-order estimate (2.1), a formula with potential
advantages for large-scale computations. We refer the reader to Section 7.1 for a further discussion
of a more flexible choice of the multipliers, covering, among others, the choice of the least-squares
estimates

*)�	�G

as defined in (2.5).
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We immediately verify that our algorithm is coherent, in that

limuÁÀ�Â � u � limu�À�Â ° u � 0 � (3.14)

Indeed, we obtain from (3.6) that ¯ u ± 1 for all | , and (3.14) then follows from (3.12) and (3.13)
if ¯ u tends to zero, or from (3.13) alone if ¯ u is bounded away from zero.

The restriction (3.6) is imposed in order to simplify the exposition. In a more practical setting,
it may be ignored provided the definition of ¯ 0 and (3.10) are replaced by¯ 0

�
min Ã�ÄCÅ � max: 4

1 �¸·¸·¸· � = , 0 � :ÁÆ and ¯ u � 1
�

min Ã[Ä�Å � max: 4
1 �¸·¸·¸· � = ,)u � 1 � :UÆ �

respectively, for some constant Ä�Å &�� 0 � 1 
 , and that (3.11) is replaced by

max: 4
1 �¸·¸·¸· � = ,)u � 1 � :�± max: 4

1 �¸·¸·¸· � = ,)u � : �
Algorithm 3.1 may be extended in other ways. For instance, one may replace the definition of � 0,
the first equation in (3.12) and the first equation of (3.13) by� 0

� ��ÅÁ¯ ¹zÇ0
� � u � 1

� �ÈÅÁ¯ ¹zÇu � 1 and � u � 1
� � u ¯ ¿ Çu � 1

�
for some �ÈÅ J 0, ¯ � J ¯ µ and ¶ � J ¶ µ . The definition of ° 0 and the second equation in (3.12)
may then be replaced by ° 0

� °cÅ\¯ ¿ º0 and ° u � 1
� °tÅ\¯ ¹ ºu � 1

�
(3.15)

for some °cÅ J 0. None of these extensions alter the results of the convergence theory developed
below. The values used in the LANCELOT package in a similar context are ¯ µ � ´ � Ä�Å � 0 � 1,
and ¶ µ � 0 � 9 (relation (3.15) is also used with °cÅ � 0 � 12589, ensuring that ° 0

�
0 � 01). The

values � Å � ¯ � � ¶ � � 1 and
,

0 � : � 0 � 1 (I � 1
� �[�<� � 6 ) also seem suitable. The parameters � �

and ° � specify the final accuracy requested by the user.
Finally, the purpose of the update (3.9) is to put more emphasis on the feasibility of the

constraints whose violation is proportionally higher, in order to achieve a “balance” amongst all
constraint violations. This balance then allows the true asymptotic regime of the algorithm to be
reached. The advantage of (3.9) is that this balancing effect is obtained gradually, and not enforced
at every major iteration, as is the case in Powell (1969). Furthermore Powell’s approach increases
the penalties corresponding to the constraints that are becoming too slowly feasible, based on
the d Â -norm. Thus it is only when they have changed sufficiently so that they are all within the
constraint violation tolerance that the Lagrange multiplier update is performed. By contrast, we
update the multipliers of the well-behaved constraints (assuming they correspond to a particular
partition — which is likely since that is, partly at least, why the partitions exist) independently of
more badly behaved ones. In addition, by virtue of using the d 2-norm, we do not give quite the
same emphasis to the most violated constraint.

4 Global convergence analysis

We now proceed to show that Algorithm 3.1 is globally convergent under the following assump-
tions.

AS3: The iterates
7 ��u ;

considered lie within a closed, bounded domain Ω.

AS4: The matrix V �	� � 
 � � has column rank no smaller than � at any limit point,
� �

, of the
sequence

7 ��u ;
considered in this paper.

6



We notice that AS3 implies that there exists at least a convergent subsequence of iterates, but
does not, of course, guarantee that this subsequence converges to a stationary point, i.e. that “the
algorithm works”. We also note that it is always satisfied in practice because the linear constraints
(1.3) includes lower and upper bounds on the variables, either actual or implied by the finite
precision of computer arithmetic.

Assumption AS4 guarantees that the dimension of the null space of
� �

is large enough to
provide the number of degrees of freedom that are necessary to satisfy the nonlinear constraints
and we requires that the gradients of these constraints (projected onto this null space) are lin-
early independent at every limit point of the sequence of iterates. This assumption is the direct
generalization of AS3 used by Conn et al. (1991).

We shall analyse the convergence of our algorithm in the case where the convergence tolerances� � and ° � are both zero. We first need the following lemma, proving that (3.3) prevents both
the reduced gradient of the augmented Lagrangian and its orthogonal complement from being
arbitrarily large when � u is small.

Lemma 4.1 Let
7 �Gu ;vÉ L � | &Ê} , be a sequence which converges to the point

� �
and suppose

that �U£ ^ ¤ (
� PTQ Φ u ) �»�~� uy�

where the � u are positive scalar parameters which converge to zero as | &³} increases. Then�U� ^� PTQ Φ u � �®�U� ^u PTQ Φ u � �~� u and ��© ^u ����u ��� � 
 � �Ë� 1 � u (4.1)

for some � 1
J

0 and for all | &³} sufficiently large.

Proof. Observe that, for | &�} sufficiently large, � u is sufficiently small and
�Gu

sufficiently
close to

� �
to ensure that all the constraints in

� u
are active at

� �
. This implies that the subspace

orthogonal to the normals of the dominant constraints at
��u

,
¨ u

, contains the subspace orthogonal
to the normals of the constraints active at

���
. Hence, we deduce that�U� ^� PTQ Φ u � �®�U� ^u PTQ Φ u �»�®�U£ ^ ¤ �\� PTQ Φ u[
 � �~� ut�

where we have used (3.5) to obtain the second inequality and (3.3) to deduce the third. This proves
the first part of (4.1).

We now turn to the second. If
� u

is empty, then © u is the zero matrix and the second part of
(4.1) immediately follows. Assume therefore that

� uÍÌ�ÏÎ
. We first select a submatrix ˆ

� � ¤ of� � ¤ that is of full row-rank and note that the orthogonal projection onto the subspace spanned by
the

7 � � ; �@? � ¤ is nothing but © u © ^u � ˆ
� ^� ¤ X ˆ

� � ¤ ˆ
� ^� ¤ ]	� 1 ˆ

� � ¤y�
Hence we obtain from the orthogonality of © u , the bound

M � uyM �o$ , (3.2) and (3.4) and the fact
that all constraints in

� u
are active at

� �
for | sufficiently large, that��© ^u �	��u���� � 
 � � � ˆ
� ^� ¤ X ˆ

� � ¤ ˆ
� ^� ¤ ] � 1 ���E� ˆ

� � ¤ �	�Gu§��� � 
 �� � ˆ
� ^� ¤ X ˆ

� � ¤ ˆ
� ^� ¤ ] � 1 �C${� 0 � u � (4.2)

But there are only a finite number of nonempty sets
� u

for all possible choices of
�Gu

and � u , and
we may thus deduce the second part of (4.1) from (4.2) by defining� 1

� $G� 0 min � ˆ
� ^� ¤ X ˆ

� � ¤ ˆ
� ^� ¤ ] � 1 � �

where the minimum is taken on all possible choices of
� u

and ˆ
� � ¤ .

We now examine the behaviour of the sequence
7 P Q Φ u ; . We first recall a result extracted

from the classical perturbation theory of convex optimization problems. This result is well known
and can be found, for instance, on pp.14–17 of Fiacco (1983).
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Lemma 4.2 Assume that Ð is a continuous point-to-set mapping from Ñ  ! b into ! " such that
the set Ð �	Òz
 is convex and non-empty for each

Ò�& Ñ . Assume that the real-valued functionw �iÓF�ÁÒz
 is defined and continuous on the space ! "³Ô Ñ and convex in
Ó

for each fixed
Ò
. Then,

the real-valued function w � defined byw � �	Òz
 def� infÕ ?�Ö �Ø× � w �ÙÓ¡��Ò>

is continuous on Ñ .

We now show that, if it converges, the sequence
7 P Q Φ u ; tends to a vector which is a linear

combination of the rows of
� �

with non-negative coefficients.

Lemma 4.3 Let
7 �Gu ;³É L , | &�} , be a sequence which converges to the point

� �
and suppose

that the gradients PTQ Φ u , | &~} , converge to some limit PTQ Φ � . Assume furthermore that (3.3)
holds for | &³} and that � u tends to zero as | &³} increases. Then,PTQ Φ � � � ^ ��Ú �
for some vector

Ú �»�
0, where

� �
is the matrix whose rows are those of

�
corresponding to active

constraints at
� �

.

Proof. We first define Û u def� maxÜ9Ý Þ ¤�ßyàiá@âyãiä 0å_æ�å\ç
1 è � P Q Φ uU^ �yé (4.3)

with the aim to show that this quantity tends to zero when | &�} increases. We obtain from (4.3),
the Moreau decomposition (see Moreau, 1962) of PRQ Φ u and the Cauchy-Schwarz inequality, thatÛ u � max ÜtÝ¸Þ ¤UßyàÙáEâyãÙä 0åêæ¼å\ç

1
£ ^ ¤ �-� PTQ Φ uz
 ^ � / max ÜtÝ¸Þ ¤�ßyàiá@âyãiä 0åêæ�å\ç

1
£)¬W¤ �\� PTQ Φ u<
 ^ �� �U£ ^ ¤ �\� PRQ Φ u[
 � / max æ ?zë ¤0£)¬W¤ �\� PTQ Φ u<
 ^ � � (4.4)

where ì u def� 7z� & ! " Mx� ^� �	��u(/ � 
���� � � 0
� � & � uU
 and � � �»� 1

;
. As, for

�Gu
sufficiently

close to
���

and � u sufficiently small, all the constraints in
� u

must be active at
�G�

, we have that� u
is included in the normal cone

� �	� � �
0



and therefore the vector £)¬ ¤ �\� PTQ Φ u<
 belongs to this
normal cone. Moreover, since the maximization problem of the last right-hand side of (4.4) is a
concave program, since

�G�
is feasible for (1.3), and since � ���(�í� u �»� 1 for | &³} large enough,

we thus deduce that
� �.� � ���Gu

is a global solution of this problem. Observing that£0¬W¤ �\� PTQ Φ uz
 ^ � �YX © u © ^u £0¬W¤ �\� PTQ Φ u[
�] ^ � � £0¬W¤ �\� PTQ Φ u<
 ^ © u © ^u � �
we obtain that

maxæ ?zë ¤ £)¬�¤ �-� PTQ Φ u<
 ^ � � maxæ ?>ë ¤ £)¬W¤ �\� PTQ Φ u<
 ^ © u © ^u � �®�U£0¬W¤ �\� PTQ Φ u<
 ���E��© ^u �	��u ��� � 
 � �
(4.5)

where we used the Cauchy-Schwartz inequality to deduce the last inequality. We may now apply
Lemma 4.1 and deduce from the second part of (4.1), (4.5) and the contractive character of the
projection onto a convex set containing the origin that

maxæ ?>ë ¤ £0¬W¤ �\� PTQ Φ u<
 ^ � �o� 1 � u �UPTQ Φ u � �
8



and thus, from (4.4) and our assumptions, thatÛ u �~� u�/ � 1 � u �UPRQ Φ u ���
Our assumption on the � u sequence then implies that

Û u
converges to zero as | increases in

}
.

Consider now the minimization problem

min æ ?yîfï PRQ Φ ^ � � �
subject to

� ������/ � 
W�~� �
0
�� � � � 1 � (4.6)

Since the sequences
7 PTQ Φ u ; and

7 ��u ;
converge to PTQ Φ � and

� �
respectively, we deduce from

Lemma 4.2 applied to the optimization problem (4.3) (with the choices
Ò ^ �ð� PTQ Φ ^ �Á� ^ 
 ,Ð ��Ò>
�� 7>� M � �	��/ � 
��~���

0
� � � ��� 1

;
,
Óv� �

, w �iÓ¡��Òz
�� P Q Φ ^ � ), and the convergence of
the sequence

Û u
to zero that the optimal value for problem (4.6) is zero. The vector

� �
0 is thus

a solution for problem (4.6) and satisfiesP Q Φ ��� � ^ �FÚ �(� 2 ñ � � � ^ �FÚ �
for some vector

Ú � �
0, which ends the proof.

The important part of our convergence analysis is the next lemma.

Lemma 4.4 Suppose that AS1 and AS2 hold. Let
7 � u ;�É L � | &�} , be a sequence satisfying AS3

which converges to the point
� �

for which AS4 holds and let
* � �a*+��� � 


, where
*

satisfies (2.5).
Assume that

7 *Cu ;
, | &³} , is any sequence of vectors and that

7 ,)u ;
, | &³} , form a nonincreasing

sequence of 6 -dimensional vectors. Suppose further that (3.3) holds where the � u are positive
scalar parameters which converge to zero as | &³} increases. Then

(i) There are positive constants � 2 and � 3 such that� ¯*F�	��ux�U*�uz�\,)u<
ò�~* � � �Ë� 2 � u�/ � 3 � ��u���� � � � (4.7)� *)�	�Gu<
���* � � �o� 3 � �Gu§��� � � � (4.8)

and � � �	��uU
�e ACB	g � �o� 2 � uU,)u � : /�,)u � : � �_*�u��~* � 
¼e AfBig � / � 3
,)u � : � �Gu§��� � � � (4.9)

for all I � 1
� �<�<� � 6 and all | &³} sufficiently large.

Suppose, in addition, that � �	� � 
�� 0. Then

(ii)
�G�

is a Kuhn-Tucker point (first-order stationary point) for the problem (1.1)– (1.3),
*��

is
the corresponding vector of Lagrange multipliers, and the sequences

7 ¯*F�	��ux�U*�uy�-,)uU
 ; and7 *)�	��uU
 ;
converge to

* �
for | &N} ;

(iii) The gradients PRQ Φ u converge to Otb �	� � �* � 
 for | &N} .

Proof. As a consequence of AS2–AS4, we have that for | &�} sufficiently large,
� V u � � 
 �

exists, is bounded and converges to
� V ��� � 
 � � 
 � . Thus, we may write� �-� V u � � 
\��
 ^ � �Ë� 2 (4.10)

for some constant � 2
J

0. Equations (2.3) and (2.4), the inner iteration termination criterion (3.3)
and Lemma 4.1 give that �U� ^� � O u�/ V ^u ¯*�uU
 � �ó� u (4.11)

9



for all | &Í} large enough. By assumptions AS2, AS3, AS4 and (2.5),
*)�	��


is bounded for all
�

in a neighbourhood of
�G�

. Thus we may deduce from (2.5), (4.10) and (4.11) that� ¯*Cu���*)�	��uU
 � � � �\� V u � � 
 � 
 ^ � ^� O u�/ ¯*�u �� � �\� V u � � 
 � 
 ^ � � ^� O u(/.� V u � � 
 ^ ¯*�u<
 �� � �\� V u � � 
 � 
 ^ �-� u� � 2 � u � (4.12)

Moreover, from the integral mean value theorem and Lemma 2.1 we have that*)�	�Gu<
���*)�	� � 
��õô 1

0
PTQ *)�	�)�	ö[
\
 � ö�Zx�	��u���� � 
U� (4.13)

where PRQ *)�	�G
 is given by equation (2.6), and where
�)�	ö[
{�Ï�Gu§/÷öy�	� � ����u[


. Now the terms
within the integral sign are bounded for all

�
sufficiently close to

� �
and hence (4.13) gives� *)�	�GuU
��~* � � �o� 3 � �Gu§��� � � (4.14)

for all | &Í} sufficiently large and for some constant � 3
J

0, which implies the inequality (4.8).
We then have that

*)�	��u[

converges to

* �
. Combining (4.12) and (4.14) we obtain� ¯*�u§�~* � ���®� ¯*�u���*+����uU
 � / � *+����uU
���* � � �o� 2 � u�/ � 3 � �Gu§�~� � � � (4.15)

which gives the required inequality (4.7). Then, since by assumption � u tends to zero as |
increases, (4.15) implies that ¯*�u converges to

* �
and therefore, from the identity (2.3), PRQ Φ u

converges to Otb �	� � �* � 
 . Furthermore, multiplying (2.1) by
,)u � : , we obtain� �	�Gu<
�e ACBig �÷,)u � : �\� ¯*�u��~* � 
�e ACBig /÷�_* � �~*Cu[
�e ACBig 
 � (4.16)

Taking norms of (4.16) and using (4.15), we derive (4.9).
Now suppose that � �	� � 
�� 0 � (4.17)

Lemma 4.3 and the convergence of PTQ Φ u to O b ��� � �U* � 
 give thatO �	���\
0/ V �	���U
 ^ *���� � ^ ��Ú �
for some vector

Ú � �
0. This last equation and (4.17) show that

� �
is a Kuhn-Tucker point and

* �
is the corresponding set of Lagrange multipliers. Moreover (4.7) and (4.8) ensure the convergence
of the sequences

7 ¯*F�	� u �U* u �\, u 
 ; and
7 *)�	� u 
 ;

to
*��

for | &³} . Hence the lemma is proved.
We finally require the following lemma in the proof of global convergence, which shows that

the Lagrange multiplier estimates cannot behave too badly.

Lemma 4.5 Suppose that, for some I (1 �oI��Y6 ), ,)u � : converges to zero as | increases when
Algorithm 3.1 is executed. Then the product

, u � : � * u � e AfBig � converges to zero.

Proof. As
,)u � : converges to zero, Step 3b must be executed infinitely often for the I -th

subset. Let
} : � 7 | 0

� | 1
� | 2
� �5�5�5� ; be the set of indices of the iterations in which Step 3b is

executed.
We consider how the I -th subset of Lagrange multiplier estimates changes between two

successive iterations indexed in the set
} :

. Firstly note that
* u\ø � 1 � e ACB	g �ù* u\ø � e ACB	g . At iteration|xú /�û , for |yú ± |xú /~û �o|xú � 1, we have* u\ø �Gü � e ACB	g �h* u\ø � e ACBig / ü � 13 ý 4

1

� �	�Gu\ø � ý 
¼e AfBig,)u\ø � ý � : (4.18)
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where the summation is null if
û��

1, and,)u ø ß 1 � : �÷,)u ø �Gü � : �÷,)u ø � 1 � : � ´ u ø � : ,+u ø � : � (4.19)

Substituting (4.19) into (4.18), multiplying both sides by
,)u ø �Gü � : , taking norms and using (3.9),

yields ,)u ø �Gü � : � * u-ø �Gü � e AfB�g � ��´ ,)u ø � : � * u\ø � e ACBig � / ü � 13 ý 4
1

� � ����u ø � ý 
 e AfB�g �
and hence ,)u ø �Gü � : � * u ø �Gü � e ACB	g � ��´ ,)u ø � : � * u ø � e AfBig � / u ø ß 1

� u ø � 13 ý 4
1

� � �	�Gu ø � ý 
¼e AfBig �z�
Using the fact that (3.7) holds for |xú / 1 �Ë|yú /Ëþ �Ë|yú � 1

�
1, we deduce that,+u ø �Gü � : � * u ø �Gü � e ACB	g � � ´ ,)u ø � : � * u ø � e AfB�g � / u ø ß 1

� u ø � 13 ý 4
1

° u ø � ý� ´ ,)u ø � : � * u ø � e AfB�g � / Â3 ý 4
1

° u ø � ý �
Now defining ÿ ú def� ,)u ø � : � * u\ø � e ACBig � and � ú def� Â3 ý 4

1

° u ø � ý � (4.20)

we obtain that ,+u-ø �Gü � : � * u-ø �Gü � e ACBig ����´ ÿ ú / � ú (4.21)

for all
û

such that | ú ± | ú /~û �o| ú � 1, and, in particular,ÿ ú � 1 ��´ ÿ ú / � úy� (4.22)

Thus, from (4.22) and the inequality ´ ± 1, if � ú converges to zero, then

ÿ ú and hence, from
(4.21),

,)u ø �Gü � : � * u ø �Gü � e ACB	g � both converge to zero. To complete the proof it therefore suffices to
show that � ú converges to zero as

 
tends to infinity.

Suppose first that ¯ u is bounded away from zero. Then we must have that (3.13) is used for
all | sufficiently large, with ¯ u � 1

� ¯ min for some ¯ min
&��

0
�
1


. This and the definition of � ú in

(4.20) imply that � ú � ° u ø � 1

1
� ¯0¿<ºmin

for sufficiently large
 

. As (3.13) also guarantees that ° u tends to zero, we deduce that � ú converges
to zero. This completes the proof for the first case.

Suppose now that ¯ u converges to zero. This implies that each of the 6 independent penalty
parameters is reduced an infinite number of times. Consider the progress of ¯ u over the course of 6
successive decreases (3.11). As (3.11) only happens when the currently largest penalty parameter,,)u � : ö<�xÓ , is reduced, as (3.9) requires that this penalty parameter is reduced by ´ , and because
there can only possibly be at most 6 � 1 other penalty parameters in the interval

� ´ , u � : �\, u � : ] , it
follows that ¯ u must be reduced by at least ´ over 6 successive decreases (3.11). Thus, considering
the possible outcomes (3.12) and (3.13), each ° u ø � ý must be bounded by a quantity of the form

11



� ´ � ¯ u ø 
 ¹yº ��ü ¿<º for some indices � and
û
. Furthermore, at most 6 such terms can involve any

particular � and
û
. Therefore, since ´�¯ u\ø ± 1, we obtain that� ú � 6 Â3 �54

0

Â3 ü 4 0

� ´ � ¯ u ø 
 ¹yº �Gü ¿<º� 6 Â3 �54
0

� ´ � ¯ u\ø[
 ¹yº
1
��� ´ � ¯ u ø 
 ¿ º� 6 Â3 �54

0

� ´ � ¯ u\øz
 ¹ º
1
��� ´�¯ u\ø<
 ¿ º� 6 ¯�¹yºu\ø�

1
� ´ ¹ º 
U� 1 ��� ´�¯ u\ø<
 ¿ º 
 �

Thus we see that, as ¯ u\ø converges to zero, so does � ú , completing the proof for the second case.

We can now derive the desired global convergence property of Algorithm 3.1, which is
analogous to Theorem 4.4 in Conn et al. (1991).

Theorem 4.6 Assume that AS1 and AS2 hold. Let
���

be any limit point of the sequence
7 � u ;

generated by Algorithm 3.1 of Section 3 for which AS3 and AS4 hold and let
}

be the set of indices
of an infinite subsequence of the

�Gu
whose limit is

� �
. Finally, let

* � �Y*)�	� � 

. Then conclusions

(i), (ii) and (iii) of Lemma 4.4 hold.

Proof. Our assumptions are sufficient to reach the conclusions of part (i) of Lemma 4.4.
We now show that � �	� � 
 e ACBig � 0 for I � 1

� �<�<� � 6 , and therefore that � �	� � 
�� 0. To see this, we
consider a I (1 �ÊIv�o6 ) and analyze two separate cases.

The first case is when
,)u � : is bounded away from zero. Hence Step 3a must be executed every

iteration for | sufficiently large, implying that (3.7) is always satisfied for | large enough. We
then deduce from (3.14) that � �	�GuU
�e ACB	g converge to zero.

The second case is when
,+u � : converges to zero. Then Lemma 4.5 shows that

,)u � : � �_*�u{�*��Á
 e AfB�g � tends to zero. Using this limit and (3.14) in (4.9), we obtain that � �	� u 
 e AfB�g tends to zero,
as desired.

As a consequence, conclusions (ii) and (iii) of Lemma 4.4 hold.
We finally note that global convergence of Algorithm 3.1 can be proved under much weaker

assumptions on ´ u � : and � u . The reader is again referred to Conn, Gould, Sartenaer and Toint
(1993a) for further details.

5 Asymptotic convergence analysis

The distinction between dominant and non-dominant (floating) linear inequality constraints has
some implications in terms of the identification of those constraints that are active at a limit point
of the sequence of iterates generated by the algorithm. Given such a point

���
we know from

Theorem 4.6 that it is critical, i.e. that
� Ocb �	� � �* � 
`& � � � � �	� � �

0



for the corresponding
Lagrange multipliers

* �
. If we now consider a linear constraint with index � & 7 1 � �[�<� � $ ; that is

active at
� �

, we may define the normal cone
� e � g�

to be the cone spanned by the outwards normals
to all linear inequality constraints active at

� �
, except the � -th one. We then say that the � -th

linear inequality constraint is strongly active at
� �

if
� O b ��� � �U* � 
�Ì& � e � g� . In other words, the � -th

constraint is strongly active at a critical point if this point ceases to be critical when this constraint
is ignored. Let us denote by Ñ �	����
 the set of strongly active constraints at

�G�
. All non-strongly

active constraints at
� �

are called weakly active at
� �

. We now prove the reasonable result that all
strongly active constraints at a limit point

� �
are dominant for | large enough.
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Theorem 5.1 Assume that AS1–AS3 hold. Let
7 ��u ;

, | &Ï}
, be a convergent subsequence

of iterates produced by Algorithm 3.1, whose limit point is
���

with corresponding Lagrange
multipliers

* �
. Assume furthermore that AS4 holds at

� �
. ThenÑ ��� � 
  � u

for all | sufficiently large.

Proof. Consider a linear inequality constraint � & Ñ �	� � 
 . Then, by definition of this latter

set, we have that
� O b �	� � �U* � 
ÍÌ& � e � g� . Since Theorem 4.6 guarantees that PTQ Φ u converges toO b �	�G�<�*C��
 and as
� e � g�

is closed, we have that
� P Q Φ u Ì& � e � g� for | &³} large enough. Therefore,

one obtains from the Moreau decomposition (see Moreau, 1962) of
� PTQ Φ u that�U£ ^�� � �� �\� PTQ Φ u>
 � ���

(5.1)

for some
� J

0 and for all sufficiently large | &³} , where
� e � g� � p � e �¦g� s 0

. We have also from (3.3)

that �U£ ^ ¤ �\� PRQ Φ u[
 � is arbitrarily small, because � u tends to zero (see (3.14)). Assume now that,

for some arbitrarily large | &³} , we have that � Ì& � u . This implies that
� e � g�  � u

, and hence that
(5.1) is impossible. We therefore deduce that � must belong to

� u
, which proves the theorem.

This result is important and is the generalization of Theorem 5.4 by Conn et al. (1991). It
can also be interpreted as a means of active constraint identification, as is clear from the following
easy corollary.

Corollary 5.2 Suppose that the conditions of Theorem 5.1 hold. Assume furthermore that all lin-
ear inequality constraints active at

� �
have linearly independent normals and are non-degenerate,

in the sense that � O b �����[�U*��Á
�& ri
X � �_]_�

(5.2)

where ri
X¦¢q]

denotes the relative interior of a convex set
¢

. Then
� u

is identical to the set of active
linear inequality constraints at

� �
for all | &³} sufficiently large.

Proof. The non-degeneracy assumption and the linear independence of the active constraints
normals imply that

* �
is unique and only has strictly negative components. Therefore each of

the active linear inequality constraints at
� �

is strongly active at
� �

, and the desired conclusion
follows from Theorem 5.1.

We note here that the non-degeneracy assumption corresponds to strict complementarity
slackness in our context (see, for instance, Dunn, 1987, or Burke, Moré and Toraldo, 1990).

We now make some additional assumptions before pursuing our local convergence analysis.
We intend to show that all penalty parameters are bounded away from zero.

AS5: The second derivatives of the functions
���	��


and � � �	��
 (1 � ��� � ) are Lipschitz
continuous at any limit point

� �
of the sequence of iterates

7 �Gu ;
.

AS6: Suppose that
��� � �U* � 


is a Kuhn-Tucker point for problem (1.1)–(1.3) and let 	 be any
subset of the linear inequality constraints which are active at

� �
that contains all strongly

active constraints ( Ñ �	� � 
  	 ) plus an arbitrary subset of weakly active constraints at
� �

.
Then, if the columns of the matrix � form an orthonormal basis of the subspace orthogonal
to the normals of the constraints in 	 , we assume that the matrix
 � ^ S b ��� � �U* � 
 � � ^ V �	� � 
 ^V �	�G�U
 � 0 �
is nonsingular for all possible choices of the weakly active constraints in the set 	 .
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We note that AS6 implies AS4 and seems reasonable in that the definition of strongly and
weakly active constraints may vary with small perturbations in the problem, for instance whenOtb �	� � �* � 
 lies in one of the extreme faces of the cone

� �
. Our assumption might be seen as a

safeguard against the possible effect of all such perturbations.
We now make the distinction between the subsets for which the penalty parameter converges

to zero and those for which it stays bounded away from zero. We define� def� 7 I & 7 1 � �<�[� � 6 ; M limuÁÀ�Â ,+u � : � 0
;

and  def� 7
1
� �[�<� � 6 ;�� � �

We also denote , u � � def� max: ? � , u � : (5.3)

and � u def� 3: ? � ,)u � : � ��*Cu���* � 
�e ACB	g �z�
We now prove an analog to Lemma 5.1 by Conn et al. (1991) which is suitable for our more
general framework.

Lemma 5.3 Assume that AS1–AS3 hold. Let
7 �Gu ;

, | &³} , be a convergent subsequence of iterates
produced by Algorithm 3.1, whose limit point is

� �
with corresponding Lagrange multipliers

* �
.

Assume that AS5 and AS6 hold at
� �

. Assume furthermore that
� Ì�.Î

.

(i) If  �ÏÎ
, there are positive constants ¯¯ ± 1, � 4, � 5, � 6, � 7 and an integer | 1 such that, if¯ u 1 � ¯¯ , then � ��u���� � � �o� 4 � u�/ � 5 ¯ u � *�u���* � � � (5.4)� ¯*¡�	�Guy�*Cuz�-,)u<
���* � � �o� 6 � u�/ � 7 ¯ u � *�u���* � � � (5.5)

and � � ��� u 
 � �o6z� 6 � u ¯ u / 6>¯ u � 1 / � 7 ¯ u 
 � * u �~*�� � � (5.6)

for all | � | 1, | &�} .

(ii) If, on the other hand,  Ì�.Î
, there are positive constants ¯¯ ± 1, � 4, � 5, � 6, � 7 and an integer| 1 such that, if

,)u
1 � � � ¯¯ , then� � ¯*¡�	�Guy�*Cuz�-,)u<
��~* � 
 e ACBig � �o� 6 ° u�/ � 7

� uz� (5.7)

and � � ��� u 
 e AfBig ����� 6 ° u , u � � /÷� 1 / � 7
, u � � 
 � u � (5.8)

for all | � | 1, | &�} , and all I & �
.

Proof. We will denote the gradient and Hessian of the Lagrangian function, taken with
respect to

�
, at the limit point

�	� � �* � 

by Otb� and SNb� , respectively. Similarly, V � will denoteV �	� � 
 . We also define

ÿ uT�Y��u»��� �
. We observe that the assumptions of the lemma guarantee

that Theorem 4.6 can be used.
We first note that there is only a finite number of possible

� u
, and we may thus consider

subsequences of
}

such that
� u

is constant in each subsequence. We also note that each | &`}
belongs to a unique such subsequence. In order to prove our result, it is thus sufficient to consider
an arbitrary infinite subsequence ¯} such that, for | & ¯} ,

� u
is independent of | . This “constant”

index set will be denoted by
�

. As a consequence, the cones
� u

and
� u

, the subspaces
¨ u

andª u
and the orthogonal matrices � u and © u are also independent of | ; they are denoted by

�
,
�

,¨
,
ª

, � and © , respectively.
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Using (2.3) and Taylor’s expansion around
� �

, we obtain thatPTQ Φ u � O u�/ V ^u ¯*�u� O ��� � 
)/ S �	� � 
 ÿ u�/ V ^� ¯*�u�/ n 1�54 1
¯*�u � � S � �	� � 
 ÿ u�/ � 1

�	�Guy�Á� � � ¯*�uU
� O b� / S b� ÿ u�/ V ^� � ¯*Cu���* � 
)/ � 1
����uy��� � � ¯*�u<
F/ � 2

�	��ux�Á� � � ¯*Cuz�* � 
U� (5.9)

where �
1
�	� u �Á���[� ¯* u 
 def� ô 1

0

X S b �	�G��/�ö ÿ u � ¯* u 
�� S b �����z� ¯* u 
�] ÿ u � ö
and �

2
����uy��� � � ¯*�uz�U* � 
 def� 13 �54

1

� ¯*�u � � ��* � � � 
 S � �	� � 
 ÿ u �
The boundedness and Lipschitz continuity of the Hessian matrices of

�
and ��� in a neighbourhood

of
� �

, together with the convergence of ¯*�u to
* �

then imply that� � 1
�	�Guy�Á� � � ¯*�uU
 � �o� 8 � ÿ u � 2 � (5.10)

and � � 2
����uy��� � � ¯*�uz�U* � 
 � �o� 9 � ÿ u ��� ¯*�u��~* � � (5.11)

for some positive constants � 8 and � 9. Moreover, using Taylor’s expansion again, along with the
fact that Theorem 4.6 ensures the equality � �	�G�Á
(� 0, we obtain that� �	�Gu<
�� V � ÿ u�/ � 3

�	��ux�Á� � 
U�
(5.12)

where X �
3
�	��ux�Á� � 
�] � � ô 1

0

ö ô 1

0

ÿ ^u S � �	� � /�û_ö ÿ uz
 ÿ u � û � ö
(see Gruver and Sachs, 1980, p.11). The boundedness of the Hessian matrices of the ��� in a
neighbourhood of

� �
then gives that � � 3

�	��ux�Á� � 
 � �Ë� 10 � ÿ u � 2 (5.13)

for some positive constant � 10. Combining (5.9) and (5.12), we obtain
 SNb� V ^�V � 0 � 
 ÿ u
¯*�u§�~* � � � 
 PTQ Φ u§� Otb�� �	��u[
 � � 
 �

1
/ �

2�
3 � � (5.14)

where we have suppressed the arguments of the residuals � 1, � 2 and � 3 for brevity. Using the
orthogonal decomposition of ! " into

¨���ª
and defining�Y� 
 � © 0
0 0

� � �
we may rewrite (5.14) as��^ 
 S b� V ^�V � 0 � ����^ 
 ÿ u

¯*�u§��* � � ����^ 
 PTQ Φ u§� O b�� �	��u[
 � ����^ 
 �
4�
3 � �

where � 4
def� �

1
/ �

2. Expanding this last equation gives that��� � ^ SNb� � � ^ SNb� © � ^ V ^�© ^ S b� � © ^ S b� © © ^ V ^�V � � V � © 0 ���� ��� � ^ ÿ u© ^ ÿ u
¯*�u§�~* � ���� � ��� � ^ � PTQ Φ u§� Ocb� 
© ^ � PRQ Φ u�� O b� 
� �	��u[
 ���� � ��� � ^ � 4© ^ � 4�

3 ���� �
(5.15)
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We now observe that (3.3), the inclusion
¨  �

and the fact that � u tends to zero imply that� ^ O b� � 0 � (5.16)

Substituting (5.16) in (5.15), removing the middle horizontal block and rearranging the terms of
this latter equation then yields that
 � ^ SNb� � � ^ V ^�V � � 0 � 
 � ^ ÿ u

¯*Cu��~* � � � 
 � ^ � PRQ Φ u�� SNb� ©T© ^ ÿ uz
� �	�Gu<
�� V � ©T© ^ ÿ u � � 
 � ^ � 4�
3 � � (5.17)

Roughly speaking, we now proceed by showing that the right-hand side of this relation is of the
order of

Ò u / � u , where Ò<u def� ½ � u if  �.Îf�° u if  Ì�.Î � (5.18)

We will then ensure that the vector on the left-hand side is of the same size, which is essentially
the result we aim to prove. We first observe that� ÿ u � � �U� � ^ ÿ u�/ ©T© ^ ÿ u � �®�� ^ ÿ u � / � 1 � u (5.19)

from (4.1). We then obtain from (4.7) and (5.19) that� ¯*�u���* � � �o� 11 � u�/ � 3 �U� ^ ÿ u � � (5.20)

where � 11
� � 2

/ � 3 � 1. Furthermore, from (5.10), (5.11), (5.13), (5.19) and (5.20),����� 
 � ^ � 4�
3 � ����� �o� 12 �U� ^ ÿ u � 2 / � 13 �U� ^ ÿ u �-� u�/ � 14 � u 2 � (5.21)

where � 12
� � 8

/ � 3 � 9
/ � 10, � 13

�
2 � 1

� � 8
/ � 10


�/ � 9
� � 11

/ � 3 � 1


, and � 14

� � 2
1
� � 8

/� 10

f/ � 1 � 9 � 11. We now bound � �	��u[
 by distinguishing components from

�
and  . We first note

that, since the penalty parameters for each subset in  are bounded away from zero, the test (3.7)
is satisfied for all | sufficiently large. Moreover, the remaining components of � �	� u 
 satisfy the
bound � � �	��uU
 e AfB�g � �Ë� 2 � u[,+u � : /�,+u � : � �_*�u��~* � 
 e AfBig � / � 3

,)u � : � ��u§�~� � � � (5.22)

for all I & �
and all | sufficiently large, using (4.9). Hence, using (5.3), (3.7) and (5.22), we

deduce that � � �	��u[
 � � 3: ? � � � �	�GuU
�e AfB�g � / 3: ? � � � �	�Gu<
�e ACBig �� 6[° u�/ 6>� 2 � u[,)u � � / � u(/ 6z� 3
,+u � � � ÿ u �z� (5.23)

Note that the first term of the last right-hand side only appears if  is not empty. Since the
algorithm ensures that � u ��° u (5.24)

because ¯ µ ± 1 and ¶ µ ± 1, we may obtain from (4.1), (5.23) and (5.19) that����� 
 � ^ � PTQ Φ u�� S b� ©T© ^ ÿ u[
� �	�Gu<
�� V � ©T© ^ ÿ u � ����� �Ë� 15
Ò[u�/ � u(/ 6>� 11

,)u � � Ò<u�/ 6z� 3
,+u � � �� ^ ÿ u � � (5.25)

where � 15
� 6 / 1

/ � 1
� �U� ^ S³b� ©`� / �UV � ©³� 
 � By assumption AS6, the coefficient matrix on the

left-hand side of (5.17) is nonsingular. Let ! be the norm of its inverse. Multiplying both sides
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of the equation by this inverse and taking norms, we obtain from (5.18), (5.21), (5.24) and (5.25)
that ����� 
 � ^ ÿ u

¯*�u§��* � � ����� � ! X � 12 �U� ^ ÿ u � 2 / � 13 �U� ^ ÿ u � Ò<u�/ � 14
Ò 2u / � 15

Ò[u/ � u(/ 6z� 11
,)u � � Ò[u�/ 6z� 3

,)u � � �U� ^ ÿ u � ] � (5.26)

Suppose now that | is sufficiently large to ensure thatÒ[u � 1
4 !®� 13

(5.27)

and let

¯¯ def� min "E¯ 0
� 1
4 !®6z� 3 # � (5.28)

Recall that ¯ 0 and hence ¯¯ ± 1. Then, if
,+u � � � ¯¯ , the relations (5.26)–(5.28) give�U� ^ ÿ u � � 1

2
�U� ^ ÿ u � / ! X � 16

Ò<u�/ � u(/ � 12 �U� ^ ÿ u � 2 ]ê� (5.29)

where � 16
� 6z� 11

/ � 14
/ � 15. As

ÿ u
, and hence �U� ^ ÿ u � converge to zero, we have that�U� ^ ÿ u � � 1

4 !®� 12
(5.30)

for | large enough. Hence inequalities (5.29) and (5.30) yield that�U� ^ ÿ u � � 4 ! � � 16
Ò<u�/ � uU
 � (5.31)

If  is empty, we use (5.19), (5.31) and (5.18), the fact that
,+u � � � ¯ u and the inequality� u �o6z¯ u � *�u§�~* � �

to deduce (5.4), where � 4
def� 4 !h� 16

/ � 1 and � 5
�

4 !h6 . Defining � 6
def� � 2

/ � 3 � 4 and� 7
def� � 3 � 5, we deduce (5.5) from (4.7) and (5.4). Now, using (2.1),� � �	�Gu<
 � � =3: 4

1

� � �	��uU
 e AfBig � � =3: 4
1

,)u � : � � ¯*�u§�~*�u<
 e ACBig ���o6z¯ uy� � ¯*Cu���* � � / � *Cu��~* � � 
 (5.32)

and (5.6) then follows from (5.32) and (5.5).
If, on the other hand,  is not empty, (5.7) results from (4.7), (5.19), (5.31) with

Ò<u � ° u and

(5.24), with � 6
def� 4 !®� 3 � 16

/ � 2
/ � 3 � 1 and � 7

def� 4 !h� 3. Finally, (5.8) results from (2.1) and
(5.7).

For the remaining of this section, we will restrict our attention to the case where the sequence
of iterates converges to a single limit point. Obviously, this makes AS3 unnecessary. We briefly
comment at the end of the section on why this additional assumption cannot be relaxed.

We now show that, if the maximum penalty parameter ¯ u converges to zero, then the Lagrange
multiplier estimates

*�u
converge to their true values

* �
.

Lemma 5.4 Assume AS1 and AS2 hold. Assume that
7 ��u ;

, the sequence of iterates generated by
Algorithm 3.1, converges to the single limit point

���
at which AS6 holds, and with corresponding

Lagrange multipliers
* �

. Then, if ¯ u tends to zero, the sequence
*�u

converges to
* �

.
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Proof. Recall that AS6 implies AS4 and therefore that our assumptions are sufficient to
apply Theorem 4.6.

We observe that the desired convergence holds if
* u � e ACB	g converges to

* � � e ACBig , for all I �
1
� �<�<� � 6 . It is thus sufficient to show this latter result for an arbitrary I between 1 and 6 . The

result is obvious if Step 3a is executed infinitely often for the I -th subset. Indeed, each time this
step is executed,

* u � 1 � e ACBig � ¯* u � e ACBig and the inequality (4.7) guarantees that ¯* u � e ACBig converges
to
* � � e ACBig . Suppose therefore that Step 3a is not executed infinitely often for this subset. Then� �_*�u(�í* � 
�e ACBig � will remain fixed for all | � | 2, for some | 2

J
0, as Step 3b is executed for each

remaining iteration. But (4.9) then implies that � � �	� u 
 e AfBig � �o� 17
, u � : , for some constant � 17

J
0

and for all | � | 3
� | 2. As ¯ u tends to zero and ¯ µ ± 1, � 17

,)u � : �.� 17 ¯ u �.¯ ¹ ºu � ° u for all| sufficiently large for which ¯ u strictly decreases. But then inequality (3.7) must be satisfied for
some | � | 3, which is impossible, as this would imply that Step 3a is again executed for the I -th
subset. Hence Step 3a must be executed infinitely often.

We now consider the behaviour of the maximum penalty parameter ¯ u and show the important
result that, under stated assumptions, it is bounded away from zero. The proof of this result is
inspired by the technique developed by Conn et al. (1991). When the single penalty parameter
definition of the augmented Lagrangian (1.4) is used (or, equivalently, when 6 � 1), one then
avoids a steadily increasing ill-conditioning of the Hessian of the augmented Lagrangian. Note
that this ill-conditioning is also avoided when 6 J 1, as we show below in Theorem 5.6.

Theorem 5.5 Assume AS1 and AS2 hold and suppose that the sequence of iterates
7 ��u ;

of
Algorithm 3.1 converges to a single limit point

� �
with corresponding Lagrange multipliers

* �
, at

which AS5 and AS6 hold. Then there is a constant ¯ min
&��

0
�
1



such that ¯ u � ¯ min for all | .

Proof. Suppose otherwise that ¯ u tends to zero (that is  �YÎ
), and hence that

,)u � : tends
to zero for each I between 1 and 6 . Then Step 3b must be executed infinitely often for each
subset. We aim to obtain a contradiction to this statement by showing that Step 3a is always
executed for each subset for sufficiently large | . We note that our assumptions are sufficient to
apply Theorem 4.6. Furthermore, we may apply Lemma 5.3 to the complete sequence of iterates.

First observe that ¯ u � ¯¯ ± 1 (5.33)

for all | � | 1, where ¯¯ and | 1 are those of Lemma 5.3. Note that� u �o¯ u
for all | � | 1. This follows by definition if (3.12) is executed. Otherwise it is a consequence
of the fact that ¯ u is unchanged while � u is reduced, when (3.13) occurs. Let | 4 be the smallest
integer such that ¯ 1 � ¹yºu � 16 � 2 / � 6


 � (5.34)

and ¯ 1 � ¿<ºu � min " 1� 18

� 16 � 2 � 18
/ � 6


 # � (5.35)

where � 18
�

max
�
1
� � 6

/ � 7


. Note that (5.33) and (5.35) imply that¯ u �o¯ 1 � ¿<ºu � 1� 18

� 1� 7
(5.36)

for all | � max
� | 1
� | 4


. Furthermore, let | 5 be such that� *�u���* � � � 1 (5.37)
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for all | � | 5, which is possible because of Lemma 5.4. Now define | 6
�

max
� | 1
� | 4
� | 5


, let Γ

be the set
7 | M (3.12) is executed at iteration | � 1 and | � | 6

;
and let | 0 be the smallest element

of Γ. By the assumption that ¯ u tends to zero, Γ has an infinite number of elements.
By definition of Γ, for iteration | 0, � u 0 � ¯ u 0 and ° u 0 � ¯W¹ ºu

0
. Then inequality (5.6) gives

that, for each I ,� � ��� u 0 
 e AfB�g � � � � �	� u 0 
 �� 6 � ¯ u 0 / � 7 ¯ 2u
0


 � *Cu 0

��* � � / 6z� 6 � u 0 ¯ u 0� 2 6z¯ u 0 � *�u 0 ��* � � / 6z� 6 � u 0 ¯ u 0 (from (5.36))� 6z¯ u 0

�
2
/ � 6 ¯ u 0



(from (5.37))� 6 � 2 / � 6


 ¯ u 0 (from (5.33))� ¯ ¹yºu
0

� ° u 0 (from (5.34)).

(5.38)

As a consequence of this inequality, Step 3a will be executed for each I with
* u

0
� 1 � e ACB	g �

¯*)�	��u
0

�U* u
0 � e ACBig �-,)u 0 � : 
�e ACBig . Inequality (5.5) together with (5.37) guarantee that� *�u 0 � 1

��* � � �o� 6 � u 0 / � 7 ¯ u 0 � *�u 0 ��* � � �Ë� 18 ¯ u 0 � (5.39)

We shall now make use of an inductive proof. Assume that, for each I , Step 3a is executed for
iterations | 0

/ � , (0 ����� û ), and that� *�u 0 � � � 1
��* � � �o� 18 ¯ 1 � ¿<º �u

0
� (5.40)

Inequalities (5.38) and (5.39) show that this is true for
û#�

0. We aim to show that the same is
true for � � û)/

1. Our assumption that Step 3a is executed gives that, for iteration | 0
/ËûW/

1,¯ u 0 �GüE� 1
� ¯ u 0 , � u 0 �GüE� 1

� ¯ üE� 2u
0

, and ° u 0
�GüE� 1

� ¯)¿<º � ü@� 1 � � ¹yºu
0

. Then, inequality (5.6) yields that,
for each I ,� � �	��u 0

�GüE� 1

 e AfB�g � � � � �	�Gu 0 �GüE� 1


 �� 6 � ¯ u 0
�GüE� 1

/ � 7 ¯ 2u
0
�GüE� 1


 � *Cu 0
�GüE� 1

��* � �/ 6z� 6 � u 0 �GüE� 1 ¯ u 0 �GüE� 1� 2 6z¯ u 0
�GüE� 1 � *�u 0 �GüE� 1

��* � � / 6z� 6 � u 0
�GüE� 1 ¯ u 0

��ü@� 1 (from (5.36))� 2 6z� 18 ¯ u 0 ¯ 1 � ¿<º üu
0

/ 6>� 6 ¯ üE� 3u
0

(from (5.40))� 2 6z� 18 ¯ u 0 ¯W¹xº � ¿<º üu
0

/ 6>� 6 ¯�¹yº � ¿<º � üE� 1 � � 1u
0� 6 � 2 � 18

/ � 6

 ¯ 1 � ¿<ºu

0
¯0¿<º � üE� 1 � � ¹yºu

0
(from (5.36))� ¯)¿ º � üE� 1 � � ¹ ºu

0

� ° u 0 �GüE� 1 (from (5.35)) �
Hence Step 3a will again be executed for each I with* u

0
�GüE� 2 � e AfB�g � ¯*)�	� u

0
��ü@� 1

�* u
0
�GüE� 1 � e AfB�g �-, u 0 �GüE� 1 � : 
 e AfB�g �

Inequality (5.5) then implies that� *�u 0 ��ü@� 2
��* � � � � 6 � u 0

��ü@� 1
/ � 7 ¯ u 0 �GüE� 1 � *�u 0 �GüE� 1

�~* � �� � 6 ¯ üE� 2u
0

/ � 7 � 18 ¯ u 0 ¯ 1 � ¿<º üu
0

(from (5.40))� � 6 ¯ 1 � ¿<º � üE� 1 �u
0

/ � 7 � 18 ¯ u 0 ¯ 1 � ¿<º üu
0� � � 6

/ � 7 � 18 ¯ 1 � ¿<ºu
0


 ¯ 1 � ¿<º � ü@� 1 �u
0� � � 6

/ � 7

 ¯ 1 � ¿ º � üE� 1 �u

0
(from (5.35))� � 18 ¯ 1 � ¿ º � ü@� 1 �u

0
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which establishes (5.40) for � � ûÈ/
1. Thus Step 3a is executed for each I � 1

� �[�<� � 6 for all
iterations | � | 0. But this implies that Γ is finite, which contradicts the assumption that Step 3b
is executed infinitely often for each subset. Hence the theorem is proved.

This theorem was all that was needed in Conn et al. (1991). However, the situation is more
complex here because 6 may be larger than one. If the ill-conditioning of the Hessian is to be
avoided, we must now prove the stronger result that all penalty parameters stay bounded away
from zero.

Theorem 5.6 Assume AS1 and AS2 hold and suppose that the sequence of iterates
7 ��u ;

of
Algorithm 3.1 converges to a single limit point

�G�
with corresponding Lagrange multipliers

*C�
,

at which AS5 and AS6 hold. Then there is a constant
, J

0 such that
,)u � : �÷, for all | and allI � 1

� �[�<� � 6 .
Proof. Assume otherwise that

�
is not empty, and hence that

,)u � � converges to zero. Then
Step 3b must be executed infinitely often for I & �

. We aim to obtain a contradiction to this
statement by showing that, for any I & �

, Step 3a is always executed for sufficiently large | . We
may deduce from Theorem 5.5 that ¯ u attains its minimum value ¯ min

&��
0
�
1



at iteration | max,
say. Hence,  Ì�.Î

. Furthermore, we may apply Lemma 5.3 to the complete sequence of iterates.
Let | 7

� | max be the smallest integer for which, u � � � min

D
¯¯ � 1

2 � 6
/ � 7

� ¯)¿<º �%$min
� ¯ min6 � 2 � 6
/ � 7


 H (5.41)

for all | � | 7
� | 1, where ¯¯ and | 1 are those of Lemma 5.3, and where

��� 1
2

�
1
� ¶ µ 
 . Note that¯0¿ º �%$min

J ¯ min as ¶ µ ± 1.
Consider the I -th subset, for some I & �

. At iteration | � | 7, the algorithm ensures that,+u � 1 � : � ��*Cu � 1
��* � 
�e & B�g ���Ë¯ min

,)u � : � �_*�u§�~* � 
¼e & B	g �
if Step 3b is executed for the I -th subset, while (5.7) ensures that,+u � 1 � : � ��*Cu � 1

��* � 
�e & Big ��� ,+u � : � � 6 ° u�/ � 7
� u<


if Step 3a is executed for the same subset. Summing on all I & �
, and defining� u � ' � 7 I & � M

Step 3a is executed for the I -th subset at iteration | ;� u � ( � 7 I & � M
Step 3b is executed for the I -th subset at iteration | ; �

we obtain that� u � 1 � ¯ min

3: ? � ¤*) ã ,)u � : � �_*�u§�~* � 
�e & B�g � / 3: ? � ¤+) , ,)u � : � � 6 ° u�/ � 7
� uU
� � ¯ min

/ � 7 6 ,)u � � 
 � u�/ � 6 6 ,)u � � ° u � (5.42)

For the purpose of obtaining a contradiction, assume now that� u�� 1
2
° u (5.43)

for all | � | 7. Then (5.42) gives that, for all | � | 7,� u � 1� u �o¯ min
/ � 7 6 ,)u � � / 2 � 6 6 ,)u � � �o¯0¿<º �%$min

±
1 (5.44)

20



because of (5.41). Hence we obtain from (5.44) that� u � 1 � � u
7 ¯ � u � u 7 � 1 � � ¿<º �%$ �min �

Therefore, since � u
7 ¯ � u � u 7

� 1 � $
min tends to zero, we obtain that� u � 1

± 1
2
¯�¹yº � � u 7 � u max � ¿<ºmin ¯ � u � u 7

� 1 � ¿<ºmin
� 1

2
¯�¹yº � � u � u max

� 1 � ¿<ºmin
� 1

2
° u � 1

for all sufficiently large | , where the last equality results from the definition of | max and (3.13).
But this contradicts (5.43), which implies that (5.43) does not hold for all | sufficiently large. As
a consequence, there exists a subsequence

}
such that� u ± 1

2
° u (5.45)

for all | &³} . Consider such a | . Then, using (5.42) and (5.45), we deduce that� u � 1
± 1

2
° uy� ¯ min

/ 6>� 7
,)u � � / 2 6z� 6

,)u � � 
 � 1
2
¯0¿ º �%$min ° u � 1

2
° u � 1

�
where we have used (5.41) to obtain the second inequality. As a consequence, | / 1

&�}
and

(5.45) holds for all | sufficiently large. Returning to subset I & �
, we now obtain from (5.8) and

(5.45) that � � ����uU
 e ACB	g ����° ux� � 6
,+u � � / 1

2
�
1
/ � 7

,)u � � 
\
 ��° uz�
for all | sufficiently large, because of (5.41). Hence Step 3a is executed for the subset I and for
all sufficiently large | , which implies that I does not belong to

�
. Therefore

�
is empty and the

proof of the theorem is completed.
As in Conn et al. (1991), we examine the rate of convergence of our algorithms.

Theorem 5.7 Under the assumptions of Theorem 5.6, the iterates
��u

and the Lagrange multipliers
¯*�u of Algorithm 3.1 are at least R-linearly convergent with R-factor at most ¯ ¿<ºmin, where ¯ min is
the smallest value of the maximum penalty parameter generated by the algorithm.

Proof. The proof parallels that of Lemma 5.3. First, Theorem 5.5 shows that the maximum
penalty parameter ¯ u stays bounded away from zero, and thus remains fixed at some value¯ min

J
0, for | � | max. For all subsequent iterations,� u � 1

� ¯ min � u and ° u � 1
� ¯ ¿<ºmin ° u (5.46)

hold. Moreover, Theorem 5.6 implies that, for all I � 1
� �<�[� � 6 , (3.7) hold for all | � | max

sufficiently large. Hence and because of (4.1), the bound on the right-hand side of (5.25) may be
replaced by � 15 � u(/ 6[° u , and thus�U� ^ ÿ u ����! X � 15 � u�/ 6[° u(/ � 12 �U� ^ ÿ u � 2 / � 13 �U� ^ ÿ u �-� u�/ � 14 � 2u ] � (5.47)

Therefore, if | is sufficiently large that � u � 1
2 !®� 13

(5.48)

and �U� ^ ÿ u ��� 1
4 !h� 12

�
(5.49)
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inequalities (5.47)–(5.49) can be rearranged to yield�U� ^ ÿ u � � 4 ! �\� � 14
/ � 15


 � u�/ 6[° u<
 �
But then (5.19) gives that � ÿ u ���Ë� 19 � u�/ � 20 ° u (5.50)

where � 19
� � 1

/
4 ! � � 14

/ � 15



and � 20
�

4 !®6 . As ¶¡µ ± 1 and ¯ min
±

1, (5.46) and (5.50)

show that
� u

converges to
���

at least R-linearly, with R-factor ¯)¿ ºmin. Inequalities (4.7) and (5.50)
then guarantee the same property for ¯*�u .

To conclude this section, we note that the conclusions of Theorems 5.5, 5.6 and 5.7 require
that the complete sequence of iterates converges to a unique limit point. As indicated above, this
assumption cannot be relaxed. The counterexample presented by Conn et al. (1991) (where the
linear inequality constraints are simple bound constraints on the problem’s variables) shows that
the sequence of penalty parameters may indeed converge to zero, if there is more than a single
limit point.

6 Second order conditions

If we further strengthen the stopping test for the inner iteration beyond (3.3) to include second-
order conditions, we can then guarantee that our algorithms converge to an isolated local solution.
More specifically, we require the following additional assumption.

AS7: Suppose that
��u

satisfies (3.3), converges to
� �

for | &Í} , such that � � has a rank strictly
greater than � . Then, if � is defined as in AS6, we assume that � ^ P QUQ Φ u � is uniformly
positive definite (that is, its smallest eigenvalue is uniformly bounded away from zero) for
all | &³} sufficiently large.

We can then prove the following result.

Theorem 6.1 Under assumptions AS1–AS3, AS5–AS7, the iterates
�Gu

, | &Y} , generated by
Algorithm 3.1 converge to an isolated local solution of (1.1)–(1.3).

Proof. By definition of Φ,PTQUQ Φ u{� S b �	��ux� ¯*�uU
F/ =3: 4
1

1,)u � : V AfB �	�Gu<
_^ V ACB �	��u[
U� (6.1)

where V ACB �	�G
 is the Jacobian of � �	�G
 e ACBig . Note that the rank of � is at least that of � � . AS7 then
implies that there exists a nonzero vector

ö
such thatV �	��uz
 � ö{� 0

and hence V AfB ����u<
 � ö � 0 (6.2)

for each I . For any such vector, AS7 further implies thatö ^ � ^ P QUQ Φ u � ö�� � 21 � ö � 2
for some � 21

J
0, which in turn gives thatö ^ � ^ S b �	��ux� ¯*�uU
 � ö�� � 21 � ö � 2 �
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because of (6.1) and (6.2). By continuity of S b as
�Gu

and ¯*�u approach their limits, this ensures
that ö ^ � ^ S b �	� � �* � 
 � ö�� � 21 � ö � 2
for all nonzero

ö
satisfying V �	� � 
 � ö � 0

�
which implies that

�G�
is an isolated local solution of (1.1)–(1.3) (see, for instance, Avriel (1976,

Thm. 3.11).
If we assume that the inner iteration stopping test is tightened so that PTQUQ Φ u is required to

be uniformly positive definite in the null space of the dominant constraints, and if we assume
that the non-degeneracy condition (5.2) holds, then Corollary 5.2 ensures that � u�� � � � � for
sufficiently large | and Theorem 6.1 holds. A weaker version of this result also holds, where only
positive semi-definiteness of the augmented Lagrangian’s Hessian is required, yielding then that���

is a (possibly not isolated) minimizer of the problem.

7 Extensions

7.1 Flexible Lagrange multiplier updates

The formula (2.1) has definite advantages for large-scale computations, but may otherwise appear
unduly restrictive. The purpose of the first extension we consider is to introduce more freedom
in our algorithmic framework, by replacing this formula by a more general condition, allowing
a much larger class of Lagrange multiplier updates to be used. More specifically, we consider
modifying Algorithm 3.1 as follows.

Algorithm 7.1
This algorithm is identical to Algorithm 3.1, except that Step 3 is replaced by the following,
where Ä is a constant in

�
0
�
1


.

Step 3 [Disaggregated updates]. Compute a new vector of Lagrange multiplier estimates ˆ*�u � 1.
For I � 1

� �<�<� � 6 , execute Step 3a if � � �	�GuU
�e AfB�g � ��° uy�
or Step 3b otherwise.

Step 3a [Update Lagrange multiplier estimates]. Set* u � 1 � e ACBig � ½ ˆ* u � 1 � e AfBig if � ˆ* u � 1 � e AfBig � � , �.-u � 1 � : �* u � e ACBig otherwise,,)u � 1 � : � ,)u � : �
Step 3b [Reduce the penalty parameter]. Set* u � 1 � e ACBig � ½ ˆ* u � 1 � e AfBig if � ˆ* u � 1 � e AfBig � � , �.-u � 1 � : �* u � e ACBig otherwise,,)u � 1 � : � ´ u � : ,)u � : �

where ´ u � : is defined by (3.9) in Algorithm 3.1.
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Algorithm 7.1 allows a more flexible choice of the multipliers than Algorithm 3.1, but requires
that some control is enforced to prevent their growth at an unacceptably fast rate. It covers, among
others, the choice of the least-squares estimates

*)�	�G

as defined in (2.5).

The global convergence theory presented in Section 4 for Algorithm 3.1 can be extended to
cover Algorithm 7.1. This extension is detailed in Conn et al. (1993a). Conn, Gould, Sartenaer
and Toint (1993b) extend the local convergence analysis of Section 5 to Algorithm 7.1, under the
additional condition that � ˆ*�u � 1

��* � � �o� 22 � �Gu§��� � � / � 23 � uy�
holds for some positive constants � 22 and � 23 and all | &³} sufficiently large, where

}
is the index

set of a subsequence of iterates (generated by Algorithm 7.1) converging to the critical point
� �

with corresponding Lagrange multipliers
* �

. Both (2.1) and (2.5) satisfy this condition because
of Theorem 4.6.

We also note that Corollary 5.2 ensures that the least-squares multiplier estimates (2.5) are
implementable when the non-degeneracy condition (5.2) holds. By this we mean that the estimates

ˆ*�u �Y���\� V u � u<
-�W
 ^ � ^u O u
are identical to those defined in (2.5) for all | sufficiently large, and, unlike (2.5), are well defined
when

� �
is unknown.

7.2 Alternative criticality measures

In Algorithms 3.1 and 7.1 we used the criticality measure �£ ^ ¤ �\� PTQ Φ u[
 � in order to define the
stopping criterion of the inner iteration (see (3.3)), because it is general. However, this quantity
might not be easily computed in the course of the numerical method used to calculate

��u
, especially

when the dimension of the problem is high. It is therefore of interest to examine other criticality
measures that might be easier to calculate. It is the purpose of this section to analyze such
alternative proposals.

Given
� u

,
� u

, and
� � ¤ as above, we first claim that (3.3) can be replaced by the requirement

that there exists a set of non-positive “dominant multipliers”
7 � � u ; �@? / ¤ ( ! u  � u , � � u � 0) such

that �UP Q Φ u / � ^� ¤ � u � �~� u � (7.1)

where � u is the
M � uyM

-dimensional vector whose � -th component is � � u if � & ! u or zero otherwise.
We prove this claim.

Lemma 7.1 Assume that there exists a non-positive � u such that (7.1) holds at
�Gu

. Then (3.3)
also holds at

��u
.

Proof. Since the vector
� ^� ¤ � u belongs, by construction, to the cone

� u
defined in (3.4),

we can immediately deduce from the definition of the orthogonal projection and (7.1)that�U£ ^ ¤ �\� PRQ Φ u[
 � � � � PRQ Φ u � £0¬ ¤ �-� PTQ Φ u<
 � �®� � PTQ Φ u{� � ^� ¤ � u � �~� ux�
which is the desired inequality.

Condition (7.1) is appealing for two reasons. Firstly, a set of (possibly approximate) multipliers
is available in many numerical procedures that might be used to perform the inner iteration and
to compute a suitable

�Gu
; one can then select those multipliers which correspond to the dominant

constraints, further restrict this choice to the non-positive ones and finally check (7.1). Such
a scheme is implicitly used by both the Harwell Subroutine Library (1993) barrier-function
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quadratic programming codes VE14 and VE19 and the IMSL (1987) general linearly constrained
minimization package LCONG.

Alternatively, suitable multipliers can be computed, for instance by (approximately) solving
the least-squares problem

min0 �UPTQ Φ u(/ � ^� ¤ � �
and selecting the non-positive components of the resulting vector � , or by (approximately) solving
the constrained least-squares problem

min0 ç
0
�PTQ Φ u�/ � ^� ¤ � ��� (7.2)

Condition (7.1) is also appealing as it provides, in a single condition, both a stopping condition
on the inner iteration and a measure of the tolerated “inexactness” in solving the associated
least-squares problem, if this is the procedure chosen to obtain the dominant multipliers.

We may thereforededuce from Lemma 7.1 that the convergence theory holds for Algorithms 3.1
and 7.1 whenever (7.1) is used instead of (3.3).

Condition (7.1) can be further specialized. For instance, one might choose to impose the
familiar “reduced gradient” criterion � ˆ� �	�Gu<
 ^ PTQ Φ u � �~� ut�
where ˆ� �	� u 
 is an orthogonal matrix whose columns span the null space of the constraints active
at
��u

, provided that the multipliers associated with these linear constraints are all non-positive. In
this case, we have that�U£ ^ ¤ �\� P Q Φ u 
 � �®�U£ ^ � Q<¤ � 0 � �\� P Q Φ u 
 � � � ˆ� ��� u 
 ^ P Q Φ u � �~� u � (7.3)

because
� �	�Guz�

0


, the tangent cone to the set determined by the linear inequality constraints active

at
��u

, contains
� u

. As a consequence, the convergence theory still holds when this criterion, which
has been implemented by several subroutines for minimizing a general objective function subject
to linear constraints (for example, the NAG, 1993, quadratic programming code E04NFF and the
more general package E04UCF), is used as an inner-iteration stopping rule within Algorithms 3.1
and 7.1. This is also true for reduced gradient methods (e.g. MINOS Murtagh and Saunders,
1978, or LSNNO by Toint and Tuyttens, 1992) which compute a full column rank matrix ˇ� �	��u[

whose columns are generally non-orthonormal but depend upon a subset of the (finite number) of
coefficients for the linear constraints. Indeed, the norm of ˇ� ����u<
 is then bounded above and away
from zero, and a relationship that is a weighted form of (7.3) thus also holds in these cases.

In order to preserve coherence with the framework presented in Conn, Gould, Sartenaer and
Toint (1993c), we finally note that

Û u
as defined in (4.3) may also be viewed as a criticality

measure. Hence we might decide to stop the inner iteration whenÛ u �ó� u � (7.4)

The reader is referred to Conn et al. (1993a) for a proof that global convergence is still obtained
for this modification of Algorithms 3.1 and 7.1. However, the authors have not been able to prove
the desired local convergence properties with only (7.4). Instead, the local convergence theory is
covered for Algorithms 3.1 and 7.1 for the stronger conditionÛ u �~� 2u (7.5)

(see Conn et al., 1993b for details). This condition is theoretically interesting, but might be
practically too strong. Note, as we now show, that it implies a variant of (3.3).
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Theorem 7.2 Assume that
7 ��u ;

, | &�} , is a convergent subsequence of vectors of L such that
(7.5) holds for each | &N} , where the � u converge to zero as | increases in

}
. Then the inequality�U£ ^ ¤ �\� P Q Φ u 
 � �o� 24 � u (7.6)

also holds for each | &³} sufficiently large and for some � 24
�

1.

Proof. We first consider the simple case where $ � 0, that is when no linear inequality is
present. In this case, it is easy to check from (4.3) that

Û u�� �UPTQ Φ u � . But we must have that� u��¾Î
. Thus

Û u�� �U£ ^ ¤ �\� PRQ Φ uz
 � . We therefore obtain that (7.6) holds with � 24
�

1 and |
large enough to ensure that � u � 1.

Assume now that $ J 0. The Moreau decomposition of
� PTQ Φ u (see Moreau, 1962) is given

by � PTQ Φ u§� £ ^ ¤ �\� PTQ Φ u<
0/ £0¬W¤ �\� PRQ Φ u[
 �
If £ ^ ¤ �\� PRQ Φ u[
 is zero, then (3.3) obviously holds for any choice of � 24. Assume therefore that£ ^ ¤ �-� P Q Φ u 
 is nonzero. We now show that

� u / � u & L , where we define� u def�1� u £ ^ ¤ �\� PRQ Φ u[
�U£ ^ ¤ �\� PRQ Φ u[
 � � with
� u def� min " 1 � � 0 � u� � � Â # � (7.7)

Assume first that � & � u . Then
�§� � & � u and

� ^� � uT� 0 have rephrased the relevant paragraph
and we hope that it is now clearer.have rephrased the relevant paragraph and we hope that it is
now clearer.because of the polarity of

� u
and

� u
. Since

�Gu�& L , we obtain that� ^� �	��u(/ � u<
���� � �Y�	� ^� ��u���� � 
)/�� ^� � u�� 0 � (7.8)

On the other hand, if � Ì& � u , we have that
� ^� �Gu§�~� � J � 0 � u and hence�	� ^� ��u ��� � 
)/�� ^� � u J � 0 � u � � � � �z�E� � u � � � 0 � u{�2�\u � � � � � � 0 � u � � 0 � u�� 0 � (7.9)

Gathering (7.8) and (7.9), we obtain that
��u�/ � uT& L , as desired. Furthermore, since � � u ��� 1

by definition, we have verified that
� u

is feasible for the minimization problem (4.3) associated
with the definition of

Û u
. Hence,Û u � � P Q Φ u ^ � u� £ ^ ¤ �\� PRQ Φ u[
 ^ � u(/ £0¬W¤ �-� PTQ Φ u<
 ^ � u� �U£ ^ ¤ �-� PTQ Φ u<
 �(� � u �� �\u �U£ ^ ¤ �\� PTQ Φ u[
 � � (7.10)

where we have used successively the Moreau decomposition of
� P Q Φ u , the definition of

� u
and

the orthogonality of the terms in the Moreau decomposition. If
�-u{�

1, then (7.5) and (7.10) imply
that �U£ ^ ¤ �\� P Q Φ u 
 � �~� u 2 �~� u (7.11)

for | &³} sufficiently large. Otherwise, we deduce from (7.10), (7.5) and (7.7) that�U£ ^ ¤ �\� PRQ Φ u[
 � � � � � Â� 0
� u � (7.12)

As a consequence of (7.11) and (7.12), we therefore obtain that (7.6) holds with� 24
�

max " 1 � � � � Â� 0 # �
Combining all cases, we conclude that (7.6) holds with this last value of � 24.

We finally note that Lemma 7.1 and Theorem 7.2 do not depend on the actual form of the
augmented Lagrangian (1.5), but are valid independently of the function minimized in the inner
iteration. This observation could be useful if alternative techniques for augmenting the Lagrangian
are considered for a merit function.
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8 Conclusion

We have considered a class of augmented Lagrangian algorithms for constrained nonlinear op-
timization, where the linear constraints present in the problem are handled directly and where
multiple penalty parameters are allowed. The algorithms in this class have the advantage that
efficient techniques for handling linear constraints may be used at the inner iteration level, and
also that the sparsity pattern of the Hessian of the augmented Lagrangian is independent of that
of the linear constraints. The global and local convergence results available for the specific case
where linear constraints reduce to simple bounds have been extended to the more general and
useful context where any form of linear constraint is permitted.

We finally note that the theory presented is directly relevant to practical computation, as the
inner iteration stopping rule (3.3) covers the type of optimality tests used in available packages
for linearly constrained problems. This means that these packages can be applied to obtain an
(approximate) solution of the subproblem, and constitutes a realistic and attractive algorithmic
development.

It is now the author’s intention to perform extensive numerical experiments on large-scale
problems. This development requires considerable care and sophistication if an efficient solver
for the subproblem is to be integrated with the class of algorithms described here.
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