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ABSTRACT

We consider the global and local convergence properties of a class of augmented Lagrangian
methods for solving nonlinear programming problems. In these methods, linear and more general
constraints are handled in different ways. The general constraintsare combined with the objective
functionin anaugmented L agrangian. Theiteration consistsof solving asegquenceof subproblems;
ineach subproblem theaugmented L agrangianis approximately minimized intheregion defined by
thelinear constraints. A subproblemisterminated as soon as astopping conditionissatisfied. The
stopping rules that we consider here encompass practical tests used in several existing packages
for linearly constrained optimization. Our algorithm also allows different penalty parameters
to be associated with disoint subsets of the general constraints. In this paper, we analyze the
convergence of the sequence of iterates generated by such an algorithm and prove global and fast
linear convergence as well as showing that potentially troublesome penalty parameters remain
bounded away from zero.
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1 Introduction
In this paper, we consider the problem of calculating alocal minimizer of the smooth function

f(z), (1.1)

where z isrequired to satisfy the general equality constraints
ci(z)=0, 1<:<m (1.2

and the linear inequality constraints
Az —b> 0. (1.3

Here f and ¢; map 1" into R, A isap-by-n matrix and b € RP.

A classical technique for solving problem (1.1)—(1.3) is to minimize a suitable sequence of
augmented Lagrangian functions. If we only consider the problem (1.1)—(1.2), thesefunctions are
defined by

Ofa, )= fa) + 3 hiele) + 523 o)’ (L4)
=1 =1

where the components \; of the vector A are known as Lagrange multiplier estimates and y is
known as the penalty parameter (see, for instance, Hestenes, 1969, Powell, 1969 and Bertsekas,
1982). The question then arises how to deal with the additional linear inequality constraints (1.3).
The case where A is the identity matrix (that is when (1.3) specifies bounds on the variables)
has been considered by Conn, Gould and Toint (1991) and Conn, Gould and Toint (1992b).
They propose keeping these constraints explicitly outside the augmented L agrangian formulation,
handling them directly at thelevel of the augmented L agrangian minimization. That is, asequence
of optimization problems, in which (1.4) is approximately minimized within the region defined
by the simple bounds, is attempted. In this approach all linear inequalities other than bound
constraints are converted to equations by introducing slack variables and incorporated in the
augmented Lagrangian function. This strategy has been implemented and successfully applied
within the LANCELQOT package for large-scale nonlinear optimization (see Conn, Gould and
Toint, 1992a). However, such amethod may be inefficient when linear constraints are present as
there are anumber of effective techniques specifically designed to handle such constraints directly
(see Ariali, Chan, Duff, Gould and Reid, 1993, Forsgren and Murray, 1993, Toint and Tuyttens,
1992, or Vanderbei and Carpenter, 1993, for instance). Thisisespecially important for large-scale
problems. The purpose of the present paper is therefore to define and analyze an algorithm where
the constraints (1.3) are kept outside the augmented Lagrangian and handled at the level of the
subproblem minimization, thus allowing the use of specialized packages to solve the subproblem.

Our proposal extends the method of Conn et al. (1991) in that not only bounds but general
linear inequalities are treated separately. Fletcher (1987, page 295) remarks on the potential
advantages of this strategy.

Furthermore, it is often worthwhile from the practical point of view to associate different
penalty parameters to subsets of the general constraints (1.2) to reflect different degrees of non-
linearity. This possibility has been considered by many authors, including Fletcher (1987, page
292), Powell, 1969 and Bertsekas (1982, page 124). In this case, the formulation of the augmented
Lagrangian (1.4) can be refined: we partition the set of constraints (1.2) into ¢ digoint subsets
{Qj}j-:l, and redefine the augmented L agrangian as

Oe, A )= f@)+ 3 Y [Nee) + ijcw , (L5)

J=14€Q;



where 1 is now a g-dimensional vector, whose j-th component is ; > 0, the penalty parameter
associated with subset Q ;. Because of its potential usefulness, and becauseits analysisis difficult
to directly infer from the single penalty parameter case, this refined formulation will be adopted
in the present paper.

The theory presented below handles the linear inequality constraints in a purely geometric
way. Hence the same theory applies without modificationsif linear equality constraints are also
imposed and all the iterates are assumed to stay feasible with respect to these new constraints. It
isindeed enough to apply the theory in the affine subspace corresponding to thisfeasible set. Asa
consequence, linear constraints need not be included in the augmented L agrangian and thus have
the desirable property that they have no impact on the structure of its Hessian matrix.

The paper is organized as follows. In Section 2, we introduce our basic assumptions on
the problem and the necessary terminology. Section 3 presents the proposed algorithm and the
definition of a suitable stopping criterion for the subproblem. The global convergence anaysis
is developed in Section 4 while the rate of convergence is analyzed in Section 5. Second order
conditions are investigated in Section 6. Section 7 considers some possible extensions of the
theory. Finally, some conclusions and perspectives are outlined in Section 8.

2 Theproblem and related terminology
We consider the problem stated in (1.1)—(1.3) and make the following assumptions.
AS1: Theregion B = {z | Az — b > 0} isnonempty.

AS2: Thefunctions f(z) and ¢;(z), (: = 1,...,m), are twice continuously differentiable for
alz € B.

Assumption AS1 is clearly necessary for the problem to make sense. We note that it does not
prevent B from being unbounded.

We now introduce the notation that will be used throughout the paper.

Let g(z) denote the gradient V, f(z) of f(z) and H (z) denote its Hessian matrix V. f(z).
We also define J(z) to be the m-by-n Jacobian of ¢(z), where

e(z) = [ea(@), - em(2)]"

Hence
J(@)! = [Veer(z),. .., Vien(z)].

Let H;(z) denotethe Hessian matrix V,..c;(z) of c;(z). Finadly, let g*(z, A) and H*(z, \) denote
the gradient, V.£(z, A), and the Hessian matrix, V..¢(z, A), of the Lagrangian function

Lz, \) = f(z)+ i Aici(z).
=1

We note that ¢(z, A) is the Lagrangian solely with respect to the ¢; constraints. If we define
first-order Lagrange multiplier estimates componentwise as

Az, Aoy kiie,) = A, He(@)ion/n; (1=1,...,9), (2.1

wherewjs) denotesthe |S|-dimensional subvector of w whose entries areindexed by the set S, we
shall use theidentity

deb(a:, A /‘L) = vl’f(i) + Zg’:l ZiEQ] P‘szcl(w) + icl(w)vzcl(w)} (22)
= gé(wa )\(Jl, >‘a /‘L))



Now suppose that {z € B}, {\x} and {u} are infinite sequences of n-vectors, m-vectors
and positive g-vectors, respectively. For any function F', we shall use the notation that F; denotes
F evaluated with arguments z, A, and/or u;, as appropriate. So, for instance, using the identity
(2.2), we have that

Vo®y = Vo ®(zg, A, i) = ¢°(2k, M), (2.3)
where we have written (2.1) in the compact form
Mo = Mk, A, 8. (2.4)

We denote the vector w at iteration k£ by w;, and its:-th component by wy, ;. We also use wy, (s to
denote the |S|-dimensional subvector of w; whose entriesareindexed by S.

Now let {z;}, k € K, for some subset K of the natural numbers N, be a convergent subse-
guence with limit point z.. Then we denote the matrix whose rows are those of A corresponding
to active constraintsat z,. — that isthe constraintswhich are satisfied asequalities at z.. — by A..
Furthermore, we choose Z. to be a matrix whose columns form an orthonormal basis of the null
gpaceof A,, thatis

AZ,=0and z1Z, =1

We define the |east-squares Lagrange multiplier estimates (corresponding to A..)
Az) € ~((J(2)2.)")" 2! g(2) (25)
at all points where the right generalized inverse
(J(@)2)* € 2l J(2)" (J(2)2.2! I (2)")

of J(z)Z. iswell defined. We note that, whenever J(z)Z., has full rank, A(z) is differentiable
and its derivative is given in the following lemma

Lemma 2.1 Suppose that A2 holds. If J(z)Z.Z1 J(z) is nonsingular, A(z) is differentiable
and its derivative is given by

VoA(z) = —~((J(2)2.) ") Z B (2, \(2)) - (J(2)2.27J(z)")R(z)  (26)
wherethei-throw of R(z) is(ZXg(z) + Z1' J(z)"X(z))T ZI H;(z).
Proof.  Theresult follows by observing that (2.5) may be rewritten as
r(z) — Z1 J(z)'Mz) = ZT g(z) and J(z)Z.r(z) =0 (2.7)

for somevector r(z). Differentiating (2.7) and eliminating the derivative of r(z) from theresulting
equations gives the required result.

We stress that, as stated, the Lagrange multiplier estimate (2.5) is not directly calculable asit
requires apriori knowledge of z,. It ismerely introduced as an analytical device.

Finally, the symbol || - || will denote the £,-norm or the induced matrix norm. We are now in
position to describe more precisely the algorithm that we propose to use.

3 Statement of thealgorithm

We consider the algorithmic model we wish to use in order to solve the problem (1.1)—(1.3). This
model proceeds at iteration &£ by computing an iterate z, which satisfies (1.3) and approximately
solves the subproblem

;neilr;\ D(z, Ak, pk), (3.1



where the values of the Lagrange multipliers A\, and penalty parameters p;, are fixed for the
subproblem. Subsequently we update the Lagrange multipliers and/or decrease the penalty pa
rameters, depending on how much the constraint violation for (1.2) has been reduced within each
subset of the constraints. The motivation is simply to ensure global convergence by driving, in
the worst case, the penalty parameters to zero, in which case the algorithms essentially reduce to
the quadratic penalty function method (see, for example, Gould, 1989). The tests on the size of
the general constraint violation are designed to allow the multiplier updates to take over in the
neighbourhood of a stationary point.

The approximate minimization for problem (3.1) is performed in an inner iteration which is
stopped as soon asits current iterate is “ sufficiently critical”. We propose to base this decision on
the identification of the linear constraints that are “dominant” at = (even though they might not
be active) and on a measure of criticality for the part of the problem where those constraints are
irrelevant. Givenw > 0, acriticality tolerance for the subproblem, we define, for avector z € B,
the set of dominant constraintsat « as the constraints whose indices are in the set

D($aw)d§f{i€ {L'“ap} | azT$_bi Sﬁow}a (32)

for some ko > 0. Here a! € R” is the i-th row of the matrix A and b, is the corresponding
component of the right-hand side vector 6. Denoting by Ap.. .,y the submatrix of A consisting of
the row(s) whoseindex isin D(z,w), we also define

N(x,w) = {A%(z,w)f | 6 € §R|D(I7W)| and fz < Oa (,L = 1’ te |D($,C4))|)},

the cone spanned by the outwards normals of the dominant constraints. The associated polar cone
isthen
T(z,w) = N(z,w)’ =cl{d | d'v < 0 foral v e N(z,w)},

where cl (V') denotes the closure of the set V. The cone T'(z, w) is the tangent cone with respect
to the dominant constraints at z for the tolerance w. Note that D(z,w) might be empty, in which
case Ap(. ) iSassumed to be zero, N (z, w) reducesto the originand 7'(z, w) isthe full space.
We then formulate our “sufficient criticality” criterion for the subproblem as follows: we
require that
||PT(zk,wk) (_vl’cbk) || < Wi, (33)

where Py (-) is the projection onto the convex set V' and wy, is a suitable tolerance at iteration k.
Once z;, satisfying (3.3) has been determined by the inner iteration, we denote

D, = D(a:k,wk), N = N(a;k,wk) and T}, = T(a:k,wk). (34)

For future reference, we define Z;, to be a matrix whose columns form an orthonormal basis of
Vi, the null space of Ap,, and Y}, to be a matrix whose columns form an orthonormal basis of
Wi, = V. Asabove, we have that Ty is the full space and N}, reduces to the origin when Dy, is
empty. We note that, in thiscase, Z, = Pr, = I, theidentity operator, and Y, = Py, = 0. We
aso notethat V;, C T}, and hence that

| ZEV o ®k|| = || 25 ZE Vo @k < || Pr, (= Vo), (3.5

since Z,, Z! isthe orthogonal projection onto V.

It is important to note that the stopping rule (3.3) covers a number of more specific choices,
including the rule used in much existing software for linearly constrained optimization (such as
MINOS by Murtagh and Saunders, 1978, LSNNO by Toint and Tuyttens, 1992, or VE14 and
VE19 from the Harwell Subroutine Library). The reader is referred to Section 7.2 for further
details.

We are now in position to describe our algorithmic model more precisely. In this model, we
define o, to be the maximum penalty parameter at iteration k& (see (3.10)). At this iteration, the
parameters wy, and 7, represent criticality and feasibility levels, respectively.



Algorithm 3.1

Step O [Initialization]. A partitionof theset{1, ..., m}intog¢ digoint subszets{Qj}jzl isgiven,
aswell asinitial vectorsof Lagrange multiplier estimates Ao and positive penalty parameters
o such that

ko,; < 1a (.7 = 1a . ’Q) (36)
The strictly positive constants xo, w. < 1, 7. < 1,7 < 1, @; < 1, and 3, < 1 are
specmed Set ag = rqax Ko,;, wo = &, Mo = agn and k = 0.
J=1,...,q
Step 1[Inner iteration]. Find z; € B that approximately solves (3.1), i.e. such that (3.3) holds.
Step 2 [Test for convergence]. If || Pr, (—V®r) || < wy and ||e(z)|] < 74, Stop.

Step 3 [Disaggregated updates]. For j = 1, ..., g, execute Step 3aif
le(zi)igll < 7w, (3.7)
or Step 3b otherwise.

Step 3a[Update Lagrange multiplier estimates]. Set

Meriie)] = M@k Akl i),
/'Lk+l7] = /'Lkvj'

Step 3b [Reducethe penalty parameter]. Set

Aetiie] = Awiesl (38)
PetLi = Thibh,
where
Tk,j —{ min(7, o)  otherwise. (3.9

Step 4 [Aggregated updates]. Define

Qpp1 = M fipyy,j. (3.10)
If
api1 < ap, (311)
then set
WE+1 = a§+la (312)
Mhel = oy,
otherwise set
Wil = WpOktl,
B By (3.13)
Me+1 — TkCpyq-

Increment & by one and go to Step 1.

Algorithm 3.1 isspecifically designed for thefirst-order estimate (2.1), aformulawith potential
advantagesfor large-scale computations. We refer the reader to Section 7.1 for afurther discussion
of amoreflexible choice of the multipliers, covering, among others, the choice of the least-squares
estimates A(z) asdefined in (2.5).



We immediately verify that our algorithm is coherent, in that
lim wp = lim 7, = 0. (3.19)
k— oo k— oo

Indeed, we obtain from (3.6) that a, < 1 for al &, and (3.14) then followsfrom (3.12) and (3.13)
if a, tendsto zero, or from (3.13) aloneif «, is bounded away from zero.

Therestriction (3.6) isimposed in order to simplify the exposition. In amore practical setting,
it may beignored provided the definition of ag and (3.10) are replaced by

op = min (75, _max #O,j) and a1 = min <75, _max ,Uk-I—LJ') ;
]: 7"'7q ]: 7"'7q

respectively, for some constant ;s € (0, 1), and that (3.11) is replaced by

max pry1; < MaX fig ;.
q J=1,...,9

7=1,..,

Algorithm 3.1 may be extended in other ways. For instance, one may replace the definition of wq,
thefirst equation in (3.12) and the first equation of (3.13) by

_ _ B
wo = ws0pY, Wil = wsagil and wii1 = wray]y,

for somew, > 0, o, > «,, and B, > B,,. The definition of 7o and the second equation in (3.12)
may then be replaced by

no = msalg” and i1 = ny0y, (3.15)

for somen; > 0. None of these extensions alter the results of the convergence theory devel oped
below. The values used in the LANCELOT package in asimilar context are o, = 7 = 75 = 0.1,
and 8, = 0.9 (relation (3.15) is aso used with n, = 0.12589, ensuring that 7o = 0.01). The
valuesw; = o, = B, = land ug; = 0.1(5 = 1, ..., q) also seem suitable. The parameters w,
and 7. specify the final accuracy regquested by the user.

Finaly, the purpose of the update (3.9) is to put more emphasis on the feasibility of the
constraints whose violation is proportionally higher, in order to achieve a “balance” amongst all
constraint violations. This balance then allows the true asymptotic regime of the algorithm to be
reached. Theadvantage of (3.9) isthat this balancing effect is obtained gradually, and not enforced
at every mgjor iteration, asisthe casein Powell (1969). Furthermore Powell’s approach increases
the penalties corresponding to the constraints that are becoming too slowly feasible, based on
the Z..-norm. Thusit is only when they have changed sufficiently so that they are al within the
constraint violation tolerance that the Lagrange multiplier update is performed. By contrast, we
update the multipliers of the well-behaved constraints (assuming they correspond to a particular
partition — whichislikely since that is, partly at least, why the partitions exist) independently of
more badly behaved ones. In addition, by virtue of using the £>-norm, we do not give quite the
same emphasis to the most violated constraint.

4 Global convergence analysis

We now proceed to show that Algorithm 3.1 is globally convergent under the following assump-
tions.

AS3: Theiterates{z;} considered lie within a closed, bounded domain Q.

AS4: The matrix J(z.)Z, has column rank no smaller than m at any limit point, z., of the
sequence {z, } considered in this paper.



We notice that AS3 impliesthat there exists at least a convergent subsequence of iterates, but
does not, of course, guarantee that this subsequence converges to astationary point, i.e. that “the
algorithmworks’. We also notethat it isalways satisfied in practice because the linear constraints
(2.3) includes lower and upper bounds on the variables, either actual or implied by the finite
precision of computer arithmetic.

Assumption AS4 guarantees that the dimension of the null space of A, is large enough to
provide the number of degrees of freedom that are necessary to satisfy the nonlinear constraints
and we requires that the gradients of these constraints (projected onto this null space) are lin-
early independent at every limit point of the sequence of iterates. This assumption is the direct
generalization of AS3 used by Conn et al. (1991).

We shall analysethe convergence of our agorithmin the casewherethe convergence tolerances
w, and 7, are both zero. We first need the following lemma, proving that (3.3) prevents both
the reduced gradient of the augmented Lagrangian and its orthogonal complement from being
arbitrarily large when wy, is small.

Lemmad4.l Let {z} C B,k € K, be a sequence which converges to the point z, and suppose
that
||PTk (_Vmcbk) ” < W,

where the w;, are positive scalar parameterswhich converge to zero as k € K increases. Then
1ZEV: @ < (|12 V@il < wi and [V (25 — z.)]| < maws (4.1)
for some k1 > O and for all £ € K sufficiently large.

Proof.  Observe that, for & € K sufficiently large, wy. is sufficiently small and =, sufficiently
closeto z, to ensure that all the constraintsin D;, are active at z,. Thisimpliesthat the subspace
orthogonal to the normals of the dominant constraintsat =, Vi, contains the subspace orthogonal
to the normals of the constraints active a z... Hence, we deduce that

122V ®xl| < 125 Vo®el| < || Pr,(=Vo®r)|| < wi,

wherewe have used (3.5) to obtain the second inequality and (3.3) to deduce thethird. Thisproves
thefirst part of (4.1).

We now turn to the second. If Dy, is empty, then Y}, isthe zero matrix and the second part of
(4.1) immediately follows. Assume therefore that D, # 0. We first select a submatrix ADk of
Ap, thatisof full row-rank and note that the orthogonal projection onto the subspace spanned by
the {a;}:cp, isnothing but

v.v' = A} [Ap, AD, ] Ap, .
Hence we obtain from the orthogonality of Y, the bound | Dy| < p, (3.2) and (3.4) and the fact
that all constraintsin Dy, are active at z, for & sufficiently large, that
1Y (2 — )l < |45, [4p, AL 17 Ap, (zk — 2.)|
< ||AD,[Ap, AD, 17| p kows.

But there are only afinite number of nonempty sets D;. for all possible choices of z;, and wy, and
we may thus deduce the second part of (4.1) from (4.2) by defining

(4.2)

k1 = promin|| AL, [Ap, AD 17|,

where the minimum is taken on all possible choices of D, and Ap, .

We now examine the behaviour of the sequence {V,®;}. We first recall a result extracted
from the classical perturbation theory of convex optimization problems. Thisresultiswell known
and can be found, for instance, on pp.14-17 of Fiacco (1983).



Lemma4.2 Assumethat U isa continuous point-to-set mapping from S C ®¢ into ®” such that
the set U(#) is convex and non-empty for each 6 € S. Assume that the real-valued function
F(y, 0) is defined and continuous on the space £ x S and convex in y for each fixed 6. Then,
the real-valued function F., defined by

d

ef .
* = ,0
RO inf F,0

iscontinuouson S.

We now show that, if it converges, the sequence {V,®;} tends to a vector which is alinear
combination of the rows of A, with non-negative coefficients.

Lemma4.3 Let {z} C B,k € K, be a sequence which converges to the point z,. and suppose
that the gradients V, ®y, k£ € X, converge to some limit V,®,.. Assume furthermore that (3.3)
holdsfor & € K and that w; tendsto zero ask € K increases. Then,

v, o, = Al'r,

for some vector 7. > 0, where A, isthe matrix whose rowsare those of A corresponding to active
constraints at z...

Proof. Wefirst define

% max (—vzqade) (4.3)
A(zp+d)—b>0
lldfj<1

with the aim to show that this quantity tendsto zero when k£ € X increases. We obtain from (4.3),
the Moreau decomposition (see Moreau, 1962) of V,.®;, and the Cauchy-Schwarz inequality, that

or < maXA(xk+d)—b20 PTk(_vrch)Td + maXA(xk+d)—b20 PNk(_vchk)Td

llaf]<1 ll4]<1 (4.4)

< |[Pr(=Va®s)|| + MaXaep, Pr, (- VaPr)" d,

where B, © {d € ®" | al(zr+d)—b; >0 (i € D) and ||d|| < 1}. As, for z, sufficiently
closeto z, and wy, sufficiently small, all the constraintsin D, must be active at .., we have that
Ny, isincluded in the normal cone N(z., 0) and thereforethe vector Py, (—V ,®;,) belongsto this
normal cone. Moreover, since the maximization problem of the last right-hand side of (4.4) isa
concave program, since z.. isfeasiblefor (1.3), and since ||z.. — zx|| < 1for k& € K large enough,
we thus deduce that d = z. — z, isaglobal solution of this problem. Observing that

Py, (V@) d = VY, Py, (V. ®)]Td = Py, (-V.®) TV Y/ d,
we obtain that

max Py, (—V,®;)"d = max Py, (- V. @) V1Y, d < ||Pn, (= V@)Y (2% — 2.)]],
(4.5)
where we used the Cauchy-Schwartz inequality to deduce the last inequality. We may now apply

Lemma 4.1 and deduce from the second part of (4.1), (4.5) and the contractive character of the
projection onto a convex set containing the origin that

maXx PNk(—Vmcbk)Td < filwk||v$¢’k||,
dEBy



and thus, from (4.4) and our assumptions, that
o < wi + Kwi ||V @]

Our assumption on the wy. sequence then impliesthat o, converges to zero as k increasesin K.
Consider now the minimization problem

minde%n deb*Td,
subjectto A(z. +d) — b > 0, (4.6)
4]l < 1.

Since the sequences {V,®;.} and {z;} converge to V,.®, and z. respectively, we deduce from
Lemma 4.2 applied to the optimization problem (4.3) (with the choices 87 = (V, o7, z7),
UB)={d| A(z+d)—b>0, ||d| <1}, y =d, F(y,0) = V,®Td), and the convergence of
the sequence o, to zero that the optimal value for problem (4.6) is zero. Thevector d = 0 isthus
asolution for problem (4.6) and satisfies

Vo, = Aln, — 2¢d = Al'r,

for some vector 7, > 0, which ends the proof.
The important part of our convergence analysisis the next lemma.

Lemma4.4 Supposethat ASLand A2 hold. Let {z;} C B, k € K, bea sequence satisfying AS3
which converges to the point z,. for which AS4 holdsand let A, = A(z.), where X satisfies (2.5).
Assumethat {\;}, k& € K, isany sequence of vectorsand that {u }, k € X, formanonincreasing
sequence of g-dimensional vectors. Suppose further that (3.3) holds where the w;, are positive
scalar parameterswhich convergeto zero as k € K increases. Then

() There are positive constants 2 and 3 such that

1A (@ky Ak i) — Ad]| < Kowg + K3l|zr — 2], (4.7)
IA(zx) — Adll < K3llze — 2., (4.8)

and
lle(zr) o1l < Kowrptr,j + p,ill( Ak — Aol + Kapk,jllze — ], (4.9)

forallj =1,...,gqandall & € K sufficiently large.
Suppose, in addition, that ¢(z.) = 0. Then

(ii) z, is a Kuhn-Tucker point (first-order stationary point) for the problem (1.1)—(1.3), X, is
the corresponding vector of Lagrange multipliers, and the sequences {\(zx, Ak, 1x) } and
{A(zx)} convergeto A, for k € KC;

(iii) The gradients V,,®;, convergeto g*(z., \.) for k € K.

Proof.  As a consequence of AS2-AS4, we have that for k£ € K sufficiently large, (J,Z.)*
exists, is bounded and convergesto (J(z.)Z.)™. Thus, we may write

I((T6Z) )| < w2 (4.10)

for some constant k, > 0. Equations (2.3) and (2.4), the inner iteration termination criterion (3.3)
and Lemma4.1 give that _
121 (g5 + TEAR)| < wi (4.11)



foral k£ € K large enough. By assumptions AS2, AS3, AS4 and (2.5), A(z) is bounded for all =
in aneighbourhood of z.. Thuswe may deduce from (2.5), (4.10) and (4.11) that

[RYERICA| (2N T2 g + Ml
1((IxZ.) V(2T g + (JrZ:) T An)|

(4.12)

< TrZ) )" llwn
< Kowy.
Moreover, from the integral mean value theorem and Lemma 2.1 we have that
1
Mzp) — Az.) = / VoA(z(s))ds - (24 — 2.), (4.13)
0

where V. A(z) is given by equation (2.6), and where z(s) = zj + s(z. — z). Now the terms
within theintegral sign are bounded for al z sufficiently closeto =, and hence (4.13) gives

[A(zk) = Asl] < Kal|z), — 2] (4.14)

for all & € K sufficiently large and for some constant k3 > 0, which impliesthe inequality (4.8).
We then have that A(z;) convergesto A.. Combining (4.12) and (4.14) we obtain

Ak = Al < % = Aza)l| + [[A(z5) — Aul| < mowy, + mallex — ], (4.15)

which gives the required inequality (4.7). Then, since by assumption wj, tends to zero as k
increases, (4.15) implies that A\ converges to A, and therefore, from the identity (2.3), V.®y
converges to g*(z., A.). Furthermore, multiplying (2.1) by py. ;, we obtain

c(zr)ia,) = i (A = Ao, + (e = A)jo,))- (4.16)
Taking norms of (4.16) and using (4.15), we derive (4.9).
Now suppose that
c(zs) = 0. (4.17)

Lemma 4.3 and the convergence of V,®;, to g*(z., \..) give that
g(zs) + J(a:*)T)\* = A*T7r*

for somevector 7, > 0. Thislast equation and (4.17) show that z.. isa Kuhn-Tucker point and .
isthe corresponding set of Lagrange multipliers. Moreover (4.7) and (4.8) ensure the convergence
of the sequences {A(zx, Ak, ux)} and {A(z;)} to A, for & € K. Hence thelemmais proved.

We finally require the following lemmain the proof of global convergence, which shows that
the Lagrange multiplier estimates cannot behave too badly.

Lemma4.5 Suppose that, for some 5 (1 < j < g), px,; COnverges to zero as k increases when
Algorithm 3.1 is executed. Then the product p ;|| Az 10,1|| converges to zero.

Proof.  As u; ; converges to zero, Step 3b must be executed infinitely often for the j-th
subset. Let K; = {ko, k1, k2, ....} be the set of indices of the iterations in which Step 3b is
executed.

We consider how the j-th subset of Lagrange multiplier estimates changes between two
successive iterations indexed in the set ;. Firstly note that A, 110, = As, [o,- Atiteration
k,+t,fork, <k, +t<ky,y1, wehave

= wkv+l)
Aky+4,[Q,] = ko [Q,] T (4.18)
=1 /‘L +l7]
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where the summation isnull if £ = 1, and

Py y1,i = Hhott,j = Hhy+1, = Thy,j Hky,j- (4.19)

Substituting (4.19) into (4.18), multiplying both sides by .z, ++,;, taking norms and using (3.9),
yields

ProttillMeo el < Tor il o, |+Z|I @k +D 1,

and hence

kyp1—ko—1
Bty 11,3 1A 410,111 < Thky 5l Ak, 10,11 + Z le(@r,+010,]l-

Using thefact that (3.7) holdsfor k&, + 1 < k, + < k,4+1 — 1, we deduce that

kyp1—ko—1
#kv+t,j||>\kv+t,[gj]|| < Tﬂka”)‘kv, ||‘|‘ Z Mko+l

S TIU/kaH)\kvy || —I_anv‘i‘l
Now defining
J’U - /‘Lkv7]||>\k’vy || and IO'U - anv+l’ (4'20)
=1
we obtain that
By tt,5 ]| Ak 41,00, < 700 + py (4.21)

for all ¢t suchthat &, < k, +t < k.41, and, in particular,
Opt1 < 7oy + po- (4.22)

Thus, from (4.22) and the inequality = < 1, if p, converges to zero, then §, and hence, from
(4.21), gk, +1,5|| Ak, +1,10,l| both converge to zero. To complete the proof it therefore suffices to
show that p, convergesto zero as v tendsto infinity.

Suppose first that «;, is bounded away from zero. Then we must have that (3.13) is used for
al k sufficiently large, with ax+1 = amin for some amin € (0, 1). This and the definition of p,, in
(4.20) imply that

py = —Mhutl
" 1- ol
for sufficiently largev. As(3.13) also guaranteesthat 7, tendsto zero, wededucethat p,, converges
to zero. This completes the proof for thefirst case.

Suppose now that «;, converges to zero. Thisimplies that each of the ¢ independent penalty
parametersisreduced aninfinite number of times. Consider the progressof o, over the courseof ¢
successive decreases (3.11). As(3.11) only happenswhen the currently largest penalty parameter,
Li,;say, 1S reduced, as (3.9) requires that this penalty parameter is reduced by 7, and because
there can only possibly be at most ¢ — 1 other penalty parametersin the interval (T ;, pr ;], it
followsthat o, must be reduced by at least 7 over ¢ successivedecreases(3.11). Thus, considering
the possible outcomes (3.12) and (3.13), each 7, +; must be bounded by a quantity of the form

11



(Tlay, )t for some indices 7 and ¢. Furthermore, at most ¢ such terms can involve any
particular z and ¢t. Therefore, since ray, < 1, we obtain that

o0 [o.e] .
pv < QZE(TZO%U)Q"J’W"

207,‘0

~ T = (ran)™)

Thus we see that, as «y,, converges to zero, so does p,,, completing the proof for the second case.

We can now derive the desired globa convergence property of Algorithm 3.1, which is
analogousto Theorem 4.4in Conn et a. (1991).

Theorem 4.6 Assume that AS1 and A2 hold. Let z. be any limit point of the sequence {z}
generated by Algorithm 3.1 of Section 3 for which AS3 and A4 hold and let K be the set of indices
of an infinite subsequence of the z;, whose limitis z... Finally, let A\, = A(z.). Then conclusions
(i), (ii) and (iii) of Lemma 4.4 hold.

Proof.  Our assumptions are sufficient to reach the conclusions of part (i) of Lemma 4.4.
We now show that ¢(z.)jg,) = 0for j = 1,..., ¢, and therefore that c(z.) = 0. To see this, we
consideraj (1< 5 <gq) and analyze two separate cases.

Thefirst caseiswhen p, ; is bounded away from zero. Hence Step 3amust be executed every
iteration for k& sufficiently large, implying that (3.7) is aways satisfied for & large enough. We
then deduce from (3.14) that c(zx)[o,) converge to zero.

The second case is when uy, ; converges to zero. Then Lemma 4.5 shows that iy ;||(Ax —
A«)e,ll tendsto zero. Using thislimit and (3.14) in (4.9), we obtain that c(z )|, tends to zero,
asdesired.

As aconsequence, conclusions (ii) and (iii) of Lemma4.4 hold.

We finally note that global convergence of Algorithm 3.1 can be proved under much weaker
assumptions on 7 ; and wy. The reader is again referred to Conn, Gould, Sartenaer and Toint
(1993a) for further details.

5 Asymptotic convergence analysis

The distinction between dominant and non-dominant (floating) linear inequality constraints has
some implicationsin terms of the identification of those constraints that are active at alimit point
of the sequence of iterates generated by the algorithm. Given such a point z,. we know from
Theorem 4.6 that it is criticd, i.e. that —g’(z., \.) € N. = N(z.,0) for the corresponding
Lagrange multipliers A... If we now consider alinear constraint withindex 7 € {1, ..., p} thatis
active at z,., we may define the normal cone N. *[Z] to be the cone spanned by the outwards normal's
to all linear inequality constraints active at z., except the :-th one. We then say that the :-th
linear inequality constraint is strongly active at z.. if —g‘(z., \.) ¢ N*[Z]. In other words, the i-th
constraint is strongly active at acritical point if this point ceases to be critical when this constraint
isignored. Let usdenote by S(z.) the set of strongly active constraints at z... All non-strongly
active constraints at z,. are called weakly active at ... We now prove the reasonable result that all
strongly active constraints at a limit point z,. are dominant for & large enough.

12



Theorem 5.1 Assume that ASI-AS3 hold. Let {z:}, & € K, be a convergent subsequence
of iterates produced by Algorithm 3.1, whose limit point is z. with corresponding Lagrange
multipliers A.. Assume furthermorethat A4 holds at z.. Then

for all & sufficiently large.

Proof.  Consider alinear inequality constraint € S(z.). Then, by definition of this latter
set, we have that —g*(z., \.) ¢ N since Theorem 4.6 guarantees that V,®;, converges to
g‘(z., ). and asN*[i] isclosed, we havethat —V . ®;, ¢ NP] for k € K large enough. Therefore,
one obtains from the Moreau decomposition (see Moreau, 1962) of —V . ®,, that

1P1(= V@)l = € (5.1)

for some e > O and for all sufficiently large k € K, where T = [NP]}O. We have al'so from (3.3)
thet || Pr, (—V,®x)|| isarbitrarily small, because wy, tendsto zero (see (3.14)). Assume now that,
for somearbitrarily large k£ € I, we havethat « ¢ Dj. Thisimpliesthat Tl C T}, and hence that
(5.1) isimpossible. We therefore deduce that < must belong to Dy, which proves the theorem.
This result is important and is the generalization of Theorem 5.4 by Conn et al. (1991). It
can also be interpreted as ameans of active constraint identification, asis clear from the following

easy corollary.

Corollary 5.2 Suppose that the conditions of Theorem 5.1 hold. Assume furthermorethat all lin-
ear inequality constraintsactive at z,. have linearly independent normals and are non-degenerate,
in the sense that

— ¢* (2., \) €1i[N,], (5.2)

whereri[V] denotesthe relativeinterior of aconvex set V.. Then D, isidentical to the set of active
linear inequality constraintsat z.. for all £ € IC sufficiently large.

Proof. Thenon-degeneracy assumption and thelinear independence of theactive constraints
normals imply that A, is unique and only has strictly negative components. Therefore each of
the active linear inequality constraints at z, is strongly active at z., and the desired conclusion
followsfrom Theorem 5.1.

We note here that the non-degeneracy assumption corresponds to strict complementarity
slacknessin our context (see, for instance, Dunn, 1987, or Burke, Moré and Toraldo, 1990).

We now make some additional assumptions before pursuing our local convergence analysis.
We intend to show that al penalty parameters are bounded away from zero.

AS5: The second derivatives of the functions f(z) and ¢;(z) (1 < 7+ < m) are Lipschitz
continuous at any limit point z.. of the sequence of iterates {z}.

AS6:  Suppose that (z., A.) is a Kuhn-Tucker point for problem (1.1)«(1.3) and let Z be any
subset of the linear inequality constraints which are active at =, that contains all strongly
active constraints (S(z.) C 7) plus an arbitrary subset of weakly active constraints at z...
Then, if the columns of the matrix Z form an orthonormal basis of the subspace orthogonal
to the normals of the constraintsin Z, we assume that the matrix

( ZTH (z,,0,)Z ZTJ(z,)T )
J(z.)Z 0

isnonsingular for all possible choices of the weakly active constraintsin the set 7.
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We note that AS6 implies AS4 and seems reasonable in that the definition of strongly and
weakly active constraints may vary with small perturbations in the problem, for instance when
g‘(z., \.) liesin one of the extreme faces of the cone N... Our assumption might be seen as a
safeguard against the possible effect of all such perturbations.

We now make the distinction between the subsets for which the penalty parameter converges
to zero and those for which it stays bounded away from zero. We define

. . def
ZE G et qh] limp; =0y and PE (L., q}\ 2.

We aso denote "
Pk,2 = MaX L, j (5.3
JEZ

and

def
pr = Y e illAk = A, ll-
JjEZ

We now prove an analog to Lemma 5.1 by Conn et a. (1991) which is suitable for our more
general framework.

Lemma5.3 Assumethat ASI-AS3hold. Let{z;}, k € K, beaconvergent subsequenceof iterates
produced by Algorithm 3.1, whose limit point is z.. with corresponding Lagrange multipliers A..
Assume that AS6 and A6 hold at z... Assume furthermorethat Z # 0.

(i) If P = 0, there are positive constants a < 1, x4, K5, k6, k7 and an integer k1 such that, if

(o7 < 07, then
[zr — || < Kawr + Koo Ae — A, (5.4)
M@y My 21) — Aul| < mowr + K7kl A — Al (5.5)
and
lle(zr)|| < growron 4 qo (14 K70k )| Ak — M|, (5.6)

forall k > k1, k € K.

(i) If, on the other hand, P # 0, thereare positive constants o < 1, k4, &5, 6, k7 and an integer
k1 such that, if px, z < a, then

[(A(@ ks Aky ) — As) 01|l < Keme + K70k, (5.7)

and
lle(zr)ioll < wemmpr,z + (1+ K7pk,2) i, (5.8)

forall k> k1, k € K,andall j € Z.

Proof.  We will denote the gradient and Hessian of the Lagrangian function, taken with
respect to z, at the limit point (z., \.) by ¢ and HZ, respectively. Similarly, J. will denote
J(z.). We also define 6, = zj, — z.. We observe that the assumptions of the lemma guarantee
that Theorem 4.6 can be used.

We first note that there is only a finite number of possible Dy, and we may thus consider
subsequences of K such that Dy, is constant in each subsequence. We also note that each k& € K
belongs to a unique such subsequence. In order to prove our result, it isthus sufficient to consider
an arbitrary infinite subsequence K such that, for & € IC, D, isindependent of k. This* constant”
index set will be denoted by D. As a consequence, the cones N and T}, the subspaces V;. and
W, and the orthogonal matrices Z; and Y}, are aso independent of k; they are denoted by N, T,
V., W, Z andY, respectively.
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Using (2.3) and Taylor’s expansion around z.., we obtain that

V:®, = gr+ J;CTXIC _ _ _
9(z) + H(z)6k + JIAe + X771 M i Hi(24) 65 + 71Tk, Tuy Ak (5.9)
= gL+ HSp + IO = X)) +ra(ar, 4, Ak) + r2(2h, Ty Ak, As),

where

_ 1 _ _
ri(en, zu, ap) & /0 [H (@0 + 585, M) — H (20, A)]65 ds
and .
T2(Tk, Tuy Ak, As) o > (ki — M) Hi(2s) 8.
1=1

The boundedness and Lipschitz continuity of the Hessian matrices of f and c; in aneighbourhood
of z,, together with the convergence of A to A, then imply that

7 1(2 5, 2y Ai)|| < sl 8517, (5.10)

and _ _
lIr2(Z ks Tu, Aky M) || < ko |Ok ][ [| A — Al (5.11)

for some positive constants g and xg9. Moreover, using Taylor’s expansion again, along with the
fact that Theorem 4.6 ensuresthe equality c¢(z.) = 0, we obtain that

where L
[r3(zr, z4)]; = / s/ 5,{Hz(a:* + tsé)6i dt ds
0 0

(see Gruver and Sachs, 1980, p.11). The boundedness of the Hessian matrices of the ¢; in a
neighbourhood of z.. then givesthat

Ira(zk, z.)|| < K10l |6k (5.13)

for some positive constant «19. Combining (5.9) and (5.12), we obtain

H! JT _ O [ VP — gt r1+ 72
( J. 0 ) ( X — AL ) = ( R el A (5.14)

where we have suppressed the arguments of the residuals r1, r2 and r3 for brevity. Using the
orthogonal decomposition of ®™ into V ¢ W and defining

Z 'Y O
@= ( 0O 0 I ) '
we may rewrite (5.14) as

H! JT _ O _ V. ®; — gt T4
o (5% e () =er (T ) (%),

wherery o r1 + r2. Expanding thislast equation gives that

Zz'HtZ ZTHYY Z'Jr ZT6,, ZT(V, @ — gb) ZTry
YT'H!Z YTHY Y'J! YT | = YE(V, 0, —¢Y) | - | YIira
JZ J.Y 0 Ak — A c(zy) 73
(5.15)
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We now observe that (3.3), theinclusion V C T and the fact that w;, tendsto zero imply that
zZl¢t =o. (5.16)

Substituting (5.16) in (5.15), removing the middle horizontal block and rearranging the terms of
this|latter equation then yields that

zTHtZ ZTJT 218 N _ | ZT(V. @ — HIYYTS) [ ZTry (517)
J.Z 0 YD W c(zy) — J.YYT4, T3 AT

Roughly speaking, we now proceed by showing that the right-hand side of this relation is of the
order of 8, + px, where

5, % { we P =10, (5.18)

m itP 0.

We will then ensure that the vector on the left-hand side is of the same size, which is essentially
the result we aim to prove. We first observe that

||5k|| = ||ZZT5k + YYT5k|| < ||ZT5k|| + K1wg (519)
from (4.1). We then obtain from (4.7) and (5.19) that
I = Al < mnaws + xall 2764 (5.20)

where k11 = k2 + k3k1. Furthermore, from (5.10), (5.11), (5.13), (5.19) and (5.20),

AN
3
where k1o = kg + kakg + K10, K13 = 2k1(kg + K10) + Ko(k11 + K3k1), and K1y = K3(kg +
K10) + K1Kx9K11. We now bound c(z ) by distinguishing componentsfrom Z and P. We first note
that, since the penalty parameters for each subset in P are bounded away from zero, the test (3.7)

is satisfied for all & sufficiently large. Moreover, the remaining components of c¢(zy) satisfy the
bound

< K12||ZT 6112 4 k13| Z7T 61 ||wr 4 K1awr2, (5.21)

lle(zi)ioll < rownpie,j + e[ (Ak — X))l + Kaker,jllzn — 2], (5.22)
foral 7 € Z and al & sufficiently large, using (4.9). Hence, using (5.3), (3.7) and (5.22), we

deduce that Z Z
lle(zr)ioll + ) lle(zx)io,
jer T e J (5.23)

<Mk + growr ik, z + Pk + gR3pE 2 ||k |-
Note that the first term of the last right-hand side only appears if P is not empty. Since the
algorithm ensures that
wi < Mk (5.24)

because o, < 1and 3, < 1, we may obtain from (4.1), (5.23) and (5.19) that

< K5Ok + pr + graipr 20k + grapr z || 276k, (5.25)

ZT v qak — HYYTS))
—J. YYT Sk

wheresys = g+ 1+ w1 (|| ZTHEY || + || J.Y ||). By assumption ASG, the coefficient matrix on the
left-hand side of (5.17) isnonsingular. Let M bethe norm of itsinverse. Multiplying both sides
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of the equation by thisinverse and taking norms, we abtain from (5.18), (5.21), (5.24) and (5.25)
that

A
H( ; )H < Mk 27 8617 + K1sl| Z7 6k]|0k + 1465 + K1

Ap — (5.26)
+pr + qr11pk, 20k + qrapr, || 27 6k
Suppose now that % is sufficiently large to ensure that
0, < — (5.27)
k= AM k13 '
and let 1
a = min [ao, 74qu£3] . (5.28)
Recall that ap and hence o < 1. Then, if u; z < «, therelations (5.26)—(5.28) give
1
1278 < QIIZTCSkII + Mk160x + pr + K12]| 27 8|7, (5.29)
where k16 = gr11 + K14 + K15. AS 8, and hence || Z7 6;|| converge to zero, we have that
1276, < (5.30)
— 4AMkK1o
for &k large enough. Hence inequalities (5.29) and (5.30) yield that
||ZT(§k|| < 4M(I£169k + Pk)- (531)

If P is empty, we use (5.19), (5.31) and (5.18), the fact that 11, z = o4, and the inequality
Pr < qogl[Ap — A]

to deduce (5.4), where ks % 4Mkig + k1 and ks = 4Mgq. Defining kg 2 xy + kgka and
k7 % kaks, we deduce (5.5) from (4.7) and (5.4). Now, using (2.1),

q

Z c(zr)ie,)ll = E#mll Mk = A1yl < qan(lXk = Al + 2k = Adll) (532)

: ] 1

and (5.6) then follows from (5.32) and (5.5).

If, on the other hand, P is not empty, (5.7) results from (4.7), (5.19), (5.31) with ;. = n;, and
(5.24), with kg © AMrgris + Ko + K3kt and k7 & 4Mks. Finaly, (5.8) resultsfrom (2.1) and
(5.7).

For the remaining of this section, we will restrict our attention to the case where the sequence
of iterates converges to asingle limit point. Obvioudly, this makes AS3 unnecessary. We briefly
comment at the end of the section on why this additional assumption cannot be relaxed.

We now show that, if the maximum penalty parameter «;. convergesto zero, then the Lagrange
multiplier estimates A, converge to their true values \,.

Lemma5.4 Assume ASL and AS2 hold. Assumethat {z. }, the sequence of iterates generated by

Algorithm 3.1, converges to the single limit point z,. at which AS6 holds, and with corresponding
Lagrange multipliers .. Then, if ;. tendsto zero, the sequence A convergesto A,.
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Proof.  Recall that AS6 implies AS4 and therefore that our assumptions are sufficient to
apply Theorem 4.6.

We observe that the desired convergence holds if A o | converges to A, (o 1, for al j =
1,...,q. Itisthus sufficient to show this latter result for an arbitrary 5 between 1 and ¢q. The
result is obvious if Step 3ais executed infinitely often for the j-th subset. Indeed, each time this
step is executed, Ary1(0,] = Ax[o, and the inequality (4.7) guarantees that A, o converges
to A, [g,]- Suppose therefore that Step 3ais not executed infinitely often for this subset. Then
[|(Ak = A, Il will remain fixed for all k > k2, for some k, > 0, as Step 3bis executed for each
remaining iteration. But (4.9) then impliesthat ||c(a:k)[9]]|| < K17p%,5, for someconstant k17 > 0
and foral & > k3 > ko. As oy, tendsto zero and ay, < 1, K17lk, < Ko < Oéz" = Nk for dl
k sufficiently large for which a;, strictly decreases. But then inequality (3.7) must be satisfied for
some k > ks, which isimpossible, as thiswould imply that Step 3ais again executed for the j-th
subset. Hence Step 3a must be executed infinitely often.

We now consider the behaviour of the maximum penalty parameter «;, and show the important
result that, under stated assumptions, it is bounded away from zero. The proof of this result is
inspired by the technique developed by Conn et a. (1991). When the single penalty parameter
definition of the augmented Lagrangian (1.4) is used (or, equivaently, when ¢ = 1), one then
avoids a steadily increasing ill-conditioning of the Hessian of the augmented Lagrangian. Note
that thisill-conditioning is also avoided when ¢ > 1, as we show below in Theorem 5.6.

Theorem 5.5 Assume ASL and AS2 hold and suppose that the sequence of iterates {z;} of
Algorithm 3.1 convergesto a single limit point z, with corresponding Lagrange multipliers A, at
which ASb and AS6 hold. Then thereis a constant aumin € (0, 1) such that oy = aumin for all .

Proof.  Suppose otherwise that o, tends to zero (that is P = §), and hence that uy, ; tends
to zero for each 7 between 1 and ¢. Then Step 3b must be executed infinitely often for each
subset. We aim to obtain a contradiction to this statement by showing that Step 3a is aways
executed for each subset for sufficiently large k. We note that our assumptions are sufficient to
apply Theorem 4.6. Furthermore, we may apply Lemma 5.3 to the compl ete sequence of iterates.

First observe that

ap <a<l (5.33)

for all £ > k1, where o and k1 are those of Lemma 5.3. Note that
wi < ag

for al & > k1. Thisfollows by definition if (3.12) is executed. Otherwise it is a consegquence
of the fact that o, is unchanged while wy, is reduced, when (3.13) occurs. Let k4 be the smallest

integer such that
l-o 1

o "< —~—, 5.34
k7 q(2+ k) (5:34)
and 1 1
1-8, .
o <min|—, —-——1, 5.35
B = k18 q(2k18+ Ke) (535)
where k15 = max(1, ke + x7). Notethat (5.33) and (5.35) imply that
_ 1 1
ap <oy M< <= (5.36)
K18 ~ K7
for al £ > max(k1, k4). Furthermore, let ks be such that
e = Al <1 (5.37)
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foral k& > ks, which is possible because of Lemma5.4. Now define kg = max(k1, ka, ks), let I
betheset {k | (3.12) isexecuted at iteration £k — 1 and k& > kg} and let ko be the smallest element
of . By the assumption that «;, tendsto zero, ' has an infinite number of elements.

By definition of I, for iteration ko, wi, = ax, and 7, = aio" Then inequality (5.6) gives
that, for each 7,

le(@rodioll < lle(@ao)ll
< qlag, + Krad)|| Ak — Al + grewryok,
< 2qako||>‘ko - >‘*|| + qReWky Ok (from (536)) (5 38)
< Qo (2+ Keouy) (from (5.37)) '
< q(2+ ke)ak, (from (5.33))
< o) =Mk (from (5.34)).

As a consequence of this inequality, Step 3a will be executed for each ;7 with Ay 1110 =
>\($ko, Akm[Q]]’ /‘Lkod)[Q]]' Inequality (5.5) together with (5.37) guarantee that

[ Akot1 — Axll < Kewry + K70, |[ Ak — Asl] < Kagoek,. (5.39)

We shall now make use of an inductive proof. Assume that, for each 7, Step 3ais executed for
iterations kg + 7, (0 < 7 < t), and that

Aroritr — Al < f’vlsai:ﬁ"i- (5.40)

Inequalities (5.38) and (5.39) show that thisis true for ¢ = 0. We aim to show that the same is
true for : = ¢t + 1. Our assumption that Step 3a is executed gives that, for iteration ko + ¢ + 1,
ako-}-t-}-l = Oéko, wko-l—t-l—l = Oé}fc_gz, and T}ko-l—t-l—l = agg(t—}_l)-}—an. Then, |nequa||ty (56) yleldS that,
for each 7,

le(zrote+2)l

(koters + K705 Lo 1) Mkor+r — Asl|

+QK6Wky+1+10kg+t+1

290kt t4+1]| kgt t+1 — Axl| + gR6Wkg+t+10k 1141 (from (5.36))

lle(Zro+t+1)[01ll <
<

IN

IN

2qm18akoai:ﬁ"t + q/esozg?’ (from (5.40))

an+ Bt o+ (141) +1
2gK18ake0y,) "+ qRe0y, a(t+1)

g(2k18 + ke)ay, Mol (from (5.36))

o I = (from (5.35)).

IN A

IN

Hence Step 3awill again be executed for each 5 with

Mrott+2,Q,] = MEhott+1) Akort4+1[Q,] Bhott+1,7)[Q;]-

Inequality (5.5) then implies that

[ Aboriz = Al < KeWkgtta1 + K70ko 441 [ Arorer1 — x|

/@604};1'2 + f@7f£18akoai:ﬁ"t (from (5.40))

148, (141 1480t
KeQy n( )+f£7f£18akoako "

1B\ 148, (t+1
(56—1-1‘971‘9180%0 ")ako n(t+1)

(k6 + m7)ag (D (from (5.35))

148y (141
Kigay] n(t+1)

IAN I A

IN
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which establishes (5.40) for « = ¢ + 1. Thus Step 3ais executed for each 7 = 1,..., ¢ for al
iterations k > ko. But thisimpliesthat I isfinite, which contradicts the assumption that Step 3b
is executed infinitely often for each subset. Hence the theorem is proved.

This theorem was all that was needed in Conn et al. (1991). However, the situation is more
complex here because ¢ may be larger than one. If the ill-conditioning of the Hessian is to be
avoided, we must now prove the stronger result that all penalty parameters stay bounded away
from zero.

Theorem 5.6 Assume ASL and AS2 hold and suppose that the sequence of iterates {z;} of
Algorithm 3.1 converges to a single limit point z. with corresponding Lagrange multipliers A,
at which AS5 and AS6 hold. Then thereis a constant . > 0 such that u, ; > w for all £ and all

7=1,...,¢q.

Proof. Assumeotherwisethat Z isnot empty, and hence that 1. z convergesto zero. Then
Step 3b must be executed infinitely often for j € Z. We aim to obtain a contradiction to this
statement by showing that, for any ;7 € Z, Step 3ais always executed for sufficiently large k. We
may deduce from Theorem 5.5 that «;, attains its minimum value amin € (0, 1) at iteration kmax,
say. Hence, P # (. Furthermore, we may apply Lemma 5.3 to the complete sequence of iterates.
Let k7 > kmax bethe smallest integer for which

1 ﬁr]'i‘ﬁ

Amin - — %®min
, , 5.41
2k6+ k7' q(2K6 + K7) (41)

Pr,z < MiN o

foral k > k7 > k1, where o and &4 are those of Lemma5.3, and wheree = %(1— B,). Notethat

_I_
aﬁﬁ?n ° > amin asp, <1l

Consider the j-th subset, for some j € Z. Atiteration k > k7, the algorithm ensures that

Pr+ 1,5 (A1 = A1l £ aminger ][ (Ak — A,

if Step 3bis executed for the j-th subset, while (5.7) ensures that

P41, Il (Ak1 — Al < pk,j(kemk + K7pk)

if Step 3ais executed for the same subset. Summingon al j € Z, and defining

Zra = {j€ 2| Step3aisexecuted for the j-th subset at iteration &}
Zrpy = {j€ 2| Step3bisexecuted for the j-th subset at iteration &},
we obtain that

A

per1 < amin Y pagllOk = Mgl + Y mks(kemk + K7pk)
€2k J€Zka (5.42)

(omin + K7qLk, 2 ) Pr + K6k, Z k-

(VAN

For the purpose of obtaining a contradiction, assume now that

1
Pk > STk (5.43)

for dl k& > k7. Then (5.42) givesthat, for dl & > k7,

k+1 €
PrAl < min + K7qpk,z + 2k6qpr,z < amic <1 (5.44)

Pk
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because of (5.41). Hence we obtain from (5.44) that

k—k7+1 €
P41 < Pk7a§nin T Bote),
Therefore, since p k7a§ﬁiﬁk7+l)e tendsto zero, we obtain that

1 ke7— kmax k—k7+1 1 k—kmax+1 1
Prt1 < éa%ﬂ;}—( 7=k ) B o (kT D) éa%ﬂ;}—( D SMh+1

for al sufficiently large &, where the last equality results from the definition of kma and (3.13).
But this contradicts (5.43), which implies that (5.43) does not hold for all & sufficiently large. As
a consequence, there exists a subsequence K such that

1
Pr < Eﬁk (545)

foral & € K. Consider such ak. Then, using (5.42) and (5.45), we deduce that

1 150 1
Ph+1 < énk(amin + gr7pk,z + 29K6pk,2) < Somin 7k < ST+

where we have used (5.41) to obtain the second inequality. As a consequence, & + 1 € K and
(5.45) holdsfor al & sufficiently large. Returning to subset j € Z, we now obtain from (5.8) and
(5.45) that

1
lle(2r)ie,lll < m(kopn,z + 5(1+ r7pe,2)) < miy

for al %k sufficiently large, because of (5.41). Hence Step 3ais executed for the subset ;7 and for
al sufficiently large &, which impliesthat ;7 does not belong to Z. Therefore Z is empty and the
proof of the theorem is completed.

Asin Conn et al. (1991), we examine the rate of convergence of our algorithms.

Theorem 5.7 Under the assumptionsof Theorem5.6, theiteratesz,, and the Lagrangemultipliers
A of Algorithm 3.1 are at least R-linearly convergent with R-factor at most aﬁ{{n, where amin is
the smallest value of the maximum penalty parameter generated by the algorithm.

Proof. The proof paralelsthat of Lemma5.3. First, Theorem 5.5 showsthat the maximum
penalty parameter «;, stays bounded away from zero, and thus remains fixed at some value
amin > 0, for k > kmnax. For al subsequent iterations,

Whi1 = minwk aNd M1 = ATk (5.46)

hold. Moreover, Theorem 5.6 implies that, for all 7 = 1,...,¢q, (3.7) hold for al & > kmax
sufficiently large. Hence and because of (4.1), the bound on the right-hand side of (5.25) may be
replaced by xqswi. + ¢mi, and thus

|27 6k|| < Mkiswi + qmi + k12]| 27 8k || 4 K13|| Z7 61 ||wr + K1awl]. (5.47)

Therefore, if & is sufficiently large that

< 4
Wk = 2M k13 (5 8)

and
127 8e]| <

Iy (5.49)
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inequalities (5.47)—(5.49) can be rearranged to yield
127 6| < AM (K14 + K15)wk + q7k).-
But then (5.19) givesthat
10k < K1owk + K20mk (5.50)

where k19 = k1 + 4M(f€14 + .‘615) and Ky = 4Mgq. As ﬂn < 1land amin < 1, (546) and (550)
show that z;, convergesto z.. at least R-linearly, with R-factor aﬁ{{n. Inequalities (4.7) and (5.50)
then guarantee the same property for Ax.

To conclude this section, we note that the conclusions of Theorems 5.5, 5.6 and 5.7 require
that the complete sequence of iterates converges to a unique limit point. Asindicated above, this
assumption cannot be relaxed. The counterexample presented by Conn et a. (1991) (where the
linear inequality constraints are simple bound constraints on the problem’s variables) shows that
the sequence of penalty parameters may indeed converge to zero, if there is more than a single
[imit point.

6 Second order conditions

If we further strengthen the stopping test for the inner iteration beyond (3.3) to include second-
order conditions, we can then guarantee that our algorithms converge to an isolated local solution.
More specifically, we require the following additional assumption.

AS7: Supposethat z; satisfies (3.3), convergesto z, for k € K, suchthat Z, hasarank strictly
greater than m. Then, if Z isdefined asin AS6, we assume that Z7'V,,®, Z is uniformly
positive definite (that is, its smallest eigenvalue is uniformly bounded away from zero) for
al & € K sufficiently large.

We can then prove the following result.

Theorem 6.1 Under assumptions ASI-AS3, ASS-AS/, the iterates z;, & € K, generated by
Algorithm 3.1 converge to an isolated local solution of (1.1)—(1.3).

Proof. By definition of @,
_ q 1 T
V$$q3k :Hé(agk,Ak)—l—ZTJQ](iEk) JQJ(JZk), (61)
]:l sJ

where Jo, (z) is the Jacobian of c(z)[ ;. Note that therank of Z isat least that of Z.. AS7 then
implies that there exists a nonzero vector s such that

J(zyp)Zs =0

and hence
Jo,(zr)Zs =0 (6.2

for each ;7. For any such vector, AS7 further implies that
stz .., ®LZs > n21||3||2
for some k21 > 0, which in turn givesthat

sTZT H (zi, M) Zs > kol|s||%,
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because of (6.1) and (6.2). By continuity of H® asz; and Ak approach their limits, this ensures
that
sTZTH (2., )\.)Zs > kal|s|?

for all nonzero s satisfying
J(z.)Zs =0,

which implies that z.. is an isolated local solution of (1.1)—(1.3) (see, for instance, Avriel (1976,
Thm. 3.11).

If we assume that the inner iteration stopping test is tightened so that V.. ®;. is required to
be uniformly positive definite in the null space of the dominant constraints, and if we assume
that the non-degeneracy condition (5.2) holds, then Corollary 5.2 ensuresthat Z, = Z = Z, for
sufficiently large & and Theorem 6.1 holds. A weaker version of thisresult also holds, where only
positive semi-definiteness of the augmented Lagrangian’'s Hessian is required, yielding then that
z. iIsa(possibly not isolated) minimizer of the problem.

7 Extensions

7.1 FlexibleLagrange multiplier updates

Theformula (2.1) has definite advantages for large-scal e computations, but may otherwise appear
unduly restrictive. The purpose of the first extension we consider is to introduce more freedom
in our agorithmic framework, by replacing this formula by a more general condition, allowing
a much larger class of Lagrange multiplier updates to be used. More specifically, we consider
modifying Algorithm 3.1 asfollows.

Algorithm 7.1
Thisalgorithmisidentical to Algorithm 3.1, except that Step 3 isreplaced by the following,
wherey isaconstantin (0, 1).

Step 3 [Disaggregated updates]. Compute a new vector of Lagrange multiplier estimates ) kb1
Forj =1,...,q, execute Step 3aif

lle(zi)ignll < 7w,
or Step 3b otherwise.

Step 3a[Update Lagrange multiplier estimates]. Set

\ _ ) Mo Akl < midy
k+1,[Q;] Ak,[QJ] otherwise,
ME+1,5 = Hky-

Step 3b [Reducethe penalty parameter]. Set

Nt o = 3 i) Aol < gy,
kt1,1Q;] Akv[Q]] OtherWi%,
IU/k+17] = Tk7jIU/k7j’

where 7, ; is defined by (3.9) in Algorithm 3.1.
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Algorithm 7.1 allowsamore flexible choice of the multipliersthan Algorithm 3.1, but requires
that some control isenforced to prevent their growth at an unacceptably fast rate. It covers, among
others, the choice of the least-squares estimates A(z) as defined in (2.5).

The global convergence theory presented in Section 4 for Algorithm 3.1 can be extended to
cover Algorithm 7.1. This extension is detailed in Conn et al. (1993a). Conn, Gould, Sartenaer
and Toint (1993b) extend the local convergence analysis of Section 5 to Algorithm 7.1, under the
additional condition that

IXes1 — Al < K22l|zr — || + Ko3wp,

holdsfor some positiveconstants k22 and k3 and all & € I sufficiently large, where K istheindex
set of a subsequence of iterates (generated by Algorithm 7.1) converging to the critical point ..
with corresponding Lagrange multipliers A... Both (2.1) and (2.5) satisfy this condition because
of Theorem 4.6.

We also note that Corollary 5.2 ensures that the least-squares multiplier estimates (2.5) are
implementabl e when the non-degeneracy condition (5.2) holds. By thiswe mean that the estimates

A= —((JeZ) D) ZE g

areidentical to those defined in (2.5) for al & sufficiently large, and, unlike (2.5), are well defined
when z.. is unknown.

7.2 Alternativecriticality measures

In Algorithms 3.1 and 7.1 we used the criticality measure || Py, (—V®y)|| in order to define the
stopping criterion of the inner iteration (see (3.3)), because it is general. However, this quantity
might not be easily computed in the course of the numerical method used to calculate z ., especially
when the dimension of the problem is high. It is therefore of interest to examine other criticality
measures that might be easier to calculate. It is the purpose of this section to analyze such
alternative proposals.

Given Dy, Ni, and Ap, asabove, wefirst claim that (3.3) can be replaced by the requirement
that there exists a set of non-positive“ dominant multipliers” {&;x }ienr, (My C Dy, & < 0) such
that

V@ + AD, &l| < wi, (7.1

where ;. isthe| Dy |-dimensional vector whose :-th component is&;;. if ¢ € M, or zero otherwise.
We prove this claim.

Lemma 7.1 Assume that there exists a non-positive &, such that (7.1) holds at z;. Then (3.3)
also holds at zy.

Proof.  Since the vector AlTjkf « belongs, by construction, to the cone N, defined in (3.4),
we can immediately deduce from the definition of the orthogonal projection and (7.1)that

| Pr, (= Vo®p)|| = || = Va®s — Pr (= Vo ®p)|| < || = Vo @i — AD, &l < wp,

which isthe desired inequality.

Condition (7.1) isappealing for tworeasons. Firstly, aset of (possibly approximate) multipliers
is available in many numerical procedures that might be used to perform the inner iteration and
to compute a suitable z; one can then select those multipliers which correspond to the dominant
constraints, further restrict this choice to the non-positive ones and finally check (7.1). Such
a scheme is implicitly used by both the Harwell Subroutine Library (1993) barrier-function
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quadratic programming codes VE14 and VE19 and the IMSL (1987) general linearly constrained
minimization package LCONG
Alternatively, suitable multipliers can be computed, for instance by (approximately) solving
the least-squares problem
min |V, + AD, £]

and selecting the non-positive components of the resulting vector £, or by (approximately) solving
the constrained | east-squares problem

; T
min |V, @ + AD, €] (7.2)

Condition (7.1) is also appealing as it provides, in a single condition, both a stopping condition
on the inner iteration and a measure of the tolerated “inexactness’ in solving the associated
least-squares problem, if thisis the procedure chosen to obtain the dominant multipliers.

Wemay thereforededucefrom Lemma7.1 that the convergencetheory holdsfor Algorithms 3.1
and 7.1 whenever (7.1) is used instead of (3.3).

Condition (7.1) can be further specialized. For instance, one might choose to impose the
familiar “reduced gradient” criterion

1 Z(22) T Vo ®r|| < wp,

where Z(z;) is an orthogonal matrix whose columns span the null space of the constraints active
at z ., provided that the multipliers associated with these linear constraints are all non-positive. In
this case, we have that

1P, (= V@) || < (| Pria, 0)/(= Ve @)l = 1 Z(24) T Vo] < wi, (7.3)

because T'(z, 0), the tangent cone to the set determined by the linear inequality constraints active
a z, containsT. Asaconsequence, the convergence theory still holdswhen thiscriterion, which
has been implemented by several subroutines for minimizing a general objective function subject
to linear constraints (for example, the NAG, 1993, quadratic programming code EO4NFF and the
more general package EO4UCF), is used as an inner-iteration stopping rule within Algorithms 3.1
and 7.1. Thisis also true for reduced gradient methods (e.g. MINOS Murtagh and Saunders,
1978, or LSNNO by Toint and Tuyttens, 1992) which compute a full column rank matrix Z(z)
whose columns are generally non-orthonormal but depend upon a subset of the (finite number) of
coefficientsfor the linear constraints. Indeed, the norm of Z(z},) is then bounded above and avay
from zero, and arelationship that isaweighted form of (7.3) thus also holdsin these cases.

In order to preserve coherence with the framework presented in Conn, Gould, Sartenaer and
Toint (1993c), we finaly note that o; as defined in (4.3) may aso be viewed as a criticality
measure. Hence we might decide to stop the inner iteration when

o < wg. (7.9

The reader isreferred to Conn et a. (1993a) for a proof that global convergence is still obtained
for this modification of Algorithms3.1and 7.1. However, the authors have not been able to prove
the desired local convergence propertieswith only (7.4). Instead, the local convergence theory is
covered for Algorithms 3.1 and 7.1 for the stronger condition

op < wh (7.5)

(see Conn et al., 1993b for details). This condition is theoretically interesting, but might be
practically too strong. Note, aswe now show, that it implies a variant of (3.3).
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Theorem 7.2 Assumethat {z;}, & € K, is a convergent subseguence of vectors of B such that
(7.5) holdsfor each k € K, where thew,, convergeto zero ask increasesin KC. Then theineguality

1P, (=Ve®p)|| < K2awi (7.6)
also holdsfor each k& € K sufficiently large and for some ko4 > 1.

Proof.  We first consider the smple case where p = 0, that is when no linear inequality is
present. In this case, it is easy to check from (4.3) that o, = ||V, ®x||. But we must have that
Dy = 0. Thusoy = || P (—V,®P;)||. We therefore obtain that (7.6) holds with k4 = 1 and &
large enough to ensure that w;, < 1.

Assume now that p > 0. The Moreau decomposition of —V . ®;. (see Moreau, 1962) is given
by

—V. P = Pr, (—V,®) + Py, (—V,Py).
If Pr,(—V,®y) iszero, then (3.3) obviously holds for any choice of x24. Assume therefore that
Pr, (—V.®;) isnonzero. We now show that =, + di, € B, where we define
def P, (—V D)

. def .
drp = € , with € :mln[l
b P (— V@] *

KW, ]

T4 (7.7

Assumefirst that i € Dy. Then —a; € N, and a! d; > 0 have rephrased the relevant paragraph
and we hope that it is now clearer.have rephrased the relevant paragraph and we hope that it is
now clearer.because of the polarity of N and T. Since z;, € B, we obtain that

al(zy +dy) — b; = (alz, — ;) +ald, > 0. (7.8)
On the other hand, if 7 ¢ D, wehavethat a!z; — b; > kowy, and hence

(aT:Ek —b;)+ adek > kowk — ||ai||.||dk|| = Kowr — exl|ai|| > Kowr — Kowr = O. (7.9

Gathering (7.8) and (7.9), we obtain that z;, + d;. € B, as desired. Furthermore, since ||dx|| < 1

by definition, we have verified that dj, is feasible for the minimization problem (4.3) associated
with the definition of o;. Hence,

-V, T4

Pr, (-=V,®.)7d), + Py, (- V@) dy
= [|Pr, (= V2P|l ||l

= &l Pr,(=Va®)],

where we have used successively the Moreau decomposition of —V . @y, the definition of d;, and
the orthogonality of the termsin the Moreau decomposition. If ¢, = 1, then (7.5) and (7.10) imply
that

O

v

(7.10)

1Pry, (= Vo @) < wi? < wy (7.12)
for k € K sufficiently large. Otherwise, we deduce from (7.10), (7.5) and (7.7) that
Alloo
| Pr, (= V2@ < %wk- (7.12)

As a conseguence of (7.11) and (7.12), we therefore obtain that (7.6) holds with

K24 = MaX [1, —||A||OO:| .
Ko
Combining all cases, we conclude that (7.6) holds with this last value of k4.

We finally note that Lemma 7.1 and Theorem 7.2 do not depend on the actual form of the
augmented Lagrangian (1.5), but are valid independently of the function minimized in the inner
iteration. Thisobservation could be useful if alternative techniquesfor augmenting the Lagrangian
are considered for a merit function.
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8 Conclusion

We have considered a class of augmented Lagrangian algorithms for constrained nonlinear op-
timization, where the linear constraints present in the problem are handled directly and where
multiple penalty parameters are allowed. The agorithms in this class have the advantage that
efficient techniques for handling linear constraints may be used at the inner iteration level, and
also that the sparsity pattern of the Hessian of the augmented Lagrangian is independent of that
of the linear constraints. The global and local convergence results available for the specific case
where linear constraints reduce to simple bounds have been extended to the more general and
useful context where any form of linear constraint is permitted.

We finally note that the theory presented is directly relevant to practical computation, as the
inner iteration stopping rule (3.3) covers the type of optimality tests used in available packages
for linearly constrained problems. This means that these packages can be applied to obtain an
(approximate) solution of the subproblem, and constitutes a realistic and attractive algorithmic
development.

It is now the author’s intention to perform extensive numerical experiments on large-scale
problems. This development requires considerable care and sophistication if an efficient solver
for the subproblem isto be integrated with the class of algorithms described here.
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