RAL 94-069

On Iterated-Subspace Minimization Methods for
Nonlinear Optimization

A. R. Conn'*, Nick Gould?, A. Sartenaer® and Ph. L. Toint>*

ABSTRACT

We consider a class of Iterated-Subspace Minimization (ISM) methods for solving large-
scale unconstrained minimization problems. At each major iteration of such a method, a
low-dimensional manifold, the iterated subspace, is constructed and an approximate min-
imizer of the objective function in this manifold then determined. The iterated subspace
is chosen to contain vectors which ensure global convergence of the overall scheme and
may also contain vectors which encourage fast asymptotic convergence. We demonstrate
the efficacy of this approach on a collection of large problems and indicate a number of
avenues of future research.

Keywords: Unconstrained optimization, large-scale computation, convergence theory.

AMS(MOS) subject classifications: 65K05, 90C30

1 IBM T.J. Watson Research Center, P.O.Box 218, Yorktown Heights, NY 10598, USA.
Email : arconn@watson.ibm.com.

Central Computing Department, Rutherford Appleton Laboratory, Chilton, Oxfordshire,
0X11 0QX, England.

Email : n.gould@letterbox.rl.ac.uk. Current reports available by anonymous ftp from the
directory “pub/reports” on camelot.cc.rl.ac.uk (internet 130.246.8.61).

Department of Mathematics, Facultés Universitaires ND de la Paix, 61 rue de Bruxelles,
B-5000 Namur, Belgium.

Email : as@math.fundp.ac.be or pht@math.fundp.ac.be. Current reports available by anony-
mous ftp from the directory “pub/reports” on thales.math.fundp.ac.be (internet 138.48.4.14).

The research of this author was supported in part by the Advanced Research Projects Agency
of the Departement of Defense and was monitored by the Air Force Office of Scientific Re-
search under Contract No F49620-91-C-0079. The United States Government is authorized
to reproduce and distribute reprints for governmental purposes notwithstanding any copy-
right notation hereon.

Central Computing Department
Atlas Centre

Rutherford Appleton Laboratory
Oxon OX11 0QX

June 14, 1994.

Contents

1 Introduction

2 Convergence analysis of a general algorithm

3 Computational Variants
3.1 Conjugate gradients L e
3.2 Choice of conjugate directions Lo 0oL
3.3 Choice of subspace dimension
3.4 The inner minimization L0 e e e

4 Numerical Experiments

5 Linear and nonlinear constraints

6 Perspectives and Conclusions

7 Acknowledgement

A Detailed numerical results

12

13

13

15

On Iterated-Subspace Minimization Methods for Nonlinear
Optimization

A. R. Conn, Nick Gould, A. Sartenaer and Ph. L. Toint

June 14, 1994

Abstract

We consider a class of Iterated-Subspace Minimization (ISM) methods for solving
large-scale unconstrained minimization problems. At each major iteration of such
a method, a low-dimensional manifold, the iterated subspace, is constructed and an
approximate minimizer of the objective function in this manifold then determined.
The iterated subspace is chosen to contain vectors which ensure global convergence
of the overall scheme and may also contain vectors which encourage fast asymptotic
convergence. We demonstrate the efficacy of this approach on a collection of large
problems and indicate a number of avenues of future research.

1 Introduction

In this paper, we consider finding a local solution of the unconstrained minimization
problem,

minimize f(@), (1.1)
Tech™

where we assume, for simplicity, that the objective function f € C2. We are particu-
larly interested in the case where n is sufficiently large that methods appropriate for small
problems — such as those which might maintain a dense factorization of a suitable approx-
imation of the Hessian matrix, see, for example, Gill et al. (1981), Dennis and Schnabel
(1983) and Fletcher (1987) — are impractical.

We are primarily concerned with the commonly occurring case in which the cost of
evaluating the value of the objective function and its derivatives, at a given point @, is less
significant than the cost of solving, for instance, the Newton equations. Our experience
with the large-scale nonlinear optimization package LANCELOT (see Conn et al., 1992b)
has been that it is the linear-algebra cost which tends to dominate when solving a signif-
icant number of widely differing application problems (see, Conn et al., 1992c and Conn
et al., 1992a). Thus, it would appear desirable in these cases to attempt to reduce the
linear-algebra costs, even if this results in an increase in the number of objective function
evaluations.

The most common methods for unconstrained minimization either determine a search
direction followed by a linesearch or use the trust-region approach (see, for example,
Dennis and Schnabel, 1983). In the former case, a simple model of the underlying objective
function is constructed in order to determine the search direction. By contrast, in the latter
case, an approximate minimizer of the model within a restricted domain (the trust region)
is determined. This model minimizer is then used as a prediction of the actual minimizer
of the true objective. In a trust-region method, success of this process is measured by

comparing the model and true function values at the predicted minimizer. In linesearch
methods, the true function is used to establish a step size. Thus, both of these approaches
may be considered to perform their multi-dimensional work with respect to a model whilst
probing the true function uni-dimensionally. Of course, the model does make use of the
true function and perhaps its derivatives — maybe at more than a single point.

In this paper, we take the view that the above schemes are quite wasteful, given the
amount of information that may have been accrued during the (approximate) minimization
of the model. In particular, the model may have been sampled in a number of potentially
interesting directions, of which only the aggregate direction is normally considered to be
of significance.

We also believe that, provided function and derivative values are inexpensive to com-
pute relative to the linear-algebra costs, an (approximate) low-dimensional minimization
is a trivial calculation. Indeed, we feel that, quite generally, the small-scale unconstrained
minimization problem has effectively been solved in that there is high-quality, robust,
general-purpose software easily available for such problems, and that such software is
normally capable of solving problems of modest dimensions - say up to 100 variable prob-
lems - extremely fast on current workstations provided that function evaluation is cheap.
Of course there are, and will continue to be, small-scale problems which are challeng-
ing, because they are so nonlinear that algorithms implemented in fixed, finite precision
arithmetic are unsuccessful, but in our experience such examples occur rarely in practice.

Thus, in this paper, we propose methods which aim to investigate the true objective
function in a space larger than the one-dimensional space which is normally associated
with linesearch or trust-region methods. We do this knowing that, so long as the space
is relatively modest, the approximate multi-dimensional minimization will still be a man-
ageable calculation. Moreover, by carefully choosing the space that we investigate, we
hope to reduce significantly the linear-algebra costs while still maintaining global, and
fast asymptotic, convergence.

A particular form of this idea has been given by Saad (1990) for the solution of nonlinear
systems of equations. Here, a sequence of iterates are generated as least-squares solutions
to the equations in suitable Krylov subspaces. The principal difference is that, in Saad’s
proposal, the entire Krylov subspace generated is used, while, as we shall see, this is in
general quite unnecessary.

Given an initial estimate of the solution to (1.1), 2(® and an iteration count, k, set
initially to zero, a prototype algorithm might be as follows:

1. Stop with the solution estimate 2(¥) if convergence tests are satisfied.
2. Determine a full-rank subspace matrix sk ¢ %”Xs(k), where s*) < n.

3. Approximately solve the s(¥)-dimensional minimization problem

minimize f(2®*) + §Fy), (1.2)
yems(k)
set
ekt = (approx) arg min f(m(k) + S(k)y)a (1.3)
yeé}ks(k)

replace k by k + 1 and return to step 1.

We refer to such a method as Iterated-Subspace Minimization or ISM for short. This is,
of course, a multi-dimensional subspace analog of the unidimensional-subspace linesearch
method. We are interested in the following issues.

e What is a good choice for s(¥)?

e How do we determine the Iterated-Subspace matrix S (k)7

e What do we mean by “approximate” in the problem (1.3)?

e Are there methods which are particularly appropriate for solving (1.2)?

e What can we say about the convergence of such a method?

o If we can establish convergence, what can we say about its asymptotic rate?

In this paper, we make preliminary attempts to answer all of these questions.

We will use the following notation. Bold lower and upper case roman letters indicate
vectors and matrices, respectively, while greek and normal roman letters denote scalars.
Script style letters are index sets. A superscript (k) indicates a quantity which occurs at
the k-th iteration or which is evaluated at @®).

We let g() and H (), respectively, indicate the gradient, V, f(«), and Hessian ma-
trix, Vze f(), of the objective function. We define

1) = f® + 50y), (1.4)

g (y) Vyfs(k)(y) and H®)(y) & Vyyfss(k)(y), and will make use of the derivative
identities

g (y) = sHTga® 4 sWy) (1.5)

and

HP (y) = SOTH(2®) sk)y)sk), (1.6)

L]

The paper is organised as follows. In Section 2, we analyse the convergence of the
algorithm given in the introduction. We discuss a number of computationally attractive
ISM methods in Section 3, and we report on some preliminary numerical experience when
solving some relatively large test examples, from the CUTE test suite (see Bongartz et al.,
1993). Possible extensions, to the cases where there are linear or nonlinear constraints
present, are given in Section 5. We conclude, in Section 6, by offering our perspectives of
this and future work.

2 Convergence analysis of a general algorithm

Global convergence of the above scheme can be guaranteed under fairly general assump-
tions. Suppose that we are able to pick consecutive iterates @*) and e*+1) = 2*) 4
S®y*) for which the Goldstein (1964) conditions

FO + 5gMTsWy®) < fE+D < fO) 1 agIT sty ®), (2.1)

for some 0 < a < f < 1, are satisfied, where y(*) is the approximate solution of (1.2).
Suppose, furthermore, that
—gT gk) (k)

————— = >, 2.2
IS®y®, 22

for some ¢ > 0. Then the ISM algorithm from Section 1 is globally convergent to a
stationary point for the problem (1.1) from any starting point so long as f is bounded from
below and has a Lipschitz-continuous gradient (see, for example, Dennis and Schnabel,
1983, Theorem 6.3.3). We may rewrite (2.1) as

F8(0) + 3gM(0)Ty® < fF(y*)) < W (0) + ag? (0)Ty™*) (2.3)
and ensure that (2.2) is satisfied by requiring that
_ oK) (0\T,, (k)
% > €| S®)|,. (2.4)
1y ®) |2

This is relevant as now the global convergence conditions may be verified in terms of the
inner-minimization function f; and its gradient. Similar global convergence results can
be obtained if we replace condition (2.1) by the Armijo (1966) backtracking strategy (see
Bertsekas, 1982, Section 1.3). It may, however, be difficult to design general algorithms
which ensure that conditions (2.3) and (2.4) are satisfied on exit from the inner mini-
mization. Thus, it may be preferable to impose extra conditions on the iterates generated
during the inner minimization to ensure overall global convergence. With this in mind,
suppose that we can find any point ygk) for which

f®(0) + g (0)TyM < fB(yk)) < fB(0) + ag®(0)Ty") (2.5)
and *) *)
—Ys 0 T 8
g: (0779 5 150, (2.6)
(k)
llys ||z

are satisfied. Suppose, furthermore, that we terminate the inner minimization at a point
y*) for which

F9(0) - fB(y®) > r(fF(0) - fP (M), (2.7)
where 7 > 0. Then it is easy to show that this scheme is globally convergent under the
same conditions as stated above. The advantage here is that the tests (2.5) and (2.6) need
only be satisfied at an intermediate point to ensure convergence. Typically, the first inner-
iterate provides such a point for carefully chosen subspaces and minimizers. For example,
if the subspace contains the steepest-descent direction and the inner minimization starts
by performing a linesearch in this direction, the resulting first inner-iterate satisfies (2.5)
and (2.6). Similarly, if the subspace contains a (modified) truncated-Newton direction
and the inner minimization starts by performing a linesearch in this direction, the same
conclusion is true.

3 Computational Variants

We consider it important from a practical point of view to require that S®) contains at
least two components,

e a gradient-related direction, such as —g(¥), to encourage global convergence, and

e a Newton-related direction, such as might be computed by a truncated-Newton
method, to encourage fast asymptotic convergence, with safeguards to account for
indefiniteness.

Of course, these components play a key role in dog-leg trust-region methods (see, for exam-
ple, Powell, 1970). Additional components have the advantage of enlarging the subspace
searched, but the disadvantage of increasing the overheads in solving the s(¥)-dimensional
subspace minimization problem. In this section, we consider various possible ways of
choosing the iterated subspace.

3.1 Conjugate gradients

An appealing choice of S*) may be obtained by picking the columns of S®) as a set of
H(k)—conjugate directions, especially if these directions are generated by a (preconditioned)
conjugate-gradient (CG) method.

Suppose that HW® g positive definite. Let gb(k)(m(k) + p) be the quadratic model,

") (@®) 4+ p) = ¥ + pTg® + 1 p" HF)p, (3-1)

of f(a:(k) +p) about z(*). The preconditioned conjugate-gradient method (see, for example,
Hestenes and Stiefel, 1952 and Golub and Loan, 1989, Section 10.3) is an iterative method
which may be used to calculate the smallest value of (3.1). It is well known that the
solution, p,,, to this problem is the Newton direction.

A preconditioner P®) ig usually an easily invertible approximation to H (k). We shall
insist that P*) has a uniformly bounded condition number. The j-th step of the precon-
ditioned conjugate-gradient method determines the smallest value of (3.1) in the Krylov
subspace spanned by the vectors {—(P(k)_IH(k))iP(k)_lg(k)}fzo. Conjugacy properties
ensure that each successive step may be accomplished by a univariate minimization of
(3.1) in the direction s;; the vectors {s;} are conjugate and are recurred from step to
step. Significantly from our point of view, the first such vector, sp = —P(k)_lg(k). In ex-
act arithmetic the method would terminate with the Newton direction, p,,, after at most n
steps, but numerical rounding errors ensure that the method behaves more like an infinite
iteration (see Reid, 1971). Moreover, for the large-scale case, we would be unwilling to
consider anywhere close to n iterations. Nonetheless, the method is an effective technique
for calculating approximations to the Newton direction, especially if a good preconditioner
is used or if low accuracy solutions may be tolerated (see Toint, 1981, Dembo et al., 1982,
and Dembo and Steihaug, 1983).

In truncated-Newton methods, (see Dembo et al., 1982), the method of conjugate gra-
dients is used to generate approximations to the Newton direction. The resulting search
direction, p,,,, is employed within a linesearch framework for solving unconstrained opti-
mization problems. Significantly, highly accurate approximations to the Newton correction
are only needed to accelerate the convergence of the iteration in the neighbourhood of a
limit point, and crude improvements upon the steepest-descent direction suffice elsewhere.
Furthermore, by monitoring the gradient of the model at each step of the conjugate-
gradient method, we can decide when to terminate the iteration.

While such an approach has undoubtedly proved successful in practice, we note that
a considerable amount of work is invested, in such a scheme, in calculating an “average”
direction and that much of the information gleaned on the way is subsequently ignored.
We take the point of view that directions generated by the conjugate-gradient method
are of interest for the quadratic model, but might also be locally of interest for the true
objective function. We thus propose to construct our iterated subspace from the subspace
investigated by the conjugate gradient method.

We intend to include some or all of the following:

k)—1 (k)

e The preconditioned steepest-descent direction, sy = — P! gk

e A number of other conjugate directions, s;, determined by the preconditioned conjugate-
gradient method; and

e The overall truncated-Newton direction, p,,,.

We note that the first of these components is designed to encourage global convergence,
while the last will ensure that convergence occurs at a fast asymptotic rate.

3.2 Choice of conjugate directions

Suppose that, in addition to the (preconditioned) steepest-descent and (truncated) Newton
directions, we wish to include ¢ H(k)—conjugate directions in the subspace. The simplest
choice is just to take the first ¢ generated (excluding, of course, the steepest-descent
direction). However, these may not be those which were most judicious for the quadratic
model and another choice may be to take the ¢ which gave the largest decrease in the
model. Experiments suggest that this is rarely more successful than the simpler scheme.

Another possibility is to consider including approximations from the extreme eigenspaces,
that is the set of eigenvectors which correspond to the smallest and largest eigenvalues
(recall H (k) is assumed positive definite). Eigenvectors corresponding to large eigenvalues
may be useful as the objective function and CG model differ most significantly in these
directions. Those associated with small eigenvalues reflect the space in which the Newton
direction is likely to be sensitive and contributions from this space are necessary if rapid
progress is to be made. Thus both sets of vectors are reasonable candidates for subspace
directions.

Clearly, the calculation of these spaces is generally prohibitively expensive, but they
may be approximated by directions generated during the CG process (see, eg, Parlett,
1980, Chapter 13). We might monitor the Rayleigh quotients

sTH® g 5
< = (3.2)
sTs;

77

and include the s; which give rise to the most extreme Rayleigh quotients. Of course, these
vectors are not eigenvectors of H (k), but they normally contain significant contributions

in the extreme eigenspaces.

3.3 Choice of subspace dimension

The choice of subspace dimension is clearly important. The simplest choice is to fix an
upper bound s on this dimension before the computation proceeds (perhaps s = 10, see
Section 4), and to select s*) to be the smaller of s and the total number of CG directions
sampled during the k-th CG iteration — recall that the CG process may be truncated and
thus fewer than s directions may have been computed.

A more sophisticated approach is to try to dynamically select the size of subspace
based upon the needs of the k-th iteration. For instance, if the Hessian is relatively well-
conditioned, it is likely that a subspace made up from the steepest-descent and (truncated)
Newton directions will suffice. If, on the other hand, the Hessian is ill-conditioned, further
subspace directions are likely to prove beneficial.

A simple heuristic would be to monitor the Rayleigh quotient as the CG iteration
proceeds. Typically the first search direction, s; = —P(k)_lg(k), for the CG iteration will
contain components of all eigenvectors and hence some components of those corresponding
to the largest eigenvalues. The influence of the eigenvectors corresponding to the large
eigenvalues is reduced in the subsequent directions si, ..., and this is reflected in a reduc-
tion in the Rayleigh quotient during these iterations. This effect is reversed after a number
of iterations, when the influence of the larger eigenvalues reappears. It would thus seem
sensible to record the iteration number, i*), at which the Rayleigh quotient first starts
to increase after its initial sequence of decreases. As we know that we then have sampled

eigenvectors in both “large” and “small” eigenspaces, it is appropriate to set stk) = (k).

3.4 The inner minimization

As we have stated, we believe that there are a number of highly effective algorithms for
the unconstrained minimization of a function of several variables. Indeed, it would not
be unreasonable to say that the problem has effectively been solved so long as derivatives
are available. Among the most successful methods are the Newton-like second-derivative
methods and the finite-difference and secant methods which require only gradients (see,
for example, Dennis and Schnabel, 1983, Gill et al., 1981 or Fletcher, 1987).

When considering the minimization of (1.4), we note that the calculation of derivatives

of fs(k) requires those of f. We see that the calculation of the second derivatives (1.6)
requires significantly more products involving S®) than do the first derivatives (1.5).
Thus, we would prefer to use methods which either only require relatively few Hessian-
vector products, such as (preconditioned and truncated) conjugate-gradient methods, or
secant methods, which build up approximations to the second derivatives from gradients
in the s(*)-dimensional subspace as they proceed.

The most widely used secant methods are those in the convex Broyden class of positive-
definite approximations, of which the BFGS method has the best reputation (again see,
for example, Dennis and Schnabel, 1983). While there is currently some controversy as to
whether there are better nonconvex secant updates (see for example, Conn et al., 1991,
Khalfan et al., 1993, and Byrd et al., 1993), we feel that convex secant methods are most
natural in a linesearch, as opposed to a trust-region, context. Such methods start with
a positive-definite second-derivative approximation and generate a sequence of matrices
which mimic the curvature in the space of directions searched. Traditionally, the Cholesky
factors of the sequence are updated as the iteration proceeds. We now show that building
a good starting matrix in our case is easy.

Firstly, suppose that S®) is made up purely of H(k)—conjugate directions. Then the
exact second-derivative matrix H gk) is diagonal because of the conjugacy and moreover its
diagonal entries will have been calculated during the conjugate-gradient process. This ma-
trix, then, is a good starting approximation; its Cholesky factors are trivial to determine.
Furthermore, this choice ensures that the first Quasi-Newton search direction is identical
to that generated by minimizing the quadratic model (3.1) in the manifold z®) 4+ S(k)y
(see, Gill et al., 1981, section 4.8.3.1).

Now suppose that S®) is made by augmenting a set of H(k)—conjugate directions by
the overall truncated-Newton direction p,,,. Then, the exact second-derivative matrix has
an arrowhead structure with the leading s(*) — 1 by s*) — 1 submatrix being diagonal and
the remaining row and column easy to obtain. To be precise, if we denote the residual
H(k)ptn + g™ following the truncated conjugate-gradient process by »*), the last column
of the required second-derivative matrix is S(k)T(r(k) — g(k)). Thus, once again this matrix
provides a good starting approximation in that its Cholesky factors are extremely cheap
to compute. Moreover, as before, the first Quasi-Newton direction gives the minimum
of the model (3.1) in the manifold 2*) 4+ S(k)y. Significantly, as the truncated-Newton
direction is in the subspace, this first Quasi-Newton direction is thus the same as the
truncated-Newton direction.

4 Numerical Experiments

We start this section by investigating, from a numerical point of view, the impact of
different subspace sizes on the convergence of the method. As the problem FMINSURF, from
the CUTE collection (see Bongartz et al., 1993), is particularly efficiently solved using ISM
in comparison with the default version of LANCELOT, we examined this problem in detail.

We ran ISM, without preconditioner, but constructing the subspace from a combination of
the steepest-descent, truncated-Newton and extreme directions as described above, using
a variety of subspace dimensions and illustrate, in Figure 4.1, the effects of the choice
of this dimension on the CPU time required to solve the problem. This experiment was
performed on an IBM RISC/6000 320h workstation, using optimized (-O) Fortran 77 code
and IBM-supplied BLAS.

140 *
120 r

100 r

CPU time
(in seconds) 80 o

60 *®

40 r ®%%e0cecsccccce I ° . I

20 r

0 5 10 15 20 25 30 35 40 45 50

subspace dimension (s)

Figure 4.1: The impact of varying the subspace dimension on FMINSURF (using an unpre-
conditioned ISM in which the subspace is chosen from the the steepest-descent, truncated-
Newton and extreme CG directions).

We observe that the CPU time for small subspace dimension is large, but that, for
subspaces of dimension between 9 and 40, the time is relatively constant, being within
ten percent of the least (s = 11) time. Thus, it appears that for this problem, adding
information above the steepest-descent and truncated-Newton directions is beneficial but
there is little extra payoff from using more than 11 directions. When we monitored the
Rayleigh quotients for this problem, we observed that the quotient decreases for on average
10 CG iterations before increasing for the first time. Thus, unless we insist on at least
10 CG iterations, it is possible that we may not have sampled the complete eigenspace.
Similar runs on different problems indicate that this behaviour is quite typical.

We next report the results of running a few variants of our Iterated-Subspace Min-
imization code on some large or difficult test problems. The simplest variant has the
following features.

o The iteration is deemed to have converged when ||g(*)||; is smaller than 10~°.

e The subspace is constructed from the first s*) — 1 conjugate directions plus the
truncated-Newton direction. The truncation is performed when the residual (gra-
dient) of the model is smaller than ||g(*) ||, min(0.1,]/g®*||9!) or when more than n
conjugate-gradient iterations were performed.

e s(¥) is the smaller of 10 (as suggested by the above example) and the number of
inner iterations required to determine the truncated-Newton direction.

e The model is modified, if necessary, to ensure that it is strictly convex. The modifi-
cation is carried out as the conjugate-gradient iteration proceeds using the method
of Arioli et al. (1993).

e A BFGS linesearch method is used to solve the inner-minimization problem. An
Armijo backtracking linesearch is used, starting with a unit step and dividing the
step by two until the Armijo sufficient decrease condition is satisfied. If a step of
one proves acceptable, but the model has been modified to ensure that it is strictly
convex, the step is doubled until an unacceptable stepsize is determined, when the
last-found acceptable step is chosen. A maximum of 2 s*¥) BFGS iterations are

permitted and the iteration is stopped if ||ggk)||2 is smaller than 107°.

Note that one Hessian evaluation is made for each minimization and one gradient evalu-
ation for each inner iteration. We denote this method by the symbol ISM(n,f,f), where n
means that no preconditioning is used, the first f that the subspace is constructed from
the first CG directions, and the second f that the maximal subspace dimension s is fized
(to 10).

We also consider the ISM(p,f,f) method, which is identical to ISM(n,f,f), except that an
11-band modified Cholesky factorization preconditioner is used in the conjugate-gradient
calculation. The factorization takes the elements of H*) within a band of semi-bandwidth
5 of the diagonal, replacing any other elements by zeros. The resulting band matrix is
factorized, modifications being made according to the recipe of Schnabel and Eskow (1991)
to ensure that the preconditioner is positive definite with bounded condition number.

We define the methods ISM(n,e,f) and ISM(p,e,f) as the modifications of ISM(n,f,f) and
ISM(p.f.f), respectively, where we construct the subspace from a set of eztreme sk — 2
conjugate directions plus the steepest-descent and truncated-Newton directions. We pick
half of the extreme directions to be those whose Rayleigh quotient is largest, while the
remainder correspond to the smallest Rayleigh quotients.

We next consider the possibility of generating the subspace dimension automatically, as
discussed in Section 3.3. Once the subspace dimension has been determined, we construct
the subspace from the set of first or extreme s(*) —2 conjugate directions plus the steepest-
descent and truncated-Newton direction, just as before. This results in four additional
variants, namely ISM(n,f,a), ISM(p,f,a), ISM(n,e,a) and ISM(p,e,a).

As a yard-stick, we compare the above methods with variants on two other algorithms.
The first is the default version of the LANCELOT A nonlinear optimization package (see
Conn et al., 1992b) (denoted LAN(p)) in which an 11-band preconditioner is used, together
with the same unpreconditioned algorithm (denoted LAN(n)). LANCELOT is a trust-region
method in which a gradient and Hessian evaluation are made on every successful itera-
tion. The second algorithm included in our comparison is a truncated-Newton method
(see Dembo and Steihaug (1983)). The truncated-Newton search direction is obtained by
an inexact minimization of the Newton model using unpreconditioned or preconditioned
conjugate gradients. We denote the resulting methods by TN(n) and TN(p), respectively.
These variants are obtained from our ISM algorithms by restricting the subspace mini-
mization to a single linesearch along the truncated-Newton direction.

We note that all the algorithms considered in this comparison use exact first and second
derivatives.

We selected our 34 test examples as the majority of large and /or difficult unconstrained
test examples in the CUTE (see Bongartz et al., 1993) test set. Only problems which took

excessive CPU time (more than 30 minutes), which had multiple local optima, or which

were variations on the reported problems, were excluded. All experiments were made on
a DEC 3000/400 workstation, using optimized (-O) Fortran 77 code and DEC-supplied

BLAS.

method details #£ #cg | time
LAN(n) Table A.3 5552 | 33923 | 488
TN(n) Table A.5 17048 | 41050 | 614
ISM(n,f,f) || Table A.7 21988 | 31919 | 809
ISM(n,e,f) || Table A.9 21243 | 28793 | 801
ISM(n,f,a) || Table A.11 | 15547 | 32235 | 611
ISM(n,e,a) || Table A.13 || 15263 | 32302 | 605
LAN(p) Table A4 | 4144 | 5577 | 497
TN(p) Table A6 | 7452 | 10280 | 489
ISM(p.f,f) || Table A.8 | 12103 | 7165 | 516
ISM(p,e,f) || Table A.10 | 12333 | 7604 | 527
ISM(p.f,a) || Table A.12 || 12159 8073 | 539
ISM(p,e,a) || Table A.14 || 12075 | 7741 | 524

Table 4.1: Cumulative statistics on the performance of all methods

Table 4.1 first reports cumulative statistics on the performance of the considered al-
gorithms, which all succeeded in solving the 34 problems. In this table and the following
ones, #findicates the total number of function evaluations, #cg the total number of CG
iterations and time the total CPU time (in seconds). The second column indicates which
of the tables in the appendix gives the complete and detailed results for the considered
method.

This table shows some interesting results. In particular, it indicates that the automatic
choice of the subspace dimension is advantageous on average when preconditioning is not
used. A possible explanation is that the automatic subspace selection is more useful if
the eigenvalues of the Hessian are not well clustered: the CG procedure might then need
more iterations to include the contributions of all relevant extreme eigenvalues. On the
other hand, one sees that, on average, the preconditioned ISM variants are all better
in CPU time than their unpreconditioned counterparts. Also, there is little difference
between the average performance of ISM methods using the first CG directions to define
the subspace and those using the extreme ones. It is however misleading in that it seems
to suggest that LANCELOT (and, to some extent, truncated-Newton) dominate all ISM
methods. Although obviously true on average, this conclusion is exaggerated because of
the aggregate nature of the total sums presented in the table. A more disaggregate analysis
of what happens problem by problem is thus needed to reveal more specific trends. We
thus present in Table 4.2 the number of times that each of the considered method ranks
first, second, third, etc. for the different criteria used above. In these rankings, two CPU
times are reputed identical if they differ by less than five percent or by less than half a
second.

We see in this table that the supremacy of LANCELOT and truncated-Newton in
CPU time is not so clear, especially for the preconditioned variants. We also note that
the amount of requested CG iterations by the ISM variants is comparable on average
to that for LANCELOT, and quite often smaller, but the resulting gain in time is then
sometimes lost due to the larger number of objective function evaluations. One should

10

method Unpreconditioned (n) Preconditioned (p)

1st 2nd 3rd 4th 5th 6th | 1st 2nd 3rd 4th 5th 6th

Function evaluations (#f)
LAN(.) 31 2 0 1 0 0] 33 0 0 0 0 0
TN(.) 1 19 7 5 2 0 0 23 9 0 0 0
ISM(..f,f) 1 13 9 5 5 1 0 14 14 4 1 1
ISM(.,e,f) 2 12 8 3 5 4 0 14 14 1 2 3
ISM(.,f,a) 1 15 13 3 1 1 0 15 15 3 1 0
ISM(.,e,a) 1 14 14 5 0 0 1 14 13 4 2 0
CG iterations (#cg)
LAN(.) 14 4 9 1 4 2] 14 10 7 2 0 1
TN(.) 1 10 9 6 4 4 8 8 12 2 1 3
ISM(..f,f) 16 11 2 2 2 1] 21 10 2 0 1 0
ISM(.,e,f) | 13 16 3 2 0 0] 20 9 2 2 0 1
ISM(.,f,a) | 13 12 4 3 2 0] 16 9 4 2 2 1
ISM(.,e,a) | 11 13 5 4 1 0] 16 10 4 1 3 0
Time

LAN(.) 23 11 2 0 1 1| 19 11 2 0 1 1
TN(.) 18 9 4 2 0 1] 21 6 3 4 0 0
ISM(..f,f) 20 5 5 3 0 1| 23 7 3 1 0 0
ISM(.,e,f) | 20 4 6 3 1 0] 21 9 3 1 0 0
ISM(.,f,a) | 22 6 5 0 1 0] 19 8 5 1 1 0
ISM(.,e,a) | 21 8 4 1 0 0] 20 5 8 1 0 0

Table 4.2: Rankings

11

also bear in mind, at this point, that LANCELOT is a much more sophisticated code than
our ISM variants, because it is designed for solving generally constrained in addition to
unconstrained problems and contains a number of safeguards that are not included in the
simpler ISM codes. Moreover, there are overheads associated with the interfaces with the
SIF input in the ISM codes that are not present in LANCELOT. However, the streamlined
character of the ISM variants may be considered to be one of their advantages.

Another interesting observation is that the truncated-Newton methods appear to re-
quire more CG iterations than the other methods, and yet their requirements in CPU
time is not excessive: this can be explained by the fact that they do not require too many
function evaluations and contain little other computational effort.

Finally, we notice that there is little difference in performance between ISM variants
that build the subspace from the first CG directions and variants that use the extreme
ones. As the former is easier to implement, one might prefer it in practice.

5 Linear and nonlinear constraints

It is straightforward to extend the iterated-subspace minimization philosophy to treat
linearly constrained optimization problems of the form

minimize f(«) subject to I < Az < wu, (5.1)
Tehn

where A is an m by n matrix and I and u are m-vectors. For suppose =) satisfies
I < Az®) < w. Then we may obtain an improved estimate &**1) by applying the

following linearly-constrained ISM algorithm:

1. Stop with the solution estimate @) if convergence tests are satisfied.
2. Determine a full-rank subspace matrix s ¢ %”Xs(k), where s¥) < n.

3. Approximately solve the s(*)-dimensional minimization problem

minimize f(:c(k) + S(k)y) subject to 1% < ARy < o) (5.2)

ye%“(k)

where A*) = AS(k), 1% =1 - A2® and u® = o — Az®) and set

k1) = (approx) arg min f(a:(k) + S(k)y) subject to 1% < AK)y < (k)
yene®
(5.3)

The central issues remain those discussed in Section 1. However, extra care must be exer-
cised when picking the subspace matrix, as it is now desirable for a constrained steepest-
descent and (truncated) Newton directions to lie in the subspace. We also now need to
use efficient methods for solving small linearly-constrained minimization problems when
determining 2*+1) but fortunately the state-of-the-art here is as advanced as it is for
unconstrained minimization.

The ISM philosophy does not obviously extend to handle nonlinearly-constrained min-
imization problems except that, of course, any unconstrained or linearly-constrained sub-
problems may be treated by existing ISM methods. This may be important for nonlinearly-
constrained minimization methods which are based on the sequential minimization of
penalty or barrier functions, or their augmented or shifted counterparts.

12

6 Perspectives and Conclusions

In this paper, we have shown that it is possible to solve large-scale nonlinear optimiza-
tion problems using methods designed for small-scale problems. These methods may
be regarded as a generalization of linesearch-type methods more usually used to solve
unconstrained minimization problems. We have indicated that the convergence of our
methods depends upon using robust algorithms for the small-dimensional subproblems,
and have suggested a number of ways of selecting promising subspaces in which to search.
Furthermore, our philosophy extends quite naturally to large-scale linearly-constrained
optimization. None the less, we feel that there are a number of important areas for future
investigation.

e In our investigations, we found it convenient to use a linesearch (BFGS) method
to solve the inner-iteration subproblems. One might, of course, alternatively use a
trust-region method to solve the subproblem. However, as the performance of such
methods depends upon building a good model within an adequate trust region, and
as our ISM method will solve a sequence of subproblems, it may be that a good
trust-region radius for one subproblem is poor for the next, and inefficiencies may
occur. Thus care may be needed in determining interactions between successive
models.

Another important issue is how to pick stopping rules, analogous to (2.5)-(2.7),
which are appropriate for trust-region based methods. The main difficulty here is
that the initial trust-region radius may interfere with a condition like (2.5).

e While we have suggested a number of methods for computing a good iterated sub-
space, more work clearly needs to be performed. We believe that we have identified
some of the ingredients of a good subspace, but our understanding is far from com-
plete.

o Wehave suggested that ISM methods are equally appropriate for linearly-constrained
problems, but have not addressed the issues related to finding a good iterated sub-
space in this case. Work progresses in this direction, for both general linear con-
straints and for problems whose constraints arise from networks.

7 Acknowledgement
Nick Gould would like to thank CERFACS for the facilities which made some of this
research possible.

References

M. Arioli, T. F. Chan, I. S. Duff, N.I. M. Gould, and J. K. Reid (1993) Computing a
search direction for large-scale linearly constrained nonlinear optimization calculations.
Technical Report TR/PA/93/34, CERFACS, Toulouse, France.

L. Armijo. Minimization of functions having Lipschitz-continuous first partial
derivatives. Pacific Journal of Mathematics, 16:1-3, 1966.

D. P. Bertsekas. Constrained Optimization and Lagrange Multipliers Methods. Aca-
demic Press, London, 1982.

13

I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained
and Unconstrained Testing Environment. Technical Report TR/PA/93/10, CERFACS,
Toulouse, France, 1993. To appear in ACM Transactions on Mathematical Software.

R. H. Byrd, H. F. Khalfan, and R. B. Schnabel. Analysis of a symmetric rank-
one trust region method. Technical Report CU-CS-657-93, Department of Computer
Science, University of Colorado at Boulder, Boulder, USA, 1993.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Convergence of quasi-Newton
matrices generated by the symmetric rank one update. Mathematical Programming,
50(2):177-196, 1991.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Intensive numerical tests with
LANCELOT (Release A): the complete results. Technical Report 92/15, Department of
Mathematics, FUNDP, Namur, Belgium, 1992a.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: a Fortran package
for large-scale nonlinear optimization (Release A). Number 17 in Springer Series in
Computational Mathematics. Springer Verlag, Heidelberg, Berlin, New York, 1992b.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Numerical experiments with the
LANCELOT package (Release A) for large-scale nonlinear optimization. Technical Re-
port 92-075, Rutherford Appleton Laboratory, Chilton, England, 1992c.

R. S. Dembo and T. Steihaug. Truncated-Newton algorithms for large-scale uncon-
strained optimization. Mathematical Programming, 26:190-212, 1983.

R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact-Newton methods. SIAM
Journal on Numerical Analysis, 19(2):400-408, 1982.

J. E. Dennis and R. B. Schnabel. Numerical methods for unconstrained optimization
and nonlinear equations. Prentice-Hall, Englewood Cliffs, USA, 1983.

R. Fletcher. Practical Methods of Optimization. J. Wiley and Sons, Chichester,
second edition, 1987.

P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press,
London and New York, 1981.

A. A. Goldstein. Convex programming in Hilbert space. Bulletin of the American
Mathematical Society, 70:709-710, 1964.

G. H. Golub and C. F. Van Loan. Matriz Computations. Johns Hopkins University
Press, Baltimore, second edition, 1989.

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. J. Res. N. B. S., 49:409-436, 1952.

H. F. Khalfan, R. H. Byrd, and R. B. Schnabel. A theoretical and experimental
study of the symmetric rank-one update. SIAM Journal on Optimization, 3(1):1-24,
1993.

B. N. Parlett. The Symmetric Figenvalue Problem. Prentice-Hall, Englewood Cliffs,
USA, 1980.

14

M. J. D. Powell. A hybrid method for nonlinear equations. In P. Rabinowitz,
editor, Numerical Method for Nonlinear Algebraic Equations, pages 87-114, London,
1970. Gordon and Breach.

J. K. Reid. On the method of conjugate gradients for the solution of large sparse
linear equations. In J. K. Reid, editor, Large sparse sets of linear equations, pages
231254, London, 1971. Academic Press.

Y. Saad. Krylov subspace methods: theory, algorithms and applications. In Compu-
tational Methods in Applied Science and Engineering, INRIA 29 January - 2 February,
1990.

R. B. Schnabel and E. Eskow. A new modified Cholesky factorization. SIAM
Journal on Scientific and Statistical Computing, 11:1136-1158, 1991.

Ph. L. Toint. Towards an efficient sparsity exploiting Newton method for minimiza-
tion. In I. S. Duff, editor, Sparse Matrices and Their Uses, London, 1981. Academic
Press.

A Detailed numerical results

In this appendix, we give comprehensive details of the performance of each of the methods
discussed in the main body of the paper on the complete set of test examples. We include
these results so that others may, in future, compare new proposals with ours.

15

problem n #1f | #suc H#Hcg time f

ARWHEAD 1000 5 6 2 0.65 1.6903D-10
BDQRTIC 1000 12 13 66 1.77 || 3.9838D+03
BROWNAL 100 2 3 3 0.13 1.1263D-13
BRYBND 1000 13 13 177 3.50 2.8797D-13
CRAGGLVY | 1000 13 14 166 2.28 || 3.3642D+02
DIXMAANA | 1500 5 6 9 0.84 || 1.0000D+00
DIXON3DQ 1000 5 6 1427 5.32 7.7032D-09
DQDRTIC 1000 2 3 0 0.43 1.6602D-23
DQRTIC 1000 35 36 223 2.63 3.7687D-06
EDENSCH 1000 14 15 35 1.24 || 6.0033D+-03
EIGENALS 110 15 16 142 0.71 2.7564D-11
ENGVAL1 1000 7 8 20 0.76 || 1.1082D+03

FLETCHCR | 1000 || 3528 | 2635 | 20619 || 217.64 5.0581D-14
FMINSURF 1024 189 166 527 16.36 || 1.0000D+00

FREUROTH | 1000 20 10 40 1.48 || 1.2147D+-05
GENROSE 1000 || 1213 927 | 6640 77.29 || 1.0000D-+00
LIARWHD 1000 13 14 14 0.93 2.3011D-16
MANCINO 100 11 12 13 12.87 4.3367D-17
MOREBV 1000 2 3 265 1.91 2.0186D-09
NCB20B 1000 27 22 | 1274 || 102.76 | 1.6760D-+03
NONDIA 1000 29 27 29 1.68 4.3483D-16
NONDQUAR | 1000 91 75 853 6.00 9.5606D-06
PENALTY1 1000 55 51 44 9.44 9.6862D-03
POWELLSG | 1000 15 16 60 1.01 1.1167D-06
POWER 1000 28 29 613 3.60 5.8399D-09
QUARTC 1000 35 36 223 2.67 3.7687D-06
SINQUAD 1000 69 61 126 4.98 6.3238D-05
SROSENBR 1000 10 10 20 0.71 6.6723D-12
TOINTGSS 1000 8 8 15 0.60 || 1.0010D+01
TQUARTIC 1000 13 13 14 0.92 1.0168D-16
TRIDIA 1000 4 5 91 0.81 8.5487D-14
VARDIM 1000 36 37 0 1.41 1.1203D-20
VAREIGVL 1000 12 13 124 2.12 5.8152D-08
WOODS 1000 16 17 49 1.11 5.0956D-15

Table A.3: Results for LAN(n) (unpreconditioned LANCELOT) on large or hard problems.
Key: n = number of variables, #f = number of function evaluations, #suc = number
of successful iterations, #cg = total number of CG iterations, time = total CPU time in
seconds, f = smallest function value obtained.

16

problem n #1 | #£suc | #cg time f

ARWHEAD 1000 5 6 1 0.79 1.6903D-10
BDQRTIC 1000 11 12 13 1.75 || 3.9838D+03
BROWNAL 100 3 4 40 1.10 6.3470D-11
BRYBND 1000 16 14 30 2.88 1.8775D-12
CRAGGLVY | 1000 14 15 11 1.68 || 3.3642D+-02
DIXMAANA | 1500 5 6 10 1.04 || 1.0000D+-00
DIXON3DQ 1000 2 3 2 0.45 || 0.0000D+00
DQDRTIC 1000 2 3 0 0.45 1.6602D-23
DQRTIC 1000 35 36 27 2.60 3.6952D-06
EDENSCH 1000 12 13 9 1.36 || 6.0033D+-03
EIGENALS 110 17 17 48 0.95 5.2529D-11
ENGVAL1 1000 7 8 7 0.91 || 1.1082D+03

FLETCHCR | 1000 || 2137 | 1820 | 2136 || 127.72 2.8160D-12
FMINSURF 1024 315 295 | 436 || 118.40 || 1.0000D+-00
FREUROTH | 1000 10 10 7 1.16 || 1.2147D+05
GENROSE 1000 || 1094 906 | 1158 68.07 || 1.0000D+-00
LIARWHD 1000 14 15 21 1.39 2.0274D-20

MANCINO 100 15 16 8 20.12 9.2449D-18
MOREBV 1000 1 2 1 0.45 7.3289D-13
NCB20B 1000 22 20 | 568 54.61 || 1.6760D+-03
NONDIA 1000 29 27 47 2.38 6.9910D-16

NONDQUAR | 1000 17 18 19 1.34 1.3932D-09
PENALTY1 1000 63 57 | 432 27.41 9.6862D-03
POWELLSG | 1000 15 16 15 1.13 2.2324D-06
POWER 1000 27 28 53 8.56 1.8888D-08
QUARTC 1000 35 36 27 2.58 3.6952D-06
SINQUAD 1000 131 112 | 341 15.55 9.0365D-07
SROSENBR 1000 10 10 10 0.91 5.8309D-13

TOINTGSS 1000 2 3 2 0.49 || 1.0000D+01
TQUARTIC 1000 12 12 24 1.30 2.9487D-11
TRIDIA 1000 2 3 1 0.54 1.3827D-32
VARDIM 1000 36 37 0 21.26 1.1203D-20
VAREIGVL 1000 12 13 58 5.12 5.6139D-08
WOODS 1000 16 17 15 1.34 1.9658D-14

Table A.4: Results for LAN(p) (default preconditioned LANCELOT) on large or hard
problems.

Key: n = number of variables, #f = number of function evaluations, #suc = number
of successful iterations, #cg = total number of CG iterations, time = total CPU time in
seconds, f = smallest function value obtained.

17

problem n #f | #min | #its H#Hcg time f

ARWHEAD 1000 | 1545 389 390 395 31.74 || 0.00D+00
BDQRTIC 1000 44 18 19 96 2.08 || 3.98D+03
BROWNAL 100 5 3 4 4 0.05 2.45D-08
BRYBND 1000 38 15 16 50 1.82 2.77D-13
CRAGGLVY | 1000 45 16 17 111 2.27 || 3.36D402
DIXMAANA | 1500 17 9 10 13 0.99 || 1.00D+00
DIXON3DQ 1000 7 4 5 1748 4.16 1.25D-11
DQDRTIC 1000 10 5 6 12 0.28 1.91D-14
DQRTIC 1000 48 17 18 54 0.40 5.72D-08
EDENSCH 1000 46 17 18 38 1.56 | 6.00D+03
EIGENALS 110 69 23 24 209 1.27 6.15D-12
ENGVAL1 1000 31 13 14 26 0.97 || 1.11D+03
FLETCHCR 1000 (| 3065 1178 | 1179 | 13208 || 121.19 7.36D-13
FMINSURF 1024 250 33 34 6648 61.67 | 1.00D+00
FREUROTH | 1000 53 18 19 109 2.43 || 1.21D405
GENROSE 1000 (| 2933 542 543 9745 88.37 || 1.00D+00
LIARWHD 1000 78 28 29 32 1.67 1.43D-16
MANCINO 100 74 23 24 30 82.92 9.93D-19
MOREBV 1000 4 3 4 519 2.17 1.37D-09
NCB20B 1000 95 22 23 1126 99.57 || 1.68D+03
NONDIA 1000 156 55 56 58 4.17 5.93D-21
NONDQUAR | 1000 163 63 64 2940 9.18 1.01D-06
PENALTY1 1000 173 60 61 84 2.44 9.69D-03
POWELLSG | 1000 838 282 283 577 6.93 5.32D-08
POWER 1000 (| 5636 1414 | 1415 1419 34.68 4.19D-09
QUARTC 1000 48 17 18 54 0.40 5.72D-08
SINQUAD 1000 271 114 115 198 10.44 4.92D-06
SROSENBR 1000 26 12 13 15 0.35 6.11D-20
TOINTGSS 1000 298 101 102 201 10.42 || 1.00D+01
TQUARTIC 1000 57 20 21 27 0.89 1.24D-13
TRIDIA 1000 17 10 11 643 1.66 4.80D-15
VARDIM 1000 60 15 16 15 0.41 2.48D-21
VAREIGVL 1000 546 183 184 367 19.89 8.04D-10
WOODS 1000 302 96 97 279 4.64 1.65D-19

Table A.5: Results for the unpreconditioned truncated-Newton method TN(n) on large or
hard problems.

Key: n = number of variables, #f = number of function evaluations, #min = number of
minimizations, #its = total number of iterations, #cg = total number of CG iterations,
time = total CPU time in seconds, f = smallest function value obtained.

18

problem n #1 | #min | #its | #cg time f

ARWHEAD 1000 20 8 9 10 0.82 || 0.00D+00
BDQRTIC 1000 30 11 12 15 1.39 || 3.98D+03
BROWNAL 100 68 27 28 207 8.32 3.35D-12
BRYBND 1000 72 15 16 39 3.12 8.33D-14
CRAGGLVY | 1000 122 42 43 42 5.86 || 3.36D+02
DIXMAANA | 1500 25 11 12 14 1.66 | 1.00D+400
DIXON3DQ 1000 3 1 2 1 0.06 || 0.00D+00
DQDRTIC 1000 3 1 2 1 0.11 || 0.00D+00
DQRTIC 1000 43 15 16 15 0.53 7.86D-08
EDENSCH 1000 42 12 13 13 1.56 || 6.00D4+03
EIGENALS 110 81 20 21 80 1.45 3.04D-13
ENGVALI1 1000 26 10 11 10 1.01 || 1.11D+403
FLETCHCR 1000 || 2949 1158 | 1159 | 1159 94.00 1.49D-16
FMINSURF 1024 276 33 34 | 1509 31.66 || 1.00D+00
FREUROTH | 1000 44 8 9 | 1007 17.97 || 1.21D405
GENROSE 1000 (| 2257 726 727 | 1573 67.58 || 1.00D+00
LTIARWHD 1000 48 16 17 27 1.49 3.51D-15
MANCINO 100 95 24 25 52 || 102.73 1.50D-18
MOREBV 1000 2 1 2 1 0.10 7.33D-13
NCB20B 1000 47 16 17 498 51.77 || 1.68D+03
NONDIA 1000 50 19 20 35 1.88 8.47D-20
NONDQUAR | 1000 20 9 10 15 0.45 2.31D-09
PENALTY1 1000 113 34 35 169 11.35 9.69D-03
POWELLSG | 1000 22 11 12 17 0.49 2.14D-08
POWER 1000 43 15 16 15 4.34 1.00D-10
QUARTC 1000 43 15 16 15 0.52 7.86D-08
SINQUAD 1000 663 257 258 710 37.87 1.99D-08
SROSENBR 1000 36 12 13 13 0.63 8.11D-25
TOINTGSS 1000 3 1 2 1 0.17 || 1.00D+01
TQUARTIC 1000 25 9 10 16 0.67 6.46D-21
TRIDIA 1000 3 1 2 1 0.07 1.97D-26
VARDIM 1000 76 28 29 | 2916 31.20 3.77D-13
VAREIGVL 1000 44 13 14 62 5.55 1.42D-09
WOODS 1000 58 21 22 22 1.34 2.55D-18

Table A.6: Results for the preconditioned truncated-Newton method TN(p) on large or
hard problems.

Key: n = number of variables, #f = number of function evaluations, #min = number of
minimizations, #its = total number of iterations, #cg = total number of CG iterations,
time = total CPU time in seconds, f = smallest function value obtained.

19

problem n #1f | #min | H#its H#Hcg stk time f

ARWHEAD 1000 11 3 6 4 1.33 0.32 || 0.00D+00
BDQRTIC 1000 108 10 45 59 5.30 2.62 || 3.98D+03
BROWNAL 100 5 2 4 3 1.50 0.05 2.45D-08
BRYBND 1000 68 10 47 62 6.20 3.03 6.16D-14
CRAGGLVY | 1000 72 10 56 95 7.30 3.72 || 3.36D+02
DIXMAANA | 1500 19 7 14 9 1.29 1.06 || 1.00D+400
DIXON3DQ 1000 7 4 5 1748 9.00 4.25 1.25D-11
DQDRTIC 1000 10 5 6 12 2.40 0.28 1.91D-14
DQRTIC 1000 58 9 37 18 2.00 0.45 1.75D-08
EDENSCH 1000 55 9 29 30 3.33 1.70 || 6.00D+403
EIGENALS 110 88 11 69 99 7.55 1.47 5.29D-12
ENGVAL1 1000 32 8 21 22 2.75 1.02 || 1.11D+403
FLETCHCR 1000 (| 13009 1046 | 10628 | 13164 9.93 || 371.21 2.83D-14
FMINSURF 1024 169 10 89 2214 | 10.00 23.28 || 1.00D+00
FREUROTH | 1000 137 8 30 24 3.00 2.94 || 1.21D+05
GENROSE 1000 5968 418 4380 7038 9.55 || 163.81 || 1.00D+00
LIARWHD 1000 18 4 12 6 1.50 0.45 1.14D-13
MANCINO 100 51 12 21 14 1.17 55.05 4.44D-18
MOREBV 1000 4 3 4 519 || 10.00 2.21 1.37D-09
NCB20B 1000 213 18 98 1181 9.89 || 127.30 || 1.68D+03
NONDIA 1000 14 4 10 5 1.25 0.45 1.48D-15
NONDQUAR | 1000 539 49 403 4331 9.14 16.97 1.32D-06
PENALTY1 1000 738 126 478 239 1.90 11.44 9.69D-03
POWELLSG | 1000 42 5 35 17 3.40 0.44 4.38D-11
POWER 1000 95 11 71 150 6.82 1.30 6.72D-11
QUARTC 1000 58 9 37 18 2.00 0.46 1.75D-08
SINQUAD 1000 193 36 123 69 1.92 6.53 1.97D-07
SROSENBR 1000 16 5 11 7 1.40 0.23 7.59D-16
TOINTGSS 1000 10 5 7 7 1.40 0.49 || 1.00D+01
TQUARTIC 1000 32 6 17 9 1.50 0.49 1.10D-17
TRIDIA 1000 17 10 11 643 9.80 1.77 7.20D-15
VARDIM 1000 64 13 27 13 1.00 0.49 1.33D-21
VAREIGVL 1000 35 7 29 76 6.86 2.07 1.02D-10
WOODS 1000 33 5 25 14 2.80 0.58 5.80D-16

Table A.7: Results for ISM(n,f,f) on large or hard problems, in which no preconditioning
is used and the subspace is chosen from the first 10 CG directions.

Key: n = number of variables, #f = number of function evaluations, #min = number of
minimizations, #its = total number of iterations, #cg = total number of CG iterations,
s(¥) = average subspace dimension, time = total CPU time in seconds, f = smallest
function value obtained.

20

problem n #1 | #min | #its | #Hcg stk time f

ARWHEAD 1000 21 5 12 6 | 1.20 0.72 || 0.00D+00
BDQRTIC 1000 31 7 18 9| 1.29 1.19 || 3.98D+03
BROWNAL 100 71 10 57 125 || 7.10 3.48 3.13D-12
BRYBND 1000 74 10 34 25 || 2.50 2.97 9.63D-13
CRAGGLVY | 1000 45 12 24 12 || 1.00 2.12 || 3.36D+02
DIXMAANA | 1500 18 6 13 8| 1.33 1.20 || 1.00D+00
DIXON3DQ 1000 3 1 2 1 1.00 0.07 || 0.00D+00
DQDRTIC 1000 3 1 2 1 1.00 0.12 1.24D-21
DQRTIC 1000 49 12 25 12 || 1.00 0.53 2.68D-08
EDENSCH 1000 62 10 24 12 || 1.20 1.93 || 6.00D+03
EIGENALS 110 130 14 77 55 || 3.79 1.98 1.30D-11
ENGVAL1 1000 26 7 14 71 1.00 0.91 || 1.11D+03
FLETCHCR 1000 || 6376 1797 | 3594 | 1797 || 1.00 || 189.01 9.70D-16
FMINSURF 1024 249 9 87 468 || 9.44 12.92 || 1.00D+00
FREUROTH | 1000 102 8 18 9| 1.13 2.31 || 1.21D+05
GENROSE 1000 | 3659 656 | 2021 | 1011 || 1.54 93.51 || 1.00D+00
LIARWHD 1000 25 5 17 12 || 2.40 0.79 9.91D-16
MANCINO 100 48 14 26 16 || 1.14 64.06 1.07D-18
MOREBV 1000 2 1 2 1 1.00 0.10 7.33D-13
NCB20B 1000 110 15 69 611 || 6.67 75.08 || 1.68D+03
NONDIA 1000 156 25 113 58 || 2.32 5.26 3.05D-14
NONDQUAR | 1000 39 7 29 15 || 2.14 0.61 2.77D-09
PENALTY1 1000 166 17 102 102 || 3.24 7.37 9.69D-03
POWELLSG | 1000 50 13 30 15 || 1.15 0.71 5.05D-09
POWER 1000 47 11 23 11 || 1.00 3.30 4.44D-10
QUARTC 1000 49 12 25 12 || 1.00 0.53 2.68D-08
SINQUAD 1000 263 38 182 106 || 2.79 10.81 3.82D-09
SROSENBR 1000 22 8 15 & || 1.00 0.48 4.99D-28
TOINTGSS 1000 3 1 2 1 1.00 0.18 || 1.00D+01
TQUARTIC 1000 21 5 16 8 || 1.60 0.55 2.45D-14
TRIDIA 1000 3 1 2 1 1.00 0.07 1.01D-25
VARDIM 1000 86 22 49 | 2585 || 5.00 26.40 2.09D-12
VAREIGVL 1000 43 7 39 31 || 4.43 4.13 1.86D-12
WOODS 1000 51 13 28 14 || 1.08 1.11 1.83D-16

Table A.8: Results for ISM(p,f,f) on large or hard problems, in which preconditioning is
used and the subspace is chosen from the first 10 CG directions.

Key: n = number of variables, #f = number of function evaluations, #min = number of
minimizations, #its = total number of iterations, #cg = total number of CG iterations,

k)

s(¥) = average subspace dimension, time = total CPU time in seconds, f = smallest

function value obtained.

21

problem n #1f | #min | #its H#Hcg s(k) time f

ARWHEAD 1000 11 3 6 4 1.33 0.32 || 0.00D+00
BDQRTIC 1000 189 11 51 73 5.82 3.58 || 3.98D+03
BROWNAL 100 5 2 4 3 1.50 0.05 2.45D-08
BRYBND 1000 68 10 47 62 6.20 3.03 6.16D-14
CRAGGLVY | 1000 96 11 58 104 7.55 4.00 || 3.36D402
DIXMAANA | 1500 19 7 14 9 1.29 1.06 || 1.00D+00
DIXON3DQ 1000 7 4 5 1748 9.00 4.36 1.25D-11
DQDRTIC 1000 10 5 6 12 2.40 0.29 1.91D-14
DQRTIC 1000 58 9 37 18 2.00 0.46 1.75D-08
EDENSCH 1000 55 9 29 30 3.33 1.70 || 6.00D+03
EIGENALS 110 102 12 83 110 7.50 1.71 9.57D-11
ENGVAL1 1000 32 8 21 22 2.75 1.04 || 1.11D+403
FLETCHCR 1000 (| 11901 1079 | 9821 | 13262 9.93 || 352.99 3.73D-16
FMINSURF 1024 158 9 79 1879 || 10.00 20.05 || 1.00D+00
FREUROTH | 1000 137 8 30 24 3.00 2.91 || 1.21D+05
GENROSE 1000 5983 424 | 4346 6825 9.57 || 162.70 || 1.00D+00
LIARWHD 1000 18 4 12 6 1.50 0.45 1.14D-13
MANCINO 100 51 12 21 14 1.17 55.04 4.44D-18
MOREBV 1000 4 3 4 519 || 10.00 2.26 1.37D-09
NCB20B 1000 368 17 214 962 9.65 || 144.83 || 1.68D+03
NONDIA 1000 14 4 10 5 1.25 0.45 1.48D-15
NONDQUAR | 1000 624 37 542 1843 8.62 11.97 2.77D-06
PENALTY1 1000 738 126 478 239 1.90 11.07 9.69D-03
POWELLSG | 1000 42 5 35 17 3.40 0.44 4.38D-11
POWER 1000 95 11 71 150 6.82 1.33 6.72D-11
QUARTC 1000 58 9 37 18 2.00 0.45 1.75D-08
SINQUAD 1000 193 36 123 69 1.92 6.51 1.97D-07
SROSENBR 1000 16 5 11 7 1.40 0.24 7.59D-16
TOINTGSS 1000 10 5 7 7 1.40 0.49 || 1.00D+01
TQUARTIC 1000 32 6 17 9 1.50 0.49 1.10D-17
TRIDIA 1000 17 10 11 642 9.80 1.79 5.12D-15
VARDIM 1000 64 13 27 13 1.00 0.48 1.33D-21
VAREIGVL 1000 35 7 29 74 6.86 2.02 1.39D-10
WOODS 1000 33 5 25 14 2.80 0.57 5.80D-16

Table A.9: Results for ISM(n,e,f) on large or hard problems, in which no preconditioning
is used and the subspace is chosen from 10 extreme CG directions.

Key: n = number of variables, #f = number of function evaluations, #min = number of
minimizations, #its = total number of iterations, #cg = total number of CG iterations,
s(¥) = average subspace dimension, time = total CPU time in seconds, f = smallest
function value obtained.

22

problem n #1 | #min | #its | #cg sk) time f

ARWHEAD 1000 21 5 12 6 1.20 0.72 || 0.00D+00
BDQRTIC 1000 31 7 18 9 1.29 1.21 || 3.98D+03
BROWNAL 100 92 11 75 134 7.27 3.86 2.40D-13
BRYBND 1000 74 10 34 25 2.50 2.92 9.63D-13
CRAGGLVY | 1000 45 12 24 12 1.00 2.12 || 3.36D+402
DIXMAANA | 1500 18 6 13 8 1.33 1.20 || 1.00D+00
DIXON3DQ 1000 3 1 2 1 1.00 0.07 || 0.00D+00
DQDRTIC 1000 3 1 2 1 1.00 0.11 1.24D-21
DQRTIC 1000 49 12 25 12 1.00 0.54 2.68D-08
EDENSCH 1000 62 10 24 12 1.20 1.91 || 6.00D+03
EIGENALS 110 125 11 74 51 4.45 1.81 1.06D-11
ENGVALI1 1000 26 7 14 7 1.00 0.89 || 1.11D+03
FLETCHCR 1000 || 6376 1797 | 3594 | 1797 1.00 || 191.23 9.70D-16
FMINSURF 1024 227 11 104 501 || 10.00 14.20 || 1.00D400
FREUROTH | 1000 102 8 18 9 1.13 2.31 || 1.21D+05
GENROSE 1000 (| 3659 656 | 2021 | 1011 1.54 93.05 || 1.00D+00
LIARWHD 1000 25 5 17 12 2.40 0.79 9.91D-16
MANCINO 100 48 14 26 16 1.14 64.15 1.07D-18
MOREBV 1000 2 1 2 1 1.00 0.11 7.33D-13
NCB20B 1000 165 15 73 523 6.67 73.48 || 1.68D+03
NONDIA 1000 156 25 113 58 2.32 5.24 3.05D-14
NONDQUAR | 1000 39 7 29 15 2.14 0.61 2.77D-09
PENALTY1 1000 252 19 130 177 3.63 9.16 9.69D-03
POWELLSG | 1000 50 13 30 15 1.15 0.71 5.05D-09
POWER 1000 47 11 23 11 1.00 3.32 4.44D-10
QUARTC 1000 49 12 25 12 1.00 0.54 2.68D-08
SINQUAD 1000 263 38 182 106 2.79 10.78 3.82D-09
SROSENBR 1000 22 8 15 8 1.00 0.48 4.99D-28
TOINTGSS 1000 3 1 2 1 1.00 0.17 || 1.00D+01
TQUARTIC 1000 21 5 16 8 1.60 0.54 2.45D-14
TRIDIA 1000 3 1 2 1 1.00 0.07 1.01D-25
VARDIM 1000 181 30 136 | 2999 5.53 34.14 4.48D-13
VAREIGVL 1000 43 7 39 31 4.43 4.15 1.86D-12
WOODS 1000 51 13 28 14 1.08 1.10 1.83D-16

Table A.10: Results for ISM(p,e,f) on large or hard problems, in which preconditioning is
used and the subspace is chosen from the 10 extreme CG directions.

Key: n = number of variables, #f = number of function evaluations, #min = number of
minimizations, #its = total number of iterations, #cg = total number of CG iterations,
s(¥) = average subspace dimension, time = total CPU time in seconds, f = smallest
function value obtained.

23

problem n #1f | #min | #its H#Hcg s(k) time f

ARWHEAD 1000 11 3 6 4 2.00 0.32 || 0.00D+00
BDQRTIC 1000 50 11 33 63 2.45 2.05 || 3.98D+03
BROWNAL 100 5 2 4 3 2.00 0.05 2.45D-08
BRYBND 1000 61 11 40 85 2.64 3.16 1.26D-13
CRAGGLVY | 1000 113 12 56 121 3.83 4.27 || 3.36D+402
DIXMAANA | 1500 19 7 14 9 2.14 1.05 || 1.00D+400
DIXON3DQ 1000 7 4 5 1748 || 23.00 4.21 1.25D-11
DQDRTIC 1000 10 5 6 12 2.40 0.30 1.91D-14
DQRTIC 1000 58 9 37 18 2.00 0.44 1.75D-08
EDENSCH 1000 54 8 28 26 3.00 1.62 || 6.00D4+03
EIGENALS 110 96 15 71 140 3.93 1.66 1.23D-11
ENGVALI1 1000 30 8 19 22 2.75 0.97 || 1.11D+03
FLETCHCR 1000 || 7718 1261 | 5049 | 14667 2.03 || 232.51 2.52D-13
FMINSURF 1024 189 11 101 2301 || 10.82 24.82 || 1.00D+00
FREUROTH | 1000 59 9 29 25 2.44 1.96 | 1.21D+405
GENROSE 1000 (| 5233 483 | 3469 7745 5.28 || 145.79 || 1.00D+00
LIARWHD 1000 18 4 12 6 2.00 0.44 1.14D-13
MANCINO 100 30 12 19 14 2.00 43.03 1.47D-18
MOREBV 1000 4 3 4 519 || 11.00 2.25 1.37D-09
NCB20B 1000 139 20 74 1021 2.60 || 105.74 || 1.68D+03
NONDIA 1000 14 4 10 5 2.00 0.45 1.48D-15
NONDQUAR | 1000 316 49 218 2483 2.69 9.70 1.55D-06
PENALTY1 1000 738 126 478 239 2.00 11.27 9.69D-03
POWELLSG | 1000 58 11 44 32 2.27 0.61 5.24D-11
POWER 1000 83 10 59 131 4.10 1.09 2.79D-09
QUARTC 1000 58 9 37 18 2.00 0.44 1.75D-08
SINQUAD 1000 169 33 105 64 2.18 5.78 4.97D-06
SROSENBR 1000 16 5 11 7 2.00 0.23 7.59D-16
TOINTGSS 1000 10 5 7 7 2.00 0.50 || 1.00D+01
TQUARTIC 1000 32 6 17 9 2.00 0.49 1.10D-17
TRIDIA 1000 17 10 11 591 9.50 1.66 7.26D-14
VARDIM 1000 64 13 27 13 2.00 0.47 1.33D-21
V AREIGVL | 1000 34 7 28 71 3.14 1.98 2.21D-10
WOODS 1000 34 6 26 16 2.50 0.62 1.53D-17

Table A.11: Results for ISM(n,f,a) on large or hard problems, in which no preconditioning
is used and the subspace dimension is chosen automatically from the first CG directions.
Key: n = number of variables, #f = number of function evaluations, #min = number of
minimizations, #its = total number of iterations, #cg = total number of CG iterations,
s(¥) = average subspace dimension, time = total CPU time in seconds, f = smallest
function value obtained.

24

problem n #1 | #min | #its | #Hcg stk time f

ARWHEAD 1000 21 5 12 6 || 2.00 0.71 || 0.00D+00
BDQRTIC 1000 31 7 18 9 || 2.00 1.18 || 3.98D+03
BROWNAL 100 57 11 43 128 || 2.82 3.67 7.56D-12
BRYBND 1000 72 10 32 25 || 2.50 2.90 8.59D-13
CRAGGLVY | 1000 45 12 24 12 || 2.00 2.12 || 3.36D+02
DIXMAANA | 1500 18 6 13 8 | 2.17 1.23 || 1.00D+00
DIXON3DQ 1000 3 1 2 11 2.00 0.07 || 0.00D+00
DQDRTIC 1000 3 1 2 11 2.00 0.11 1.24D-21
DQRTIC 1000 49 12 25 12 || 2.00 0.54 2.68D-08
EDENSCH 1000 62 10 24 12 || 2.00 1.92 || 6.00D+03
EIGENALS 110 107 16 62 58 || 2.44 1.82 2.51D-12
ENGVAL1 1000 26 7 14 71| 2.00 0.90 || 1.11D+03
FLETCHCR 1000 || 6376 1797 | 3594 | 1797 || 2.00 || 189.09 9.70D-16
FMINSURF 1024 199 12 76 540 || 7.08 14.05 || 1.00D+00
FREUROTH | 1000 102 8 18 9 | 2.00 2.33 || 1.21D+05
GENROSE 1000 | 3659 656 | 2021 | 1011 || 2.00 93.35 || 1.00D+00
LIARWHD 1000 52 9 28 19 || 2.11 1.39 3.01D-16
MANCINO 100 48 14 26 16 || 2.00 64.05 1.07D-18
MOREBV 1000 2 1 2 1 2.00 0.10 7.33D-13
NCB20B 1000 98 15 65 680 || 5.20 78.37 || 1.68D+03
NONDIA 1000 156 25 113 58 || 2.48 5.25 3.05D-14
NONDQUAR | 1000 37 8 27 16 || 2.00 0.62 2.28D-09
PENALTY1 1000 225 38 130 347 || 2.24 15.17 9.69D-03
POWELLSG | 1000 50 13 30 15 || 2.08 0.72 5.05D-09
POWER 1000 47 11 23 11 || 2.00 3.32 4.44D-10
QUARTC 1000 49 12 25 12 || 2.00 0.53 2.68D-08
SINQUAD 1000 325 71 216 225 || 2.24 16.05 1.20D-08
SROSENBR 1000 22 8 15 & || 2.00 0.48 4.99D-28
TOINTGSS 1000 3 1 2 1 2.00 0.18 || 1.00D+01
TQUARTIC 1000 21 5 16 & || 2.00 0.55 2.45D-14
TRIDIA 1000 3 1 2 1 2.00 0.07 1.01D-25
VARDIM 1000 82 25 46 | 2943 || 2.32 29.97 2.95D-13
VAREIGVL 1000 58 10 49 62 || 3.40 5.84 2.43D-11
WOODS 1000 51 13 28 14 || 2.00 1.10 1.83D-16

Table A.12: Results for ISM(p,f,a) on large or hard problems, in which preconditioning is
used and the subspace dimension is chosen automatically from the first CG directions.
Key: n = number of variables, #f = number of function evaluations, #min = number of
minimizations, #its = total number of iterations, #cg = total number of CG iterations,
s(¥) = average subspace dimension, time = total CPU time in seconds, f = smallest
function value obtained.

25

problem n #1f | #min | #its H#Hcg s(k) time f

ARWHEAD 1000 11 3 6 4 2.00 0.31 || 0.00D+00
BDQRTIC 1000 50 11 33 63 2.45 2.02 || 3.98D+03
BROWNAL 100 5 2 4 3 2.00 0.05 2.45D-08
BRYBND 1000 65 11 42 87 2.73 3.25 3.89D-14
CRAGGLVY | 1000 64 12 49 115 3.42 3.39 || 3.36D+02
DIXMAANA | 1500 19 7 14 9 2.14 1.04 || 1.00D+400
DIXON3DQ 1000 7 4 5 1748 || 23.00 4.50 1.25D-11
DQDRTIC 1000 10 5 6 12 2.40 0.29 1.91D-14
DQRTIC 1000 58 9 37 18 2.00 0.45 1.75D-08
EDENSCH 1000 54 8 28 26 3.00 1.63 || 6.00D4+03
EIGENALS 110 91 15 68 125 4.67 1.59 1.87D-10
ENGVALI1 1000 30 8 19 22 2.75 0.96 || 1.11D+03
FLETCHCR 1000 || 7699 1259 | 5054 | 14667 2.04 || 232.52 4.61D-15
FMINSURF 1024 184 10 91 1953 || 10.00 21.31 || 1.00D+00
FREUROTH | 1000 90 8 29 25 2.50 2.29 || 1.21D+05
GENROSE 1000 || 4975 498 | 3332 7760 4.83 || 141.48 || 1.00D+00
LIARWHD 1000 18 4 12 6 2.00 0.44 1.14D-13
MANCINO 100 30 12 19 14 2.00 43.20 1.47D-18
MOREBV 1000 4 3 4 519 || 11.00 2.29 1.37D-09
NCB20B 1000 143 20 80 1004 2.50 || 105.97 || 1.68D+03
NONDIA 1000 14 4 10 5 2.00 0.46 1.48D-15
NONDQUAR | 1000 318 51 219 2869 2.33 10.79 1.40D-06
PENALTY1 1000 738 126 478 239 2.00 11.15 9.69D-03
POWELLSG | 1000 58 11 44 32 2.27 0.62 5.24D-11
POWER 1000 83 10 59 131 4.10 1.08 2.79D-09
QUARTC 1000 58 9 37 18 2.00 0.45 1.75D-08
SINQUAD 1000 180 36 112 72 2.17 6.19 1.98D-06
SROSENBR 1000 16 5 11 7 2.00 0.23 7.59D-16
TOINTGSS 1000 10 5 7 7 2.00 0.49 || 1.00D+01
TQUARTIC 1000 32 6 17 9 2.00 0.50 1.10D-17
TRIDIA 1000 17 10 11 631 8.90 1.76 1.53D-14
VARDIM 1000 64 13 27 13 2.00 0.47 1.33D-21
VAREIGVL 1000 34 7 28 73 3.00 1.99 2.12D-10
WOODS 1000 34 6 26 16 2.50 0.63 1.53D-17

Table A.13: Results for ISM(n,e,a) on large or hard problems, in which no preconditioning
is used and the subspace dimension is chosen automatically from extreme CG directions.
Key: n = number of variables, #f = number of function evaluations, #min = number of
minimizations, #its = total number of iterations, #cg = total number of CG iterations,
s(¥) = average subspace dimension, time = total CPU time in seconds, f = smallest
function value obtained.

26

problem n #1 | #min | #its | #Hcg stk time f

ARWHEAD 1000 21 5 12 6 || 2.00 0.72 || 0.00D+00
BDQRTIC 1000 31 7 18 9 || 2.00 1.18 || 3.98D+03
BROWNAL 100 68 12 55 141 || 2.92 4.05 1.98D-13
BRYBND 1000 72 10 32 25 || 2.50 2.88 8.59D-13
CRAGGLVY | 1000 45 12 24 12 || 2.00 2.14 || 3.36D+02
DIXMAANA | 1500 18 6 13 8 | 2.17 1.21 || 1.00D+00
DIXON3DQ 1000 3 1 2 11 2.00 0.07 || 0.00D+00
DQDRTIC 1000 3 1 2 11 2.00 0.11 1.24D-21
DQRTIC 1000 49 12 25 12 || 2.00 0.53 2.68D-08
EDENSCH 1000 62 10 24 12 || 2.00 1.90 || 6.00D+03
EIGENALS 110 112 18 65 65 || 2.28 1.98 1.77D-14
ENGVAL1 1000 26 7 14 71| 2.00 0.90 || 1.11D+03
FLETCHCR 1000 || 6376 1797 | 3594 | 1797 || 2.00 || 188.31 9.70D-16
FMINSURF 1024 196 14 80 690 || 6.36 16.49 || 1.00D+00
FREUROTH | 1000 102 8 18 9 | 2.00 2.30 || 1.21D+05
GENROSE 1000 | 3659 656 | 2021 | 1011 || 2.00 92.87 || 1.00D+00
LIARWHD 1000 52 9 28 19 || 2.11 1.39 3.01D-16
MANCINO 100 48 14 26 16 || 2.00 64.08 1.07D-18
MOREBV 1000 2 1 2 1 2.00 0.10 7.33D-13
NCB20B 1000 108 15 67 565 || 4.73 70.89 || 1.68D+03
NONDIA 1000 156 25 113 58 || 2.48 5.23 3.05D-14
NONDQUAR | 1000 37 8 27 16 || 2.00 0.62 2.28D-09
PENALTY1 1000 197 25 127 175 | 3.04 10.40 9.69D-03
POWELLSG | 1000 50 13 30 15 || 2.08 0.71 5.05D-09
POWER 1000 47 11 23 11 || 2.00 3.30 4.44D-10
QUARTC 1000 49 12 25 12 || 2.00 0.53 2.68D-08
SINQUAD 1000 210 37 146 123 || 2.68 9.66 6.03D-08
SROSENBR 1000 22 8 15 & || 2.00 0.47 4.99D-28
TOINTGSS 1000 3 1 2 1 2.00 0.17 || 1.00D+01
TQUARTIC 1000 21 5 16 & || 2.00 0.54 2.45D-14
TRIDIA 1000 3 1 2 1 2.00 0.07 1.01D-25
VARDIM 1000 108 27 69 | 2801 || 2.30 30.63 2.63D-13
VAREIGVL 1000 68 11 58 91 || 3.27 6.80 1.19D-11
WOODS 1000 51 13 28 14 || 2.00 1.10 1.83D-16

Table A.14: Results for ISM(p,e,a) on large or hard problems, in which preconditioning is
used and the subspace dimension is chosen automatically from extreme CG directions.
Key: n = number of variables, #f = number of function evaluations, #min = number of
minimizations, #its = total number of iterations, #cg = total number of CG iterations,
s(¥) = average subspace dimension, time = total CPU time in seconds, f = smallest
function value obtained.

27

