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Abstract

We consider the local convergence properties of the class of augmented Lagrangian
methods for solving nonlinear programming problems whose global convergence prop-
erties are analyzed by Conn et al. (1993a). In these methods, linear constraints are
treated separately from more general constraints. These latter constraints are com-
bined with the objective function in an augmented Lagrangian while the subproblem
then consists of (approximately) minimizing this augmented Lagrangian subject to the
linear constraints. The stopping rule that we consider for the inner iteration covers
practical tests used in several existing packages for linearly constrained optimization.
Our algorithmic class allows several distinct penalty parameters to be associated with
different subsets of general equality constraints. In this paper, we analyze the local
convergence of the sequence of iterates generated by this technique and prove fast lin-
ear convergence and boundedness of the potentially troublesome penalty parameters.

1 Introduction

In this paper, we consider the problem of calculating a local minimizer of the smooth
function

fz), (1.1)

where z is required to satisfy the general equality constraints
¢(z)=0, 1<i<m (1.2)
and the linear inequality constraints
Az —b>0. (1.3)

Here f and ¢; map R" into R, A is a p-by-n matrix and b € RP. We assume that 4 # 0
whenever p > 0.

A classical technique for solving problem (1.1)-(1.3) is to minimize a suitable sequence
of augmented Lagrangian functions. If we only consider the problem (1.1)-(1.2), these
functions are defined by

m

Do) = £(2) + 30 Nii(e) + 53 (o)’ (1.4)

H =1
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where the components A; of the vector A are known as Lagrange multiplier estimates and
i is known as the penalty parameter (see, for instance, Hestenes (1969), Powell (1969)
and Bertsekas (1982)). The question of how to deal with the additional linear inequality
constraints (1.3) then arises. This has been considered by Conn et al. (1993a): they
suggest keeping these constraints explicitly outside the augmented Lagrangian formula-
tion and handling them directly at the level of the augmented Lagrangian minimization.
That is, a sequence of optimization problems, in which (1.4) is approximately minimized
within the region defined by the linear constraints, is attempted. This proposal has the
advantage that it can fully exploit a number of effective techniques specifically designed
to handle linear constraints directly (see Arioli et al. (1993), Forsgren and Murray (1993)
or Lustig et al. (1989), for instance). Such an approach is especially worthwhile for large-
scale problems. This strategy has been implemented and successfully applied within the
LANCELOT package for large-scale nonlinear optimization (see Conn et al. (1992)) in the
more restrictive case where the linear constraints are simple bounds. Preliminary experi-
ments with general linear constraints have also shown encouraging results and we intend
to report on more exhaustive tests once we have implemented a robust general algorithm
for linearly constrained optimization. The purpose of the present paper is therefore to
examine the local convergence properties of this promising class of algorithms, completing
the global convergence analysis developed in the companion paper by Conn et al. (1993a)
and closing the gap between the theory for general linear constraints and that developed
for simple bounds by Conn et al. (1991).

Furthermore, it is often worthwhile from the practical point of view to associate dif-
ferent penalty parameters to subsets of the general constraints (1.2) to reflect different
degrees of nonlinearity. In this case, the formulation of the augmented Lagrangian (1.4)
can be refined: we partition the set of constraints (1.2) into ¢ disjoint subsets {Qj}gzl,
and redefine the augmented Lagrangian as

B(a ) = f@)+ 33 [ Neila) + %ci(ac)z , (1.5)

J=11€Q; J

where ;i is now a g-dimensional vector, whose j-th component is p; > 0, the penalty
parameter associated with subset Q;. Notice that this reformulation is covered by the
global convergence theory developed in Conn et al. (1993a). Because of its potential
usefulness, this refined formulation will be adopted in the present paper.

Since the theory presented below handles the linear inequality constraints in a purely
geometric way, the same theory applies without modifications if linear equality constraints
are also imposed and all the iterates are assumed to stay feasible with respect to these new
constraints. It is indeed enough to apply the theory in the affine subspace corresponding
to this feasible set. As a comsequence, linear constraints need not be included in the
augmented Lagrangian and have no impact on the structure of its Hessian matrix, a very
desirable property.

The paper is organized as follows. In Section 2, we introduce our basic assumptions on
the problem and the necessary terminology. Section 3 presents the proposed algorithms
and the definition of suitable stopping criteria for the subproblem. The local conver-
gence analysis is developed in Section 4 while second order conditions are investigated in
Section 5. Finally, some conclusions and perspectives are outlined in Section 6.

2 The problem and related terminology

We consider the problem stated in (1.1)—(1.3) and make the following assumptions.



AS1: The region B = {z | Az — b > 0} is nonempty.
AS2: The functions f(z) and ¢;(z) are twice continuously differentiable for all & € B.

Assumption AS1 is clearly necessary for the problem to make sense. We note that it
does not prevent B from being unbounded.

We now introduce the notation that will be used throughout the paper. It is identical
to that introduced by Conn et al. (1993a), but is restated here for completeness.

Let g(z) denote the gradient V,f(z) of f(z) and H(z) denote its Hessian matrix
Vo f(z). We also define J(z) to be the m-by-n Jacobian of ¢(z), where

(@) = [r(2), - can( )] (2.1)

Hence

J(2) = [Vei(z),...,Vem()] (2.2)

Let H;(z) denote the Hessian matrix V,,¢;(z) of ¢;(z). Finally, let ¢*(z,)) and H(z, )
denote the gradient, V,{(z,\), and Hessian matrix, V. ¢(z, A), of the Lagrangian function

Uz, N) = f(z)+ i_”: Aici(z). (2.3)

We note that £(z,)) is the Lagrangian solely with respect to the ¢; constraints. If we
define first-order Lagrange multiplier estimates componentwise as

Ma, Ag,1s 1)ie] = Mg + e(@)egy /s (5=1,-.,9), (2:4)

where wis) denotes the |S|-dimensional subvector of w whose entries are indexed by the
set S, we shall use the identity

VB(@ A ) = V(o) + T Sico, [NVati(o) + () Vaci(o)]
= gf(m’ /\(ZC, /\7 :u))

Now suppose that {z € B}, {\x} and {p} are infinite sequences of n-vectors, m-
vectors and positive g-vectors, respectively. For any function F', we shall use the notation
that F denotes F evaluated with arguments zy,A\r and/or p as appropriate. So, for
instance, using the identity (2.5), we have that

(2.5)

Vi = Vo ®(2k, My i) = ' (2, M), (2.6)
where we have written (2.4) in the compact form
M = Mk, Ak, fg)- (2.7)

We denote the vector w at iteration £ by wy and its :-th component by wy ;. We also use
wy, 5] to denote the |S|-dimensional subvector of wy whose entries are indexed by S.

Now let {z},k € K, be a convergent subsequence with limit point z.. Then we denote
by A, the matrix whose rows are those of A corresponding to active constraints at z.,
that is constraints that are satisfied as equalities at z,. Furthermore, we choose Z, to be
a matrix whose columns form an orthonormal basis of the nullspace of A, that is

A Z, = 0. (2.8)
We define the least-squares Lagrange multiplier estimates (corresponding to A.)

Mz) ' —((1(2)2.)H)T 27 g(x) (2.9)



at all points where the right generalized inverse
(J(2)2.)*" = 28 1(2)" (I (2) 2.2 T (2)") ! (2.10)

of J(2)Z. is well defined. We note that A(z) is differentiable and its derivative is given in
Lemma 2.1 of Conn et al. (1993a).

We stress that, as stated, the Lagrange multiplier estimate (2.9) is not directly cal-
culable as it requires a priori knowledge of x.. It is merely introduced as an analytical
device.

Finally, the symbol || - || will denote the {3-norm or the induced operator norm. We
are now in position to describe more precisely the algorithms that we propose to use.

3 Statement of the algorithms

We consider the two algorithmic models we wish to use in order to solve the problem
(1.1)-(1.3). Both models proceed at iteration k by approximately solving the subproblem

min ®(z, Ak, px), (3.1)
z€B
where the values of the Lagrange multipliers Ay and penalty parameters . are fixed for
the subproblem. Subsequently we update the Lagrange multipliers and/or decrease the
penalty parameters, depending on how much the constraint violation for (1.2) has been
reduced within each subset of the constraints. The motivation is simply to ensure global
convergence by driving, in the worst case, the penalty parameters to zero, in which case the
algorithms essentially reduce to the quadratic penalty function method (see, for example,
Gould (1989)). The tests on the size of the general constraint violation are designed to
allow the multiplier updates to take over in the neighbourhood of a stationary point.
The approximate minimization for problem (3.1) is performed in an inner iteration
which is stopped as soon as its current iterate is “sufficiently critical”. We propose to
base this decision on the identification of the linear constraints that are “dominant” at z
(even though they might not be active) and on a measure of criticality for the part of the
problem where those constraints are irrelevant. Given w > 0, a criticality tolerance for
the subproblem, we define, for a vector x € B, the set of dominant constraints at x as the
constraints whose index is in the set

D(z,w) ¥ {ie{1,....,p} | Tz - b; < Ky}, (3.2)

for some k1 > 0. Here a? € R" is the 2-th row of the matrix A and b; is the corresponding
component of the right-hand-side vector b. Denoting by Ap(,.) the submatrix of A
consisting of the row(s) whose index is in D(z,w), we also define

N(z,w) = {AD ¢ | € € RIPEXN and & <0, (i=1,...,|D(z,w)))}, (3.3)

the cone spanned by the outwards normals of the dominant constraints. The associated
polar cone is then

T(z,w) = N(z,w)’ =cl{vd |» >0 and dTv < 0 for all v € N(z,w)}, (3.4)

where cl(V') denotes the closure of the set V. The cone T(z,w) is the tangent cone with
respect to the dominant constraints at x for the tolerance w. Note that D(z,w) might
be empty, in which case Ap(, ) is assumed to be zero, N(z,w) reduces to the origin and
T(z,w) is the full space.



We then formulate our “sufficient criticality” criterion for the subproblem as follows:
we require that

HPT(EMWk) (=V2®p) || <, (3.5)

where Py (-) is the projection onto the convex set V and wy is a suitable tolerance at
iteration k.

It is important to note that this stopping rule covers a number of more specific choices,
including the rule used in many existing software for linearly constrained optimization
(such as LSNNO by Toint and Tuyttens (1992) or VE09, VE14 and VE19 from the Harwell
Subroutine Library). The reader is referred to Section 5 of Conn et al. (1993a) for further
details.

We are now in position to describe our algorithmic models more precisely.

Algorithm 3.1

Step 0 [Initialization]. A partition of the set {1,...,m} into ¢ disjoint subsets {Q; ‘]1-:1
is given, as well as initial vectors of Lagrange multiplier estimates Ao and positive
penalty parameters pg such that

po; <1, (j=1,...,q). (3.6)
The strictly positive constants w, < 1, 7. < 1, 7 < 1, a, < 1, and 3, < 1 are
. o
specified. Set ap = IaX flg,j, Wo = o, 7o = a,” and k£ = 0.
J=1;..9

Step 1 [Inner iteration]. Find z; € B that approximately solves (3.1), i.e. such that
(3.5) holds.

Step 2 [Test for convergence]. If || Pr(y, w,) (—V2®41) || < wi and [[e(zg)]| < 74, stop.
Step 3 [Disaggregated updates]. For j = 1,...,¢, execute Step 3a if
lle(zi)ioll < (3.7)

or Step 3b otherwise.

Step 3a [Update Lagrange multiplier estimates]. Set

Aky1e;] = ’\(xkvAk,[Qj]’“kJ)[Qj]’ (3.8)
HE+1,5 = Hkj-

Step 3b [Reduce the penalty parameter|. Set

Merrfo] = Arfos); (3.9)
Hk+1,5 = TkgHk,gs
where
T if pk,j = ag,
= . h 3.10
T { min(7,ar)  otherwise. (3.10)

Step 4 [Aggregated updates]. Define

Q1 = AX fliy - (3.11)
If
g1 < O, (3.12)



then set
We+1 = Oy,

3.13
Me+1 = az_?_lv ( )
otherwise set
W41 = WipQg41
B A (3.14)
Mk+1 = TQpyq-

Increment k by one and go to Step 1.

Algorithm 3.2
This algorithm is identical to Algorithm 3.1, except that Step 3 is replaced by the
following, where v is a constant in (0,1).

Step 3 [Disaggregated updates]. Compute a new vector of Lagrange multiplier esti-
mates A\g4q. For j =1,...,¢, execute Step 3a if

le(zr)igill < m, (3.15)

or Step 3b otherwise.

Step 3a [Update Lagrange multiplier estimates]. Set

A o Aesre;] i (egrenll < medy o
+1,[25] Ak,j0;] otherwise, (3.16)
Hk+1,5 = Hkj-

Step 3b [Reduce the penalty parameter|. Set

" _ ) Mo i el < pdy s
+1,[Q;] /\k,[Qj] otherwise, (3.17)
Hk+1,5 = TkjHkjs

where 73 ; is defined by (3.10).

Except for the inner iteration stopping rule (3.5) and the more precise way in which
wi and the 7 ; are reduced, Algorithms 3.1 and 3.2 are identical to those analyzed in
Section 6 of Conn et al. (1993a). The algorithms differ, here, as there, by their use of
multiplier updates. Algorithm 3.1 is specifically designed for the first-order estimate (2.4),
a formula with potential advantages for large-scale computations. Algorithm 3.2 allows
a more flexible choice of the multipliers, but requires that some control is enforced to
prevent their growth at an unacceptably fast rate. It covers, among others, the choice of
the least-squares estimates A(z) as defined in (2.9).

The restriction (3.6) is imposed in order to simplify the exposition. In a more practical
setting, it may be ignored provided the definition of ag and (3.11) are replaced by

g = min <7s,j§{axqu0,j> and agyq = min <’ys, Ellaxquk‘l'l’j) , (3.18)

respectively, for some constant v € (0,1), and that (3.12) is replaced by

AX fgt1,; < MAX L. (3.19)

71=1,..., =1,...,



Algorithms 3.1 and 3.2 may be extended in other ways. For instance, one may replace the
definition of wg, the first equation in (3.13) and the first equation of (3.14) by

R w pa— w —_ ﬁw
Wy = wsagY, Wgyl = wsaz‘_l_l and wry1 = wsaps (3.20)

for some ws; > 0, ay, > oy and B, > (. The definition of 79 and the second equation in
(3.13) may then be replaced by

o = nsag’ and My1 = sy, (3.21)

for some 7; > 0. In the same spirit, it is also possible to replace (3.10) by

T if prp; = max pug;
Thyj = Tl (3.22)
min(T, afT) otherwise.
for some 3. > f,. Finally, the acceptance test for Agy; in (3.16) and (3.17) may be
replaced by

st onll < i, (3.23)

for some v > 0. Nomne of these extensions alter the results of the convergence theory
developed below.

The proposed algorithms use a number of parameters. The values used in the LANCELOT
package in a similar context are a,, = 7 = 7, = 0.1, and f,, = 0.9 (relation (3.21) is also
used with 7, = 0.12589, ensuring that 7o = 0.01). The values v = 0.9, v = w, = 5, =
a, = f, =1and po; =0.1 (5 =1,...,¢) also seem suitable. The parameters w, and 7,
specify the final accuracy requested by the user.

We now re-examine the inner iteration stopping rule (3.5). This criterion was proposed
by Conn et al. (1993a) as a computationally attractive alternative to the rule

or = 0(2k, Ap, pix) < Wi, (3.24)
where the quantity
oz, A\, 1) def |mingegn  Vo®(z, A, 1)7d|,
subject to A(z 4+d)—b>0, (3.25)
ldll <1

represents the magnitude of the maximum decrease in the linearized augmented La-
grangian achievable on the intersection of B with a ball of radius one centered at the
current point. This criterion was first considered by Conn et al. (1993b) and subsequently
by Conn et al. (1993a), in both cases to prove global convergence of algorithms for convex
constraints. Because we are concerned with stronger asymptotic convergence properties, it
is not surprising that (3.24) needs some strengthening. A variant of (3.24), also discussed
in the latter reference, is indeed appropriate for our present purposes. Thus we may decide
to stop the inner iteration if

0(Tky Ay i) < Wi (3.26)

This criterion is clearly stronger than (3.24) since wy, is driven to zero by our algorithms.
Because Theorem 5.7 of Conn et al. (1993a) shows that the rule (3.26) implies (3.5)
whenever the algorithm is convergent, it will be sufficient to develop our theory for this
last choice to cover the rule (3.26) as well.

Finally, the purpose of the update (3.10) is to put more emphasis on the feasibility of
the constraints whose violation is proportionally higher, in order to achieve a “balance”



amongst all constraint violations. This balance then allows the true asymptotic regime
of the algorithm to be reached. The advantage of (3.10) is that this balancing effect is
obtained gradually, and not enforced at every major iteration, as is the case in Powell
(1969).

It is important to note that Algorithms 3.1 and 3.2 were proved by Conn et al. (1993a)
to be globally convergent with either tests (3.5) or (3.24) under the following additional
assumptions.

AS3: The iterates {z}} considered lie within a closed, bounded domain.

AS4: The matrix J(z.)Z. has column rank no smaller than m at any limit point, z., of
the sequence {zy} considered in this paper.

Suppose that the gradients of the nonlinear constraints projected onto the nullspace of
A are assumed to be linearly independent at every limit point of the sequence of iterates.
The assumption AS4 guarantees that the dimension of this nullspace is large enough to
provide the number of degrees of freedom that are necessary to satisfy the nonlinear
constraints.

We now recall the global convergence result.

Theorem 3.1 [Conn et al. (1993a), Theorem 6.2] Assume that AS1 and AS2 hold. Let
{z} be generated by Algorithm 3.1 or by Algorithm 3.2, where, at each iteration, the test
(3.5) can be replaced by either (3.24) or (3.26). Assume that AS3 holds for this sequence.
Let IC be the set of indices of an infinite subsequence of the x;, whose limit is x., for which
ASY is satisfied. Let A = Nx.). Then the following conclusions hold.

(1) . is a Kuhn-Tucker point (first-order stationary point) for the problem (1.1)-(1.3), A
is the corresponding vector of Lagrange multipliers, and the sequences {\(zy, Ak, [Q;]5 Hk,i)[Q1}
and {A(zk)[g;1} converge to A, [g,] for k € K and for all j = 1,...,q;

(i) There are positive constants kg, k3, and an integer ky such that

1@k Ay 1) = A)joyll < Fawr + rllzw — 2., (3.27)
(A(zk) = Al < msllze — 2l (3.28)

and
lle(zi)igll < Kawrpir,j + e i Il(Ax — Aol + Kspkjllze — 24| (3.29)

forallj=1,...,q and all k > ky,(k € K).

(iii) The gradients V,®;, converge to g*(z.,\.) for k € K.

4 Asymptotic convergence analysis

We shall now analyze the local convergence of the algorithms of Section 3 in the case

where the convergence tolerances w, and 7, are both zero.

We first need to introduce some additional notation. We define Dy, def D(zy,wy) the

set of dominant constraints at z, and its complement, the set of floating constraints at
the same point. We also denote by Ap, the submatrix whose rows consist of the rows of
A indexed by Dj. As in (3.3) and (3.4), we define

def

Ne € {AD, &1 €€ ®RIP and & <0 (i€ Dy)} (4.1)



and Ty = N?, the outward normal cone and tangent cone with respect to the dominant
constraints at zj. For future reference, we define Z; to be a matrix whose columns form
an orthonormal basis of Vj, the nullspace of Ap,, and Y} to be a matrix whose columns
form an orthonormal basis of Wy, = Vk,L. As above, we have that T} is the full space and
Nj, reduces to the origin when Dy is empty. We note that, in this case, Zy = Pr, = I, the
identity operator, and Y3 = Py, = 0. We also note that Vi C T}, and hence that

128 Voill = 1212k Volil < || Pr, (= Va2, (4.2)

since Zng is the orthogonal projection onto V.
We next state a useful consequence of the partition of the linear inequality constraints
into dominant and floating.

Lemma 4.1 Assume that {x}} is a convergent sequence of points whose limit point is z.
and such that (3.5) holds for a sequence {wy} of positive numbers tending to zero. Then

1ZEV, 81| < wi and ||V (2 — 2.)]| < Kawi (4.3)
for some k4 > 0 and all k sufficiently large.

Proof. As Ty = T(zy,wk), we deduce the first part of (4.3) directly from (4.2) and
(3.5). Because {z}} converges to z, and since wy tends to zero, we have that, for all
sufficiently large, any constraint in Dy is also active at z.. Hence the second inequality of
(4.3) results from Lemma 5.1 in Conn et al. (1993a). O

The distinction between floating and dominant linear inequality constraints also has
some implications in terms of the identification of those constraints that are active at a
limit point of the sequence of iterates generated by either algorithm. Given such a point
7, we know from Theorem 3.1 that it is critical, i.e. that —gf(ac*, Ax) € N = N(z,,0) for
the corresponding Lagrange multipliers A.. If we now consider a linear constraint with
index 7 € {1,...,p} that is active at 2., we may define the normal cone Nil] to be the cone
spanned by the outwards normals to all linear inequality constraints active at z., except
the i-th one. We then say that the ¢-th linear inequality constraint is strongly active at
Ty if —g' (2, Ai) € N,EZ]. In other words, the ¢-th constraint is strongly active at a critical
point if this point ceases to be critical when this constraint is ignored. Let us denote by
S(z.) the set of strongly active constraints at z.. All non-strongly active constraints at
x4 are called weakly active at z,. We next prove the interesting result that all strongly
active constraints at a limit point z, are dominant for £ large enough.

Theorem 4.2 Assume that AS1-ASS3 hold. Let {x}, k € K, be a convergent subsequence
of iterates produced by Algorithm 3.1 or 3.2, whose limit point is x,. with corresponding
Lagrange multipliers \.. Assume furthermore that AS4 holds at x.. Then

S(z«) C Dy (4.4)
for all k sufficiently large.

Proof. Consider a linear inequality constraint ¢ € S(z.). Then, by definition of
this latter set, we have that —g‘(z.,\.) & NP]. Since V,®;, converges to g‘(z., \), as
guaranteed by Theorem 3.1, and because NP] is closed, we have that —V,®; ¢ NP] for
k € K large enough. Therefore, one obtains from the Moreau decomposition (see Moreau
(1962)) of —V, Py, that

1P (=VaPe)l| > € (4.5)



- 2 0
for some € > 0 and for all sufficiently large & € K, where TB] = [Nil]] . We have also
from (3.5) that || Pr, (—V;®)|| is arbitrarily small, because wy, tends to zero. Assume now

that, for some arbitrarily large k& € IC, we have that ¢ € Dg. This implies that Tll] C Tk,
and hence that (4.5) is impossible. We therefore deduce that 7 must belong to Dy, which
proves the theorem. O

This result is important and is the direct generalization of Theorem 5.4 by [Conn et
al., 1991]. It can also be interpreted as a means of active constraint identification, as is
clear from the following easy corollary.

Corollary 4.3 Suppose that the conditions of Theorem 4.2 hold. Assume furthermore
that all linear inequality constraints active at x, have linearly independent normals and
are non-degenerate, in the sense that

— gf(ac*, Ax) € 1i[N,], (4.6)

where 1i[V] denotes the relative interior of a conver set V.. Then Dy is identical to the set
of active linear inequality constraints at xz, for all k € K sufficiently large.

Proof. The non-degeneracy assumption and the linear independence of the active
constraints’ normals imply that A, is unique and only has strictly negative components.
Therefore each of the active linear inequality constraint at z, is strongly active at z,, and
the desired conclusion follows from Theorem 4.2. O

We note here that the non-degeneracy assumption corresponds to strict complemen-
tarity slackness in our context (see, for instance, Dunn (1987) or Burke et al. (1990)).

We now make some additional assumptions before pursuing our local convergence
analysis. We first intend to show that all penalty parameters are bounded away from zero.

AS5: The second derivatives of the functions f(z) and ¢;(2) (1 < ¢ < m) are Lipschitz
continuous at any limit point z, of the sequence of iterates {z}}.

AS6: Suppose that (z.,A.) is a Kuhn-Tucker point for problem (1.1)—(1.3) and define
Z to be a subset of the linear inequality constraints active at x, containing all
strongly active constraints at z. (S(zx) C Z) plus an arbitrary subset of weakly
active constraints at x,. Then, if the columns of the matrix Z form an orthonormal
basis of the subspace orthogonal to the normals of the constraints in Z, we assume
that the matrix

ZTH (20,02 ZTJ(2)T
( J(z.)Z 0 )

is nonsingular for all possible choices of the weakly active constraints in the set Z.

We note that AS6 implies AS4 and seems reasonable in that the definition of strongly
and weakly active constraints may vary with small perturbations in the problem, for
instance when ¢‘(z., \.) lies in one of the extreme faces of the cone N,. Our assumption
might be seen as a safeguard against the possible effect of all such perturbations.

We now make the distinction between the subsets for which the penalty parameter
converges to zero and those for which it stays bounded away from it. We define

def . . def
Z=4je{1,...,q}| kliIf,lo“’“’j =0} and P = {1,...,¢} \ 2. (4.7)
We also denote »
Jik 2 = TAX flk (4.8)

10



and

def
Pk = Zuk,j
JEZ

(A = Mg ll- (4.9)

We now prove an analog to Lemma 5.1 by Conn et al. (1991) which is suitable for our
more general framework.

Lemma 4.4 Assume that AS1-AS3 hold. Let {zy}, k € K, be a convergent subsequence
of iterates produced by Algorithm 3.1 or 3.2, whose limit point is v, with corresponding
Lagrange multipliers \.. Assume that AS5 and AS6 hold at x.. Assume furthermore that

Z49.

(i) If P = 0, there are positive constants & < 1, K5, Ke, K7, ks and an integer kg such
that, if o, < @, then

|z — z«|| < Kswk + Keok|| Ak — A« (4.10)
M@k Ak k) = Aul| < B7wp + Ksak| Ak — A, (4.11)

and
le(r)ll < amrenan + qar(1 + rsar) M — Al (4.12)

forallk > ko, k€ K.

(71) If, on the other hand, P # 0, there are positive constants & < 1, ks, Ke, K7, Ks and
an integer ko such that, if uy, z < a, then

[(A(@ ks Ay i12) = Mgyl < Kamw + Kspr, (4.13)

and
lle(zr)ig)ll < Komepn,z + (1 + Kk, 2 )Pk, (4.14)

forallk > ke, k€K, and allj € Z.

Proof. We will denote the gradient and Hessian of the Lagrangian function, taken
with respect to z, at the limit point (., \.) by g¢ and HZ, respectively. Similarly, J, will
denote J(z.). We also define 6y, = 3 — .. We observe that the assumptions of the lemma
guarantee that Theorem 3.1 can be used.

We first note that there is only a finite number of possible Dy, and we may thus
consider subsequences of JC such that Dy is constant in each subsequence. We also note
that each k € KIC belongs to a unique such subsequence. In order to prove our result, it is
thus sufficient to consider an arbitrary infinite subsequence K such that, for k£ € KC, Dy, is
independent of k. This “constant” index set will be denoted by D. As a consequence, the
cones Ny and T}, the subspaces Vi and Wi and the orthogonal matrices Z; and Y} are
also independent of k; they are denoted by N, T, V, W, Z and Y, respectively.

Using (2.6) and Taylor’s expansion around z., we obtain that

Ve® = g+ JE N

g(ac*) + H(x*)ék:l— Jg;\k + E:ll 5\;97,1-{,(33*)6;6 + Tl(xklx*, ;\k) (4.15)
gE+ HEbk + TE Ak — A) 4 712k, T, Ak) + 72(20, T, Ay A,

where

_ 1 _ _
ri(zh, 2, M) O /0 (B (20 + 560, M) — H (2., M )6k ds (4.16)

11



and
m

Pa(@hs s Ay M) =D (As — M) Hi(2) 6 (4.17)

=1
The boundedness and Lipschitz continuity of the Hessian matrices of f and ¢; in a neigh-
bourhood of z,, together with the convergence of Ay to A, then imply that

171 (ks 2 || < o1, (4.18)

and B B
I72(@ ks @ Akey A < Kol|ék ][ [[Ax — Ad]] (4.19)

for some positive constants kg and k19. Moreover, using Taylor’s expansion again, along
with the fact that Theorem 3.1 ensures the equality ¢(z.) = 0, we obtain that

c(zy) = Jubg + r3(2k, 24), (4.20)

where

1 1
[ra(zp, 2.)]i = / s / 6T Hi(wo + t56)8% di ds (4.21)
0 0

(see Gruver and Sachs (1980), p.11). The boundedness of the Hessian matrices of the ¢;
in a neighbourhood of z, then gives that

[73(2, 2)|| < R |6 (4.22)

for some positive constant x11. Combining (4.15) and (4.20), we obtain

¢ 9T o
H, J, b _ Ve®r—go ) _ [ ritr ’ (4.23)
J. 0 Ak — As c(zy) T3

where we have suppressed the arguments of the residuals ry, ro and r3 for brevity. Us-

ing the orthogonal decomposition of R™ into V & W, we may rewrite this last equation,
premultiplied by (ZT YT I), as

ztHtz zT'HYY ZzZ7jT VAN ZT(V, ¥ — gb) ZTr,
YT'atz YTHY YTJT Y, | =| YT(Ve®e -9 | - | YTry |,
J.Z J.Y 0 Ak — s c(zy) T3
(4.24)

where 74 def 71 + 2. We now observe that (3.5), the inclusion V C T and the fact that wy
tends to zero imply that
zTgt = 0. (4.25)

Substituting (4.25) in (4.24), removing the middle horizontal block and rearranging the
terms of this latter equation then yields that

ztutz z7jr ZT6 \ _ [ ZT (V¥ — HIYYT6) N [ ZTny (4.26)
J.Z 0 PYRD W c(z) — JYYT§, rg )

Roughly speaking, we now proceed by showing that the right-hand side of this relation is
of the order of 8, + pj, where

def | wi ifP = 0,
O = { me P £ 0. (4.27)
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We will then ensure that the vector on the left-hand side is of the same size, which is
essentially the result we aim to prove. We first observe that

8kll = 12276, + VYT 65| < || ZT 8| + Kawr (4.28)

from (4.3). We then obtain from (3.27) and (4.28) that

Ak = Al < Z 1A = Aol < Krawr + grsl|Z7 6], (4.29)

7=1

where K13 = ¢(k2 + K3k4). Furthermore, from (4.18), (4.19), (4.22), (4.28) and (4.29),

ZTT4
T3
where K13 = K9 + gk3ki0 + K11, Kia = 2Kk4(Ke + K11) + K1o(K12 + gk3ka), and K15 =
k3(Kg + K11) + Kak10K12- We now bound c(z) by distinguishing components from Z and
P. We first note that, since the penalty parameters for each subset in P are bounded

away from zero, the test (3.7)/(3.15) is satisfied for all k sufficiently large. Moreover, the
remaining components of ¢(zy ) satisfy the bound

< Hl3||ZT5k||2 + 514||ZT5k||wk + Kiswi 2, (4.30)

le(zr)ioll < Rawrptr,j + e i1l (Ax — Aol + Kk jllzr — 24| (4.31)

for all j € Z and all k sufficiently large, using (3.29). Hence, using (4.8), (3.7)/(3.15) and
(4.31), we deduce that

ezl

IA

> lle(zr)igll + D lle(zr )i,
JEP JEE (4.32)
<

Note that the first term of the last right-hand side only appears if P is not empty. Since
both algorithms ensure that
Wi < Mk (4.33)

because a,, < 1 and 3, < 1, we may obtain from (4.3), (4.32) and (4.28) that

H( 7ZT(v q‘_)k — H'YYTg,) )

— 1YYTé, < K160k + pr + Kioik, 20k + qrap )| Z7 6|, (4.34)

where k16 = ¢+ (1 +rg(||ZTHY || + ||J*Y||)) . By assumption AS6, the coefficient matrix
on the left-hand side of (4.26) is nonsingular. Let M be the norm of its inverse. Multiplying

both sides of the equation by this inverse and taking norms, we obtain from (4.27), (4.30),
(4.33) and (4.34) that

VAN
"( ; )H < Mlsas|| Z7 6| + maall 27 6c|6k + 1565 + K160k

Ae — (4.35)
+pk + Krzpe,z0k + qrspn, || 276k
Suppose now that k is sufficiently large to ensure that
w0
and let iy )
a < min [ao, m] . (4.37)
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Recall that ag and hence a < 1. Then, if y; z < a, the relations (4.35)—(4.37) give
1
127 60ll < H1Z780]+ Mlsrrbi+ i + raal| 27612, (438)

where K17 = K12 + K15 + K16. As 8, and hence ||ZT<5k|| converge to zero, we have that

ZT8| < 4.39
127601 < 37— (4.39)

for k large enough. Hence inequalities (4.38) and (4.39) yield that
127 61| < 4M(K170) + p.)- (4.40)

If P is empty, we use (4.28), (4.40) and (4.27), the fact that prz = ax and the
inequality
Pr < qog || A — Al (4.41)

to deduce (4.10), where kj def 4M K17+ K4 and kg = 4M q. Defining now s def q(K2+K3Ks5)
and ks % grskg, we deduce (4.11) from (3.27) and (4.10). Now, using (2.4),

q q
lleCz)ll < 3 lletai)ignll = D mesll Ak = Mdigall < qaw(liXe = Aull + 1A = Adll) (4.42)
7j=1 7=1
and (4.12) then follows from (4.42) and (4.11).

If, on the other hand, P is not empty, (4.13) results from (3.27), (4.28), (4.40) with

0 = m and (4.33), with k7 def 4MKk3k17 + K9 + K3kg and kg def 4Mks. Finally, (4.14)

results from (2.4) and (4.13). O
We then deduce the following simple consequence of this lemma.

Corollary 4.5 Suppose that the conditions of Lemma 4.4 hold and that ;\k+1 is any La-
grange multiplier estimate for which

[ Akgr = Aull < asllzk — 24l + K10k, (4.43)
for some positive constants k1s and k19 and all k € IC sufficiently large.

1) If P = 0, then there are positive constants a < 1, ks, ke, K7, kg, and an integer ko
) p ) ) ) ) ) g
such that, if ax, < @, then (4.10),

Akt — Al < Krwr + Ksor|| Ak — Al (4.44)
and (4.12) hold for all k > kq, k € K.

(1) If, on the other hand, P # 0, then there are positive constants & < 1, ks, K¢, K7, Ks,
and an integer ky such that, if py, z < o, then

(A1 = Aol < Ko + Kspr, (4.45)

and (4.14) hold for allk > kq, k € K, and all j € Z.
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Proof.  Inequality (4.44) immediately results from (4.43) and (4.10), with k7 =
Kski1s 1 K19 and kg = Kek1s. To obtain (4.45), we deduce from (4.43), (4.28), (4.40), (4.27)
and the assumption that P # (), that

||(;\k+1 - /\*)[Qj]H k18| ZT 6k + (Kakis + Ki9)wk
41"'1""718(517019 + Pk) + (KZ4I{18 + ng)wk (446)

AME17R18Mk + (Kak1s + Ki9)wk + 4M Kispk.

A A

Using (4.33), this yields the desired bound with k7 def 4ME17k18 + (Kak1s + K19) and

K8 d:ef 41’\’/["{18- O
We now show that, if the maximum penalty parameter a converges to zero, then the
Lagrange multiplier estimates Ay converge to their true values A,.

Lemma 4.6 Assume AS1 and AS2 hold. Assume that {zy}, the sequence of iterates
generated by Algorithm 3.1 or 3.2, converges to the single limit point x, at which AS6
holds, and with corresponding Lagrange multipliers \,.

(1) If Algorithm 3.1 is used and if oy tends to zero, the sequence A\ converges to ..

(i) If, on the other hand, Algorithm 3.2 is used, if (4.43) holds for sufficiently large k,
if Z # 0 and p z tends to zero, then the multiplier updates are accepted by this
algorithm for all k sufficiently large and /\k,[Qj] converges to )‘*,[Qj] forallje Z.

Proof. Note first that AS6 implies AS4 and therefore that our assumptions are
sufficient to apply Theorem 3.1.

Consider Algorithm 3.1 first. We observe that the desired convergence holds if Ay [g;]
converges to A, (g}, for all j = 1,...,¢. It is thus sufficient to show this latter result for an
arbitrary j between 1 and ¢. This is obvious if Step 3a is executed infinitely often for the
J-th subset. Indeed, each time this step is executed, Ag1q[g;] = ;\k,[Qj] and the inequality
(3.27) guarantees that Xk7[QJ'] converges to A, [g,]- Suppose therefore that Step 3a is not
executed infinitely often for this subset. Then [|(Ax — As)jg;l| Will remain fixed for all
k > ks, for some ks > 0, as Step 3b is executed for each remaining iteration. But (3.29)
then implies that ||c(mk)[gj]|| < Kooflk,;, for some constant kg > 0 and for all k& > k4 > 3.
As ay, tends to zero and oy < 1, Koopik,; < Kooak < az" = 1 for all k sufficiently large for
which oy strictly decreases. But then inequality (3.7) must be satisfied for some k > ky,
which is impossible, as this would imply that Step 3a is again executed for the j-th subset.
Hence Step 3a must be executed infinitely often.

Now consider Algorithm 3.2. Inequality (4.43) gives that, for j € Z,

M1, 1051 1 < Mkl < A+ Rasllor — 2all + mrowe < (4.47)

for all k sufficiently large, because wy, is bounded for all k, {2} converges to z, and fig41,;
tends to zero. Hence, the multiplier update /\k+1,[Qj] = ;\k+1,[Qj] will always be performed,
for k sufficiently large and for each j € Z. The convergence of A (] to A, [g;) now results
from (4.43). O

We now consider the behaviour of the maximum penalty parameter a; and show the
important result that, under stated assumptions, it is bounded away from zero for both
Algorithms 3.1 and 3.2. The proof of this result is inspired by the technique developed
by Conn et al. (1991). When the single penalty parameter definition of the augmented
Lagrangian (1.4) is used (or, equivalently, when ¢ = 1), one then avoids a steadily in-
creasing ill-conditioning of the Hessian of the augmented Lagrangian. Note that this
ill-conditioning is also avoided when ¢ > 1, as we show below in Theorem 4.8.
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Theorem 4.7 Assume AS1 and AS2 hold and suppose that the sequence of iterates {xy}
of Algorithm 3.1 or 3.2 converges to a single limit point x, with corresponding Lagrange
multipliers A, at which AS5 and AS6 hold. Assume furthermore that (4.43) holds for
sufficiently large k when Algorithm 3.2 is used. Then there is a constant amin € (0,1)
such that oy > aumin for all k.

Proof.  Suppose otherwise that aj tends to zero (that is P = (), and hence that
i, tends to zero for each ¢ between 1 and q. Then Step 3b of either algorithm must
be executed infinitely often for each subset. We aim to obtain a contradiction to this
statement by showing that Step 3a is always executed for each subset for sufficiently large
k. We note that our assumptions are sufficient to apply Theorem 3.1. Furthermore, we
may apply Lemma 4.4 (or Corollary 4.5) to the complete sequence of iterates generated
by either algorithm.

First recall that

ap<a<l (4.48)

for all £ > k9, where & and ks are those of Lemma 4.4 and Corollary 4.5. Note that
wr < ay (4.49)

for all k& > ko. This follows by definition if (3.13) is executed. Otherwise it is a consequence
of the fact that oy is unchanged while wy, is reduced, when (3.14) occurs. Let k5 be the

smallest integer such that
1-ay 1

a S 4.50
k q(2 + 57) ( )
1
a, P < min |—, ————— (4.51)
Ko1 q(2K21 + K7)
where k21 = max(1, k7 + Kg), and, if Algorithm 3.2 is used,
Aet1[Q] = Ak+1Ql] (4.52)

for all t = 1,...,¢, which is possible because of Lemma 4.6. Note that (4.48) and (4.51)
imply that

o <~ (4.53)
for all k¥ > max(kq, k5). Furthermore, let kg be such that
Ae — Al <1 (4.54)

for all £ > ke, which is possible because of Lemma 4.6 for either algorithm. Now define
k7 = max(kz, ks, ks), let I be the set {k | (3.13) is executed at iteration k¥ — 1 and k > k7}
and let kg be the smallest element of I'. By the assumption that «; tends to zero, I has
an infinite number of elements.

By definition of T', for iteration kg, wy, = oy, and 7, = az(;’. Then inequality (4.12)
gives that, for each t,

lle(zk )|
q(ary + 80| Ary — Al + qrrwiy ok
2q0ukq || Aky — Al + qrrwi, ok

(from (4.53))
qag, (2 + Kroy,) (from (4.54))
(from (4.48))
(from (4.50))

lle(zr, )1yl

(4.55)

q(2 + k7)o, from
az; = Tko

A VAN VAR VANRVARI VAN

from
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As a consequence of this inequality, Step 3a of Algorithm 3.1 or Algorithm 3.2 will be

executed for each t with Ay 110, = /\(iEkO,Akm[Qt] ko t)[@:] OT Ako+1,[Q:] = /\k0+1 (0]
respectively. Inequality (4.11)/(4.44) together with (4.54) guarantee that

||’\k0+1 - ’\*H < KWk + K8ak0||’\ko - ’\*H < K21 (4'56)

We shall now make use of an inductive proof. Assume that, for each #, Step 3a of either
algorithm is executed for iterations ko + 7, (0 < 7 < j), and that

Mkopigr = Aull < maragd ™" (4.57)

Inequalities (4.55) and (4.56) show that this is true for j = 0. We aim to show that the

same is true for ¢ = j+ 1. Our assumption that Step 3a is executed gives that, for iteration

n(]+1)+an

— odt2
ko+J+ 1, Qggtjpr = Qkgs Wkotj1 = Q> and Moy = ap) Then, inequality

(4.12) yields that, for each ¢,

le(@rotir)ieill < lle(@rotss)l]
< glakgrjtr 807 i) Mko i1 — Al
TqRTWho 4541 Qo +j+1

< 2qak0+j+1||’\ko+j+1 — Al 4 gRrwko 441080441 (from (4.53))
< 2qm21akoak T ¥ qrr a]+ (from (4.57))
< 2qRg1 a0y, T4 g aaﬁﬁn(ﬂ—l”

< q(2ko1 + .%7)ak0 ﬁ"a,fg(]ﬂ)—l_a" (from (4.53))

1
< AU = (from (4.51)).
(4.58)

Hence Step 3a of either algorithm will again be executed for each ¢t with

Mo +542[00] = MThoti+1 Mg+ 41,[Q0]5 Mko+i+1.6)[Q] OF Motjt2[Q] = Moti+2,[Qi]>
respectively. Inequality (4.11)/(4.44) then implies that

[Akoivz = Aull - < K7wk0+j+1 + Rsko il kgt — Al

< H7ak ® + Kgkaro, ak-l-ﬁw (from (4.57))

< ke allcz—ﬁn(]+ ) + Keka1 ok, ak+ﬂw

= (57 + K8f§21ak ﬁ'”) ]{::—ﬁn(]+1) (459)
< (k7 + Rs)ag O (from (4.51))

< K allco+ﬁn(3+1)

which establishes (4.57) for ¢ = j + 1. Thus Step 3a of the appropriate algorithm is
executed for each t = 1,...,q for all iterations & > kg. But this implies that T is finite,
which contradicts the assumption that Step 3b is executed infinitely often for each subset.
Hence the theorem is proved. O

We now prove the stronger result that all penalty parameters stay bounded away from
zZero.

Theorem 4.8 Assume AS1 and AS2 hold and suppose that the sequence of iterates {xy }
of Algorithm 3.1 or 3.2 converges to a single limit point x, with corresponding Lagrange
multipliers ., at which AS5 and AS6 hold. Assume furthermore that (4.43) holds for
sufficiently large k when Algorithm 3.2 is used. Then there is a constant u > 0 such that
Mij > i for allk and all j =1,...,q.
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Proof.  Assume otherwise that Z is not empty, and hence that pj z converges to
zero. Then Step 3b of either algorithm must be executed infinitely often for t € Z. We
alm to obtain a contradiction to this statement by showing that, for any t € Z, Step 3a is
always executed for sufficiently large k. We may deduce from Theorem 4.7 that aj attains
its minimum value oy, € (0,1) at iteration kpax, say. Hence, P # (). Furthermore, we
may apply Lemma 4.4 (or Corollary 4.5) to the complete sequence of iterates generated
by either algorithm. Let kg > kpax be the smallest integer for which

Bn.+5 — Qs
, , —n 2 (4.60)
2h7 + kg q(2k7 + Ks)

1 «

ME,z < min |a

for all k > ks > kg, where @ and k2 are those of Lemma 4.4 and Corollary 4.5, and where
€= %(1 — fy)- Note that afn”i:é > Qmin as [, < 1.

Assume first that Algorithm 3.1 is used and consider the ¢-th subset, for some t € Z.
At iteration k > kg, this algorithm ensures that

(Ae = MA@l (4.61)

if Step 3b is executed for the ¢-th subset, while (4.13) ensures that

Pt 1.t (Akt1 — A0l < Qmintteg

Pl (Argr — MA@l < pre(Krmr + Kspr) (4.62)
if Step 3a is executed for the same subset. Summing on all t € Z, and defining

Zra = At € Z|Step 3ais executed for the ¢-th subset at iteration k}

Zip {t € Z | Step 3b is executed for the ¢-th subset at iteration k}, (4.63)

we obtain that

(AN

amin Y fkall(M = Aol + D k(K + Kspr)
tEZk,b tEZk,a (4.64:)

< (Omin + K8q/k,2 )Pk + K7q1k, 2Tk

Pk+1

For the purpose of obtaining a contradiction, assume now that

1
Pk 2 STk (4.65)

for all k > kg. Then (4.64) gives that, for all k£ > ks,

k
%ffumm+@wmz+MWMzgaﬁT<l (4.66)

because of (4.60). Hence we obtain from (4.66) that

k—ks+1 +
Prs1 < proaliy It (4.67)
Therefore, since pksal(fi;kSH)ﬁ tends to zero, we obtain that
L o+ (ks—kmax k—ks+1 L apt(k—kmax+1 1
prer < Zapr (s Pong (et = §aﬁn( = T+ (4.68)

for all sufficiently large k, where the last equality results from the definition of kpax. But
this contradicts (4.65), which implies that (4.65) does not hold for all k sufficiently large.
As a consequence, there exists a subsequence XC such that

1
Pr < 57]}C (4.69)

18



for all k£ € K. Consider such a k. Then, using (4.64) and (4.69), we deduce that

1 1 gope 1

P+t < 5k(Cmin + stz + 2qK74k, ) S S0min Tk S ST+, (4.70)
where we have used (4.60) to obtain the second inequality. As a consequence, k+ 1 € K
and (4.69) holds for all k£ sufficiently large. Returning to subset ¢ € Z, we now obtain
from (4.14) and (4.69) that

1
le(@k )]l < me(Kriik,z + 5(1 + kg, z)) < 1k, (4.71)

for all k sufficiently large, because of (4.60). Hence Step 3a of either algorithm is executed
for the subset ¢t and for all sufficiently large k£, which implies that ¢t does not belong to Z.
Therefore Z is empty and the proof of the theorem is completed as far as Algorithm 3.1
is concerned.

The reasoning is similar for Algorithm 3.2. If we consider the ¢-th subset, for t € Z,
we see that, because of (4.45) and Lemma 4.6, one has that

Pt el (Argr — Aol < pre(Feme + Kepr) (4.72)

for all k sufficiently large. Summing over all the subsets in Z, dividing by p;, and assuming
that (4.65) holds, one then obtains, for all £ > kg, that

Pk+1
Pk

< pik,2(2¢K7 + gks) < afi"jf <1 (4.73)

where the second inequality holds because of (4.60). As above we may therefore deduce
a contradiction with (4.65) and obtain (4.69) for a subsequence K. If we now consider a
k € K, we obtain, analogously to (4.70), that

1 g4e 1
Pry1 < pk,z(qR7m + qRgpr) < Eﬁkafﬁné < STkl (4.74)

where we used (4.72), the definitions of pg4; and py z, (4.69) and (4.60). Hence k+1 € K
and the rest of the proof follows as for Algorithm 3.1 O

Note, in particular, that if Algorithm 3.2 is used with ;\k+1 chosen as either the first-
order or least-squares multiplier estimates, the penalty parameters py, ; will stay bounded
away from zero. This follows directly from Theorem 4.8 because each of the inequalities
(3.27) and (3.28) imply (4.43).

We also note that Corollary 4.3 ensures that the least-squares multiplier estimates
(2.9) are implementable when the non-degeneracy condition (4.6) holds. By this we mean
that the estimates

Me = —((T(2r) Z0)0) Z{ () (4.75)
are identical to those defined in (2.9) for all k sufficiently large, and, unlike (2.9), are well

defined when z, is unknown.
As in Conn et al. (1991), we examine the rate of convergence of our algorithms.

Theorem 4.9 Under the assumptions of Theorem 4.8, the iterates xy, the Lagrange mul-

tipliers Ay of Algorithm 3.1 and any M\ satisfying (4.43) for Algorithm 3.2 are at least
R-linearly convergent with R-factor at most aﬁﬁn, where i, s the smallest value of the
mazimum penalty parameter generated by the algorithm in question.

19



Proof. The proof parallels that of Lemma 4.4. First, Theorem 4.7 shows that the
maximum penalty parameter ai stays bounded away from zero, and thus remains fixed
at some value agi, > 0, for k > k.. For all subsequent iterations,

Wkl = Qminwk and 7mpyq = aﬁﬁnnk (4.76)

hold. Moreover, Theorem 4.8 implies that, for all 7 = 1,...,q, (3.7)/(3.15) hold for all
k > kg > kmax, say. Hence and because of (4.3), the bound on the right-hand side of (4.34)
may be replaced by kigwr + ¢, and thus

12T 61| < M[r1swr + g + 513 Z7 62)|* + K14]| Z7 63 ||wr + K1swi]. (4.77)

Therefore, if k is sufficiently large that

< 4.78
Wk = 23([%314 ( )
and
ZT8 < 4.79
1278 < gy (4.79)
inequalities (4.77)—(4.79) can be rearranged to yield
|27 63| < 4M (Kgowr + a), (4.80)
where K22 = K15 + K16. But then (4.28) gives that
10k]] < Kaszwr + Kaamik (4.81)

where K93 = K4 +4MKgg and Koy = 4Mq. As 3, < 1 and omin < 1, (4.76) and (4.81) show
that z converges to z, at least R-linearly, with R-factor ai"in. Inequalities (3.27)/(4.43)
and (4.81) then guarantee the same property for \; and Ap. O

To conclude this section, we note that the conclusions of Theorems 4.7, 4.8 and 4.9
require that the complete sequence of iterates converges to a unique limit point. This
assumption cannot be relaxed. The counterexample presented by Conn et al. (1991)
(where the linear inequality constraints are simple bound constraints on the problem’s
variables) shows that the sequence of penalty parameters may indeed converge to zero, if
there is more than a single limit point.

5 Second order conditions

If we further strengthen the stopping test for the inner iteration beyond (3.5) to include
second-order conditions, we can then guarantee that our algorithms converge to an isolated
local solution. More specifically, we require the following additional assumption.

AST: Suppose that zy satisfies (3.5), converges to z, for k € K, such that Z, has a rank
strictly greater than m. Then, if Z is defined as in AS6, we assume that Z7V,, &7
is uniformly positive definite (that is, its smallest eigenvalue is uniformly bounded
away from zero) for all k € K sufficiently large.

We can then prove the following result.
Theorem 5.1 Under assumptions AS1-AS3, AS5-AS7, the iterates x, k € I, generated

by either Algorithm 3.1 or 3.2 converge to an isolated local solution of (1.1)-(1.3).
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Proof. By definition of &,

q
- 1
Vie®r = H (g, M) + Z %Jgj($k)TJQj($k)a (5.1)

]:1 k’]

where Jg,(z) is the Jacobian of ¢(z);g,). Note that the rank of Z is at least that of Z..
AST7 then implies that there exists a nonzero vector s such that

J(z)Zs =0 (5-2)

and hence
Jo;(zx)Zs =0 (5.3)

for each j. For any such vector, AS7 further implies that
sTZTN po®rZs > Kos)|s|| (5.4)
for some k95 > 0, which in turn gives that
sTZVH (2, M) Zs > Kas|s||%, (5.5)

because of (5.1) and (5.3). By continuity of H as 23 and A approach their limits, this
ensures that
sTZTH (24, M) Zs > Kos)|s|)? (5.6)

for all nonzero s satisfying
J(z.)Zs =0, (5.7)

which implies that z, is an isolated local solution of (1.1)-(1.3) (see, for instance, Avriel
(1976), Thm. 3.11). O

If we assume that the inner iteration stopping test is tightened so that V,,®p is
required to be uniformly positive definite in the nullspace of the dominant constraints, and
if we assume that the non-degeneracy condition (4.6) holds, then Corollary 4.3 ensures
that Zy = Z = Z, for sufficiently large & and Theorem 5.1 holds. A weaker version of
this result also holds, where ounly positive semi-definiteness of the augmented Lagrangian’s
Hessian is required, yielding then that z, is a (possibly not isolated) minimizer of the
problem.

6 Conclusion

We have considered two augmented Lagrangian algorithms for constrained nonlinear op-
timization, where the linear constraints present in the problem are handled directly and
where multiple penalty parameters are allowed. These algorithms have the advantage
that efficient techniques for handling linear constraints may be used at the inner iteration
level, and also that the sparsity pattern of the Hessian of the augmented Lagrangian is
independent of that of the linear constraints. The local convergence results available for
the specific case where linear constraints reduce to simple bounds have been extended to
the more general and useful context where any form of linear constraint is permitted.

We finally note that the theory presented is directly relevant to practical computation,
as the inner iteration stopping rule (3.5) covers the type of optimality tests used in available
packages for linearly constrained problems. This means that these packages can therefore
be applied for obtaining an (approximate) solution of the subproblem, which constitues a
realistic and attractive algorithmic development.
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