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Abstract

We consider the global convergence properties of a class of augmented Lagrangian
methods for solving nonlinear programming problems. In the proposed method, lin-
ear constraints are treated separately from more general constraints. Thus only the
latter are combined with the objective function in an augmented Lagrangian. The
subproblem then consists of (approximately) minimizing this augmented Lagrangian
subject to the linear constraints. In this paper, we prove the global convergence of
the sequence of iterates generated by this technique to a first-order stationary point of
the original problem. We consider various stopping rules for the iterative solution of
the subproblem, including practical tests used in several existing packages for linearly
constrained optimization. We also extend our results to the case where the augmented
Lagrangian’s definition involves several distinct penalty parameters.

1 Introduction
In this paper, we consider the problem of finding a local minimizer of the function
f(=), (1.1)
where z is required to satisfy the general equality constraints
c(z)=0, 1<i<m (1.2)
and the linear inequality constraints
Az —b>0. (1.3)

Here f and ¢; map R™ into R, A is a p-by-n matrix and b € RP.

A well known technique for solving problem (1.1)—(1.3) is to minimize a suitable se-
quence of augmented Lagrangian functions. If we only consider the problem (1.1)-(1.2),
these functions are defined by

Bz, ) = f(z)+ i Neia) + 5 i ey (14)
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where the components A; of the vector A are known as Lagrange multiplier estimates and
where o is known as the penalty parameter (see, for instance, Hestenes (1969), Powell
(1969) and Bertsekas (1982)) . The question then arises how to deal with the additional
linear inequality constraints (1.3). The case where A4 is the identity matrix (that is when
(1.3) specifies bounds on the variables) has been considered by Conn et al. (1991). They
propose keeping these constraints explicitly outside the augmented Lagrangian formu-
lation, handling them directly at the level of the augmented Lagrangian minimization.
That is, a sequence of optimization problems, in which (1.4) is approximately minimized
within the region defined by the simple bounds, is attempted. In this approach all linear
inequalities more general than bound constraints are incorporated in the augmented La-
grangian function. This strategy has been implemented and successfully applied within
the LANCELOT package for large-scale nonlinear optimization (see Conn et al. (1992)).
However, such a method may be inefficient when linear constraints are present as there are
a number of effective techniques specifically designed to handle such constraints directly
(see Arioli et al. (1993), Forsgren and Murray (1993) or Lustig et al. (1989), for instance).
This is especially noticeable for large-scale problems. The purpose of the present paper is
therefore to define and analyze an algorithm where the constraints (1.3) are kept outside
the augmented Lagrangian and handled at the level of the subproblem minimization.

Our proposal extends the method of Conn et al. (1991) in that not only bounds but
general linear inequalities are treated separately. Fletcher (1987, page 295) remarks on
the potential advantages of this strategy. We believe this is important because it provides
considerable additional algorithmic flexibility to account for non-uniform changes in the
behaviour of the general constraints. This can be helpful for instance when the degree of
nonlinearity of (sets of ) these constraints is substantially different.

Note that our formulation (1.3) allows us to specify linear equality constraints as two
inequalities of opposite sign. Alternately, one can apply the theory presented below in the
affine subspace of points feasible for the linear equality constraints, provided all iterates
satisfy these equations. As a consequence, the augmented Lagrangian function need not
contain any purely linear constraint, which means that the sparsity of its Hessian matrix
is unaffected by these constraints.

The paper is organized as follows. In Section 2, we introduce our basic assumptions on
the problem and the necessary terminology. Section 3 presents the proposed algorithms,
while their global convergence analysis is developed in Section 4. Section 5 proposes
alternatives to the criticality measure used in this analysis. We extend, in Section 6, the
framework analyzed in Section 4 to cover the case where different penalty parameters
are used for disjoint general equality constraints subsets. Finally, some conclusions and
perspectives are outlined in Section 7.

2 The problem and related terminology

We consider the problem stated in (1.1)-(1.3) and make the following assumptions.

AS1: The region B = {z | Az — b > 0} is nonempty.

AS2: The functions f(z) and ¢;(z) are twice continuously differentiable for all & € B.
Assumption AS1 is clearly necessary for the problem to make sense. We note that it

does not prevent B from being unbounded.
We now introduce the notation that will be used throughout the paper.



Let g(z) denote the gradient V,f(z) of f(z) and H(z) denote its Hessian matrix
Vo f(z). Let J(z) denote the m-by-n Jacobian of ¢(z), where

e(2) = [r(2), - can(@)]7 (2.1)

Thus

J(2)T = [Vey(z),. .., Vem(2)]. (2.2)
Let H;(z) denote the Hessian matrix V,,c;(z) of ¢;(2). Finally, let ¢‘(z,)\) and H(z,\)
denote the gradient, V,{(z,\), and Hessian matrix, V. ¢(z, A), of the Lagrangian function

Uz, \) = f(a)+ i_”: Aici(z). (2.3)

We note that ¢(z,A) is the Lagrangian with respect to the ¢; constraints only. If one
defines first-order Lagrange multiplier estimates

Mo, A ) E A+ e(2)/n, (2.4)

one can verify the identity

Vo®(z, A\ )= Vaf(z)+ X AiVeci(z) + % Yo ci(@)Vaei(x)

= g%z, Mz, A\, ). (2.5)

Now suppose that {zx € B} and {Ax} are infinite sequences of n-vectors and m-vectors,
respectively, and that {u;} is an infinite sequence of positive scalars. For any function
F, we shall use the notation that Fj denotes F evaluated with arguments z, Ap or uy as
appropriate. So, for instance, using the identity (2.5), we have

Ve®r = Vo®(z, Ay i) = ¢ (21, A1), (2.6)

where we have written
Ak = ATk, Ak, Lok )- (2.7)
Let z satisfy (1.3). We then define the criticality measure

CM1:
C mingegr  Vo®(z, A, p1)7d],
subject to A(z +d)—b >0, (2.8)

1] <1,

o(z, A\, 1)

representing the magnitude of the maximum decrease of the linearized model of the aug-
mented Lagrangian function achievable on the intersection of the domain defined by the
linear inequality constraints (1.3) with a ball of radius one centered at z. Here and below,
||| denotes the {3-norm or the induced operator norm. The algorithms we are about
to develop construct iterates which force o = o(zg, Ak, ik ) to zero as k increases. The
measure (2.8) was previously introduced by Conn et al. (1993a).

Let {z1},k € K, be a convergent subsequence with limit point z.. We then denote
by A, the matrix whose rows are those of A corresponding to active constraints at z,.
Furthermore, we choose Z, to be a matrix whose columns form an orthonormal basis of
the nullspace of A, that is

A Z,=0 and ZTZ, =1 (2.9)



We define the least-squares Lagrange multiplier estimates (corresponding to A.)

def

M) &~ (I(2) 2. 20 g(x) (2.10)

at all points where the right generalized inverse
(J(2)Z.)*" = 28 1(2)" (I (2) 2.2 T (2)") ! (2.11)

of J(z)Z, is well defined. We note that A\(z) is differentiable; for completeness the deriva-
tive is given in the following lemma.

Lemma 2.1 Suppose that AS2 holds. If J(2)Z.ZX J(z)T is nonsingular, () is differ-
entiable and its derivative is given by

Vad(z) = —((J(2)2)") Z B (2, Mx)) = (J(2)Z. 2] (2)") ' B(z) (2.12)
where the ith row of R(z) is (ZLg(z) + ZT J(2)T\(2))T ZT H,(=).
Proof. The result follows by observing that (2.10) may be rewritten as
r(z) — ZLJ(2)'Nz) = 2T g(2) and J(z)Zor(z) =0 (2.13)

for some vector r(z). Differentiating (2.13) and eliminating the derivative of r(z) from
the resulting equations gives the required result. O

We stress that, as stated, the Lagrange multiplier estimate (2.10) is not directly cal-
culable as it requires an a priori knowledge of z,. It is merely introduced as an analytical
device.

We are now in position to describe more precisely the algorithms that we propose to
use.

3 Statement of the algorithms

In order to solve the problem (1.1)-(1.3), we consider the following algorithmic models.
Both models depend on an infinite sequence of positive numbers {wy }32, tending to zero.

Algorithm 3.1

Step 0 [Initialization]. An initial vector of Lagrange multiplier estimates Ag is given.
The positive constants ps < 1, 7 < 1, we € 1, 7, € 1, ), and 3, are specified. Set
fto = fis, Mo = pig", and k = 0.

Step 1 [Inner iteration]. Find z; € B such that
o < Wg. (3.1)

It
leCzi)ll < 7, (3-2)

execute Step 2. Otherwise, execute Step 3.

Step 2 [Test for convergence and update Lagrange multiplier estimates|. If o} <
wy and ||e(z)|| < 7«, stop. Otherwise, set

AI<?-|-1 = X(xk7Ak’l'Lk)7
Hkt1 = Mk ; (3.3)
Met1 = MkHghys

increment k£ by one and go to Step 1.



Step 3 [Reduce the penalty parameter|. Set

Akt1 = Ak,

Pk+1 = THk, (3.4)
a

Mk+1 = Mkj_la

increment k by one and go to Step 1.

Algorithm 3.2

Step 0 [Initialization]. An initial vector of Lagrange multiplier estimates, Ao, is given.
The nonnegative constant o, and the positive constants p, < 1, 7 < 1, v < 1,
we € 1, m« € 1, and 3, are specified. Set pg = s, 70 = jty", and k = 0.

Step 1 [Inner iteration]. Find z; € B such that

or < Wg. (3.5)

Compute a new vector of Lagrange multiplier estimates ;\k+1- If

[leCzi)ll < 7, (3.6)

execute Step 2. Otherwise, execute Step 3.

Step 2 [Test for convergence and update Lagrange multiplier estimates]|. If o} <
wy and ||e(z)|| < 7«, stop. Otherwise, set

HEk+1 = Mkl A
Ak A [ Akl < gy

A — + + = Me41o

k1 { Ak otherwise, (3.7)
B

Mhet1 = Tyt

increment k by one and go to Step 1.

Step 3 [Reduce the penalty parameter and update Lagrange multiplier estimates].

Set
He+1 = THg,
Akgr 1 [[Argall < g
A — + +11 = ME+10 3.8
k1 { Ak otherwise, (3.8)
Tk+1 = Mz_r}]_17

increment k£ by one and go to Step 1.

As wy, tends to zero, the inner iteration of Step 1 may thus be interpreted as the
(increasingly accurate) minimization of the augmented Lagrangian function (1.4) subject
to the linear inequality constraints (1.3). It is important to note that the algorithms
considered here and those of Conn et al. (1991) are very similar: they essentially differ in
the choice of the criticality test in (3.1) and (3.5) and in the manner in which wy tends to
zZero.

The motivation of both algorithms is quite simple and similar to that presented by
Conn et al. (1991). In the worst case, global convergence is ensured by driving the penalty
parameter to zero, in which case the algorithms essentially reduce to the quadratic penalty
function method (see, for example, Gould (1989)). The tests (3.2) and (3.6) are designed



to allow the multiplier updates of Step 2 to take over in the neighbourhood of a stationary
point.

The algorithms differ, as in Conn et al. (1991), by their use of multiplier updates.
Algorithm 3.1 is specifically designed for the first-order estimate (2.4), a formula with
potential advantages for large-scale computations. Algorithm 3.2 allows a more flexible
choice of the multipliers, but requires that some control is enforced to prevent their growth
at an unacceptably fast rate. It covers, among others, the choice of the least-squares
estimates A\(z) as defined in (2.10).

The restriction gy < 1 is imposed in order to simplify the exposition. In a more
practical setting, it may be ignored provided one defines a quantity aj by

ay = min(7s, ix), (3.9)

for all k£ and for some constant v, € (0,1). This quantity then plays the role of the penalty
parameter in the update to 7. Algorithms 3.1 and 3.2 may be extended in other ways.
For instance, one may replace the definition of 7y and the third equation in (3.4)/(3.8) by

Mo = Nsg” and 41 = nsopy, (3.10)

for some 7, > 0, where we have used the quantity aj introduced above. Finally, the
acceptance test for Ag4q in (3.7) and (3.8) may be replaced by

el < il (3.11)

for some v > 0. Nomne of these extensions alter the results of the convergence theory
developed below.

As noted above, the definition of o is identical to that of the criticality measure
used by Conn et al. (1993a) in their algorithm for the solution of nonlinear optimization
problems with convex constraints. As the iterates of this algorithm always stay feasible,
this measure is well defined. Hence we can use this latter algorithm to solve the subproblem
of Step 1 in both Algorithms 3.1 and 3.2.

The proposed algorithms use a number of parameters. The values used in the LANCELOT
package in a similar context are a,, = pts = 7 = 7, = 0.1, 3, = 0.9 (relation (3.10) is also
used with 77, = 0.12589, ensuring that 79 = 0.01). The values v = 0.9 and v = 1 also seem
suitable. The parameters w, and 7, specify the final accuracy requested by the user.

4 Global convergence analysis

We now proceed to show that both algorithms are globally convergent under the following
assumptions.

AS3: The iterates {z}} considered lie within a closed, bounded domain 2.

AS4: The matrix J(z.)Z. has column rank no smaller than m at any limit point, z,, of
the sequence {zy} considered in this paper.

Assumption AS4 guarantees that the dimension of the nullspace of A is large enough to
provide the number of degrees of freedom that are necessary for satisfying the nonlinear
constraints, whose gradients (projected onto this nullspace) are assumed to be linearly
independent at every limit point of the sequence of iterates. This assumption is the direct
generalization of AS3 used by Conn et al. (1991).

We shall analyse the convergence of the algorithms of Section 3 in the case where the
convergence tolerances w, and 7, are both zero. We require the following pair of lemmas
in the proof of global convergence of our algorithms. These results show that the Lagrange
multiplier estimates generated by either algorithm cannot behave too badly.



Lemma 4.1 [Conn et al. (1991), Lemma 4.1 | Suppose that j converges to zero as k
increases when Algorithm 3.1 is executed. Then the product jux||Ax|| converges to zero.

Lemma 4.2 [Conn et al. (1991), Lemma 4.2 | Suppose that j converges to zero as k
increases when Algorithm 3.2 is executed. Then the product jux||Ax|| converges to zero.

Both these lemmas are valid in our context because their proofs do not involve the
differences between the algorithms of Conn et al. (1991) and those described above, namely
the inner iteration termination criteria, (3.1) and (3.5), and the exact manner in which
wy tends to zero.

We also need the following lemma, proving that the reduced gradient of the augmented
Lagrangian may not be arbitrarily large when oy is not.

Lemma 4.3 Let {z},k € K, be a sequence which converges to the point x, and suppose
that o < wi, where the wy are positive scalar parameters. Then, there is a positive
constant k1 and an integer kg such that

12V ai]| < rrwx (4.1)
for allk > ko, (k € K).
Proof. The result obviously holds if || ZIV,®;|| = 0. Otherwise, we define the set
I(2) ¥ ie {1,...,p} | a¥2 — b; > 0} (4.2)

where a] defines the i-th row of the matrix A and b; the i-th component of the vector b.
Considering the continuous function /3(-) defined by

Blz) % min {oTz - b}, (4.3)
1€Z(zx)

we have that [, def B(z.) is strictly positive. This implies the inclusion
I(z.) C I(xg) (4.4)

for all £ € K large enough. Indeed, this inclusion immediately follows if Z(z.) is empty.
Otherwise, suppose by contradiction that there exists ¢ € Z(z,) such that ¢ € Z(zy). We
then have the following inequalities

0< e < alTx* —b;

= alz. — b, — (alz - b;)

= af (. — )

< laill|lzs — 2]

S 6”:6* - $k||,

where i

6= || >0 4.5

ieng;i)llazll ; (4.5)

which contradicts the convergence of the sequence {z} to z.. From (4.4), we deduce that

def

B = B(zk) >0 (4.6)

for all k € IC sufficiently large.



We now define the vector

def Z*Zz‘vzq)k

= ¢g— 4.7

where
0 < e = min{1, Gk /é}, (4.8)

which is well defined because of (4.5). We then show that —py is feasible for the mini-
mization problem associated with oy in (2.8), that is,

al(zp —pe) —b; >0 i=1,...,p (4.9)

and
lowll < 1. (4.10)

The last inequality directly follows from the definitions (4.7) and (4.8). We thus prove
(4.9) only. Assume first that ¢ ¢ Z(z.). Then the definition of the matrix Z, yields the
desired inequality, since

T _ N —
@ Tk = k{17,219 ,04]]

al (zg — pr) — b
alT:Uk —b;
0.

vVl

If, on the other hand, ¢ € Z(z,), we then obtain from (4.5), (4.7) and (4.8) that
ai pr < llaillllpe]l = llaillex < B (4.11)
Since i € Z(x«), we also have that
B < alwg — bi. (4.12)

Inequality (4.9) then follows from (4.11) and (4.12). Since —py is a feasible direction for
problem (2.8), using the assumption o} < wy, we deduce that

V@ pr| < op < wy. (4.13)
By definition of px and since the matrix Z, is orthogonal, we also have that
Vo ®7 pi| = ex|| 2TV, 4] (4.14)

Inequality (4.1) then follows directly from (4.13) and (4.14) with k; = 1 when ¢, = 1. If
€x = P/, using the continuity of the function §(-), we obtain from (4.13) and (4.14) that

) 24
121V, & < Ewk < ﬁ_wk

for k € K sufficiently large. Inequality (4.1) thus follows for

k1 % max{1,26/5,}. (4.15)

O

We now examine the behaviour of the sequence {V,®r}. We first recall a result
extracted from the classical perturbation theory of convex optimization problems. This
result is well known and can be found, for instance, on pp.14-17 of Fiacco (1983).



Lemma 4.4 Assume that D is a continuous point-to-set mapping from S C Rt into R
such that the set D(0) is conver and non-empty for each § € S. Assume that the real-
valued function F(y,0) is defined and continuous on the space R" X S and convez in y for
each fized 8. Then, the real-valued function F, defined by

def .
F.(0) = inf F(y,0 4.16
(O it F(0.0) (416)
18 continuous on S.
We now show that, if it converges, the sequence {V,®;} tends to a vector which is a
linear combination of the rows of A, with non-negative coefficients.

Lemma 4.5 Let {z},k € K, be a sequence which converges to the point x. and suppose
that the gradients V@, k € IC, converge to some limit V,®,. Assume furthermore that
o approaches zero as k € IKC increases. Then,

V.8, = AT, (4.17)

for some vector 7, > 0, where A, is the matriz whose rows are those of A corresponding
to active constraints at x,.

Proof. Consider the minimization problem

mingegpn V. 81d,
subject to A(z.+d)—5b>0, (4.18)
1] < 1.

Since the sequences {V,®;} and {zjx} converge to V,®, and z. respectively, we de-
duce from Lemma 4.4 applied to the optimization problem (2.8) (with the choices §7 =
(V. ®T,2T), D) ={d | A(z +d)—b>0, ||d]| <1}, y = d, F(y,0) = V.81 d), and the
convergence of the sequence oy to zero that the optimal value for problem (4.18) is zero.
The vector d = 0 is thus a solution for problem (4.18) and satisfies

V&, = Al'm, — 2¢d = AT, (4.19)

for some vector 7. > 0, which ends the proof. O
The important part of our convergence analysis is the next lemma. It allows us to apply
the theory developed in Conn et al. (1991) to deduce the desired convergence properties.

Lemma 4.6 Suppose that AS1 and AS2 hold. Let {z} € B,k € K, be a sequence satis-
fying AS3 which converges to the point ., for which AS4 holds and let A\, = A(z.), where
A satisfies (2.10). Assume that {\i}, k € K, is any sequence of vectors and that {4},
k € IC, form a nonincreasing sequence of positive scalars. Suppose further that

or < Wk (4.20)

where the wy are positive scalar parameters which converge to zero as k € K increases.
Then

(i) There are positive constants Ky, k3, and an integer ki such that

AR Akey 1) = Al < Bawp + Kllag — 2], (4.21)
[A(zk) = Asl| < mallar — 2.l (4.22)

and
le(@i)l] < mawrpr + prl| Ak = Adll + Kapl[zk — ] (4.23)

forallk > k1, (k € K).
Suppose, in addition, that c(z.) = 0. Then



(i1) z. is a Kuhn-Tucker point (first-order stationary point) for the problem (1.1)-
(1.8), A is the corresponding vector of Lagrange multipliers, and the sequences

{M@ g, Apy tix)} and {\(zy)} converge to A, for k € K;
(i) The gradients V,®;. converge to g*(z.,\.) for k € K.
Proof. As a consequence of AS2-AS4, we have that for £ € K sufficiently large,
(J(zk)Z.)T exists, is bounded and converges to (J(z.)Z.)". Thus, we may write
1((T(21)Z)* )| < Ko (4.24)

for some constant kg > 0. Equations (2.6) and (2.7), the inner iteration termination
criterion (4.20) and Lemma 4.3 give that

121 (g(er) + T(2x) M) < mreon (4.25)

for all k € K large enough, where x; is defined in (4.15). By assumptions AS2, AS3, AS4
and (2.10), A(z) is bounded for all # in a neighbourhood of z.. Thus we may deduce from
(2.10), (4.24) and (4.25) that

Ae = Az)l = [[((J(zx)Z)H) T ZT glar) Ak )
(T (1) Z ) )T (Z] g(x) + (T (21) Z.)T M|
(T (2) Z.) )T | 1w

KWk,

(4.26)

IANINA

where K3 = K1Kg is a positive constant. Moreover, from the integral mean value theorem
and Lemma 2.1 we have that

M) — Az) = /01 VoA(2(s))ds - (2x — 22), (4.27)

where V,A(z) is given by equation (2.12), and where z(s) = zy + s(z. — zx). Now the
terms within the integral sign are bounded for all z sufficiently close to . and hence (4.27)
gives

[A(z1) = Al < rallzr — 24| (4.28)
for all k € IC sufficiently large and for some constant k3 > 0, which is just the inequality
(4.22). We then have that A(zy) converges to .. Combining (4.26) and (4.28) we obtain

Ak = Al < A = Al + M @E) = Al < mawre + Asllzn — 2]l (4.29)

the required inequality (4.21). Then, since by construction wy, tends to zero as k increases,
(4.21) implies that A converges to A, and therefore, from the identity (2.6), V,®x con-
verges to ¢%(«, \s). Furthermore, multiplying (2.4) by jix, we obtain

C(CE}C) = ,uk((;\k - /\*) + ()\* - Ak)) (4.30)
Taking norms of (4.30) and using (4.29) we derive (4.23).
Now suppose that
c(z,) = 0. (4.31)
Lemma 4.5 and the convergence of V,®; to g‘(z., \,) give that
g(z.) + J(:C*)T/\* = Alx, (4.32)

for some vector 7. > 0. This last equation and (4.31) show that z, is a Kuhn-Tucker point
and A. is the corresponding set of Lagrange multipliers. Moreover (4.21) and (4.22) ensure
the convergence of the sequences {A(zg, Ak, itx)} and {A(zx)} to A, for k € K. Hence the
lemma is proved. O

Now that we have the counterpart of Lemma 4.3 in Conn et al. (1991), we can derive
the desired global convergence property of Algorithms 3.1 and 3.2.
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Theorem 4.7 [Conn et al. (1991), Theorem 4.4 | Assume that AS1 and AS2 hold. Let
z, be any limit point of the sequence {xy} generated by Algorithm 3.1 or by Algorithm 3.2
of Section 3 for which AS3 and AS4 hold and let I be the set of indices of an infinite
subsequence of the xp whose limit is x.. Finally, let A\« = A(z.). Then conclusions (i),

(i) and (iii) of Lemma 4.6 hold.

The proof of this theorem is identical to that provided in Conn et al. (1991), and uses
Lemmas 4.1 and 4.2.

5 Alternative criticality measures

In Algorithms 3.1 and 3.2, we used the criticality measure oy in order to define the stopping
criterion of the inner iteration (see (3.1) and (3.5)), partly because it is general and partly
to preserve coherence with the framework presented by Conn et al. (1993a). However,
this quantity might not be easily computed in the course of the numerical method used
to calculate xy, especially when the dimension of the problem is high. It is therefore of
interest to examine other criticality measures that might be easier to calculate. It is the
purpose of this section to analyze such alternative proposals.

The first proposal is based on the identification of the linear constraints that are
“dominant” at z; (even though they might not be active) and on a measure of criticality
for the part of the problem where those dominant constraints are irrelevant. We first define,
for a vector zy satisfying (1.3), the set of dominant constraints at xj as the constraints
whose index is in the set

Dy ={ie{1,...,p}] a?mk —b; < Kawyr }, (5.1)

for some k4 > 0, and where a;fr € R™ is the ¢-th row of the matrix A and b; the corre-
sponding component of the right-hand-side vector b. Denoting by Ap, the submatrix of
A consisting of the row(s) whose index is in Dy, we also define

N ={A] ¢|€e®PH and & <0 (i=1,...,|D|)}, (5.2)

the cone spanned by the outwards normals of the dominant constraints. The associated
polar cone is then

Ti = N2 =cl{vd |v >0 and dTv <0 for all v € N}, (5.3)

where cl{S} denotes the closure of the set S. The cone T} is the tangent cone with respect
to the dominant constraints at zx. Note that Dy might be empty, in which case Ap, is
assumed to be zero, Ny reduces to the origin and 7T} is the full space.

Given the tangent cone Ty, we consider the condition

CM2:
1P, (= V@il < Kswr, (5.4)

for some k5 > 0, where Pg(-) is the projection onto the convex set S. For future refer-
ence, we also define Z; and Y% to be matrices whose columns form orthonormal bases for
null(Ap, ) and span{e; };ep, respectively.

We first show that (5.4) measures criticality in a suitable way, which is compatible
with the theory presented above. This requires the following simple geometric result.
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Lemma 5.1 Assume that all constraints in Dy (as defined by (5.1)) are active at some
point x.. Then
IV (2 — )| < Rewr (5.5)

where Kg 15 some non-negative constant independent of xy.

Proof. If Dy is empty, then Y} is the zero matrix and (5.5) immediately follows.
Assume therefore that Dy # (0. We first select a submatrix Ap, of Ap, that is of full row-
rank and note that the orthogonal projection onto the subspace spanned by the {a;}iep,
is nothing but

VY = AD [Ap,AD, | Ap,. (5.6)

Hence we obtain from the orthogonality of Y%, the bound |Dg| < p, (5.1) and the fact that
all constraints in D}, are active at z,, that

1Y (er =2l < |IAD, [Ap AD, )7 14D, (21 — 2.)l|

N . . 5.7
< 145 [Ap, AD T lprac. (5.7)

But there are only a finite number of nonempty sets Dy, for all possible choices of zj, and
we may thus deduce (5.5) from (5.7) by defining

ko = pramin | A%, [Ap, 45,17l (5.8)

where the minimum is taken on all possible choices of D and lek. a
We use this result in the next theorem.

Theorem 5.2 Assume that xy satisfies the condition (5.4) (with Dy defined by (5.1)) and
that the sequence {zr}, k € K, belongs to B and converges to the limit point .. Then we
have that

121V, @ || < Kswr (5.9)

for all k € K sufficiently large. Furthermore, if the sequence {||V.®||} is bounded, then
(o3 S R7Wp. (5.10)
for some constant k7 > 0 and all k € K sufficiently large.

Proof.  Observe that, for k € I sufficiently large , wy is sufficiently small and zy
sufficiently close to z, to ensure that all the constraints in Dy are active at x,. This
implies that the subspace orthogonal to the normals of the dominant constraints at xy,
Vi say, contains the subspace orthogonal to the normals of the constraints active at z,.
Hence, we deduce that

127V, 80 < |1 ZEVa®il| < || Pr,(~Va®i)]| < R, (5.11)

where we have used the fact that Vi C T} to obtain the second inequality and (5.4) to
deduce the third. This proves (5.9). We now prove (5.10). We obtain from the definition
of oy in (2.8), the Moreau decomposition (see Moreau (1962)) of V,®; and the Cauchy-
Schwarz inequality, that

Ok = IMaAX4(g,4d)—b>0 (—Vz(I)de)
lld]I<1
S maXA(zk+d)_b20 PTk(_vz@k)Td‘l‘ maXA(mk+d)_bZO PNk(_Vl‘@k)Td (5.12)
lld]|I<1 l|ld|<1
< ||PTk(_VI(I)k’)|| + maxden, PNk(_vz(I)k’) da
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where By % {de R |al(zx+d)—b>0 (i € D) and ||d|| < 1}. Defining Y} as above,
we obtain that

Pn, (—Vo®:)Td = [YViY Py, (=V.®)]Td = Py, (-V.8,) V.Y, d. (5.13)

As, for x sufficiently close to z., all the constraints in Dy must be active at z., we have
that N is included in the normal cone at z, and therefore the vector Py, (—V,®;) belongs
to this normal cone. Moreover, since the maximization problem of the last right-hand-side
of (5.12) is a convex program, since z, is feasible for this problem, and since ||z, — zx|| < 1
for £ € K large enough, we thus deduce that d = x, — z; is a global solution of this
program, which yields, using the Cauchy-Schwarz inequality, that

max Py, (=Vo )YV d < || Pr, (= V@)Y (2k — 24)]]- (5.14)
k

We may then apply Lemma 5.1 and the contractive character of the projection onto a
convex set to deduce from (5.13) and (5.14) that

max Py, (= Ve®y)'d < || P (= Va®i)[IVY (26 = 20l < meor [ VaBill.  (5.15)
k

Then substituting (5.4) and this last inequality in the last right-hand-side of (5.12) and
finally using our boundedness assumption on ||V,®||, we obtain (5.10) for

K7 = K5 + ke max{||V,Px| }- (5.16)

O
We now claim that the test (5.4) can be used in Algorithms 3.1 and 3.2 without
modifying the conclusions of the convergence theory developed above.

Theorem 5.3 Assume that AS1 and AS2 hold. Let x, be any limit point of the sequence
{zi} generated by Algorithm 3.1 or by Algorithm 3.2 of Section 3, where the tests (3.1)
and (3.5) are replaced by (5.4). Assume furthermore that AS3 and AS4 hold and let K
be the set of indices of an infinite subsequence of the xj whose limit is x,.. Finally, let

A« = AM@x). Then conclusions (i), (i) and (iii) of Lemma 4.6 hold.

Proof. Consider Algorithm 3.1 first. To prove our result, we successively revisit the
two occurrences of the criticality measure and test (3.1) in the theory presented above.
The first occurrence is in Lemma 4.3, where (3.1) is used to ensure (4.1). But this latter
condition is identical to (5.9), which is obtained when using (5.4), as proved in Theo-
rem 5.2. The second occurrence is in Lemma 4.5. However, the assumptions of this
lemma imply that the sequence {||V,®||} is bounded, and we may thus apply the second
part of Theorem 5.2 to deduce (5.10), which is all we need to prove Lemma 4.5, given that
wy tends to zero. The test (4.20) is only used in Lemma 4.6 in order to apply Lemmas 4.3
and 4.5. Hence we obtain the desired conclusion for the modified version of Algorithm 3.1.
The same arguments hold for the replacement of (3.5) by (5.4) in Algorithm 3.2. O

Having shown that (5.4) can be used in our algorithms instead of (3.1) or (3.5), we
now turn to a specialization of this rule. Given Dy, N, and Ap, as above, we claim that
(3.1) (and (3.5)) can be replaced by the requirement that there exists a set of non-positive
“dominant multipliers” {£;x}ienr, (Mg C Dy, & < 0) such that

CMa3:
||Vz'1)k + AngkH < Rswg, (5.17)
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where £, is the |Dy|-dimensional vector whose i-th component is &;, if ¢ € My or zero
otherwise, and where x5 is a non-negative constant. We prove this claim.

Lemma 5.4 Assume that there ezists a non-positive £ such that (5.17) holds at xy, (with
Dy, defined by (5.1)). Then (5.4) also holds at xy.

Proof. Since the vector A%k & belongs, by construction, to the cone Ny defined in
(5.2), we can immediately deduce from (5.17) that

| Pr, (= Vo)l = || = Vo®r — P, (—Vo®i)|| < || = V@i — AD, &|| < Kswr,  (5.18)

which is the desired inequality. O

Condition (5.17) is interesting for two reasons. Firstly, a set of (possibly approximate)
multipliers is available in many numerical procedures that could be used for performing
the inner iteration and computing a suitable zj; one can then select those corresponding
to the dominant constraints, further restrict this choice to the non-positive ones and
finally check (5.17). Alternatively, suitable multipliers can be computed, for instance by
(approximately) solving the least-squares problem

min V2 ®s + AD, £l (5.19)

and selecting the non-positive components of the resulting vector £, or by (approximately)
solving the constrained least-squares problem

in||V,®, + AL £]|. 5.20
min [|Va®x + Ap, ]| (5.20)

The second interest of (5.17) is to provide in a single condition both a stopping condition on
the inner iteration and a measure of the tolerated “inexactness” in solving the associated
least-squares problem, if this is the procedure chosen to obtain the dominant multipliers.

We may therefore deduce global convergence for our algorithms whenever (5.17) is
used instead of (3.1)/(3.5), as stated in the next theorem.

Theorem 5.5 Assume that AS1 and AS2 hold. Let x, be any limit point of the sequence
{zk} generated by Algorithm 3.1 or by Algorithm 3.2 of Section 3, where the tests (3.1)
and (8.5) are replaced by (5.17). Assume furthermore that AS3 and AS4 hold and let K
be the set of indices of an infinite subsequence of the x whose limit is x,. Finally, let

A« = AM@.). Then conclusions (i), (i) and (iii) of Lemma 4.6 hold.

Condition (5.17) can be further specialized. For instance, one might choose to impose
the familiar “reduced gradient” criterion

CM4:
12(20) T2 ]| < st (5.21)

where Z(zy,) is an orthogonal matrix whose columns span the nullspace of the constraints
active at xj, provided that the multipliers associated with these linear constraints are all
non-positive. In this case, we have that

1Pr, (= Ve @)l < | Pr(eyy (= Vai)l| = 1 Z(22)" VaBill < Kswr, (5.22)

because T'(zy), the tangent cone to the set determined by the linear inequality constraints
active at xp, contains Tx. As a consequence, global convergence is still obtained when
this criterion, implemented by several subroutines for minimizing a (nonlinear) objective
function subject to linear constraints (LSNNO by Toint and Tuyttens (1992), or VEO9, VE14
and VE19 of the Harwell Subroutine Library, for instance), is used as an inner iteration
stopping criterion in Algorithm 3.1 or 3.2.
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Theorem 5.6 Assume that AS1 and AS2 hold. Let x, be any limit point of the sequence
{zk} generated by Algorithm 3.1 or by Algorithm 3.2 of Section 3, where the tests (3.1)
and (3.5) are replaced by (5.21) and the condition that the multipliers associated with the
linear constraints active at xy are all non-positive. Assume furthermore that AS3 and AS4
hold and let IC be the set of indices of an infinite subsequence of the x;, whose limit is x,.
Finally, let A« = M x). Then conclusions (i), (i) and (iii) of Lemma 4.6 hold.

We conclude this section on alternative criticality measures by showing that a strength-
ened version of criterion (3.1) (or (3.5)) implies (5.4) for a convergent algorithm.

Theorem 5.7 Assume that {z}, k € K, is a convergent subsequence of vectors of B such
that
o < wi.?, (5.23)

for each k € IC, where the wy converge to zero as k increases in K. Then the inequality
(5.4) also holds for each k € K sufficiently large.

Proof. We first consider the simple case where p = 0, that is when no linear
inequality is present. In this case, it is easy to check from (2.8) that o = ||V, ®%||. But
we must have that Dy = 0. Thus ox = ||Pr,(—Vz®k)||. We therefore obtain that (5.4)
holds with k5 = 1 and k large enough to ensure that wy < 1.

Assume now that p > 0. The Moreau decomposition of —V,® (see Moreau (1962))
is given by

— V,dy, = Pr,(~Vad;) + P, (—Vae®y). (5.24)

If Pr (—V,®) is zero, then (5.4) obviously holds for any choice of k5 > 0. Assume
therefore that Pr (—V,®;) is nonzero. We now show that x4 + di € B, where we define

def PTk(_vx@k)

d R4Wg
= €
b P (- VL)

. def .
, with ¢ = min [1,—] . (5.25)
|4l

Assume first that ¢ € Dy. Then —a; € Ni and alek > 0 because of the polarity of N and
Ty.. Since x}, € B, we obtain that

al (zy + di) — bi = (alzp — b;) + al dj, > 0. (5.26)
On the other hand, if + € Dy, we have that alek — b; > k4wy, and hence
(alrxk - b))+ alek > Kawk — ||| ||di|| = rawr — €x||ail| > Kawr — Kawr = 0. (5.27)

Gathering (5.26) and (5.27), we obtain that zx + di € B, as desired. Furthermore, since
|ld|| < 1 by definition, we have verified that dy is feasible for the minimization problem
(2.8) associated with the definition of 0. Hence,

o > —V.®,.Tdy
= Pr,(-V,.®)Td + Pn,(—V.2r) T di
= 1P, (=V®)"| || di||
= e Pr,(=V.2)"],

(5.28)

where we have used successively the Moreau decomposition of —V,®, the definition of
dy. and the orthogonality of the terms in the Moreau decomposition. If €, = 1, then (5.23)
and (5.28) imply that

1P7, (= Vo) || < wr? <wp (5.29)
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for k € K sufficiently large. Otherwise, we deduce from (5.28), (5.23) and (5.25) that

Alloo
1P, (~Va®i)T]| < %wk- (5.30)

As a consequence of (5.29) and (5.30), we therefore obtain that (5.4) holds with

]

K5 = max |1,
K4

(5.31)
Combining all cases, we conclude that (5.4) holds with this last value of k5. O

Of course, condition (5.23) implies (3.1) for k large enough, because wy tends to zero.
Theorems 5.2 and 5.7 thus show the strong relationships between (5.9), (5.10) (5.23) and
(5.4).

We finally note that Lemmas 5.1 and 5.4 as well as Theorems 5.2 and 5.7 do not depend
on the actual form of the augmented Lagrangian (1.4), but are valid independently of the
function minimized in the inner iteration. This observation can be useful if alternative
techniques for augmenting the Lagrangian are considered for a merit function.

6 Partitioning the set of general equality constraints

We conclude this paper by a section devoted to an extension of our framework, with the
intention of providing additional algorithmic flexibility. This will enable us to account for
non-uniform changes, perhaps as a result of poor scaling, in the behaviour of (sets of)
general constraints. One could of course scale the equality constraints a priori, or include
suitable scaling matrices in the algorithm, as in Conn et al. (1991). However, the first of
these approaches only provides static scaling, while the scaling matrices in the second are
often difficult to determine, especially in a dynamic manner. In this section, we instead
consider the possibility of assigning different penalty parameters to different groups of
constraints. More precisely, we partition the set of constraints (1.2) into ¢ disjoint subsets
{Q;}]-1, and redefine the augmented Lagrangian as

Bz ) = f2)+ 3 3 | Neilz) + %jc,'(x)z , (6.1)

7=1 iEQj

where ;i is now a g-dimensional vector, whose j-th component is p; > 0, the penalty
parameter associated with subset Q;. The idea is then to update the Lagrange multipliers
or the penalty parameter associated with a subset of the constraints according to the
constraint violation within that subset. Of course, we need to redefine our first-order
multiplier update componentwise as

X(.%, )‘[Qj]vuj)[Qj] = A[Qj] + C(x)[QJ]/M] (] = 17 s 7Q)7 (62)

where wis) denotes the |S|-dimensional subvector of w whose entries are indexed by the
set S. Note that the fundamental relation V,®(z, A, ;1) = g*(z, M, A, it)) is still valid in
our new context.

The possibility of using multiple penalty parameters has been considered by many
authors, including Fletcher (1987, page 292), Powell (1969) and Bertsekas (1982, page
124). Powell’s approach, as described by Fletcher, increases the penalties corresponding
to the constraints that are becoming too slowly feasible, based on the {,,-norm. Thus
it is only when they have changed sufficiently so that they are all within the constraint
violation tolerance that the Lagrange multiplier update is performed. By contrast, we
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would like to update the multipliers of the good constraints (assuming they correspond to
a particular partition — which is likely since that is, partly at least, why the partitions
exist) independently of more badly behaved constraints. In addition, by virtue of using
the £3-norm, we do not give quite the same emphasis to the most violated constraint.

We now reformulate Algorithms 3.1 and 3.2 to distinguish amongst the constraint
subsets. In this reformulation, we denote the vector w at iteration k& by wy and its z-th
component by wy ;. We also use wy, 5] to denote the |S|-dimensional subvector of w; whose
entries are indexed by S. As above, the algorithmic models depend on a infinite sequence
of positive tolerances {wy }3, converging to zero.

Algorithm 6.1

Step O [Initialization]. A partition of the set {1,...,m} into ¢ disjoint subsets {Q; }321
is given, as well as initial vectors of Lagrange multiplier estimates Ag and positive
penalty parameters pg such that

pos <1 (G=1,..0q). (6.3)
The strictly positive constants 7 < 1, w, < 1, 1. € 1, o), and [3,, are specified. Set
ap = max g j, and 79 = ay”. Set k = 0.

J=1,ug
Step 1 [Inner iteration]. Find z; € B such that
o < wg. (6.4)
Step 2 [Test for convergence]. If 0y < w, and ||e(z)|| < 7+, stop.
Step 3 [Disaggregated updates]. For j = 1,...,¢, execute Step 3a if

le(er)ioill < m, (6.5)

or Step 3b otherwise.

Step 3a [Update Lagrange multiplier estimates]. Set

Meio;] = ATk Akfo,] 1k.i)[0;]> (6.6)
Hk+41,5 = Hk,y-

Step 3b [Reduce the penalty parameter]. Set

Merife] = Akl (6.7)
HEk+1,5 = Tk,jMk,j,
where
0<Tk’]‘ <. (6.8)

Step 4 [Aggregated updates]. Define

Q41 = MaX [flg41,5, (6.9)
If
Opq1 < Qg (6.10)
then set
Tyt = Oy, (6.11)
otherwise set
M1 = 77100‘53—1' (6.12)

Increment k by one and go to Step 1.
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Algorithm 6.2

The definition of this algorithm is identical to that of Algorithm 6.1, except that
Step 3 is replaced by the following, for some v € (0,1).

Step 3 [Disaggregated updates]. Compute a new vector of Lagrange multiplier esti-
mates A\g4q. For j = 1,...,¢q, execute Step 3a if

lle(zi)ioll < (6.13)

or Step 3b otherwise.

Step 3a [Update Lagrange multiplier estimates]. Set

\ _ ) Mo i Aol S picdy s
k+1,[Q;] /\k,[Qj] otherwise, (6.14)
Hk+1,5 = Hk,y-

Step 3b [Reduce the penalty parameter]. Set

A o Aegre;) i egrenll < wedy o
+1,[Q;] /\k,[Qj] otherwise, (6.15)
Hk+1,5 = TkjHkj>

where 73 ; satisfies (6.8).

Note that the new Lagrange multiplier estimate ;\k+1 in Algorithm 6.2 is computed
as a single vector, but it could also be computed subset by subset. Observe that the
dependence of 7 ; on k and j introduces additional freedom to the algorithms.

Also note that the quantity a; represents the maximum penalty parameter across all
constraint subsets at iteration k. As for Algorithms 3.1 and 3.2, the restriction (6.3) can
be removed by replacing the definition of ag and (6.9) by

Qo = min <7s’ _max Mo,j) and g4y = min <’Ys’ max Mk+1,j> ; (6.16)

=1,... =1,...

respectively, for some constant 7, € (0,1). The other extensions mentioned for Algo-
rithms 3.1 and 3.2 are also applicable to Algorithms 6.1 and 6.2, provided that (6.10) is
replaced by

max fig41,; < Max [l ;. (6.17)
J=1,..,q9 J=1,..,q9

We now indicate why the convergence results obtained in Section 4 can be extended
to our more general framework.

1. Lemmas 4.1 and 4.2 are reformulated to ensure that, for each j = 1,...,¢, the
product pu ;|| Ax ;|| converges to zero whenever ay tends to zero. The proof of the
second lemma presented by Conn et al. (1991) still holds for each j. However, the
proof of the first lemma must be extended to cover our current needs. We therefore
state and prove the following result.

Lemma 6.1 Suppose that ap converges to zero as k increases when Algorithm 6.1
is ezecuted. Then the product jiy j|| A\ [, 1|l converges to zero for each 1 < j < g.
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Proof. We shall prove the result for the ¢-th subset (1 <t < gq).

As aj, converges to zero, so does py,. Hence Step 3b must be executed infinitely
often for the ¢-th subset. Let K; = {ko, k1, k2, ....} be the set of the indices of the
iterations in which Step 3b is executed.

We consider how the t-th subset of Lagrange multiplier estimates changes between
two successive iterations indexed in the set X';. Firstly note that A\x, 11 [0,] = Ak, [0.]-
At iteration k, + j, for ky, < ky + J < kyy1, we have

2 el@n, 4o,
Meytifed = M) T D Tz[t] (6.18)
=1 v

where the summation is null if j = 1, and
Hhygrt = Bkotjt = Hky+1,t = Thy thk, t- (6.19)

Substituting (6.19) into (6.18), multiplying both sides by jk, 4+, taking norms and
using (6.8), yields

j—1
tkey it Moo 00l < Thtkew Ak oIl + D lle(@r,+0)104 ] (6.20)
=1
and hence
kog1—ky—1
tky it Mot i@l < Tl Mool + DL lle(@r, 4004l (6.21)
=1

Using the fact that (6.5) holds for k, + 1 < k, +1 < kyq1 — 1, we deduce that

Kyq1—ku—1
tiy it Mo tifoall < Toko e oall £ DL ke
oo =1 (6.22)
< Tyl Mg roill + D 41
=1
Now defining
def def ad
8o = iyt Mk, ol and pu =Y g, 4, (6.23)
=1
we obtain that
Hy 45, || Ak, 15001l < 766 + po (6.24)

for all j such that k, < k, + j < kyy1, and, in particular,
bpy1 < Ty + po- (6.25)

We now see from (6.25) and the inequality 7 < 1 that it is impossible for p, to
converge to zero while é, does not. Thus ¢, and hence, from (6.24), ftg, 4 j¢|| A, +5, (0.l
both converge to zero if p, does. To complete the proof it therefore suffices to show
that p, converges to zero as v tends to infinity.

Using (6.8), the maximum penalty parameter must be decreased by at least a factor
T every ¢ updates (6.11) and thus we have that each 7, +; must be bounded by a
quantity of the form (7?ay, )*77% for some indices ¢ and j. Furthermore, at most ¢
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such terms can involve any particular ¢ and j. Therefore, since Tay, < 1, we obtain
that

oo 0o ) ]
po < g Y (Trag, )t

1=0;5=0

(6.26)

IA
L]
6L
=
=}
F

Thus we see that as aj, converges to zero, so does p,, completing the proof. O
2. Lemmas 2.1, 4.3, 4.4 and 4.5 need no modification.

3. The conclusions of Lemma 4.6 are essentially unmodified. Only (4.21),(4.22) and
(4.23) require some reformulation. We now obtain the disaggregate estimates

Ak Ao k) = Aoyl < kawk + kisllax — 24|l (6.27)

[(A(zk) = Mgl < wallzr — 2, (6.28)

and, by using a technique of proof identical to that of Lemma 4.6 for each constraint
subset,

lle(zi)igll < Kawiptr,j + e i ll( Ak — Aol + Kapkjllze — 2[5 (6.29)

forall j=1,...,gand all k > k; (k € K).

4. Finally, Theorem 4.7 still holds, but the proof of Conn et al. (1991) must be adapted
slightly: the only difficulty in the proof being to ensure that ¢(z.) = 0, we must now
repeat the argument for each j = 1,...,¢ (using Lemma 4.6 with (6.29)) to obtain
that c(x*)[gj] = 0 for each j. This relies on the fact that, if any p is bounded
away from zero, so is aj. Furthermore, Lemma 6.1 is used instead of Lemma 4.1.

To summarize, we have proved the following global convergence result.

Theorem 6.2 Assume that AS1 and AS2 hold. Let x. be any limit point of the sequence
{zr} generated by Algorithm 6.1 or by Algorithm 6.2 for which AS3 and AS/ hold and
let IC be the set of indices of an infinite subsequence of the x; whose limit is z,.. Let

A« = AM@x). Then

(1) z. is a Kuhn-Tucker point (first-order stationary point) for the problem (1.1)- (1.3),
A\ is the corresponding vector of Lagrange multipliers, and the sequences {\(zy, Ak, [Q;]» Ik, j)[Qj]}
and {A(zk)[g;1} converge to A, [g,] for k € K and for all j = 1,...,q;

(ii) There are positive constants Ky, kK3, and an integer ki such that (6.27), (6.28) and
(6.29) hold for all k > ky,(k € K);

(i) The gradients V,®; converge to g*(z.,\.) for k € K.

We therefore conclude that the “disaggregate” updating technique described above
does not alter the global convergence properties of our algorithmic framework.
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7 Conclusions and perspectives

We have shown that the philosophy of keeping linear constraints as explicit constraints
in the augmented Lagrangian minimization subproblem (hence avoiding their inclusion in
the augmented Lagrangian function) does not modify the global convergence properties
of the overall minimization algorithm. This strategy allows for explicit handling of linear
constraints for improved efficiency. In particular, it avoids the fill-in caused by linear
constraints in the Hessian of the augmented Lagrangian function. We also analyzed alter-
native stopping criteria for the subproblem, including commonly used practical rules. We
finally observed that global convergence is still guaranteed if the set of general equality
constraints is partitioned into several disjoint groups for which the Lagrange multiplier
estimates and penalty parameter can be updated independently.

Our analysis was formally restricted to the case where the norm used in the last
constraint of (2.8) is the classical {3-norm. This could be considered as a restriction,
since other norms might be more appropriate to measure criticality of the subproblem,
especially when poor scaling and /or ill-conditioning are present. This restriction is however
only made for simplicity of exposition. The reader may indeed verify that we may choose,
at each iteration k, a suitable norm || - || ) in (2.8) and still derive our global convergence
results, provided all the considered norms are uniformly equivalent.

The next step in our development is to consider the asymptotic convergence properties
of the algorithms studied above, including the rate of convergence of their iterates to a
solution and the asymptotic boundedness of the penalty parameter. This step is the object
of the companion paper Conn et al. (1993b).
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