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1 Introduction

In this paper, we consider algorithms for solving general (perhaps, non-convex), constrained, differentiable
optimization problems. We shall distinguish between linear equality constraints and general inequality
constraints. We thus consider the problem

minimize  f(z)
subject to Az =b (1.1)
and c(z) >0,

where f is a real valued function of the variables z € IR", A is an m x n matrix, b is a vector of IR™, ¢(x)
a function from IR" into IR? and the inequalities are meant componentwise. An important instance of this
problem is when c¢(x) = z, in which case the inequality constraints reduce to bound constraints.

At variance with our previous paper for the case ¢(z) = z, (Conn, Gould and Toint, 1999), we shall
assume that we have a strictly feasible starting point zg, i.e., that

There is an zy such that Azg = b and ¢(zg) > 0.

We do this for a number of reasons. In our experience, good primal-dual methods applied to the pure
feasibility (phase-1) problem, when the only general nonlinear constraints are bound constraints, are
usually very effective. Either a point satisfying AS.1 is rapidly determined in this case, or when this is
not so, this is because the feasible region is small and thus the resulting point is close to its optimal
value—of course, AS.1 may not hold, either because there is no feasible point, which will be detected by
the phase-1 algorithm, or the feasible region has no relative interior, in which case it is sometimes possible
to remove one or more offending constraints. More importantly, knowing a strictly feasible point leads
to considerable simplifications over our previous algorithm. Indeed, most of the complications were due
to the need to balance feasibility and objective improvement. Furthermore, by staying on the manifold
As =0, it is easier to ensure that the natural curvature of the problem is reflected in the direction-finding
subproblems.

Besides covering general nonlinear inequality constraints instead of only bounds, this paper differs
from its predecessor in another, significant way. The algorithm considered in our previous paper is of the
linesearch variety. That is, a search direction is computed from the current estimate of the solution, and a
suitable step then taken along this direction with the aim of reducing a merit function. The approach we
consider here is an iterative trust-region method, in which the computation of search direction and step
are combined. While in practice the two approaches often behave very similarly, a trust-region algorithm
combines simplicity with strong convergence properties. In particular, trust-region methods can often be
shown to be convergent to second-order critical points. It is these convergence guarantees that we find
particularly attractive for non-convex problems.

Readers of our previous paper will also notice that we shall make a stronger distinction between the
“outer” iteration, in which the parameters which define the particular merit function used are changed,
and the “inner” iteration, in which a trust-region method is used to approximately minimize the merit
function for a particular choice of the parameters. The distinction we use here makes it easier to distinguish
the convergence of the inner iterates from the overall convergence of the method.

Not surprisingly, given the success of primal-dual interior point methods in linear programming, there
has been considerable interest in extending such approaches to the general nonlinear case. We mention
here some of the more recent work. Because of the increased complexity, details are important. In partic-
ular, the role of the merit function, treatment of indefinite Hessians and the implementation are critical.
Yamashita, Yabe and Tanabe (1997), use a trust region method with exact second derivatives. Equality
constraints are handled via an /; penalty and simple bounds by means of a log-barrier. Inequalities are con-
verted to equalities with slack /surplus variables. They motivate taking a trust region approach by the need
to handle indefinite Lagrangian Hessians. By contrast, Forsgren and Gill (1998) take a linesearch approach
that uses a classical quadratic penalty and log barrier term to handle general equality and inequality con-
straints respectively, but augmented by terms that measure the proximity to the central path. Directions
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of negative curvature are determined via inertia controlling symmetric indefinite factorizations. Bakry,
Tapia, Tsuchiya and Zhang (1996) use a line search framework and handle inequalities with slack/surplus
variables. Their computational results are given with a merit function that is the I; norm of the residual
for the first-order necessary conditions. Because of the tendency of this approach to converge to critical
points that are not minima, Vanderbei and Shanno (1997) prefer using a merit function that handles the
equality constraints as quadratic penalties and the slacks as barrier terms. Their context is also that of
a line search, and indefiniteness is handled by modified Hessians. Gay, Overton and Wright (1998) also
use a line search and handle indefiniteness using modified Hessians. Their merit function is a classical
barrier function with an augmented Lagrangian to handle general equality constraints. In addition they
use a watchdog technique. Finally, Byrd, Hribar and Nocedal (1997) use a sequential quadratic program-
ming trust-region approach and a barrier function. Essentially, inequality constraints are transformed to
equality constraints that are handled explicitly and the slacks are incorporated into the merit function
as log-barrier terms. This problem is solved approximately (using multipliers corresponding to a shifted
(augmented) Lagrangian plus the barrier function) with a merit function corresponding to a threshold on
an [, norm of the residual of the first order optimality conditions. This in turn is solved by means of an
SQP method and the Byrd-Omojokun trust-region approach. Both primal and primal-dual versions are
proposed.

2 Notation and assumptions

2.1 Basic notation and assumptions on the problem

Let P = {z | ¢(x) > 0} be the set of points satisfying the inequality constraints, £ = {x | Az = b} be
the set of points satisfying the linear equality constraints, and so the intersection F LD £ is the set of
feasible points. Also let ri{-} denote the relative interior, which means that ri{P} = {z | ¢(z) > 0}. If we
denote the Euclidean inner product by {-,-) and let e be the vector of all ones, we shall assume that

the functions f(-) and c(-) are twice continuously differentiable in their argument over some
open set containing F,

the Hessian, V, f(z), of f(z), as well as the Jacobian J(x) def Vc(z) and each of the Hessians
Vseci(z) are uniformly bounded in Euclidean norm over F,

the matrix A has full rank, and

the function f(z) — u(e,log(c(x))) is bounded below on F for every u > 0.

Assumptions AS.2 and AS.3 simply ensure that f(z) is well behaved in the region of interest. Since
under AS.1, the constraints Az = b are consistent. AS.4 may be guaranteed by preprocessing the rows of
A to remove redundancies (although we do not pretend that this is necessarily an easy task in practice).
Assumption AS.5 might at first seem strong, but it is intended merely to rule out functions which grow
more slowly at infinity than the log function. For such functions, the logarithmic barrier approach we
consider in this paper is unlikely to succeed as the global minimizer of the barrier function is unbounded.
In practice AS.5 can be expected to rule out few problems of interest.

In what follows, the i-th component of a vector z is denoted by [z];. We denote the diagonal matrix
whose i-th diagonal is the i-th component of the vector ¢(z), ¢;(z) = [¢(z)];, by C(z). The n by n identity
matrix is diag(e) = I, and its i-th column is e;. The vector g will be shorthand for g(zy), where g(x)
denotes the gradient of the objective function at z, V, f(z). We let the columns of the n by n —m matrix
N be an orthonormal basis for the nullspace of A (so AN =0 and NTN = I). Finally, any continuous
function w : IR, — IR, is a said to be a forcing function if w(x) = 0 if and only if u = 0.
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We denote the leftmost and rightmost eigenvalues of the symmetric matrix M by A"[M] and A*[M].
Such a matrix is said to be second-order sufficient (with respect to A) if and only if the reduced matrix
NTMN is positive definite (see, for instance, Gould, 1985). The matrix is second-order necessary if
NTMN is positive semidefinite.

2.2 Norms

Because proper scaling is crucial in our algorithm, we need to consider a number of different norms whose
purpose is to reflect the geometry of the problem. The first is simply the Euclidean 5 norm, which we
shall denote by the symbol || - ||. For this norm, we have the relationship

111 = max|a];| < [l (2.1)

for any vector x. If S is a symmetric positive definite matrix, our second norm is the S norm of z, ||z||s,
for which [|z]|3 = (=, Sz).

It what follows, we shall choose to measure gradients and related quantities in a seminorm induced
by a second-order sufficient iteration-dependent scaling matrix M}, where k is the index of the current
iteration of our algorithm. We define the k-seminorm of a vector g, ||g||jx], by

def
l9llty = (v, 9), (2:2)

() ()=(2)

This is actually a norm if g lies in the nullspace of A, and measures deviations from its range-space. In
particular [|g||;x) = 0 if and only if [[NTg|| = 0. It is easy to show that (2.2) may be expressed as

where y solves the system

gl = INTgll (e sy -1- (2.3)

In addition, because the gradients can be interpreted as linear forms on the space of the problem variables,
it is natural to measure quantities directly involving these variables, such as the size of the trust region, in a

seminorm corresponding to the dual of |-||;] in the nullspace of A. Tt is easy to verify that such a seminorm

. . def . . .
is given by [|s||x = ||N7s||yr,n and is, in fact, a norm in the nullspace of A. As a consequence, for all

v,s € IR™ such that As = 0, i.e. such that s = NNTs, we have that
v, 8)] = {(NT M N)"2 N, (NT MN)ENTs)| < |loll gy l5l], (2.4)

because of the Cauchy-Schwarz inequality. We stress that there is no need for My itself to be positive
definite, merely that N7 M N should be. If U is any symmetric matrix, we also define the reduced matrix

R[U, My,] & (NTM,N)" 2 NTUN(NT M N)~2,
its leftmost eigenvalue \j, [U] = A* [R[U, Mj]] and

def
1Ull¢ey = IRIU, Mi)ll-

We note that, again because of the Cauchy-Schwarz inequality,
(s, Us)| = |{(NT My N)2 NTs, RIU, My](NT M N)ENTs)| < [|U [ gy I5]13 (2.5)

for every s such that As = 0. We also note that the inertia of R[U, My] and R[U,I] = NTUN are the

same. In particular, we have that

11, [U] > 0 is equivalent to A;[U] > 0. (2.6)

We finally write ||v||o def INTv|| = [|[NNTy||, the Euclidean norm of the projection of v onto the nullspace

of A, and observe that [ - ||, is a self-dual norm in this nullspace.
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3 The Algorithm

Our algorithm is basically a sequential minimization of a logarithmic barrier function subject to linear
constraints, i.e. we propose to (approximately) solve

minimize  ¢(x, px)

1
subject to Az = b, (3-1)
where
¢z, i) = f(2) — prle, log((e())), (3.2)
for a sequence of barrier parameters u; > 0, k = 1,2, ..., whose limiting value is zero. An approximate

minimizer of problem (3.1), {zy41}, defines an outer iterate, and the associated adjustment of the barrier
parameter and other tolerances defines the outer iteration. Outer iterations will be indexed by the sub-
script k > 0. Each outer iterate zy41 is computed by using an appropriate inner iteration algorithm to
approximately solve (3.1), with a corresponding sequence of inner iterates {zy, ;}. We now consider the
inner and outer iterations in turn.

3.1 The inner iteration

We start by examining the inner iteration, whose purpose is to approximately solve (3.1) for a given
value ux > 0. The idea behind the algorithm we propose for this purpose is simply to apply a standard
Newton-like trust-region method with the restriction that the iterates lie in the nullspace of A. At iteration
(k, ), such a method would typically attempt to decrease the value of a quadratic model of the log-barrier
function of the form

My (Th +8) = (@) + (9rj»8) + 5(s, Hr,j8) — pr e, log(c(zr ) — mr( T, Cy je, 8)

P
ik (85 Jl?::jCk_,JQ‘Jk,js> — 3k Z %(87 vzin,k,jS); (33)
i—1 i €7%))

within a trust region, where the first three terms constitute a quadratic model of the objective function
f with Hy ; being an approximation of V,,f(z,;), where we write Jy ; = J(zk,;), Ck,; = C(zk,;) and
where Q) ,; approximates Vgzc;(zk, ;). However, when applying this method in practice, one often notices
that convergence of the iterates zy,; slows down considerably whenever they happen to be close to the
boundary of P. This is because the singularity of the logarithm then plays a dominant role, which means
that quadratic models of the log-barrier function, while very adequate locally, do not fit the barrier function
well. One way of alleviating this numerical problem is to abandon the analytic expression for the local
second-order behaviour of the barrier term and to replace it by a term whose growth would be, we hope,
less dominant. In primal-dual methods, we choose to replace

P P
Hyj + i iCriThg — Y c,(iii_)@% Qik;ys) by  Hij+Bij— Y [2kli(s, Qik,s),
i=1 P\ i=1
where
£ _
Bk’j dé quj‘]ck,;-zk,]']k,] (34)
for some bounded positive diagonal matrix Zj, ;. In other words, we consider the model
M (@hg +58) = (k) + (Gr,j» 8) + 2(s, Hij8) — prle,log(e(xn,))) — prlTi;Cp 55 8)
P
+1(s, Br,js) — 3 Y_[2k,3li(s, Vaaci(an,j)s)
i=1
instead of (3.3). Defining
P
£
Grj € Hyj - > (2,31 Qik.s» (3.5)

i=1
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we obtain that our model has the form
mij(Trj +8) = ¢(@r g, k) + (k5 — T ;Cr s> 5) + 3(5,[Ghj + Br,jls). (3.6)

Note that Gy, ; is an approximation of the Hessian of the Lagrangian function

P(x,2) = f(z) — (2,¢(x))

at (2x,;,2k,j) With respect to z, that is G ; & Vo ¥(Tk,j, 2k,5)-

Interestingly, as is well-known, there is another way to motivate this modification of the barrier model’s
Hessian, using a perturbation argument. Consider the first-order necessary conditions for the problem of
minimizing the model of the objective function on the feasible set, namely

g@) + ATy —J(@)T2=0, Ax=b, C@®)z=0, c(x)>0, 2>0, (3.7

where z is the vector of dual variables (Lagrange multipliers) for the inequality constraints and y is
the vector of Lagrange multipliers associated with the equality constraints. The third equation of (3.7)
is known as the problem’s complementarity condition. Notice that it expresses a true combinatorial
requirement: “if a constraint is non-zero, then its corresponding dual variable must be zero” and vice-
versa. As combinatorial conditions may be very hard to verify, especially for large problems, we perturb
them. Introducing a small perturbation parameter y > 0, we then write

g@) + ATy —J(@)T2=0, Ax=0b, Cx)z=pe, c(x)>0, 2>0.

Newton’s equation for this system of nonlinear equations at some iterate (x,;, 2x,;) and for some value py
of the perturbation parameter are

Gr,jAzkj + ATyr i1 — JL Az j = —gkj + 2k,5,
ADzy; = 0 (3.8)
CrjA%,5 + 2y, ik jATy ; = e = Gy ;74 e,

where Z;, ; = diag([zkjl1,---,[2k,j]ln) and where we have written yj j+1 = yi,; + Ayg,;. Ignoring the
non-negativity conditions and eliminating Az ; in (3.8), we obtain the system
( Gij+Br; AT ) ( Az, ) _ [ ki~ m T 0 e (3.9)
A 0 Yk,j+1 0
and
Azk,j = —Zk,j —Ck_,Jl.Zk’ij’jA.’Ek’j +uka_,Jl.e. (310)

We then note that the first component of right-hand side of this relation is nothing but the negative
gradient of the log-barrier function, —V,é(x, ux). Moreover, these equations are precisely the first-order
optimality conditions for the problem of minimizing the model (3.6), subject to the constraints AAzy, ; = 0.
Hence Az, ; may be interpreted as a constrained Newton-type step for ¢(z, py). This is exactly what we
proposed above, and we would like to emphasize that we now interpret 2 ; as the vector of dual variables.

We may therefore wish to compute the step from (3.9)-(3.10), but some additional precautions are
necessary. Note that (3.9) fully defines Az, ;, and yg j41 provided AS.4 holds and the matrix Gy j + By, j
is nonsingular on the nullspace of A. This is obviously the case if f(z) is strictly convex, but may not be
true in general. More significantly, (3.9) is inappropriate if G ; + By,; is not second-order sufficient, as
then Axyg ; at best defines a saddle point for the model. Thus the model should either be modified, as
we proposed for the case of bound constraints in a previous paper (Conn et al., 1999), or restricted by a
trust-region constraint, as we propose here. Observe also that, if Axy, ; is well defined, Az ; is in turn well
defined by (3.10). Of course, there is no automatic guarantee that (c(zy,; + Axy ;), 2k,; + Azg,;) > 0 so we
would need to be careful before allowing such a step. Moreover, the fact that b(z, ux) = pr{e,log(c(z)))
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is undefined wherever z does not belong to ri{P} creates a difficulty, for nothing in the above derivation
prevents from predicting a step Az ; such that zp ; + Az ; & ri{P}. The value b(zy ; + Azy j, k),
and therefore ¢(zy, ; + Az j, pr), are then undefined, and the algorithm breaks down. Fortunately, such
undesirable algorithmic behaviour can be circumvented quite simply. The idea is to observe that, if
xp,; + Axy ; lies outside P, this is merely an indication that the model my,; does not approximate the
objective ¢(xr,; + s, i) very well. In particular, this indicates that a smaller step from zj ; (which must
lie inside P) is necessary. A simple technique is to restrict the trust-region radius enough to ensure that
Zk,; + Az ; € ri{ P}, which must occur when Ay ; is small enough to enforce that

Bi; < {zr;+s€R™ | As=0 and ||s||p,; < A} C ri{P}.
The crucial point is that this restriction may be decided without even trying to compute the (undefined)
function value at xj ; + si,;, therefore avoiding the situation where the algorithm breaks down. Thus
iteration j is viewed as unsuccessful and Ay ; is reduced whenever z; ; + Az ; falls in the region where
the barrier function is undefined. If this is not the case, the trial step s; ; = Az ; is acceptable.
It is important to notice that we are prepared to solve the trust-region subproblem

minimize  my ;(zk,; + S)
subject to As =10 (3.11)
and lIsllk.; < Ak

only approximately, in that we merely aim to improve my, ;(zx,; + s) while satisfying the remaining
constraints. In particular, there is no evidence in general that finding an accurate solution is especially
beneficial. Thus, we may be satisfied to find an approximation which guarantees convergence, knowing
that any extra effort may be expended when necessary. To this end, we assume that the step s ; is chosen
so that

My, (Th,j + k,5) < i, (Tk,5)

_ Vad(zhj, . _ (3.12)
—GmaX{Hquﬁ(l‘k,j,uk)||[k,j] min IV<é( 2}: ,Hk)”[k’]];Ak,j;] s~ Th,j mln[Tf,j,Ai,j]}
3]
where 6 € (0, 1),
Bk =1+ G, + Brllih,gy and 7hj = Xig, ;[Gr,j + Bh,l- (3.13)

This assumption is usual in trust-region methods. Because 3} ; gives a bound on the curvature of the
quadratic model, in the reduced space and scaled, the first term in the maximum guarantees that the
model reduction is at least a fraction of that obtained at the Cauchy point, while the second term ensures
that negative curvature is exploited when present. Projected conjugate-gradient/Lanczos-like methods are
able to produce such a step at a reasonable cost (see Gould, Lucidi, Roma and Toint, 1999).

The actual choice of norm in the second constraint of (3.11) is important. We believe that the norm
defining the trust-region shape should reflect the underlying geometry of the problem, and the freedom of
choice of the matrix M}, ; defining this norm will allow us to capture this geometry. A natural choice in this
context is to choose My ; = Vgemy, j(zk,;) = Gk,j + Bg,;. However, this matrix may not be second-order
sufficient, in which case we may have to modify Gy, ; to ensure this property (remember that, by definition,
By, ; is positive semidefinite). To reflect this possible modification, we define

My, ; = Wi,j + Brj. (3.14)

where, for instance, Wy, ; = Gy,; whenever G, ; + By,; is second-order sufficient.
The algorithm that we propose for the inner iterations is presented as Algorithm 3.1.
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Algorithm 3.1: Inner iteration

Step 0: Initialization. An initial point zy0 € ri{P} N L, a vector zx,0 > 0 of dual variables and
an initial trust-region radius Ay ¢ are given. The constants ¢k, 11, 72, 71, and 2 are also given
and satisfy the conditions 0 < ¢ < 1,0 <1 <m2 <1land 0 <y <7 < 1. Compute f(x,0)
and ¢(xg,0) (if not already known) and set j = 0.

Step 1: Model definition. Choose the scaling matrix M} ; according to (3.14) and define, in
Bk,;, a model my ; of ¢(zk,; + s, ux) which is of the form (3.6).

Step 2: Step calculation. Compute a step si; such that zy ; + si,; € Bg,; and such that it
sufficiently reduces the model my ; in the sense of (3.12).

Step 3: Acceptance of the trial point. If
(ki + Sk,5) > skc(Tk,5), (3.15)
compute ¢(xk,; + Sk,j, k) and define the ratio

A(@r,j, ) — ¢(Tk,j + S5, k) .
mi,j (ki) — Mk, j(Thj + Sk,5)

Pk,j =
else set pi,; = —00. Thenif py ; > 71, define zy j 11 = Tk j + Sk,;; otherwise define xy, j11 =z, 5.
Step 4: Trust-region radius update. Set

[Ag,j,00) if pr,; > o,
Agjr1 €9 [728%;, Ak, if pr,j € [m,n2),
[V1 Ak, 2 Ak,5]  if prg <m.

Step 5: Update the dual variables. Define z; ;41 > 0. Increment j by one and go to Step 1.

The only differences between this algorithm and a standard trust-region method, besides the fact
that the objective function is now ¢(z, ui) instead of f(z) and we are accounting for the linear equality
constraints by working in the corresponding reduced space, are the requirement that the initial point must
lie in £ and the interior of P and the fact that an iterate is rejected if (3.15) does not hold. We have
intentionally not specified how the parameter ¢, is chosen for each inner minimization. This parameter
specifies the minimum relative value of the inequality constraints which is acceptable in the course of
the current minimization. The fact that is not fixed but may itself tend to zero as k increases makes
fast asymptotic convergence of the outer iterates possible, but we do not discuss this question in detail.
Also note that the possibility of choosing Ay j+1 as large as one wishes on successful iterations may be
important in practice, because it allows the trust-region radius to return to a reasonable value as soon as
a successful step is made, instead of being constrained to remain of the order of magnitude of the distance
of zy, ; to the boundary of P.

Iterations at which py ; > 71, and thus the current iterate is redefined, are called successful. We denote
by S the set consisting of the indices of all successful iterations.

3.2 The outer iteration

After describing the mechanism of the inner iterations for finding an approximate minimizer of (3.1), we
now consider the outer iteration to solve (1.1), which we formally state as Algorithm 3.2.
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Algorithm 3.2: Outer iteration

Step 0: Initialization. An initial point 2o > 0 that satisfies Az, = b , a vector of initial dual
variables zg > 0 and an initial barrier parameter po > 0 are given. The forcing functions €°(u),
€°(u) and €®(p) are also given. Set k = 0.

Step 1: Inner minimization Choose a value ¢, € (0,1). Minimize the log-barrier function
Oz, ur) = flx) — pre,log(c(x))) starting from xz. Stop this inner algorithm as soon as
an iterate (2, j, 2k,;) = (Tk+1, 2k+1) is found such that

Atgyr = b (3.16)

(c(Thy1),2641) > O (3.17)
IC(xkt1) Zhr — Ll < € (ur) (3.18)
lgrs1 = Tigr2ksllpry < €(u) and (3.19)
Ailsr Gt + Bey1] > —€5(p), (3.20)

where My41 = My, ;. Increment k by one, and repeat Step 1.

Our intention is to find a point which satisfies (3.16)—(3.20) by applying Algorithm 3.1 to approximately
solve (3.1), assuming for now that it converges to a second-order critical point, that is a point at which
first- and second-order necessary optimality hold, for this subproblem. For, if z} . were such a point, the
conditions

Azp =D (3.21)
c(xpx) >0 (3.22)
NIV ¢ (p s pir) = NT (g(@rx) — ppJ (Th,s) T Cah,x) te) =0 and (3.23)
X [NTV g0 b(@per pir)N] > 0 (3.24)
must occur. On defining
2k = ukC(Tr ) e >0, (3.25)

we see from (3.23) that
NT (g(xk,*) - J(xk,*)Tzk,*) =0,

and by definition
C(."L'k,*)Zk’* — /LkI = 0.

Moreover

P
1
Vea§(@her ) = Vi () + i (,0) T Olone) I (@) = Y s

V.. c:
i=1 mk,*) mcz(mk’*)

and thus, taking (3.25) into account and assuming that Gy converges to V¢ (zk «, 2k,«), We see that
Gy + By, converges to Vgz¢(zk,«, ur). Combining these conclusions, we therefore obtain that any inner
iterate sufficiently close to zy, provides a suitable terminating value satisfying (3.16)—(3.20).

We should also add a comment on the terminating condition (3.20). The aim here is to ensure that
second-order necessary conditions for the solution of (1.1) are implied by requiring that similar conditions
hold for (3.1). However, one naturally expects that second-order conditions for (3.1) would involve the

matrix

not
NT(G,, + B) N. (3.27)
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The reason we base our terminating condition (3.20) on (3.27) rather than (3.26) is simply that Algo-
rithm 3.1 uses this matrix rather than (3.26) at its core — spectral information will thus be conveniently
available for (3.27) but not for (3.26). Of course (3.26) and (3.27) coincide when zj is defined via (3.25),
and the two matrices can be expected to be close when €°(uy) in (3.18) is small.

The variables z; computed by the algorithm are estimates of the dual variables associated with the
inequality constraints at a solution of (1.1). The particular choice (3.25) is appropriate at a critical point
of (3.1), while it is less suitable away from such a critical point. As we shall see, there are better choices
in this latter case.

The seminorm used in (3.19) is the appropriate measure of convergence of the gradient since, as we
mentioned above, the trust region is defined in the dual to this seminorm in the nullspace of A, || - ||f+1-
At first sight, we may question whether it is reasonable to expect global convergence properties of both
the inner and outer algorithms if we use the scaled norms. The question arises because the matrices My
blow up when, as is highly likely, the iterates approach the boundary of the feasible set. It is fortunate that
global convergence to critical points may still be proved with the scaled formulations, as we will shortly
see.

4 Convergence theory

In this section, we consider the convergence of Algorithm 3.2, where we intend to use the inner-iteration
Algorithm 3.1 to calculate each of the iterates.

4.1 Further assumptions

In order to prove the desired results, we must state our assumptions on the dual variables and on the
matrix Gk’j.

For each k > 0, there exists a constant k,;(k) > 0 such that, for all j >0 and alli=1,...,p,

1
2k.ili < Kyu(k)max | ————, 1.
o < a1
the approximate Hessian of the Lagrangian remains bounded, i.e.
Gkl (kg1 < ke
for all k£,5 > 0, and for some kg > 0,

Note that , because of AS.2, AS.3 and AS.6, AS.7 is automatically satisfied if the appropriate exact values
are chosen for Hy ; and Q;1,;. We finally state the assumptions on the scaling matrices and require that

there exists eps € (0,1) and kw > 0 such that, for all k£ and all j, the scaling matrix M} ; =
Whk,; + Bg,; and its component Wj, ; satisfy

Amin[NT M ;N1 > eumr (4.1)

and
INTW ;N|| < Kw- (4.2)

As a consequence of the first part of this last assumption, we note that
_1 _1 1
Ul g, = I(NT My jN)~ZNTUN(NT My, ;N) 72| < JIIUII (4.3)

for every symmetric matrix U.
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4.2 Convergence of the inner iteration

We first prove that conditions (3.16)—(3.20) will eventually be satisfied after a finite number of iterations
of Algorithm 3.1. The main idea is that we may apply a variation on a traditional trust-region algorithm
for unconstrained optimization in the subspace £ of all vectors satisfying the linear constraints. Unless
otherwise stated, we assume in this section that €¢© = ¢® = €® = 0.

We start our analysis by showing that, as expected, the iterates generated by Algorithm 3.1 will never
become infinitely close to the boundary of P.

Lemma 4.1 Suppose that AS.1-AS.5 hold, and that {zj,;} is a sequence of iterates generated by
Algorithm 3.1. Then there exists a constant &,(k) € (0,1) depending only on k such that, for all j,

“min ¢(zg;) > ke(k), (@GE=1,...,p).

i=1,...,n

Proof. Clearly, the level set {z € P | b(z, ) < b(zk,0,p)}, and thus of ¢(xy 0, ), must be bounded
away from OP. The existence of x;(k) then results from the inequality ¢(zg,;, pr) < ¢(@k,0, pr) which
is true for all j > 0. Moreover, it can always be chosen small enough to ensure that it belongs to (0, 1).
O

This result is crucial because it states that all arguments that use a sequence of trust-region radii Ay ;
converging to zero will not be hindered by the restriction of remaining in the interior of P. Note that AS.6
and Lemma, 4.1 together ensure that, for fixed k£ and all ¢ and j,

[2k,5]: < =25 = K2 (R), (4.4)

where k. (k) only depends on k. Also note that the first part of (3.13), the triangle inequality, (4.3), AS.7,
Lemma 4.1 and (4.4) together imply that, for all k¥ and j,

Koz (K)KG def
i+ | Bellien <1+ ke + ——= = kg(k), 4.5
(kg3 T [1Brjllge,y < St e (h) 5(k) (4.5)
where k; > 0 is the upper bound on ||J(z)| implied by AS.3. The bound (4.4) is important because it
guarantees, together with Lemma 4.1, that all scaled norms used during a single inner minimization are
uniformly equivalent, as we now show.

Br,j <1+ |Gyl

Lemma 4.2 Suppose that {z,;} is a sequence of iterates generated by Algorithm 3.1 and that AS.1-
AS.6 hold. Suppose furthermore that My, ; satisfies AS.8. Then there exists a constant k,(k) > 1
only depending on k such that, for all j (and fixed k) the seminorms || - ||z ; and || - [|[,; satisfy
1
— =l < llvllo < Ka(B)lv]lk,55

ki (k) -
and 1
—= vl < lvlle < Ka(R)|V]|,55

ki (k)

for all v € R™.

Proof. We start by proving the first series of inequalities. First notice that the result obviously holds
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if NTv = 0. We therefore restrict our attention to vectors N7v # 0. Suppose first that

(NTo, (NTW,, ;N)NTv) < (NTv, (NTBy, ;N)NTv). (4.6)
Then, using (4.4), Lemma 4.1 and AS.3,
Iollz; = INTUllRrpr, = (N0, NT[Wi; + By JNNTv)
< 2ANNTo, (JL,C 57 i, JNNT)
2k, (k) K2 4.7
< 2 e o
kb (k)
2k, (k) K>
===l
Kb (k)
If, on the other hand, (4.6) does not hold, then
loll; = (NTv, NT[Wi; + By ;I]NTv)
< 2NTo, (NTW} ;N)NTv)
g (4.8)
< 26yw||[NTl|
= 2kwlvli3,
because of (4.2). Combining (4.7) and (4.8), we obtain that
. Ky (k) 1 2 2
—_— . < . 4.
min | D s 0l < ol (4.9
Turning to the other inequality for the seminorm || - || ;, (4.1) implies that, for all v # 0,
[oll}  _ ((NT My N)~5[(NT My N)2NTo], (NT My N)~3[(NT My jN) S N7
lolz; ((NT My, jN)E NTv, (NT My ;N)i NTo)
< VM N) |
< L.
< o
This inequality and (4.9) together prove the desired inequality for the || - ||z ; seminorm with
def 1 2k,(k)K3
n k) = ] 772 .
Fon (k) \/max [GM o (8) Fw

The proof of the second set of inequalities in the theorem is obtained by a similar argument involving
(NTM;, ;N)~! instead of NT My ;N, since the eigenvalues of the former are then contained in the

interval ") 2r (k)R
. Kb 1 1] . k2 (k)K%
— | — f ——= 7 22
[mm {2@(16)”3, 2I€w] ) ] instead o [eM,max [ (k) nW”

for the latter. O

A last useful consequence of Lemma 4.1 is that there is a neighbourhood of each iterate x,; whose diameter
only depends on k such that (3.15) holds in this neighbourhood.

Lemma 4.3 Suppose that AS.1-AS.6 and AS.8 hold, and that {z,;} is a sequence of iterates gen-
erated by Algorithm 3.1. Then there exists a constant (k) € (0,1) depending only on k such that,
for all j,

ci(w) > gpei(zr,;) (i=1,...,p)
for every w € F such that

lw —zk,jllk,; < Ka(k).
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Proof.  Assume, for the purpose of obtaining a contradiction that the exists some w € F, some
i€ {1,...,p} and some iterate z ; generated by Algorithm 3.1 such that

(1 —sk)rp(k) der

W— T ille; <
” k,J”k,J = 2/’\7,,(]6)/‘6]

ke (k) (4.10)

and

ci(w) < spci(w, ;) (4.11)

for some ¢ € {1,...,p}. Let v € [z}, w] be the point in that segment which is such that ¢;(v) =
skci(zg,;) and which is closest (in the || - [|,; seminorm) to zj ;. Note that v must exist because of
AS.2 and is unique because of AS.8. AS.2 also implies that

skci(Tr,j) = ci(v) = ci(wp,;) + (Vaci(§),v — zp5) > ci(wr,j) — (IVoci( Ol gllv — zrjlle;  (4.12)

for some { € [z}, ;,v], where we used (2.4) to deduce the last inequality. But the definition of v and
the inclusion z ; € F imply that the segment [z} ;,v] is also included in F. Hence { € F and we may
apply AS.3 and Lemma 4.2 to bound ||Vz¢;(£)||[x,;] above by k. (k)xs, which implies, using (4.12), the
bound |[v — x jllx,; < ||lw — 2k,jl|k,;, Lemma 4.1 and (4.10), that

0> (1=ck)ci(mh,;) — ka(k)ksllv =Tk jllk,; > (1—k)kp (k) = Ka(B)kg|lw =2k 5|85 > $(1—cx)kp (k) > 0,

which is impossible. Hence no such w, 7 and j can exist and the lemma is proved. O

We now consider the error between the predicted and the exact objective value at the trial point as follows.

Theorem 4.4 Assume that AS.1-AS.8 hold. Assume also that sy ; is generated as in Algorithm 3.1
and that

Ap,j < Kz (k) (4.13)
then we have that,
(k5 + kg i) — Mok (Thj + 51,5)] < K (R)AL ;- (4.14)
where
o(k) < 3+ ik Mk s (R) (4.15)

— |mp + + :
2ens |1 T Zrp(k)? T Prp(k) Tk (k)
where k¢ and k. are, respectively, the upper bounds on ||V, f(z)|| and ||V ,zc;(z)|| implied by AS.3.

Proof. Taking the difference of the second-order Taylor’s expansion of ¢ and my ; and considering
absolute values yields that, for some & ; in [zg j, Tk ; + Sk,;],

|p(zk + sk, i) — Mk j(Th5 + Sk,5)| = 21(Sk.5> Vao(Ek.js k) Sk,5) — (Skj> VaaMik i (Th,j)8k,5)|, (4.16)

because of AS.2 and (3.6). Lemma 4.3, the bound ||s j||x,; < A, ; and (4.13) then ensure that (3.15)
holds and that the segment [z, ;,%k,; + Sk,;] belongs to F. Thus AS.1, AS.3 and (4.3) imply, using
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Lemma, 4.1, that

IVaa®(hjo i)k < WVaad Erj)llgeir + el T Eri) T C (ki) 72T (Ekj) k.51

+ik Z e ”Vmcz(‘fku)”{k,]}

LM [||me(€k,j)|| + Hk||J(§k,j)TC(£k,j)_2J(fk,j)”

IN

Tk z ||vmc,<sk,,)||}

1 Mk J //'k/"'/c ]
< — |ksr+
= em [ S PRTR L)

déf Iil(k).
Similarly, using (4.4) and (3.6), we obtain that

(k')li2 def
761\/[/’\',1,(]{3']) = KZQ(]C).

IVaemr,; (@r) e < Grjllir,y + 1Brjlliey < ke +

Thus (4.16) yields that

|¢(xn + sk, k) = Mk (Thyg + 5k,5) < 31(8h,55 Vaod(€r,i) k50| + 3(8k,55 Vaami,j(€h,5)5k,5)]
< (ma(R) + 2 (k) sk 17 ;
S ’i¢(k)A%},j7
(4.17)
as required, where we successively used AS.7, the triangle inequality, (2.5) and the fact that xy j+si,; €
O

B,; imply that [|sg [k, < Ag,;-

We therefore see that the error between the objective function and the model decreases quadratically with
the trust-region radius. The smaller this radius becomes, the better the model approximates the objective,
which intuitively guarantees that minimizing the model within a sufficiently small trust region will also
decrease the objective function, as desired.

We next show that an iteration must be successful if the current iterate is not first-order critical and
the trust-region radius is small enough.

Lemma 4.5 Assume that AS.1-AS.8 hold and there exists a k, > 0 such that
IVad(@r,j, ) i, 57 > #g (4.18)
for all j and given k. Then there is a constant ka (k) > 0 only depending on k such that, for all j,

Ak’j Z I-’.JA(]C).

Proof. Assume that iteration ¢ is the first such that

. Gng(l — 7]2)
Ag 41 < ypmin |:"‘7:c(k)7 max(ra(F), /%(k)]] ) (4.19)

where 6 is as in (3.12), k, (k) is as in Lemma 4.3 and k4 (k) is as in Theorem 4.4. But we have from
Step 4 of Algorithm 3.1 that v, Ap ¢ < Ag 441, and hence that

. Ong(l — 7’]2)
Ag ¢ < min |:I€z(k), max(ros (), m¢(k)]] . (4.20)
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This latter inequality implies the last part of ||sk, jllk,e < Ak, < Kg(k). Lemma 4.3 now implies that
the constraint (3.15) holds and therefore the value of ¢(xy,¢ + sg,¢, pr) is evaluated. Moreover, since
the conditions 7, € (0,1) and € € (0, 1) imply that (1 — 1) < 1, we deduce from (4.18) and the
bound S < kg(k) that

VE z )

Aps< IVad (@, ) lline
Bk,

As a consequence, (3.12) and (4.18) immediately give that

IVad(@r,e, mr)llf

me(Tr,e) — me(Tre +80) > 0||Ved(@r,e, x|k, min Bes el AV,
= OVaed(r,e, pr) |k, Dk,
Z eligAk’g.

On the other hand, we apply Theorem 4.4 and deduce from this last bound and (4.20) that

|9(@n,e + sk,es 1) = Mke(The + 51| o Kp (k) Ayt
[ e(Thye) — Mke(The + sk,0)] = Okg

|pk,e — 1] = <1-—ns.

Therefore pr ¢ > n2 and Ay py1 > Ag by Step 4 of Algorithm 3.1. This contradicts our assumption
that £ is the index of the first iteration at which (4.19) holds. Hence (4.19) is impossible, which yields
the desired conclusion with

Org(1 = 112)

ra(k) = mmin |ma (k) o e (0]

O

The proof of the convergence of Algorithm 3.1 follows the pattern which is now classical for trust-region
methods. We first consider the case where Algorithm 3.1 has only a finite number of successful iterates.

Lemma 4.6 Assume that AS.1-AS.8 hold and that there are only finitely many successful iterates
in Algorithm 3.1. Then

IVed(@r,et55 )i, e15) = (V2@ (@k 0455 px)llo = 0,

for all j > 0, where £ is the index of the last successful iteration.

Proof. The mechanism of Algorithm 3.1 ensures that z ¢4, remains constant for all j > 0, where
(k,£) is the index of the last successful inner iteration. Moreover, since all inner iterations (k,£ + j)
are unsuccessful for j > 0, Step 4 of Algorithm 3.1 implies that Ay ¢4 ; converges to zero when j tends
to infinity. If [[Vyd(z,e1j,1r)ll[e+5) is bounded away from zero, Lemma 4.5 implies that this is also
the case for Ay ¢y ;, which is impossible. The desired conclusion then follows from the fact that all
I - ll{x,;; seminorms are uniformly equivalent to [ - | because of Lemma 4.2. O

If there are infinitely many successful iterations, a similar conclusion holds in the limit, as we now verify.

Lemma 4.7 Assume that AS.1-AS.8 hold and that there are infinitely many successful iterates in
Algorithm 3.1. Then

liminf [|Vy(xk 5, ur)ll[k,5) = Uminf ||Ved(zk,j, pr)llo = 0. (4.21)
j—o0 j—oo
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Proof. Assume, for the purpose of deriving a contradiction, that (4.18) holds for all j. Now consider
a successful inner iteration (k,£). For this iteration, (3.12), (4.18), (4.5), the inequality py ¢ > m and
Lemma 4.5 imply that

. K e
A(Th,es k) — D@k eq15 ) > MM, (Tr,e) — Mp e (Th,e + Se)] > OKgmy min [—(g, f’vA(k)] L5 > 0.

kg (k)

Summing over all successful iterations from 0 to ¢, we deduce that

¢
A(@k,0, ) = P@heg1s k) = O [B(@h g5 k) — S(@hjirs k)] > 040,
7=0
where the )"’ is restricted to successful iterations and o, is the number of successful (inner) iterations
from iteration (k,0) up to iteration (k,£). Our assumption then gives that o, tends to plus infinity

when ¢ grows, and thus we obtain that ¢(x¢y1,pr) is unbounded below on F, which contradicts
AS.5. Thus (4.18) cannot hold for all £, and the proof is concluded by using Lemma 4.2. O

This result states that at least one limit point of Algorithm 3.1 is first-order critical. We now prove that
this property holds for all such limit points.

Theorem 4.8 Assume that AS.1-AS.8 hold. Then

lim {[Vod(@k,j, )k, 5) = Hm [[Vod(@k,j, pe)llo = 0. (4.22)
_]4)()0 ‘]4)00
Proof. Lemma 4.6 shows that the conclusion holds if there are only finitely many successful

iterations. Assume now that this is not the case, and assume, again for the purpose of obtaining a
contradiction, that there is a subsequence of successful (inner) iterates indexed by {k,t;} such that

IVad(@r,e:s r)llir,e; > 3€ (4.23)

for some € > 0 and for all 4. Lemma 4.7 then ensures the existence, for each ¢;, of a successful iteration
(k,p(t:)) with p(t;) > t; such that ||Vad(@k,p(s:)> k) ll[k,p(t:)] < € Denoting p; = p(t;), we thus obtain
that there exists another subsequence of successful iterates indexed by (k, p;) such that

IVad(@r,j, pr)lik,;) > € for t; <j <pi and [|Ved(zr,p;, pr)ll[k,p < € (4.24)

We now restrict our attention to the subsequence of successful iterations whose indices are in the set
T ={(k,j) €S|t:i <j<pi},

where t; and p; belong to the two subsequences defined above. Using (3.12), the fact that all iterations
in J are successful, (4.5) and (4.24), we deduce that for (k,j) € 7,

. €
A(Tr,j, k) — O(@k jr1, r) > Ni[mn,j(@r,j) — M, (Tk,j + Sk,j)] > Oeny min [W;Ak,j] . (4.25)

But the sequence {¢(zr,;, k) } 52, is monotonically decreasing and bounded below because of AS.5.
Hence it is convergent and the left-hand side of (4.25) must tend to zero when j tends to infinity. This
gives that
1im Ak,j =0.
(b)ET
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As a consequence, the second term dominates in the minimum of (4.25) and we deduce that, for
(k,j) € J and j sufficiently large,

Ak,] > 0 [(z)(mk,p//fk) ¢($k,j+la/1/k)]'

We then obtain from this inequality, the observation that [|zg,e; — Zkpi | = |k,e; — Th,p:|lo because
Zpt; and xy p;, both belong to £, and Lemma 4.2 that, for i sufficiently large,

Pi—ll Pi— 1[ K. (k‘)
lzke; = zkpill < Ka(k) Jzt lzk,; — @k, j+1llk,; < Ka(k) Jzt Ap,j < Ben [¢($k,tmﬂk) = (Th,pir bk)]-

Using AS.5 and the monotonicity of the sequence {¢(zx,;, 1r)}52, again, we observe that the right-
hand side of this last inequality must converge to zero, and therefore that ||z ¢, — 2 p, || tends to zero
when ¢ tends to infinity. We then deduce from the continuity of V,¢(z, uy) and Lemma 4.2 that

||VZ'¢($k,ti ) :u’k)“[k,ti] - ”vz(ﬁ(xk,zh ) :uk)”k,pi] <e
for 4 sufficiently large. Using this last bound, (4.23) and (4.24), we then have that

2¢ = 3e—c¢

> ||v$¢)($k,ti ; Hk) ||[k,t,] - ||V:v¢($k,pi ; /‘Lk)”[k,p,-]

A

< ||vw¢(xk,t“uk)||[k,ti] - ||vw¢(wk,pi7ﬂk)||[k,pi]
< ¢

which is impossible. Hence no subsequence satisfying (4.18) can exist and the theorem is proved. O

This concludes the convergence theory for the inner algorithm, at least as far as convergence to first-order
critical points is concerned. However, the tests (3.16)—(3.20) are based on convergence to points satisfying
second-order necessary conditions. In order to obtain the necessary results in this direction, we need
to strengthen our assumptions on the Hessian of the Lagrangian’s model and on the dual variables, as
suggested in Section 3.2. More specifically, we assume that,

for all k,

Jim G = Vaat(@h 2.l gr,gy =0 when lim [[Vo(@k., pe)llpes) = 0,
AS.10 |for all k, lim ||z ; — puxCy jell =0 when lim [|Vod(wg, i, pr)lie,) = O
Jj—o0 ’ Jj—o0
Note that these two assumptions together imply that

lim ||Gk,j Ve f( Tk,j +Z all mcz(a:k,J)H{k’]} =0 when hm |V ¢($k,],uk)|| k,j] = 0. (4.26)
Jj—o0 i— cz Tk, )

We are now in position to prove that the model is asymptotically convex, at least along some subse-
quence.

Theorem 4.9 Assume that AS.1-AS.10 hold. Then

limsup Ay, . [Vaeami,j(2,5)] = limsup Ay, [Grj + Br,;] > 0 (4.27)
j—o0o ! j—oo !
and
lim sup /\M;c Vazd(2k,j, pr)] > 0.

]—>00
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Proof.  Assume first, for the purpose of deriving a contradiction, that there exists an € > 0 such
that

AIM}c,j [Gk,j + Bk,j] < —¢, (428)
for all j sufficiently large. Using this definition, (3.12) and (4.22), we then obtain that
M (@k,j) = M, (Th,j + 8k,5) > emin [, AL ] > OeAf ; (4.29)

for j sufficiently large and Ay ; sufficiently small. We may then again consider the ratio of predicted
versus achieved reduction and deduce that, for such j and Ay ; and for some & ; in [z, ;, Tk, +5k,;] C F
(where the last inclusion holds because of Lemma 4.3),

P(@k,j + 8¢) — M, (Th,j + Sk,5)
Mi,j (Tk,j) — Mk, (Tk,j + Sk,5)

1
G [l(Sk,j, Vaa®(Ek,jy k) ki) — (k.55 (Gr,j + Br,j)sk,5) (4.30)
,j

lpk,; — 1

1
< gelVead(Ergs in) = Grg = Bl

where we have used (3.3), (3.6), (2.5) and the bound ||sj,;
bound on the last right-hand side of this last inequality, we first note that, because of Theorem 4.8
and AS.10,

lk,; < Ag,j;- In order to derive an upper

lim ||zg,; — /,LkC,;;eH =0. (4.31)
j—o00

Morever,

1€k,5 — Tr,illks < llsk,jllk,; < Ak,

and we therefore obtain, using (4.31), that
lim | (€r,5) " C(€r) ™2 T (€rs) = Bulln,g

Ay, ;—0, j—00
Wm o |k (k)T C(Erg) 72T (Erg) — I (@h )T Clan) ™ 2y j T (k) lgh,y

Ay,;—0,j—00

=, lim 17 (&k,5) T C ki) 2T (Erg) — T (k)T Clmr,) 2T (@k,5) gk,

;w-—>0,3—>oo

=0 (4.32)

and also that

P

hm ”vzzf gk,] Z

i=1

4
Vauti(lhj) = Vaaf @hg) + Y —2Vauci(wn) ey = 0. (433)

ci(¢ — ci(@r,5)

Now observe that for any v in R"™,

IVze (v, i) — Gk,j — Br,jl {Im}
p
193 Mk
< [|Vaaf(v) Z () Vaz€i(v) = Vaa f( Tk, +Z ci( “:C‘(mk’f)“{kal}

i=1 ¢ i=1 * k,j

p h
HIVaof (@h5) = Y ———Vauci(@r,j) = Grjllir) (4.34)

= ci(@,;)

+Hlprd ()T C ()72 (v) — B

using the definition of the Hessian of the logarithmic barrier function, (3.4), (3.5) and the triangle
inequality. Substituting now (4.26), (4.32) and (4.33) in this last inequality with v = & ;, we obtain
that

{k.5}

lim  ||Veed(&r,js k) — Gr,j — Br,jll{k,;3 =0 (4.35)
Ak’j—>0

j—o0
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and thus the last right-hand side of (4.30) is arbitrarily small when j is sufficiently large and Ay ;
sufficiently small. Thus py ; > 7, for such j and Ay, ;. Hence there must exist a 6, € (0,€] and a jo > 0
such that

pr,; > 2 for all j > jo such that Ay ; < d;. (4.36)

Therefore, each iteration such that this condition hold ensures that Ay ;11 > Ay ; by Algorithm 3.1.
This in turn implies that, for j > 0,

Ak,jo-i—j Z min[7151,Ak,j0] déf 52. (437)
Combining (4.29) and this lower bound, we obtain that
DLk jots» k) — BTk jorjt1s k) > 10ebs > 0. (4.38)

whenever iteration jo + j is successful. If there are only finitely many successful iterations, the mech-
anism of the algorithm implies that the trust-region radius converges to zero, which is impossible
because of (4.37). Hence there must be an infinite number of successful iterations. But (4.38) now
contradicts AS.5. Hence our assumption (4.28) must be false and (4.27) is proved. The second in-
equality in the theorem’s statement then immediately results from (3.4), (4.34) with v = =z ;, (4.26),
Theorem 4.8 and (4.31). m|

We conclude our analysis of Algorithm 3.1 by returning to the case where the stopping tolerances €, €®
and €® are positive instead of being zero, and show that the stopping conditions of Algorithm 3.1 will
eventually be satisfied.

Theorem 4.10 Assume that AS.1-AS.10 hold and that
e€ >0, € >0 and € >0.

Then conditions (3.18)—(3.20) hold after a finite number of iterations of Algorithm 3.1.

Proof. Theorems 4.8 and AS.10 together imply that
IVad(@k,s, ),y = 0 and Crjzk,; — pre — 0

when j tends to infinity. As a consequence (3.18) and (3.19) both hold after finitely many iterations.

Theorem 4.9 then guarantees that (3.20) will also be satisfied eventually, which concludes the proof.
O

We note that Theorem 4.9 does not assume that the sequence of iterates of Algorithm 3.1 converges, or
even that it has limit points. If this additional assumption is made, then the result may be extended to
show that all these limit points satisfy second-order necessary conditions for optimality.

4.3 Updating the Vector of Dual Variables

We now indicate how the dual variables 2 j+1 may be updated in practice at Step 5 of the primal-dual
barrier algorithm, while ensuring AS.6 and AS.10. A simple idea is to use the value predicted in the middle
part of the Newton equations (3.8), which is

Zk,j+1 = Zk,j + Azk,]‘ = uka_’Jl.e - Ck_,]l-Zk,ij,jSk,j. (4.39)

However, there is no guarantee that the choice z; j11 = Zi j+1 maintains feasibility of the dual variables
(2k,j+1 > 0), nor that it satisfies AS.6 or AS.10. We thus need to safeguard it, which can be achieved by
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projecting (componentwise) the value (4.39) into the interval

_ - ) —1 ] —1 1
7= I:"‘?zl min (e: 2k, ll/kckﬂ'_;_le) , Inax ('izuea 2k, s Kaulby, "~ €, 'izulflkck,j+1 e)] ) (4.40)
where k, and k,, are constants such that

0< by <1< Ky, (4.41)
This is to say that

Pr[Zk if Zp i1 = Tk :
Zk,j—i-l:{ r(Zk ] 3 Tk = Tk + Sk (4.42)

Zk,j if Tkjt1 = 2k,
where Pz[v] is the componentwise projection of the vector v onto the interval Z. In practice, k, = § and

k,. = 10%° appear to work satisfactorily. Does this safeguarded value satisfy the required conditions? We
now verify that this is usually the case.

Theorem 4.11 Suppose that AS.2-AS.5 and AS.7-AS.8 hold. Suppose also that {zj ;, 2k ;} is a
sequence of primal and dual iterates generated, at a given outer iteration k, by Algorithm 3.1 where
2k,j+1 is updated according to (4.42), with Z being given by (4.40) and Zy j+1 by (4.39). Then
Zk,j+1 > 0 and AS.6 holds. If, furthermore,

lim [|sgjllk,; =0 when lim [|[Vy¢(xk j, ptx)llr,;7 = 0 (4.43)
j—o00 j—>00

then AS.10 is also satisfied.

Proof.  The positivity of the vector of dual variables immediately results from the fact that the

lower end of the interval 7 is always positive. To obtain AS.6, we notice that the definition of 7 and
this bound implies that

Rou Koullk

Zk,j+1]i < Max [nzu Zk,0]i —7]

[ Jj+ ]z a[ ]u i Ci(mk,j+1)

and AS.6 follows with
def Kou
) 2 e [ ool 22 ]
Mk
We now show that AS.10 is also satisfied if (4.43) holds. Suppose therefore that ||[Vod(2k,;, )ik,

converges to zero, which must eventually occur because of Theorem 4.8. This implies, because of
Lemma 4.2, the fact that As, ; = 0 and (4.43), that

Tl = Jim llsnglle = Jim flelleg = 0. (4.44)
Then Lemma 4.1, (4.44) and AS.2 ensure that
lim |(|C; ;= Cihll =0. 4.4
Jim O} = Gl =0 (1.45)
(k,j)ES
But 1 1 1 1
1Zk+1 — meC el < Zkgr — i Cyjell + ull(Cy j — C iy ell

IN

163 2 3T il st | + i/l O = Gl
where we have used (4.39). We thus obtain from Lemma 4.1, (4.44), (4.4), AS.2 and (4.45) that

lim [z j41 — e C by pell = 0.
J—o0
(k,j)eS
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Now this limit and (4.41) give that, for (k,j) € S and j sufficiently large,

-1 - —1
’izl,u/kck,j_i_le < Zk,j1 < h:zuukck’j_i_le'

Hence, from the definition of 2 j+1, we have that 2 j41 = Zg,j41 for j € S sufficiently large. Thus
(4.39) yields that

Crjt1Zr,j41€ = Crip1Cry (= 2y Ty 515 + bke).- (4.46)

On the other hand, we deduce from AS.2, Lemma 4.3 and (4.44) that

. -1 _
lim  Cy ;41 Gy = 1.
J—00

(k,j)es

We then obtain from this limit, AS.3, AS.6 and (4.46) that

hm Ck,j+1 Zk7j+1€ = MUEE.
j—oo
(k.j)€S

AS.10 then follows because z j11 = 2zi,; for (k,j) ¢ S, that is exactly when zy j11 =z ;. ]

Observe that the first part of the proof implies that any value of zj ;41 chosen in 7 satisfies AS.6. In
particular, this is true for the choices

— . . — -1
Zhj+1 = 2k, and zg g1 = upCy iy e,

the latter corresponding to the pure primal method, that is to the model (3.3). Also note that, because
of Theorem 4.2, the choice of norms in (4.43) is in fact irrelevant : the Euclidean norm would have been
just as adequate, but we have chosen the scaled norms for consistency.

4.4 Convergence of the outer iteration

Having proved that its iterates are well-defined, we now consider the convergence of Algorithm 3.2. In
order to state our result, we need the following definition. We say that a subsequence of outer iterates
{zr,} is consistently active if, for each s = 1,...,p either

lim ¢;(zg,) =0 or liminfe¢;(zg,) > 0.
{—o0 {—o0

This is to say that each constraint is asymptotically active or inactive for the complete subsequence. We
also define the set of asymptotically active constraints for such a subsequence by

Alap Y S fie{1,...,n} | Jlim ci(a,) = 0}.

In other words, the set of asymptotically active constraints is fixed for the iterates of a consistently active
subsequence. Since there are only a finite number of such sets, as each constraint is asymptotically active
or is not, the number of consistently active subsequences is finite for any sequence {z;} of non-negative
iterates. Furthermore, the complete sequence of iterates may be partitioned into disjoint consistently active
subsequences. Observe also that, if {z}} has limit points, then each subsequence converging to a specific
limit point z, is consistently active, as the set of asymptotically active constraints is then determined by
the components of z., that is A{zy,} = {i € {1,...,n} | ci(z«) = 0}.
We then have the following result.
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Theorem 4.12 Suppose that AS.1-AS.10 hold. Suppose also that, for some x, > 0,

()
< .
klgg() ” < Ky, (4.47)
that 5
lim )V (4.48)

k—o0 min; ¢; (mk_H )

and that {zj} is a sequence of iterates generated by Algorithm 3.2. Then, we have that

lim [NV, f(zx))i — [NTJE2e)i =0, (i=1,...,m). (4.49)

k—o0

Furthermore, we also have that, for every consistently active subsequence of iterates {z, },

Jm [z ]i =0, (0 & Ao, }) (4.50)
and
li(;n inf(ug,, NTV poth (g, ) Nug,) > 0 (4.51)
— 00

for every sequence {uyg,} in IR™ for which [Jy, Nug,]; = 0 whenever i € A{xy, }.

Proof. We start by choosing a subsequence of {z} indexed by K such that

. [erls . . [2k )i .
lim =400 (€€ and  limsu <oo (i €R), 4.52
S v ed) PP ey < UER) (452)
for some subsets £ and R of {1,...,p}. The contraints whose index is in £ converge quickly to zero

(they are “eager”), while those whose index is in R are “reluctant” to do so, if they converge to

zero at all. Note that the complete sequence of iterates may again be partitioned into a finite set of
subsequences satisfying (4.52) (for different sets £ and R). Let k3 > 0 be such that

: [21]s
> —_—.
Fs 2 B IUD )
keEX
Writing 7y, = NT[V, f(zx) — Ji Z,e] and using (2.3), the definition of the k-seminorm, condition (3.19)
then becomes
1
IONTMNY R < () (453)

for all k. But, since N7 M}, N is positive definite,

2 2
O L |
[(NT M N) =2 g || > NNTMN] _ [NTMN]|

Now, we have, using (4.2), that, for k € K sufficiently large,

_ 2k)i
INTMN < [NTWN| 4+ [NTBNI € o+ 1T C Zi Tyl = s + 13 max LEE
Assume first that £ = (). Then,
INTMN|| < kw + 26553
for k € K sufficiently large, and therefore, using (3.19) and (4.53),

Il

VEw + 263 K3

€ (p—1) > [[(NTMN) " 27 || >
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for such k. This implies that

lim ||rg|| = lim [|[NTV, f(z)) — NTJL 2| = 0. (4.54)
k—oco k— oo
kek ke

On the other hand, if £ # ), we first observe that, for each i,

MHE—1
Ci(xk)w

where we have used the triangle inequality, (3.18) and (4.47) successively. Thus we obtain that

[2k]i Mk—1 |ci(zr)[2k)i — tr—1] Mk—1 € (pr—1)
alon) Salen)? T a@? | S aln? | alon)?

< (T + k)

[2k])i

ci(zr)

for k € K sufficiently large. In this case,

k—1 def k—1
B lef 2 |

<21+ Ky )k —t— = _
<2 W) 7 min; ¢;(2,)? * min; ¢; ()2

INT M N|| < 2x% max
K]

and hence, using (4.53),
€ (pr—1)y/Pe—1

min; ¢;(z)
which, together with (4.48), again yields (4.54). Thus (4.49) holds since K was chosen arbitrarily.

lIrll < roa ;

Suppose now that {z,} is a consistently active subsequence whose set of asymptotically active con-
straints is \A. Then, if i ¢ A, (3.18) yields (4.50).

The final step of our proof is to show (4.51), that is that the Hessian of the Lagrangian is, along
a consistently active subsequence, asymptotically positive semi-definite in the plane tangent to the
asymptotically active constraints. We first notice that (3.20), the forcing nature of €*(u) and the
convergence of p, to zero implies that

(v, (NT My, N)~2NT[Gy, + By, |N(NT My, N)~ 2 v)

liminf inf > 0.
et TolP?
vERR™

Hence we deduce from (3.18), AS.9, (3.19) and the convergence of uj, to zero that

<U’ (NTMklN)_%NT[v:czw(xkz 3 zkz) + Bkz]N(NTngN)_%'U)

liminf inf > 0.
migf ot ol?
vERR™
_1
Thus, if we define w = (N7 M, N)™ 2v € IR™, we obtain that
NT T ) By, |N
lizm inf H;léf;) <w7 [v ”zfu(l';kz zkz) + kz] w)
—00 w
) . NT M, N ] 1 (4.55)
— lim inf inf (’U, (N MkzN)_EN [vwww(mkzazkz) + Bkz]N(N MkzN)_Ev) >0
{—o00 v#0 ||1)||2 Z Yy
1
where we have used the identity |lw||xras, n = [[((NT Mg, N)*>w|| = [|v]].

We now assume that (4.51) does not hold, which means that we can pick a sequence of unit vectors
{ur,, } and a subsequence {zy,, } C {z,} such that

[Jk,, Nu,, ] = 0 for i € A and litrginf(uk“,NTVmw(wket,zklt)Nuk“) = —¢ (4.56)

for some € > 0. Using the first part of (4.56), (3.18), (3.4), the convergence of uy to zero, AS.10 and
the fact that c;(z,,) is bounded away from zero for i ¢ A, we now observe that

) T o T 7T ~—2 _
tgr&<ukei N Bkzt Nukq) = eliglo Hky,—1 <uk1t N Jkgt Ckzt Jket Nukn) =0,
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and hence, taking (4.2) into account, that
”“’% ||§VTM,%N = (uklt,NTWklNuk“) + (uk“,NTBkzt Nukzt) < 26w
for ¢ sufficiently large. Combining these conclusions, we obtain that
—e = liminf(ug,, , N Vos(ar, , 2k, ) Ny, )
= liminf(ug,, NV outh(zh,, » 2, ) Nug,, ) + lim inf (up,, , NTBy, Nuy,)
= liminf{uy,,, NT(Vaath(Thy, » 2k, ) + Bre, ) Nk, )

(ukzt ) NT(vww¢($ket y %k, ) + Bkzi )Nukgt )

Fur Beras,,

vV

2kw lim inf
t—o0
> 0,

where we used (4.55) to obtain the last inequality. This is impossible since € > 0. Hence no vector
satisfying (4.56) can exist, (4.51) holds and the proof of the theorem is complete. O

Necessary optimality conditions for (1.1) are that the primal variables z* and dual variables z* satisfy
the first-order optimality conditions

Az* =b, (z*,2*)>0, C(z*)Z*=0 and NT(g(z*)— J(=*)T2*) =0, (4.57)
and the second-order conditions
(8, Vartp(z*,2*)s) >0 for all se€l, (4.58)

where

U= {s ‘ As =0, (4.59)

[J(z*)s]; =0 if ¢;(z*) =0 }

(see, for example, Gill, Murray and Wright, 1981, page 81). This definition of I corresponds to the “weak”
second-order necessary conditions. Ideally, we would like to obtain their “strong” counterpart, in which
(4.58) holds for

As=0,
U=<s | [J(@*)s]; =0 if ¢i(z*) =0 and [2*]; >0, and (4.60)
[J(z*)s]; >0 if ¢;(z*)=0 and [2*];=0

(see, for example, Fletcher, 1981, Sections 9.2 and 9.3), but we know from Gould and Toint (1999) that this
is in general impossible in the framework of log-barrier functions. Thus every limit point of Algorithm 3.2
is first-order critical and satisfies second-order conditions that are as strong as can reasonably be expected.

We conclude our analysis by commenting on condition (4.48). Since Mifflin (1975) has shown that,
under reasonable conditions, the quantity min; ¢;(zg41) is of the order of uy or ué depending on strict
complementarity, we may then deduce that requiring that €“(u) and €°(u) converge to zero faster than p
(which is our choice in the next section) is usually sufficient in practice to ensure convergence of the outer
iteration. However, a stopping rule based on (4.48) might be preferable especially when the Jacobian of
the contraints is (asymptotically) rank deficient.

5 Numerical Experience

Although the algorithm we have developed in this paper is intended for problems with linear equality
constraints and general inequality constraints, to date we have only tested it on the narrower class of non-
convex quadratic programming (QP) problems. This was quite deliberate since we have a large number of
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test examples in this case, and since we already have numerical results for these examples using other QP
algorithms. We view non-convex QP as prototypical linearly constrained optimization problems, and thus
we hope to see that our new algorithm is effective in at least this case. Furthermore, such problems occur
both in their own right, and as subproblems within algorithms for more general constrained optimization.

VE12 is the new primal-dual non-convex QP Fortran 90 package from the Harwell Subroutine Library
(HSL). It is exactly the algorithm we analysed in this paper (specialized to the case of a quadratic objective
function), but of course in addition there are a large number of linear algebra tricks and other issues to
enhance efficiency. General simple bounds [ < z < u are allowed with some/all of [ or u being infinite. All
fixed variables are removed automatically and the minimization performed with respect to the remaining
variables. The resulting trust-region subproblem (3.11) is (approximately) solved using the generalized
Lanczos trust-region (GLTR) algorithm proposed by Gould et al. (1999) and implemented within the HSL
as VF05. This method was originally proposed for unconstrained problems, but the extra requirement
As = 0 is imposed via the preconditioner. That is, letting M = My ;, the basic preconditioning step
requires the solution of the system

T i i
M A s'N__ (9 (5.1)
A 0 y* 0

to find a correction s?, given the gradient g’ of the model at the i-th GLTR iteration—some form of iterative

refinement or residual adjustment is needed to ensure that the condition As = 0 is satisfied very accurately
(see Gould, Hribar and Nocedal, 1998). VE12 offers the option of a large variety of preconditioners of the

form
(4 1)
A 0
where M varies from the simplest (M = I) to the exact form (M = H+X~'Z). However, M is required to
be second-order sufficient, and this is enforced by factorizing K and, if K has more than rank(A) negative
eigenvalues, adding ||M|| to M and re-factorizing K. While such a modification strategy is undoubtedly
simplistic, it has been effective in our experiments.

The results we present here were obtained using an “automatic” preconditioning strategy that we will
now describe We start with just a diagonal Hessian based on the barrier terms, i.e, M = X~'Z. This
is often sufficient, but if the CPU time per iteration seems to be increasing significantly, we switch to a
full factorization M = H + X~1Z for the next iteration. If the cost of this is much higher, we revert to
the original preconditioner until the cost again rises to the (now known) value of the full factorization.
Of course, we might conceive of adding other levels of preconditioner, but the above seems to perform
adequately in most cases. Two other points are important. Firstly, if the model Hessian is itself diagonal,
then this is used at every stage. Secondly, if M is diagonal (and nonsingular) and so long as the constraints
do not have columns with more than (in our case) 10 nonzeros, we solve the normal equations

s=—M1(ATy" + ¢%), where AM *ATy' = _AM 14, (5.2)

using the factors of AM ~' AT, rather than solving the augmented system (5.1). At some stage we intend
to handle denser columns and zero diagonal terms in the normal equation case.

The initial strictly feasible point is found as the analytic centre of the feasible region using another
new HSL code, LAQ7. This code is based on the primal-dual infeasible interior point algorithm considered
by Conn et al. (1999), and is used in the special case where the objective function is absent. In principle,
any good interior-point method would suffice, but in any event, this part of the calculation is usually very
efficient.

The initial dual variables zy are simply those calculated at the analytic centre xy, while the initial
value of the barrier parameter is the smallest power of 10 larger than (zo,zo)/n. The barrier parameter is
updated so that

prrr = min(0.1pg, %)
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with the intention of encouraging asymptotic superlinear convergence. The forcing functions which control
the inner-iteration convergence are defined to be

The algorithm is halted as soon as an inner-iteration has been terminated with each of these tolerances
below 0.0001, or if more than 1000 iterations have been performed. Values 7, = 0.01, 172 = 0.9 are used to
accept and reject steps in the inner-iteration, and the trust-region is updated according to the usual rule

min[10%°, max(2(|sk ||x,j, Ak,5)]  if pr,j > N2,

Agj1 = Ag,j if pr,j € [m,m),
SAVY: if prj <mu;

the initial radius for each inner iteration is Ao = 1000uy.

To test our algorithm, we have selected all of the larger quadratic programs in the CUTE test set (see,
Bongartz, Conn, Gould and Toint, 1995). Although it is desirable in practice to preprocess the problems
(for instance, to remove redundant constraints and scale the problem, see for example Andersen, Gondzio,
Mészaros and Xu, 1996), we have not done so.

In Tables 5.1-5.3, we give the results of our preliminary tests. They were performed in double precision
on an IBM RISC System/6000 3BT workstation with 64 Megabytes of RAM, using the x1f90 compiler and
optimization level -O3. For each example, we report its name along with its dimensions (n is the number
of variables, m the number of constraints), the problem type (C for convex, SOS for second-order sufficient
and NC for non-convex and not second-order sufficient), the number of iterations performed (its), and the
time taken in seconds (time). For comparison, the tables also show the number of iterations and time
taken by a Fortran 90 version of VE09, a quadratic programming subroutine from the HSL. This latter
algorithm is designed to handle non-convex problems and is of the active-set type, each of its iterations
corresponding to a pivoting operation. The reader is referred to Gould (1991) for further details on this
method. Note that since iterations mean completely different things for the two approaches, they are not
directly comparable, and we include them simply for information. All runs were terminated after 1800
seconds, and any exceeding this limit may be regarded as failures.

In Table 5.1, we report results for what are, by today’s standards, relatively small problems. We
indicate the better of the two CPU times for each problem in bold. Observe that in the majority of
cases the new algorithm outperforms its active-set rival, and that the algorithm is just as successful when
the problem is non-convex as it is in the convex case. Such behaviour is at variance with our previous
linesearch-based primal-dual method (see Conn et al., 1999) which was far less successful in the non-
convex case. We believe that this is likely because negative curvature is better handled in the trust-region
subproblem than through the ad-hoc matrix modification strategy which lays at the heart of our previous
linesearch algorithm. Of course, the new algorithm is not uniformly better than VE09; the PRIMAL* and
DUAL=* problems, which require very few changes of active-set, and the QP* problems, which need a relatively
large number of primal-dual iterations, being cases in point. In addition, VE12 is currently unable to cope
with rank-deficient A, and we are presently investigating the best ways of dealing with this defect.

VE12 VE09
Name n m  type its time its time
AuG2pCQP 3280 1600 C 25 6 | 3112 133
AUG2DQP 3280 1600 C 30 7 | 3019 127
AUG3DCQP 3873 1000 C 23 9 | 3056 106
AUG3DQP 3873 1000 C 24 9 | 2097 71
BLOCKQP1 2006 1001 NC 23 10 | 1006 28
BLOCKQP2 2006 1001 NC 29 8 | 1006 40
BLOCKQP3 2006 1001 NC 157 46 | 1006 28
BLOWEYA 2002 1002 C 7 3 | 1597 68
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BLOWEYB 2002 1002 C 8 2 | 1497 67
BLOWEYC 2002 1002 C 5 3 | 1697 53
CVXQP1 1000 500 C 39 35 861 70
CVXQP2 1000 250 C 37 12 370 13
CVXQP3 1000 750 C 89 41 | 1389 107
DUALC1 223 215 C 35 1 12 0
DUALC2 235 229 C 28 1 14 0
DUALCS 285 278 C 17 1 10 0
DUALC8 510 503 C 25 2 11 0
GOULDQP2 699 349 C 3 0 251 1
GOULDQP3 699 349 C 10 0 463 2
KSIP 1021 1001 C 30 7 | 1388 36
MOSARQP1 1500 600 C 50 8 | 5859 91
MOSARQP2 1500 600 C 43 7 | 1679 27
NCVXQP1 1000 500 NC 76 5 | 1561 51
NCVXQP2 1000 500 NC 66 4 | 1840 61
NCVXQP3 1000 500 NC 112 17 | too ill-cond. basis
NCVXQP4 1000 250 NC 48 1 649 2
NCVXQP5 1000 250 NC 42 1 565 2
NCVXQP6 1000 250 NC 59 10 532 3
NCVXQP8 1000 750 NC 49 6 | 1901 141
NCVXQP7 1000 750 NC 56 6 | 1567 120
NCVXQP9 1000 750 NC 75 22 | too ill-cond. basis
PRIMALC1 239 9 C 130 1 20 0
PRIMALC2 238 7 C 28 4 4 0
PRIMALCS 295 8 C 100 1 14 0
PRIMALCS 528 8 C 129 128 20 0
PRIMAL1 410 85 C 31 4 361 4
PRIMAL2 745 96 C 35 6 677 12
PRIMAL3 856 111 C 37 27 798 35
PRIMAL4 1564 75 C 27 18 | 1515 40
QPCBOEI1 726 351 C 87 9 823 6
QPCBOEI2 305 166 C 81 3 303 1
QPCSTAIR 614 356 C 222 18 987 16
QPNBOEI1 726 351 NC | > 1000 132 736 5
QPNBOEI2 305 166 NC 165 7 299 1
QPNSTAIR 614 356 NC 300 38 993 15
S0SQP1 2000 1001 SOS 10 2 996 14
STCQP1 4097 2052 NC | A rank deficient | 2845 67
STCQP2 4097 2052 NC 22 81 | 2040 98
STNQP1 4097 2052 NC | A rank deficient | 3158 68
STNQP2 4097 2052 NC 25 1 | 1408 39
UBH1 909 600 C 5 0 315 5
YAO 1002 500 C 72 3 3 2

Table 5.1: Preliminary numerical results: small problems

In Tables 5.2 and 5.3, we exhibit specimen results for medium and large-scale instances of the variable-
dimensional problems. We include these simply to show that the advantages of interior-point methods
over conventional active-set approaches are now most obvious.
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VE12 VE09
Name n m  type | its time its time
AUG2DCQP 20200 10000 C 31 69 - >1800
AUG2DQP 20200 10000 C 35 7 - >1800
AUG3DCQP 27543 8000 C 35 744 - >1800
AUG3DQP 27543 8000 C 26 598 - >1800
BLOCKQP1 20006 10001 NC 26 673 - >1800
BLOWEYB 20002 10002 C 7 48 | 5156 893
CVXQP3 15000 11250 C 24 104 - >1800
GOULDQP2 19999 9999 C 1 - >1800
GOULDQP3 19999 9999 C 2 | 1331 730
KSIP 10021 10001 C 32 110 - >1800
MOSARQP1 30000 10000 C 57 455 | not enough memory
NCVXQP4 10000 2500 NC 53 33 | 6588 343
S0SQP1 20000 10001 SOS 7 54 | 9996 1551
STCQP1 8193 4095 NC | A rank deficient | 5769 268
STCQP2 8193 4095 NC 18 246 | 4320 613
UBH1 18009 12000 C 5 13 - >1800
YAO 20002 10000 C 107 118 | not enough memory

Table 5.2: Preliminary numerical results: specimen medium problems

VE12 VEO09
Name n m type | its time | its time
GOULDQP2 100001 50000 C 3 32 - >1800
GOULDQP3 100001 50000 C 10 98 - >1800

27

Table 5.3: Preliminary numerical results: specimen large problems

We cannot give results for our other variable dimensional problems in the large category (say 10° variables)
simply because we do not have enough memory to form the factors of the preconditioner. Clearly, this
indicates some limitations of our approach, but since we are able to report successful results for larger
problems than we have seen before, we believe that this is an indication that our approach is an important
advance in the methods for the numerical solution of large-scale non-convex quadratic programs, with,
hopefully, implications for general nonlinear problems.

6 Conclusion

We have introduced a primal-dual algorithm for solving nonlinear non-convex mathematical programming
problems with linear equality constraints and general nonlinear inequality constraints. In this algorithm, a
scaled trust-region subproblem is approximately solved. Additionally, we have shown that this algorithm
is globally convergent to points satisfying the weak second-order necessary optimality conditions, even if
we allow the scaling matrices to become unbounded to reflect the singularity of the barrier. Preliminary
numerical experiments on a variety on convex and non-convex quadratic programs indicate that the new
algorithm is potentially efficient for the solution of large-scale problems.

The analysis presented here can still be extended in several directions. For instance, it is possible
to verify that we can replace the quadratic models of the objective function and inequality constraints
by more general models, provided they agree with the modelled function at least to first order and have
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bounded second derivatives. The extension to general nonlinear equality constraints, although less direct,
is also worth investigating.
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