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ABSTRACT

We present a general method for the linear least-squares solution of overdetermined and
underdetermined systems. The method is particularly efficient when the coefficient matrix
is quasi-square, that is when the number of rows and number of columns is almost the
same. The numerical methods proposed in the literature for linear least-squares problems
and minimum-norm solutions do not generally take account of this special characteristic.
The proposed method is based on an LU factorization of the original quasi-square matrix
A, assuming that A has full rank. In the overdetermined case, the LU factors are used to
compute a basis for the null space of AT. The right-hand side vector b is then projected
onto this subspace and the least-squares solution is obtained from the solution of this
reduced problem. In the case of underdetermined systems, the desired solution is again
obtained through the solution of a reduced system. The use of this method may lead
to important savings in computational time for both dense and sparse matrices. Some
practical examples that illustrate the use of the method are included.
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1 Introduction.

We consider the solution of the linear least-squares problem
min [[b — Ax]l. (L.1)

and of the problem
min ||x|l, subject to A'x =b, (1.2)

where A is an m x n matrix (m > n). In many engineering applications, A is sparse and is
nearly square; that is the number of rows, m, is almost equal to the number of columns, n.
We call such a system quasi-square. The numerical methods proposed in the literature for
least-squares and minimum-norm problems do not generally take account of this special
characteristic.

A similar problem arises when the solution of a set of nonlinear equations is sought.
Most of the methods for finding a solution to nonlinear systems of equations are based on
solving a sequence of linear systems of equations. The Jacobian is usually the coefficient
matrix of these linear systems and may become rank deficient during the iterative process,
for example if the current iteration point is far from the desired root. In general, we
would hope that the linear equation solver will detect this rank deficiency, which is
one reason why orthogonalization methods are so popular. However, in many cases
including the application examined in this paper, it is sufficient to use Gaussian elimination
techniques and rank deficiency is not a problem as the system becomes underdetermined
but consistent. We show how the LU factorization of A can be used in this case also.

This paper presents a general method for the solution of both linear least-squares
and minimum-norm problems. The motivation for this work comes from the study of a
particular problem that arises in mechanical engineering, namely the computer simulation
of the kinematics of multibody systems. Although we test our methods on this class of
problems, it is important to point out that the proposed methods are completely general
and may be successfully applied in many other fields.

Section 2 describes the most relevant characteristics of the computer simulation of the
kinematic behaviour of multibody systems. The description includes a short review of
the difficulties that arise when applying classical methods to solve linear least-squares and
minimum-norm problems.

Section 3 derives the proposed method for solving the systems (1.1) and (1.2).
Although the method is completely general, it is particularly well suited to quasi-square
systems. This method is based on an LU factorization of the original sparse matrix A.
In the case of the least-squares problems, the L factor is used to construct a basis for
the null space of AT. The projection of the right-hand side vector b onto that subspace
is computed and then the linear least-squares problem is solved directly. The minimum-
norm solution (1.2) again uses the same LU factorization of the original sparse matrix
A. We again use the factor L to define a basis for the null space of AT. Once this
basis is evaluated, the minimum-norm solution of the underdetermined system is easily
found. The method is known in optimization circles as a reduced-gradient or null-space
method and systems which are quasi-square are encountered in the solution of constrained
optimization problems using sequential quadratic programming methods (for example,
Biegler, Nocedal & Schmidt (1995)). However, we explore the implementation and use of
the LU factorization in greater detail and additionally indicate its use in the solution of
the minimum-norm problem.

Section 4 presents a short description of problems on which our method is tested and
compared. In Section 4.1, we compare our algorithm with implementations of well known



methods (normal equations and the method of Peters and Wilkinson (1970)) in the case
when A is considered as a dense matrix. We compare the methods using theoretical
counts of the number of arithmetic operations and compare their execution times on our
test matrices using implementations based on LAPACK routines. Computation times
required to solve the same test problems using routines for sparse matrices are given in
Section 4.2. In this section, we compare normal equations, augmented systems, and the
proposed method, implemented using different sparse solvers.
Finally, some concluding remarks are presented in Section 5.

2 Description of the problem.

As already mentioned, the motivation for this work is the study of the computer-aided
simulation of the kinematic behaviour of multibody systems.

A multibody system is any mechanical system composed of several rigid or flexible parts
or bodies linked by means of kinematic pairs or joints. Typical examples of such systems
are robot arms, satellites, automobiles, or even the human body. They are also referred
to as mechanisms.

The mathematical description of such a system usually leads to a set of nonlinear
algebraic equations expressed in terms of the coordinates used to describe the mechanical
system. These equations may be written as

®(q) =0, (2.1)

where q is the vector of dependent coordinates that define the position of each body of
the mechanism.

Very often the set of equations that describe the mechanical system includes more
equations than needed; that is, there are more equations than unknowns. The reason for
this may be either the particular kinematic structure of the mechanism being simulated or
the way in which the computer model is obtained. However, equation (2.1) describes a real
physical device and therefore a solution must exist. In other words, the set of nonlinear
equations is consistent and has at least one solution that satisfies all the equations.

To solve the nonlinear problem given by equation (2.1), a Newton-Raphson iterative
procedure of the form

(®q); Adi = —®, (2.2)
qi+1 = q; t+Aq;,

is performed until convergence is reached. This procedure must be repeated several times
for each different position of the mechanical system during the simulation. Equation (2.2)
is a linearization of equation (2.1). As we said, the system (2.1) may contain redundant
equations but it is compatible for each particular configuration of the mechanical system.
However, during the Newton-Raphson iteration, the vector of coordinates q; does not
satisfy equation (2.1) and the system (2.2) is overdetermined. We thus are obliged to
solve (2.2) in the least-squares sense to enable us to continue with the iterative procedure.
This may be expressed as

Iil(llIll ||<I’Z + (q)q)i Aqu2 , (2.3)

or, in the notation we have been using previously,



min||b — Ax|l,. (2.4)

During the iterative procedure, the rank of the matrix usually equals the number
of unknowns. However, in some cases, this matrix experiences a sudden loss of rank.
Mathematically, this problem may arise, for example, when the current iteration point
is far from the desired root. Physically, a singular Jacobian matrix indicates that the
mechanical system has reached a “singular position”. Park & Haug (1988) distinguished
two different kinds of singularities: lock-up configurations and bifurcation points. In a
lock-up configuration, the set of degrees of freedom does not define the motion of the
mechanical system, which is in some sense “locked”. On the contrary, a bifurcation point
implies that, at least theoretically, the mechanism can proceed along different paths. To
overcome this problem, different solutions have been proposed (for example, Nakamura
& Hanafusa (1986), Angeles, Anderson, Cyril & Chen (1988)). The simplest method of
preventing the loss of rank in the Jacobian causing a failure of the analysis consists in
seeking a minimum-norm solution. This solution, X, must satisfy

X = argmin ||x||,, (2.5)

subject to the constraints given by equation (2.2). We note that, in this case, the physical
system dictates that system (2.2) will be consistent and underdetermined.

Figure 2.1: A slider-crank mechanism.

In order to clarify how equation (2.2) can represent both an overdetermined and an
underdetermined linear system of equations, a very simple example is presented.

Figure 2.1 represents a slider-crank mechanism with one degree of freedom. Both the
slider and the crank have the same length L. To define the position of the system, we use
the Cartesian coordinates of point (z,y), the distance s between the slider and the origin
O, and the angle . The system of constraint equations, derived from these links, is given
by

24— =
(x—s)+y*-L* =
z—Lcosy =
y—Lsing =
r—f(t) =

o O o o O
—
N
(=]
=



Therefore, we have 5 nonlinear equations relating 4 unknowns. The last equation in
(2.6) drives the degree of freedom of the system. The third and fourth equations in (2.6)
define the same constraint, hence one of them could be eliminated. However, it is common
practice, when dealing with angles as dependent coordinates, to use both relations because
the sine function measures every angle well except those near 7/2 and 37/2, and the same
problem arises with the cosine near 0 and 7. The kinematic analysis of the system depicted
in Figure 2.1 involves the solution of system (2.6) for each position. Most of the time our
system is an overdetermined one, with the coefficient matrix

2z 2y 0 0
2(x—s) 2y —2(x—3s) 0
by = 1 0 0 Lsingp |. (2.7)
0 1 0 —Lcosy
1 0 0 0

However, when the mechanism reaches the position shown in Figure 2.2, in which
z=0,y=0L, s =0 and ¢ = /2, the Jacobian becomes

0 2L 0 0
0 2L 0 0
®y=[1 0 0 L|, (2.8)
01 0 0
1 0 00

and is clearly rank deficient. Equations 1, 3, and 5 are consistent and so we effectively
have a system of three equations with four unknowns. Thus, the kinematic analysis
of one system can lead to both an overdetermined system or, less commonly, to an
underdetermined one.

! branch a ! !

bifurcation point

branch b

Figure 2.2: Singular position with a single bifurcation point.

A detailed description of the problems that arise in computer-aided simulation of
multibody systems may be found in Garcia de Jalén & Bayo (1994). In this work,
the method developed for the solution of the linear least-squares system (2.4) or for the
minimum-norm solution of equation (2.5) takes into account the particular characteristics
of the kinematic simulation process and its numerical aspects.



Before presenting the general description of our proposed method, we give a brief
explanation of the specific characteristics of the simulation process.

Designers and mechanical engineers require programs to assist them in the complex
task of the kinematic design of multibody systems. These programs must provide
interactive response, allowing the user to control interactively the degrees of freedom of
the mechanism being analysed. Also, it is very convenient for these programs to include a
graphic postprocessor that generates realistic images to show the evolution of the system on
the computer screen. These requirements limit the computing platform to workstations
with advanced 3D graphics capabilities. These computers are usually single processor
machines, and hence parallel implementations are not of interest. Interactive response
means that the program should provide between 5 and 15 frames per second. Each frame
requires the solution of the set of nonlinear equations (2.1); that is, a linear least-squares
problem must be solved several times for each frame. For those reasons, our aim is to
look for the fastest method for the solution of systems (2.4) and (2.5). We also note that
the solution is not required to high accuracy and numerical conditioning is not generally
a problem in this application, so it is not necessary to choose the most robust numerical
technique.

On the other hand, the characteristics of the matrix A in (2.4) and (2.5) must be
considered. Typically, the kinematic simulation leads to small or medium sized quasi-
square systems (see statistics on typical problems in Table 4.1). The number of rows
is usually between 5% and 10% more than the number of columns. When A suffers a
loss of rank, the underdetermined linear system (2.2) has only a few more unknowns
than independent equations. In Section 4, Table 4.1 shows the characteristics of some
matrices corresponding to typical multibody systems applications. These matrices are
used in the numerical experiments both for least-squares and for minimum-norm solutions
(in the latter case, the transpose of the matrices are used). The method selected for the
solution of (2.4) or (2.5) must take into account the above mentioned requirements and
characteristics. Because of the interactive response requirement and the selected computer
platform, methods based on orthogonalization techniques are not of interest because of
their high computational cost, despite their numerical stability (Duff & Reid 1976). It
is, however, possible that sparse orthogonalization methods using multifrontal codes like
those of Puglisi (1993) and Matstoms (1994) might be competitive although we have not
considered them here.

Methods based on Gaussian elimination are examined. Usually, A is well conditioned
and the normal equations method may be successfully applied. In addition, A is usually so
small that the augmented matrix approach may be used without storage problems. This
method is competitive with that of normal equations if sparse solvers are used (Duff &
Reid 1976) and has better numerical behaviour. A third alternative that can be considered
is the method of Peters & Wilkinson (1970). This method takes advantage of the sparsity
of the original matrix A and also has good numerical behaviour, but it requires more
computational effort than the normal equations method.

Tewarson & Jen (1988) proposed a method for the solution of full and rank deficient
sets of linear equations that shows some similarities to the approach followed in the present
paper. That method is based on LU elimination of the original matrix with scaled partial
pivoting. In the rank deficient case, an orthogonal triangularization procedure is performed
on the remaining columns of the matrix. Although this method could be extended to the
case of overdetermined systems, the use of an orthogonalization technique makes it more
expensive in terms of computational effort than the method proposed here.

The method of Peters and Wilkinson has a similar starting point to the method
presented in this paper. Our method also takes advantage of the sparsity of the original



matrix A and performs a sparse LU factorization on it. Then, instead of using the LU
factors to construct the reduced normal equations, it uses the L factor to build a basis
for the null space of AT and looks for both the projection of the right-hand side b onto
the subspace spanned by the columns of matrix A (which is the least-squares solution)
and its projection onto the computed basis of the null space of AT. As will be seen in
the following sections, for quasi-square matrices, this method leads to important savings
in terms of floating-point operations.

With respect to the practical implementation, we note that the size of the matrices
involved in the computation is typically a few hundred rows and columns. For this reason,
the use of efficient solvers for dense matrices may be considered as an alternative to sparse
solvers, which are more complicated to implement and use. We show that, when dealing
with these small matrices (like those appearing in multibody simulation problems), the
solver implementation using LAPACK library routines (Anderson, Bai, Bischof, Demmel,
Dongarra, DuCroz, Greenbaum, Hammarling, McKenney, Ostrouchov & Sorensen 1995),
whose computational efficiency is based on the use of BLAS routines (Dongarra, Du Croz,
Duff & Hammarling 1990), is not so efficient as the sparse solvers, even in the case of very
small matrices. This point is investigated in this paper and some comparative results are
included in Section 4.

3 Proposed method.

We now present a unified approach to describing our algorithm for solving both the
overdetermined and the underdetermined case. An important aspect is that we wish
to use the same LU factorization of A in each case.

For both the least-squares problem

min [[b — Ax]], (3.1)
or the minimum-norm solution to the underdetermined system
min ||x|l, subject to A'x =b, (3.2)
where A is an m X n matrix (m > n), we use the augmented system formulation
a ol [l =16 2
For the least-squares problem
ci=b and co =0,

and the solution is given by ya.
For the minimum-norm solution

c1=0 and c9 =D,

and the solution is given by yj.
In both cases, we will use an LU factorization of A, so that, if

_[Aa
A= [Az] ’
where A is an n X n nonsingular matrix. The factorization can be written
_[In
A= [Lz] U, (3.4)



where A; = L;U. Of course, it is the LU factorization of A that determines the
partitioning. When performing this factorization we will use standard threshold pivoting
(Duff, Erisman & Reid 1986) to limit growth in the factors of L. Note that it is actually a
row permutation of the matrix A that is factorized but we have omitted the permutation
matrix from (3.4) for the sake of clarity.

If we partition the coefficient matrix of the augmented system (3.3) accordingly, we
get the matrix

I 0 A
0 I A, (3.5)
AT AT 0

In both overdetermined and underdetermined cases, we will solve the problem using
the block factorization of a permutation of (3.5) given by

AT 0 Al AT I Jt
I A, 0|=|1 1 ] A, —JT], (3.6)
0 A, I J I S

where J = ApA; ' =LoL; ' and S =1+ JJ7.
We show, in Sections 3.1 and 3.2, how this factorization can be used to solve the
systems (3.1) and (3.2) respectively.

3.1 Overdetermined systems.

In the case of the least-squares problem (3.1), if we partition and reorder the system
according to the matrices in (3.6) we obtain

AT 0 Ag r 0
I A1 0 X = b1 )
0 A2 I Ir9 b2

then the use of the factorization (3.6) implies that we first solve the system
Sry = by — Jby, (3.7)

with S and J defined as above.
The solution to the least squares-problem is then found by using the factors of A; to
solve the equation
Aix=Db; + JTI'Q. (38)

Thus we can solve the least-squares problem by solving a reduced problem of dimension
m —n (which we have assumed small) and a set of linear equations of order n for which we
have computed the LU factorization. Furthermore, we can control the stability through
pivoting in the factorization (3.4).

We note that the proposed method has the same first step as the method of Peters and
Wilkinson, namely the LU factorization of the original sparse matrix A. Both avoid some
of the problems of ill-conditioning by pivoting in the factorization (3.4) to keep entries in

Ly
[Lz ] small.



3.2 Underdetermined systems.

In the case of the minimum-norm problem (3.2), after partitioning and permuting the
system becomes

AT 0 Al Tx: b
I A1 0 r =10].
0 A2 I X9 0

Then the use of the factorization (3.6) results in the solution of the system
Sxo = J(AT"b), (3.9)

with S and J defined as above.
The solution to the underdetermined system is then given by

x1 = A7 b —J"xo. (3.10)

Thus we can solve the underdetermined system by solving a reduced problem of
dimension m — n (which we have assumed small) and a set of linear equations of order n
for which we have computed the LU factorization. Furthermore, we can again control the
stability through pivoting in the factorization (3.4).

4 Comparative results.

This section compares the numerical efficiency of the proposed method with other
well known least-squares methods based on Gaussian elimination. This comparison is
performed at both theoretical and experimental levels. Theoretical comparisons are
performed using floating-point operation counts for dense matrices. These results are
supported by the CPU times required for the solution of some test problems, both
considering the matrices as dense and sparse. In the case of dense matrix computations,
these practical implementations have been carried out using the LAPACK library
(Anderson et al. 1995). The implementation for sparse matrix computations has been
carried out using several sparse matrix factorization routines from the Harwell Subroutine
Library (Anon 1993).

Every test matrix considered in this paper comes from real applications of the kinematic
simulation of multibody systems; all of them are Jacobian matrices corresponding to
different real mechanical systems. These test problems are briefly introduced in Table 4.1,
which summarizes their main characteristics. As can be seen, they are all small sparse
quasi-square matrices. Matrix Test 1 is the Jacobian matrix corresponding to a six degrees
of freedom Stewart platform. This kind of device is used, for example, to construct flight
simulators. Matrix Test 2 represents the complete kinematic model of a car, including
both front and rear suspension as well as the steering system. Matrix Test 3 corresponds
to a complex kinematic model of the human body with up to 45 degrees of freedom.
Matrix Test 4 comes from the kinematic model of a deployable antenna, and matrix Test
5 represents the kinematic model of the same antenna and the satellite to which it is
attached.

The results presented in this section will indicate the most suitable method for the
kind of problems considered in this paper. In addition, they will also show that, even for
small matrices, like those arising in multibody simulation, the use of sparse solvers leads
to important savings in computation times.



Table 4.1: Characteristics of test matrices.

Name | # rows | # cols | # entries | Ratio m/n
6 dof. platform Test 1 117 105 615 1.11
Car model Test 2 170 161 1069 1.06
Human body model | Test 3 181 180 1200 1.01
Deployable antenna | Test 4 385 361 1661 1.07
Antenna + satellite | Test 5 574 526 3365 1.09

4.1 Dense matrices

This section compares the normal equations method, the method of Peter and Wilkinson,
and the proposed method. The number of floating-point operations needed to obtain the
solution is evaluated for every step of each algorithm. In this calculation, it is assumed
that the coefficient matrix is dense. It is also assumed that additions and multiplications
are equivalent single floating-point operations in terms of CPU requirements and only the
higher order terms are included. The operation counts are obtained for the solution of
overdetermined systems. Results for the case of underdetermined systems may be obtained
following a similar procedure and are not included here.

For the normal equations method, the steps performed by the algorithm can be written
as shown in Table 4.2.

Table 4.2: Normal equations method.

Step Matrix computation | Computational cost
1) Products A"™A and A"b mn?
2) Factorization ATA =LDL" n3/3
3) Solve LDL"x = A" 2n?

The method of Peters and Wilkinson is slightly more complicated. This method first
requires the LU factorization of the original matrix A. Afterwards, the normal equations
are constructed and then the resulting set of linear equations is solved. Table 4.3 shows
the sequence of operations required by this method.

Table 4.3: Method of Peters and Wilkinson.

Step Matrix computation | Computational cost
1) Factorization A =LU mn? —n3/3
2) Products L'L and L'b mn? —2n3/3
3) Factorization L'L = LDL" n3/3
4) Solve LDL"Ux = L"b 3n?

The method proposed in this paper again begins with the factorization of the original
matrix A. Once the LU factors have been computed, the matrix J has to be obtained. The
evaluation of such a matrix only requires a few forward reductions and back substitutions
using the blocks L; and Ly of the factor L. The number of right-hand side vectors to be
solved equals the number of redundant rows in the original matrix A; that is, (m — n).



Having calculated the matrix J, the next step requires the solution of equations (3.7) and
(3.8). In equation (3.7) the matrix I+ JJ7 is calculated and factorized. The algorithm
corresponding to the proposed method may be summarized in five steps, as shown in Table
4.4.

Table 4.4: Proposed method.

Step Matrix computation Computational cost
1) Factorization A=LU mn? —n’/3
2) Solve J=LoL;! (m — n)n?
3) Products S=(I+JJ") and Jb, (m —n)’n
4) Solve Sro = by —Jb; (m — n)3/3
5) Solve LiUx=b; +J%ry 2mn

Table 4.5 summarizes the number of floating-point operations for the three different
methods. From this table, we see that, if the difference (m — n) is small, the last term
of the computational cost of the proposed method may be neglected. In that case, the
number of arithmetic operations required by our method is even lower than the number
required by normal equations.

Table 4.5: Total number of floating-point operations.

Method Computational cost
mn? +n?/3
2mn? — 2n3/3
mn? —n®/3 + (m — n)(mn + (m —n)?/3)

Normal equations
Peters and Wilkinson
Proposed method

All these algorithms are compared using the expressions for the number of floating-
point operations given in Tables 4.2 to 4.4. Those comparisons are shown graphically in
Figure 4.3 for different combinations of m and n. The method of the normal equations has
been taken as a reference. Thus each plot shows the ratio between the computational effort
required by either the method of Peters and Wilkinson or the method proposed in this
paper and the number of operations required by normal equations. These ratios are shown
for different values of the ratio m/n where m is the number of rows and n the number of
columns of the original matrix A. It may be seen that the number of operations required
for the proposed method, when m/n = 1.05,1.10,1.15, is less than that required for the
normal equations method, while the method of Peters and Wilkinson is more expensive
than normal equations in every case considered.

Table 4.6: Least-squares. CPU time in milliseconds using LAPACK routines.

Code Test 1 | Test 2 | Test 3 Test 4 Test 5
Normal equations | LAPACK | 57.41 | 203.26 | 238.61 | 1914.05 | 5990.06
Proposed Method | LAPACK | 29.83 | 47.71 | 56.36 | 391.71 | 2124.20

From the graphs in Figure 4.3, it can be concluded that an implementation of the
proposed method should be even faster than normal equations for the case of dense quasi-

10



square matrices. Also, from these graphical results, it is clear that the method of Peters and
Wilkinson will not be competitive with normal equations nor with the proposed method.
For this reason, we have not implemented the method of Peters and Wilkinson.

For dense matrices, both the proposed and the normal equations methods have been
implemented using LAPACK routines. Table 4.6 shows the CPU times needed to solve
the test problems that were summarized in Table 4.1. Times are in milliseconds and have
been obtained using a single processor of a Silicon Graphics workstation (an ONYX with
a MIPS R4400 processor running at 150 MHz). It is seen how the proposed method leads
to significant savings in CPU times as forecast by the operation count study.

The implementation of these methods follows essentially the guidelines indicated in
Tables 4.2 and 4.4, respectively. The times reported in Table 4.6 are the total CPU times
required to perform all the operations needed for each particular method.

In Table 4.7, we show the CPU times required to solve the same test problems when
the minimum-norm solution is required. As we see, the results in this case are very similar
to those for the least-squares problem.
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Figure 4.3: Comparison between the number of operations required in various methods.
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Table 4.7: Minimum-norm. CPU time in milliseconds using LAPACK routines.

Code Test 1| Test 2 | Test 3| Test 4| Test 5
Normal equations | LAPACK | 61.24 | 195.07 | 252.17 | 2045.03 | 6413.86
Proposed Method | LAPACK | 29.79 | 49.40 | 58.13 | 385.31 | 2120.17

4.2 Sparse matrices.

In the previous section, a theoretical and practical comparison between three different
methods for dense matrices was presented. In this section, different implementations
of the proposed method, the method of normal equations, and the augmented systems
method will be compared in terms of CPU time to solve the same test problems. All
the implementations in this section are based on Harwell Subroutine Library routines for
sparse matrices.

Two different implementations have been carried out for the normal equations method
using MA27 and MA47 routines; the augmented system method has been implemented
using MA27, MA47 and M A48 routines and, finally, the M A48 package has been modified
to implement the method described in this paper. CPU times measured when solving the
problems in Table 4.1 can be seen in Table 4.8.

Table 4.8: Least-squares. CPU time in milliseconds using HARWELL routines.

Code | Test 1| Test 2 | Test 3 | Test 4 | Test 5
Normal equations MA27 12.13 32.31 36.99 | 100.25 288.55
MA47 | 15.29 | 37.85 | 42.03 | 117.00 | 317.12
MA27 7.31 | 1559 | 13.13 | 43.44 | 120.70
Augmented system | MA47 | 38.98 | 29.15 | 26.93 | 81.33 | 1961.45
MAA48 6.59 | 10.09 7.07 | 17.36 58.17
Proposed method | MA48 4.53 7.25 4.09 | 21.07 67.65

When solving nonlinear systems of equations, like those appearing in the kinematic
simulation of multibody systems, the pattern of the coefficient matrix remains unchanged
during the whole iterative process. Therefore the symbolic factorization of the matrix
needs to be performed only once. For this reason, the times in Table 4.8 are those
corresponding to the numerical solution for a single iteration, assuming that the symbolic
factorization has been obtained previously.

Looking at the results in Table 4.8, the improvement obtained by those methods whose
implementation is based on the MA48 package is very significant. In the case of the
augmented systems, this implementation is more efficient than that based on the MA27
or MAA47 routines, although those routines deal with symmetric problems while M A48
was designed for general unsymmetric rectangular matrices. One of the reasons for this
unezpected behaviour may be the way the matrix is reordered. The M A48 package reorders
the augmented matrix to a block triangular form (BTF). This appears to be a good
strategy for matrices arising in multibody simulations.

We see that the sparse codes comfortably outperform LAPACK codes even on the
small problems. The last row in Table 4.8 shows that the proposed method is the most
efficient when dealing with small matrices. When matrices are moderate in size (Tests
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4 and 5), the profiling analysis of the solution process indicates that most of the time
is spent in computing the matrix J. In those cases, this computation takes about 70%
of the time required to solve the whole problem, while the numerical factorization of the
original rectangular matrix takes only about 25% of the total time. Consequently, special
attention must be paid to the optimization of the forward reduction and back substitution
routines required to evaluate the matrix J. This is thus the key step for improving the
performance of the implementation, especially if the matrix is large. A BTF reordering
strategy for rectangular matrices would lead to a faster execution time for the proposed
method (this feature is not available in the current implementation of the method based
on the MA48 package). The remaining steps, like the computation and factorization of
the matrix T+ JJT, are not very expensive. Remember that the order of matrix J is
(m —n) x n and can be treated as sparse. Moreover, I+ JJ" is an (m — n) square,
symmetric and positive definite matrix. Its factorization using LAPACK routines requires
low computational effort, provided the original matrix A is quasi-square.

Table 4.9: Minimum-norm. CPU time in milliseconds using HARWELL routines.

Code | Test 1 | Test 2 | Test 3 | Test 4 | Test 5
Normal equations MA27 16.18 42.43 49.20 | 136.15 308.82
MA47 | 19.25 | 47.93 | 54.00 | 152.07 427.23
MA27 7.45 16.09 13.40 43.73 120.64
Augmented system | MA47 | 39.03 | 29.31 | 26.02 | 80.28 | 1700.56
MA48 6.76 10.71 7.65 17.82 60.12
Proposed method | MA43 4,53 7.22 4,11 | 20.86 66.61

Table 4.9 shows the CPU times required to solve the same test problems using sparse
solvers when the minimum-norm solution is required. Comments made for the least-
squares problem are also valid in this case.

It is important to point out that problems arising in the kinematic simulation of
multibody systems rarely involve more than two hundred equations in two hundred
unknowns. Bigger cases, like those corresponding to test 4 and 5 are not at all frequent
in practical applications. Therefore, the proposed method is a very attractive alternative
to classical ones.

5 Conclusions.

In this paper we have presented a new method for the solution of linear least-squares
and minimum-norm problems. The method is general and can be applied successfully to
problems arising in different fields. Moreover, it has been shown that it is especially well
suited for problems where the coefficient matrix is nearly square, like those appearing in
the field of the kinematic simulation of multibody systems.

The proposed method for least-squares solution belongs to the category of elimination
methods. Its numerical efficiency has been compared to the efficiency of other well known
elimination methods for both dense and sparse matrices. Some comparative results in
terms of CPU times required for the solution of practical test cases have been presented.

The method is also particularly well suited for problems where a sudden loss of rank
of the original coefficient matrix can appear. In these cases it is not necessary to solve the
problem from scratch. The initial factorization can be used to obtain the desired solution.
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As a final remark, it should be noted that the method developed satisfies the constraints
imposed by the kinematics of multibody systems. This method may solve the set of
nonlinear equations that describes the mechanism many times per second. Therefore, the
simulation program will give an interactive response even if the computer platform is a
low cost workstation.
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