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ABSTRACT

We consider preconditioning strategies for the iterative solution of dense complex symmetric non-
Hermitian systems arising in computational electromagnetics. We consider in particular sparse
approximate inverse preconditioners that use a static nonzero pattern selection. The novelty
of our approach comes from using a different nonzero pattern selection for the original matrix
from that for the preconditioner and from exploiting geometric or topological information from
the underlying meshes instead of using methods based on the magnitude of the entries. The
numerical and computational efficiency of the proposed preconditioners are illustrated on a set
of model problems arising both from academic and from industrial applications. The results of
our numerical experiments suggest that the new strategies are viable approaches for the solution
of large-scale electromagnetic problems using preconditioned Krylov methods. In particular, our
strategies are applicable when fast multipole techniques are used for the matrix-vector product on
parallel distributed memory computers.
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1 Introduction

In recent years, there has been a significant amount of work on the simulation of electromagnetic
wave propagation phenomena, addressing various topics ranging from radar cross section to
electromagnetic compatibility, to absorbing materials, and antenna design. To address these
problems the Maxwell equations are often solved in the frequency domain leading to singular
integral equations of the first kind. The discretization by the boundary element method (BEM)
results in linear systems with dense complex matrices which are very challenging to solve. With the
advent of parallel processing, this approach has become viable for large problems and the typical
problem size in the electromagnetics industry is continually increasing.

In this paper, we consider the solution of linear systems of the form

Ax =b

where the coefficient matrix A = [a;;] is a large, dense, complex matrix of order n arising
from the discretization. The coefficient matrix can be symmetric non-Hermitian in the EFIE
(Electric Field Integral Equation) formulation, or unsymmetric in the CFIE (Combined Field
Integral Equation) formulation. The unknowns in the vector = are associated with the edges of
an underlying mesh on the surface of the object. In this paper, we will only consider numerical
examples where A is symmetric because EFIE usually gives rise to linear systems that are more
difficult to solve with iterative methods. The techniques considered here can be applied equally
well to unsymmetric matrices. In fact in the numerical experiments we use non-symmetric solvers
because the preconditioners that we construct are unsymmetric. We can, of course, construct either
only the lower or only the upper part of the preconditioner and use a symmetric preconditioner
obtained by reflecting this in the diagonal. One problem is that the resulting preconditioner
depends on the ordering of the matrix. In previous tests [7], we investigated the effect of
symmetrizing the preconditioner by averaging the off-diagonal entries after its construction and
using such a symmetrized preconditioner with symmetric QMR but found that this caused a
marked deterioration in the quality of the preconditioner leading to far more iterations of the
iterative method. We plan to further investigate symmetric strategies in future work but, in this
present study, we will stick with unsymmetric techniques and preconditioners.

Direct dense methods based on Gaussian elimination are often the method of choice because
they are reliable and predictable both in terms of accuracy and cost. However, for large-scale
problems, they become impractical even on large parallel platforms because they require storage of
n? double precision complex entries of the coefficient matrix and O(n®) floating-point operations to
compute the factorization, where n denotes the size of the linear system. Iterative Krylov subspace
based solvers are a promising alternative provided we have fast matrix-vector multiplications and
robust preconditioners. There are active research efforts on multipole techniques to perform fast
matrix-vector products with O(nlog(n)) computational complexity including strategies for parallel
distributed memory implementations (see [10, 11, 12]). In this paper, we focus on the other key
component of Krylov methods in this context; that is, we study the design of robust preconditioning
techniques.

The parallel framework suggests that sparse approximate inverses based on Frobenius-norm
minimization techniques are promising candidates for the efficient preconditioning of these systems.
Such techniques exhibit a good level of numerical efficiency on this class of applications when
compared with the implicit approach based on incomplete factorization (see [7], [8]). The normal
requirement for a good preconditioner is that it is easy to construct, cheap to store and to apply,
is parallelizable and, of course, is effective in accelerating the convergence of Krylov solvers. To be
computationally affordable on dense linear systems, Frobenius-norm minimization preconditioning
techniques require a suitable strategy to identify the relevant entries to consider in the original
matrix A, in order to define small least-squares problems, as well as an appropriate sparsity
structure for the approximate inverse.



For sparse matrices, two strategies can be used to define the sparsity structure of the
preconditioner. A dynamic approach constructs the nonzero pattern of the preconditioner by
monitoring the residual in the least-squares problems during the computation. This is generally
effective but is usually very expensive [19, 21]. A static approach that requires an a priori nonzero
pattern for the preconditioner, introduces significant scope for parallelism and has the advantage
that the memory storage requirements and computational cost for the setup phase are known in
advance. However, it can be very problem dependent.

In this paper, we propose some new efficient static nonzero pattern selection strategies both
for the preconditioner and for the selection of the entries of A in order to develop robust
preconditioners for applications in electromagnetism. Amongst the many examples considered
in [7], we select a subset of test examples, arising from both academic and industrial applications
that are representative of the general numerical behaviour that we observed. More specifically, we
here consider the following geometries where, for physical consistency, we have set the frequency
of the wave so that there are about ten discretization points per wavelength [3]:

Example 1: a cylinder with a hollow inside, a matrix of order n = 1080, see Figure 1(a);
Example 2: a cylinder with a break on the surface, a matrix of order n = 1299, see Figure 1(b);
Example 3: a satellite, a matrix of order n = 1701, see Figure 1(c);
Example 4: a parallelepiped, a matrix of order n = 2016; and
Example 5: a sphere, a matrix of order n = 2430.
We perform experiments with the following Krylov solvers:

¢ restarted GMRES [25];

e Bi-CGSTAB [24];

¢ symmetric and unsymmetric QMR [18];

e TFQMR [17].

In Section 2, we describe the construction of the preconditioner using our proposed static
pattern strategies and report on the associated numerical experiments. Finally, in Section 3, we
present some remarks arising from the work.

2 Static pattern selection and dropping strategies

Frobenius-norm minimization is one of the most natural approaches for building explicit
preconditioners. The idea is to compute the sparse approximate inverse as the matrix M which
minimizes ||I — MA|r (or |[[ — AM||r for right preconditioning) subject to certain sparsity
constraints. The Frobenius-norm is usually chosen since it allows the decoupling of the constrained
minimization problem into n independent linear least-squares problems, one for each column of M
(when preconditioning from the right) or row of M (when preconditioning from the left). In our
present applications, these least-squares problems are small enough to be solved using a dense QR
decomposition. The independence of these least-squares problems follows immediately from the
identity:

1T = MA|[7 = I = AMT|[7 = llej — Amy.|J3 (1)

j=1
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(a) Example 1 (b) Example 2

(c) Example 3

Figure 1: Mesh associated with test examples

where e; is the jth unit vector and m; . is the column vector representing the jth row of M.

In the case of right preconditioning, the analogous relation

11— AM|7 =3 lle; — Am..13 (2)

i=1
holds, where m. ; is the column vector representing the jth column of M. Clearly, there is

considerable scope for parallelism in this approach.
The main issue is the selection of the nonzero pattern of M. The idea is to keep M reasonably

sparse while trying to capture the “large” entries of the inverse, which are expected to contribute
the most to the quality of the preconditioner. For this purpose, two approaches can be followed:
an adaptive technique that dynamically tries to identify the best structure for M; and a static
technique, where the pattern of M is prescribed a priori based on some heuristics. Some early
references to this latter class can be found in [4], [5], [6], [15] and in [1] for some applications to

boundary element matrices in electromagnetism.
In addition, when the coefficient matrix is dense, the preconditioner should be constructed

from a sparse approximation of A in order to reduce the computational cost of the least-squares

solutions.



2.1 Strategies for the preconditioner

When the coefficient matrix has a special structure or special properties, for instance a banded
matrix with a good degree of diagonal dominance or a banded SPD matrix, efforts have been
devoted to find a pattern that can retain the entries of A~! having large modulus, see [9] and [13]
for example. Unfortunately, for general unstructured matrices, it is very difficult to predict a good
pattern for the inverse in advance. Adaptive strategies that compute the pattern dynamically can
provide very good preconditioners, even on hard problems, but at the cost of a very large amount
of computing time and memory. In some cases it is possible to take advantage of special features of
the underlying physical problem and compute a good a priori pattern for the approximate inverse.

2.1.1 Algebraic strategy

The boundary element method discretizes integral equations on the surface of the scattering object,
generally introducing a very localized strong coupling among the edges in the underlying mesh.
Each edge is strongly connected to only a few neighbours, while, although not null, far-away
connections are much weaker. This means that a very sparse matrix can still retain the most
relevant contributions from the singular integrals that give rise to dense matrices. Due to the
decay of the Green’s function, the inverse of A may exhibit a very similar structure to A as
illustrated in Figure 2 where we display the pattern of A and A~! when the smallest entries are
dropped. Thus, in this case, a good pattern for the sparse approximate inverse is likely to be the
nonzero pattern of a sparse approximation of A, constructed by dropping all the entries lower than
a prescribed threshold, as suggested for instance in [22]. We refer to this approach as the algebraic
approach. Several heuristics can be used to define the sparsity pattern based on the magnitude

(a) sparsified(A) (b) sparsified(A™1)

Figure 2: Nonzero pattern for A (left) and A~! (right) when the smallest entries are discarded.
The test problem is Example 1.

of the entries; all of them result in similar numerical behaviour [1] but some are particularly well
suited for parallel implementation. In the numerical experiments, we have selected the strategy
where, for each column of A, the k entries (k < n is a positive integer) of largest modulus are
retained.

This strategy generally works well and competes with the approach that adaptively defines the
nonzero pattern as implemented in the SPAT preconditioner described in [20] and [21]. Nevertheless
it suffers some drawbacks that put severe limits on its use in practical applications. For large
problems, accessing all the entries of the matrix A becomes too expensive or even impossible. This
is the case in the fast multipole framework, where all the entries of the matrix A are not available.
In addition on complex geometries, a pattern for the sparse approximate inverse computed by using



information solely from A may lead to a poor preconditioner. These two main drawbacks motivate
the investigation of more appropriate techniques to define a sparsity pattern for the preconditioner.

Because we work in an integral equation context, we can use more information than just the
entries of the matrix of the discretized problem. In particular, we can exploit the underlying mesh
and extract further relevant information to construct the preconditioner. Two types of information
are available from the mesh:

the connectivity graph, describing the topological neighbourhood among the edges, and

the coordinates of the nodes in the mesh, describing geometric neighbourhoods among the edges.

2.1.2 Topological strategy

When the object geometries are smooth, only the neighbouring edges can have a strong interaction
with each other, while far-away connections are generally much weaker. Thus an effective pattern
for the sparse approximate inverse can be prescribed by exploiting topological information related
to the near field. In the integral equation context, the surface of the object is discretized using a
triangular mesh. Each degree of freedom (DOF), representing an unknown in the linear system,
corresponds to an edge. The sparsity pattern for any row of the preconditioner can be defined
according to the concept of level k neighbours, as introduced in [23]. Level 1 neighbours of a DOF
are the DOF plus the four DOFs belonging to the two triangles that share the edge corresponding
to the DOF itself. Level 2 neighbours are all the level 1 neighbours plus the DOFs in the triangles
that are neighbours of the two triangles considered at level 1, and so forth. In Figure 3 we plot,
for each DOF of the mesh for Example 1, the level of its neighbours with respect to the magnitude
of the associated entry in A (the graph on the left) and in A~! (the graph on the right). The
large entries in A~! derive from the interaction of a very localized set of edges in the mesh so that
by retaining a few levels of neighbours for each DOF an effective preconditioner is likely to be
constructed. Three levels can generally provide a good pattern for constructing an effective sparse
approximate inverse. Using more levels increases the computational cost but does not improve
substantially the quality of the preconditioner. We will refer to this pattern selection strategy as
the topological strategy.

Distribution in the mesh of the connections of A Distribution in the mesh of the connections of Inv(A)
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Figure 3: Topological localization in the mesh for the large entries of A (left) and A™! (right).
The test problem is Example 1 and is representative of the general behaviour.



2.1.3 Geometric strategy

When the object geometries are not smooth, two far-away edges in the topological sense can have
a strong interaction with each other so that they are strongly coupled in the inverse matrix. For
the scattering problem on Example 1, we plot in Figure 4 the distance in terms of wavelength
among pairs of edges in the mesh with respect to the magnitude of their associated entries in A
and A7!. The largest entries of A~! are localized similarly to those of A, but, in many cases,
small entries in A correspond to large entries in the inverse and vice-versa. This means that if we
construct the sparse pattern for the inverse by only using information related to A, we may retain
many small entries in the preconditioner, contributing marginally to its quality, but may neglect
some of the large ones potentially damaging the quality of the preconditioner. Also, the surface
of the object is very non-smooth, these large entries may come from the interaction of far-away or
non-connected edges in a topological sense, which are neighbours in a geometric sense. Thus they
cannot be detected by using only topological information related to the near field. Figure 4(b)
suggests that we can select the pattern for the preconditioner using physical information, that is:
for each edge we select all those edges within a sufficiently large sphere that defines our geometric
neighbourhood. By using a suitable size for this sphere, we hope to include the most relevant
contributions to the inverse and consequently to obtain an effective sparse approximate inverse.
This selection strategy will be referred to as the geometric strategy.

Distributicn in the mesh of the connections of A Distribution in the mesh of the connections of Inv(A)
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Figure 4: Geometric localization in the mesh for the large entries of A (left) and A~! (right). The
test problem is Example 1. This is representative of the general behaviour.

2.1.4 Numerical experiments

In this section, we compare the different strategies described above in the solution of our test
problems.
Using the three pattern selection strategies for M, we denote by

e M,, the preconditioner computed by using the algebraic strategy,
e M;, the preconditioner computed by using the topological strategy,
e Mg, the preconditioner computed by using the geometric strategy,

e SPAI, the preconditioner constructed by using the dynamic strategy implemented by [20].



To evaluate the effectiveness of the proposed strategies, we first consider using the dense matrix
A to construct the preconditioners Mg, M;, M, and SPAI. This requires the solution of large
dense least-squares problems. The adaptive technique implemented in SPAI computes the pattern
of the preconditioner starting with a simple initial guess, like a diagonal matrix, and then improves
it until a criterion of the form ||Am; . — ¢ej||z < € (for each j) is satisfied for a given ¢ > 0, ¢;
being the jth column of the identity matrix, and m; . being the column vector for the jth row of
M according to the notation previously introduced, or until a maximum number £ of nonzeros in
the jth row of M has been generated (we refer the reader to [20] and [21] for further details).

The density of the preconditioner varies from one problem to another for the same value of the
distance parameter chosen to define M. As Figure 4(b) shows, and tests on all the other examples
confirm, those entries corresponding to edges contained within a sphere of radius 0.12 times the
wavelength can retain many of the large entries of the inverse while giving rise to quite a sparse
preconditioner. For all our numerical experiments, we choose a value for k in the construction of
M, and SPAI, and for the level of neighbours used to generate M; so that they have the same
density as M, when necessary discarding some small entries of the preconditioner so that all have
the same number of entries.

For all the numerical experimentsreported in this paper, for GMRES we use the implementation
described in [14]. For the tests with Bi-CGSTAB, we derived a version for complex arithmetic from
the Harwell Subroutine Library (HSL, [2]) routine MIO6 and for those with unsymmetric QMR
(referred to as UQMR in the forthcoming tables) and TFQMR, we used, respectively, the ZUCPL
and ZUTFX routines available in QMRPACK [16]. The stopping criteria in all cases just consists
in reducing the original residual by 107°. The symbol “-” means that convergence was not obtained
after 500 iterations. In each case, we took as the initial guess zy = 0, and the right-hand side was
such that the exact solution of the system was known. We performed different tests with different
known solutions, observing identical results. All the numerical experiments were performed in
double precision complex arithmetic on a SGI Origin 2000 and the number of iterations reported
in this paper are for left preconditioning. Very similar results were obtained when preconditioning
from the right.

From the results shown in Table 1, we first note that all the preconditioners accelerate the
convergence of the Krylov solvers, and in some cases enable convergence when the unpreconditioned
solver diverges or converges very slowly. These numerical experiments also highlight the advantages
of the geometric strategy. It not only outperforms the algebraic approach and is more robust than
the topological approach, which has a similar computational complexity, but it also generally
outperforms the adaptive approach implemented in SPAI which is much more sophisticated and
more expensive in execution time and memory. SPAI competes with M, only on Example 1 where
the density of the preconditioner is higher. This trend, namely the denser the preconditioner
the more efficient SPAI is, has been observed on many other examples. However, for sparse
preconditioners, SPAI may be quite poor as illustrated on Example 4, where preconditioned
GMRES(30) or Bi-CGStab are slower than without a preconditioner and the iteration diverges for
GMRES(10) with the SPAI preconditioner while it converges for the other three preconditioners.
On the non-smooth geometry, that is Example 2, an explanation of why the geometric approach
should lead to a better sparse preconditioner can be suggested by Figure 1(b). Some far-away
edges in the connectivity graph, those from each side of the break, are weakly connected in the
mesh but can have a strong interaction with each other, and can lead to large entries in the inverse
matrix.

2.2 Strategies for the coefficient matrix

When the coefficient matrix of the linear system is dense, the construction of even a very sparse
preconditioner may become too expensive in execution time as the problem size increases. Both
memory and execution time are significantly reduced by replacing A with a sparse approximation.
On general problems, this approach can cause a severe deterioration of the quality of the



Example 1 - Density of M = 5.03%
GMRES(m) Bi -
Precond. CGStab UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
Unprec. - - - 251 202 223 231 175
M; - - 465 222 174 239 210 169
M, 219 135 96 72 72 86 107 72
M, 100 49 36 36 36 35 42 32
M, 124 68 46 46 46 44 58 38
SPAI - 67 44 44 44 48 50 43
Example 2 - Density of M = 1.59%
GMRES(m) Bi -
Precond. CGStab UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
Unprec. - - - 398 289 359 403 249
M; - - 473 330 243 257 354 228
M, 472 273 239 207 184 330 313 141
M; - 470 346 243 195 187 275 158
M, 90 72 55 52 52 44 82 40
SPAI - - 99 61 61 168 97 111
Example 4 - Density of M = 1.04%
GMRES(m) Bi-
Precond. CGStab UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
Unprec. - 224 191 158 147 177 170 118
M; 350 211 178 153 140 188 152 110
M, 212 157 141 132 123 131 145 115
M; 288 187 160 146 139 145 156 98
M, 63 51 41 41 41 37 47 32
SPAI - 370 184 112 84 256 96 85

Table 1: Number of iterations using the preconditioners based on dense A.

preconditioner; in the BEM context, since a very sparse matrix can retain the most relevant
contributions to the singular integrals, it is likely to be more effective. The use of a sparse matrix
substantially reduces the size of the least-squares problems that can then be efficiently solved by
direct methods.

The algebraic heuristic described in the previous sections is well suited for sparsifying A. In [1]
the same nonzero sparsity pattern is selected both for A and M; in that case, especially when the
pattern is very sparse, the computed preconditioner may be poor on some geometries. The effect
of replacing A with its sparse approximation on some problems is highlighted in Figure 5 where we
display the sparsified pattern of the inverse of the sparsified A. We see that the resulting pattern
is very different from the sparsified pattern of the inverse of A shown in Figure 2.

A possible remedy is to increase the density in the patterns for both A and M. To a
certain extent, we can improve the convergence, but the computational cost of generating the
preconditioner grows almost cubicly with respect to density. A cheaper remedy is to choose a
different number of nonzeros to construct the patterns for A and M, with less entries in the
preconditioner than in the sparse approximation of A. To illustrate this effect, we report in Table 2
on the number of iterations of preconditioned GMRES(50), where the preconditioners are built by



Figure 5: Sparsity pattern of the inverse of sparse A associated with Example 1. The pattern has
been sparsified with the same value of threshold used to sparsify A displayed in Figure 2.

using either the same sparsity pattern for A or a two, three or five times denser pattern for A.

|| Example 1 | |

Percentage density of M

Density strategy ) ) 5 A . 6 . g o | 10
Same - - 299 | 146 | 68 | 47 | 47 | 42 | 37 | 39

2 times - - 248 | 155 | 76 | 46 | 40 | 39 | 39 | 38

3 times - 253 | 207 | 109 | 49 |39 (39|37 | 35| 34

5 times - 258 | 213 | 99 |48 | 37 | 38 | 34 | 33 | 33

Full A 364 | 359 | 144 | 96 | 46 | 35| 35 | 34 | 32 | 31

Table 2: Number of iterations for GMRES(50) preconditioned with different values for the density
of M using the same pattern for A and larger patterns. A geometric approach is adopted to
construct the patterns. The test problem is Example 1. This is representative of the general
behaviour observed.

Except when the preconditioner is very sparse, increasing the density of the pattern imposed on A
for a given density of M accelerates the convergence as expected, getting quite rapidly very close
to the number of iterations required when using a full A. The additional cost in terms of CPU
time is negligible as can be seen in Figure 6 for experiments on Example 1. This is due to the fact
that the complexity of the QR factorization used to solve the least-squares problems is the square
of the number of columns times the number of rows. Thus, increasing the number of rows, that is
the number of entries of A, does not penalize significantly the construction of the preconditioner.
On the other hand, reducing the density of the preconditioner, that is the number of columns
in the least-squares problems, can significantly reduce the overall CPU time. Notice that this
observation is true for both left and right preconditioning because, according to (1) and (2) the
smaller dimension of the matrices involved in the least-squares problems always corresponds to the
entries of M to be computed, and the larger to the entries of the sparsified matrix from A.
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2.2.1 Numerical experiments

We report in this section on the numerical results obtained by replacing A with its sparse
approximation in the construction of the preconditioner. In Table 3 we use the following notation:

o M,_q, introduced in [1] and computed by using algebraic information from A. The same
pattern is used for the preconditioner;

e M,_;, constructed by using the algebraic strategy to sparsify A and the topological strategy
to prescribe the pattern for the preconditioner;

e M, g4, constructed by using the geometric approach and an algebraic heuristic for A with
the same density as for the preconditioner;

o Ms,_4, similar to M,_;, but the density of the pattern imposed on A is twice as dense as
that imposed M,_4;

o M, 4, similar to M, 4 but, as in the previous case, the density of the pattern imposed on
A is twice as dense as that imposed on M,_.

For the sake of comparison we also report the number of iterations without using a preconditioner
and with only a diagonal scaling, denoted by M;.

Other combinations are possible for defining the selection strategies for the patterns of A and
M. Here we focus on the most promising ones, that use information from the mesh to retain
the large entries of the inverse, and the algebraic strategy for A to capture the most relevant
contributions to the singular integrals. We also consider the preconditioner M,_, to compare
with previous tests [1], that were performed on different geometries from those considered here.
We show, in Table 3, the results of our numerical experiments. For each example, we give the
number of iterations required by each preconditioned solver, and the CPU time to construct the
preconditioner when the least-squares problems are solved using LAPACK routines. The CPU
time for constructing M,_; and M,,_; is in some cases much larger than that needed to setup
M,_4 and Ms,_g4. The reason is that, in the topological strategy, it is not possible to prescribe
exactly a value for the density. Thus, for each problem, we select a suitable number of levels of
neighbours, to obtain the closest number of nonzeros to that retained in the pattern based on the
geometric approach. After the construction of the preconditioner, we drop its smallest entries to
ensure an identical number of nonzeros for the two strategies.

10



Example 1 - Density of M = 5.03%

GMRES(m o
Precond. gii (m) c g’é an | UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
Unprec. 0.00 - - - 251 202 223 231 175
M; 0.00 - - 465 222 174 239 210 169
M,_, 83.42 284 170 138 114 92 120 156 94
M, 4 91.07 179 61 45 45 45 43 58 36
M,_, 79.47 147 93 68 59 59 55 73 53
Moy 91.78 128 56 40 40 40 37 50 36
Msq_yg 80.18 131 79 52 51 51 59 65 44
Example 2 - Density of M = 1.59%
CPU GMRES(m) Bi -
Precond. Time CGStab UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
Unprec. 0.00 - - - 398 289 359 403 249
M; 0.00 - - 473 330 243 257 354 228
M._. 13.98 - 319 255 221 203 181 319 135
M,_, 16.45 - 261 213 174 169 128 251 121
M,_, 13.53 251 178 150 138 117 106 256 116
M,y 16.73 - 370 284 202 182 176 276 127
Msq_g 13.67 100 73 61 55 55 48 93 40
Example 3 - Density of M = 2.35%
Precond. %}:i CMRES (m) o (];3§ wap | UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
Unprec. 0.00 - - - - 488 - 444 308
M; 0.00 - - - 491 427 375 356 306
M,_., 82.59 436 316 240 193 125 144 166 135
M, 146.44 137 108 93 71 71 64 93 66
M,_q 109.45 - 464 296 203 108 240 166 144
M,y 147.79 113 78 59 53 53 41 61 44
Msq_g 110.30 122 84 72 59 59 53 67 50
Example 4 - Density of M = 1.04%
CPU GMRES(m) Bi -
Precond. Time CGStab UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
Unprec. 0.00 - 224 191 158 147 177 170 118
M; 0.00 350 211 178 153 140 188 152 110
M._. 31.75 299 205 172 146 133 162 180 103
M._4 38.05 266 152 130 114 99 92 127 83
M,_, 31.12 81 67 66 63 63 39 79 41
Moy 38.23 269 167 143 136 116 107 137 93
Msq_g 31.24 71 60 47 47 47 43 61 41

Continued on

nezt page
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Continued from previous page
Example 5 - Density of M = 0.63%
CPU GMRES(m) Bi -
Precond. Time CGStab UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110

Unprec. 0.00 - 344 233 146 125 152 170 109
M; 0.00 - 326 219 140 131 183 173 107
M,_, 27.66 - 352 249 154 134 202 183 107
M,_+ 70.93 360 66 64 60 60 34 76 46
M,._, 26.04 313 81 68 61 61 36 74 40
My, 4 71.29 71 48 47 47 47 25 54 30
Msq_g 26.13 88 42 39 39 39 21 45 25

Table 3: Number of iterations to solve the set of test problems.

We first observe that using a sparse approximation of A reduces the convergence rate of the
preconditioned iterations when the nonzero pattern imposed on the preconditioner is very sparse.
However if we adopt the geometric strategy to define the sparsity pattern for the approximate
inverse, the convergence rate is not affected very much. For even larger values of density, the
difference in the number of iterations between using full A or an algebraic sparse approximation
becomes negligible. For all the experiments, M, _, still outperforms M,_, and is generally
more robust than M, ;; the most efficient and robust preconditioner is M, 4. The multiple
density strategy allows us to improve the efficiency and the robustness of the Frobenius-norm
preconditioner on this class of problems without requiring any more time for the construction of
the preconditioner. For all the test examples, it enables us to get the fastest convergence even for
GMRES with a low restart parameter on problems where neither M,_, nor M,_, converge.

The effectiveness of this multiple density heuristic is illustrated in Figure 7 where we see the
effect of preconditioning on the clustering of the eigenvalues of A for the most difficult problem,
Example 2. The eigenvalues of the preconditioned matrices are in both cases well clustered around
1 (with a more effective clustering for Ms,_,), but those obtained by using the multiple density
strategy are further from the origin. This is highly desirable when trying improve the convergence
of Krylov solvers.
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Figure 7: Eigenvalue distribution for the coefficient matrix preconditioned by using a single (on
the left) and a multiple (on the right) density strategy on Example 2.

Another advantage of this multiple density heuristic is that it generally allows us to reduce
the density of the preconditioner (and thus its construction cost), while preserving its numerical
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quality. Although no specific results are reported to illustrate this aspect, this behaviour may be
partially observed in Table 2.

Example 1 - Density of M = 5.03%
GMRES(m) Bi-
Precond. CGStab UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
M; - - 465 222 174 239 210 169
SSOR - - 216 136 98 147 177 135
ILU(0) - - - - - - 479 -
SPAI - - 192 68 68 150 83 94
SLU 160 53 38 38 38 46 50 39
Msq_g 131 79 52 51 51 59 65 44
Example 2 - Density of M = 1.59%
GMRES(m) Bi -
Precond. CGStah UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
M; - - 473 330 243 257 354 228
SSOR - 413 245 164 134 185 281 266
ILU(0) - - - - 322 385 394 439
SPAI - - - - - - - -
SLU - - - - 282 - - -
Msq_g 100 73 61 55 55 48 93 40

Table 4: Number of iterations with some classical preconditioners computed using sparse A
(algebraic).

Finally, to assess the performance of the proposed Frobenius-norm minimization approach
described in this paper, we show, in Table 4, the numerical results observed on Examples 1 and 2
with some classical preconditioners, of both explicit and implicit form. These are: diagonal scaling,
SSOR, ILU(0) and SPAI applied to a sparse approximation of A constructed using the algebraic
approach. The method referred to as SLU in that table uses the sparsified matrix A as an implicit
preconditioner; that is, the sparsified matrix is factorized using ME47, a sparse direct solver from
HSL, and those exact factors are used as the preconditioner. Thus it represents an extreme case
with respect to ILU(0), since a complete fill-in is allowed in the factors. This approach, although
not easily parallelizable, is generally quite effective on this class of applications for dense enough
sparse approximations of A. However, as shown in this table, when the preconditioner is very
sparse, the numerical quality of this approach deteriorates and the Frobenius-norm minimization
method is more robust. All these preconditioners, except SLU on Example 1, exhibit much
poorer acceleration capabilities than that provided by Ms,_4. If we reduce the density of the
preconditioner in Example 1, M,,_, converges slowly but becomes the most efficient. It should
also be noted that SPAI works reasonably well when computed using dense A (see Table 1) but
with sparse A it does not converge on Example 2 (see Table 4).

3 Conclusions

We have presented some a priori pattern selection strategies for the construction of a robust sparse
Frobenius-norm minimization preconditioner for electromagnetic scattering problems expressed
in integral formulation. We have shown that, by using additional geometric information from
the underlying mesh, it is possible to construct robust sparse preconditioners at an affordable
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computational and memory cost. The topological strategy requires less computational effort
to construct the pattern, but since the density is a step function of the number of levels, the
construction of the preconditioner can require some additional computation. Also it may not
handle very well complex geometries where some parts of the object are not connected, as in
Example 3 (see Figure 1(c)). By retaining two different densities in the patterns of A and M we
can decrease very much the computational cost for the construction of the preconditioner, usually
a bottleneck for this family of methods; preserving the efficiency while increasing the robustness
of the resulting preconditioner. The numerical experiments have shown that, using this pattern
selection strategy, we can compute a very sparse but effective preconditioner. With the same low
density, none of the classical preconditioners that we considered can compete with it. An additional
major feature of this pattern selection strategy is that it does not require access to all the entries
of the matrix A, so that it is promising for an implementation in a fast multipole setting where A
is not directly available but where only the near field entries are computed.

|| Mag—g ||
GMRES(m) Bi -
Example CGStab UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
1 165 103 75 60 60 66 71 61
2 145 110 95 76 76 68 140 64
3 129 89 70 57 57 49 69 52
4 71 57 48 48 48 38 52 34
5 110 46 42 42 42 24 50 27

Table 5: Number of iterations to solve the set of test models by using a multiple density geometric
strategy to construct the preconditioner. The pattern imposed on M is twice as dense as that
imposed on A.

[ My [
GMRES(m) Bi -
Example CGStab UQMR | TFQMR
m=10 | m=30 | m=50 | m=80 | m=110
1 197 87 49 49 49 50 66 50
2 103 82 72 61 61 49 111 50
3 143 98 84 60 60 56 70 53
4 70 58 49 49 49 39 65 37
5 143 50 47 47 47 29 57 28

Table 6: Number of iterations to solve the set of test models by using a topological strategy to
sparsify A and a geometric strategy for the preconditioner. The pattern imposed on M is twice as
dense as that imposed on A.

The geometric approach can be also used to sparsify A, without noticeably deteriorating the
quality of the preconditioner. This is showed in Table 5, where Ms,_, is constructed by exploiting
geometric information in the patterns of both A and M, but chosing twice as dense a pattern for
A as for M. As suggested by Figure 3(a), due to the strongly localized coupling introduced by the
discretization of the integral equations, the topological approach can also provide a good sparse
approximation of A, by retaining just a few levels of neighbouring edges for each DOF in the mesh.
The numerical behaviour of this approach is illustrated in Table 6. In both cases the resulting
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preconditioner is still robust and better suited for a fast multipole framework since it does not
require knowledge of the location of the largest entries in A.
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