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ABSTRACT

The global convergence properties of a class of penalty methods for nonlinear programming are

analyzed. These methods include successive linear programming approaches, and more specifi-

cally, the successive linear-quadratic programming approach presented by Byrd, Gould, Nocedal

and Waltz (Math. Programming 100(1):27–48, 2004). Every iteration requires the solution of

two trust-region subproblems involving piecewise linear and quadratic models, respectively. It

is shown that, for a fixed penalty parameter, the sequence of iterates approaches stationarity of

the penalty function. A procedure for dynamically adjusting the penalty parameter is described,

and global convergence results for it are established.
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1 Introduction

In this paper we study the global convergence properties of successive linear–quadratic

programming (SLQP) algorithms for nonlinear programming. The problem under consid-

eration is

minimize
x

f(x) (1.1a)

subject to h(x) = 0 (1.1b)

g(x) ≥ 0, (1.1c)

where the objective function f : IRn → IR, and the constraint functions h : IRn → IRmh ,

g : IRn → IRmg , are assumed to be twice continuously differentiable.

The class of algorithms studied in this paper solves (1.1) via the related problem

minimize
x

φσ(x) (1.2)

where

φσ(x) = f(x) + σ‖h(x)‖ + σ‖g−(x)‖ (1.3)

is an exact penalty function [5, 13] composed of the objective and constraint functions

from (1.1). Here ‖ · ‖ is a polyhedral norm, g−(x) is defined componentwise as

g−
i (x) = min(gi(x), 0),

and σ > 0 is a parameter which is adaptively chosen so that critical points of (1.1) cor-

respond to those of (1.2). For fixed σ, each iteration of a typical algorithm comprises

two phases. In the first (linear) phase, a piecewise linear model of the penalty function

φσ is minimized subject to a trust-region bound. The aim here is to compute a step for

which convergence can be guaranteed. The second (quadratic) phase adjusts this step by

reducing a quadratic model of the penalty function within a (second) trust-region bound,

with the aim of accelerating the convergence of the method. A primary purpose of this

article is to establish the global convergence of this class of methods. Once this has been

established, it remains to consider methods for adjusting the penalty parameter so as to

ensure convergence of the overall algorithm to KKT points for (1.1) or, failing this, critical

points of some measure of constraint infeasibility.

This work is motivated by a recently proposed algorithm, described by the authors in

[1], and is related to the SLQP algorithm proposed by Fletcher and Sainz de la Maza [9].

In [1] the `1-norm is used to define the penalty function (1.3). The linear phase utilizes a

piecewise linear model of (1.3) at the current iterate xk,

`(xk, d) = f(xk) + ∇f(xk)
Td + σ‖h(xk) + ∇h(xk)

T d‖ + σ‖(g(xk) + ∇g(xk)
T d)−‖. (1.4)

Defining, `k(d)
def
= `(xk, d) and imposing an `∞-norm trust region whose radius is given by

the scalar parameter ∆LP

k > 0, the linear phase consists of solving the (linear programming)
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problem

minimize
d

`k(d)

subject to ‖d‖∞ ≤ ∆LP

k ,

whose solution we denote by dLP. A working set W is subsequently defined as the set of

constraints that are active at the solution of this problem if these constraints are linearly

independent, or otherwise some linearly independent subset of these.

The quadratic phase of the algorithm described in [1] computes a step d that makes

progress on a piecewise quadratic function

qk(d) = `k(d) + 1

2
dT Bkd, (1.5)

subject to a trust region constraint, where Bk approximates the Hessian of the Lagrangian

of the nonlinear program (1.1). The step computation in the quadratic phase is carried

out by solving an equality constrained quadratic programming problem of the form

minimize
d

1

2
dT Bd + ∇φT

σ d (1.6a)

subject to hi(x) + ∇hi(x)T d = 0, i ∈ E ∩W (1.6b)

gi(x) + ∇gi(x)T d = 0, i ∈ I ∩W (1.6c)

‖d‖2 ≤ ∆, (1.6d)

where ∇φσ is the gradient of the part of (1.3) corresponding to the objective function and

the violated constraints, and E and I denote the sets of equality and inequality constraints

respectively. Notice that in this phase, an `2-norm trust region is used, and the trust-region

parameter ∆ is distinct from the trust-region parameter ∆LP used in the linear phase. The

overall step taken by the algorithm is obtained by minimizing qk along a path formed by

dLP and d, in a manner described in [1].

Our algorithm is distinct from the one proposed by Fletcher and Sainz de la Maza [9]

in two important ways. Firstly, the trial step generated by our algorithm is formed from a

convex combination of the linear phase step dLP and the quadratic phase step d, whereas

either the step d or the step dLP is taken in [9]. Secondly, our algorithm imposes a trust-

region restriction on the second subproblem, and thus permits the use of second derivatives

of the objective function and constraints in the definition of B. The two trust-region radii

operate quasi-independently, and the update rules used in [1] will be shown in this paper

to offer global convergence guarantees.

The organization of the paper is as follows. In the remainder of this section we discuss

the application of SLQP methods to general composite non-smooth problems and briefly

review existing SLQP methods. In Section 2 we present an algorithm for the minimization

of the penalty function with fixed penalty parameter. We study the global convergence

properties of such an algorithm in Section 3. Procedures for updating the penalty parame-

ter are studied in Section 4. The paper concludes with some final remarks and perspectives.
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1.1 The General Composite Non-smooth Context

It is worth pointing out that the problem (1.2) is a non-smooth problem that is a special

case of the more general class of composite non-smooth optimization problems which can

be represented as

minimize
x

ω(F (x)), (1.7)

for some smooth function F (x) and convex ω. Problem (1.2) has this form if we let

F (x) = (f(x), g(x), h(x)), (1.8)

and define

ω(F (x)) = f(x) + σ‖h(x)‖ + σ‖g−(x)‖. (1.9)

Many nondifferentiable approximation problems may also be put in this form.

In this context, the linearized model `(xk, d) in (1.4) corresponds to

ω
(

F (xk) + F ′(xk)d
)

. (1.10)

The strategy described above corresponds to minimizing (1.10) at the current iterate xk,

subject to ‖d‖∞ ≤ ∆LP

k , and using the result to help compute a step making progress on

the function

`k(d) + 1

2
dT Bkd. (1.11)

The algorithm described in Section 3 applies equivalently to the problem (1.7), as does the

convergence analysis in Section 4.

1.2 Existing SLQP algorithms

To the best of our knowledge, the earliest successive linear-quadratic programming method

was proposed by Fletcher and Sainz de la Maza [9], based on ideas in [6, 15]. The method

is described in terms of general composite non-smooth optimization problems of the form

(1.7). At the iterate xk, a linearized approximation of the form (1.10) is minimized within

a given trust region. A solution to this problem, dLP

k , is then used to assess the suitability

of a trial step dk, obtained without regard to the trust region and by whatever means is

appropriate. If a finite number of different attempts to find a suitable dk have failed, the

choice dk = dLP

k is tried, and if this too fails xk+1 is left at xk and the trust-region radius

reduced. Fletcher and Sainz de la Maza suggest using the sub-differential structure of ω

predicted by `k(d
LP

k ) as one means of finding dk. Specifically, the minimizer of the (locally)

smooth part of the quadratic model qk is minimized subject to the linearized (locally)

non-smooth part being unchanged. This “equality-constrained” quadratic program (EQP)

is invariably a far simpler problem than trying to minimize qk. Importantly, Fletcher and

Sainz de la Maza show that, under reasonable non-degeneracy and second order conditions,

the “active” sub-differential structure of `k(d
LP

k ) ultimately predicts that of ω(F ) at limit

points of {xk}, and thus that the EQP leads to fast asymptotic convergence.
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A more recent SLQP method due to Chin and Fletcher [2, 3] is aimed specifically at the

nonlinear programming problem (1.1). Rather than using the non-smooth penalty function

(1.3) to force convergence, Chin and Fletcher use a nonlinear programming “filter” [8] to

do so. A succession of steps are allowed at each iteration, in which unbounded quadratic

programming steps of various forms are given precedence over linear programming ones.

Nevertheless, as with the methods in [1] and [9], the linear programming subproblem

minimize
d

dT∇f(xk)

subject to hi(xk) + dT∇hi(xk) = 0, i ∈ E

gi(xk) + dT∇gi(xk) ≥ 0, i ∈ I

‖d‖∞ ≤ ∆k

(1.12)

is central and drives the convergence of the method. In particular, if dLP

k is a solution1 of

(1.12), and if more complicated steps are unacceptable for the filter, the method reverts to

a “Cauchy” step along dLP

k . The trust-region radius will only be reduced as a last resort.

While this is undoubtedly an SLQP method, it is once again a trust region on the linear

programming component that is used to force convergence. There appears to be no control

of any quadratic programming component, and thus no precaution to guard against large

or unbounded QP steps.

Most recently Waltz [16] and Gate [10] suggested the idea of using a second trust

region to control the EQP phase of SLQP methods. Waltz’s method forms the basis of

that described in [1] and analyzed here. Gate’s method is an extension of the Chin-Fletcher

filter approach, and although there is no formal analysis, appears to perform well in his

numerical tests.

It should be noted that the theory of non-smooth optimization developed by Yuan

[19, 21] cannot be applied to the algorithm considered here and in [1, 16] because in these

algorithms the two trust regions influence each other, whereas Yuan assumes that a single

trust region is used. The analysis presented here is significantly different from that in the

literature due to the effects caused by the interactions between the two trust regions. In

addition, we establish new results about update procedures for the penalty parameter.

2 A Successive Linear-Quadratic Programming Algo-

rithm

Our first goal is to propose and analyze an algorithm for minimizing the penalty function

φσ, given by (1.3), for a fixed value of σ. Notice that this analysis pre-supposes that the

penalty parameter σ has been fixed at a sufficiently large value such that critical points of

(1.1) correspond to those of (1.2), but we will delay a discussions of suitable mechanisms

to ensure that this is so until Section 4.

1If (1.12) has no solution, a “restoration” phase [3] is entered.
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As noted earlier, the algorithm consists of two phases based, respectively, on piecewise

linear and piecewise quadratic models at the current estimate xk of the minimizer. The first

phase minimizes the piecewise linear model `k(d), given by (1.4). By including a second-

order term to account for curvature, an appropriate piecewise quadratic model qk(d) is

given by (1.5). For the linear model, we will use a trust region of the form ‖ · ‖
LP

≤ ∆LP

for some (polyhedral) norm ‖ · ‖
LP

, while for the quadratic model it will be ‖ · ‖ ≤ ∆.

Since all norms are equivalent in IRn, there is a constant γ ≥ 1 such that

‖d‖ ≤ γ‖d‖
LP

(2.1)

for all d ∈ IRn.

We now define the algorithm for minimizing the penalty function (1.3) for a fixed value

of σ. Throughout this section we omit the subscript and refer to our penalty function

simply as φ in the case where σ is fixed.
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Algorithm 2.1: Minimization algorithm for φ(x)

Initial data: x0, ∆0 > 0, ∆LP

0 > 0, 0 < ρu ≤ ρs < 1, 0 < κl ≤ κu < 1, η > 0,

0 < τ < 1, and θ > 0.

For k = 0, 1, . . ., until a stopping test is satisfied, perform the following steps.

1. Compute a solution dLP

k to

minimize
‖d‖

LP
≤∆LP

k

`k(d).

2a. Cauchy step. Compute αk ≤ 1 as the first member of the sequence

{τ i min(1, ∆k/‖d
LP

k ‖}i=0,1,... for which

φ(xk) − qk(αkd
LP

k ) ≥ η [φ(xk) − `k(αkd
LP

k )] . (2.2)

Set dC

k = αkd
LP

k .

2b. Compute dk so that ‖dk‖ ≤ ∆k and

qk(dk) ≤ qk(d
C

k).

3. Compute

ρk =
φ(xk) − φ(xk + dk)

φ(xk) − qk(dk)
.

4a. If ρk ≥ ρs, choose

∆k+1 ≥ ∆k.

Otherwise set

∆k+1 ∈ [κl‖dk‖, κu∆k] . (2.3)

4b. If ρk ≥ ρu, set

xk+1 = xk + dk.

Otherwise set

xk+1 = xk.

5. LP Trust Region Update.

If ρk ≥ ρu, pick ∆LP

k+1 so that the following two conditions hold:

(i) ∆LP

k+1 ≥ ‖dC

k‖LP
, (2.4)

(ii) ∆LP

k+1 ≤ ∆LP

k if αk < 1. (2.5)

Otherwise pick

∆LP

k+1 ∈ [min(θ‖dk‖LP
, ∆LP

k ), ∆LP

k ]. (2.6)
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Step 1 aims to find the largest reduction in the linearized model within its trust region—

we refer to this as the linearized problem, and attach the suffix LP to quantities associated

with it. The intentions here are twofold.

Firstly, the aim is to identify constraints whose inclusion in the working set for an

EQP results in progress in the overall minimization. Ideally near the solution these will

correspond to active constraints at the solution. This is not the issue under consideration

here, but it does have some ramifications on the design of our algorithm since we hope that

our algorithm class is broad enough to permit correct identification of the active constraint

set at the solution.

Secondly, the direction given by dLP

k is also used to define the Cauchy step dC

k , which, as

in many trust region methods, is used to guarantee convergence to a critical point. This is

because the value of the LP solution provides a measure of nearness to optimality, and the

Cauchy step is a step that provides corresponding improvement on the quadratic model.

Condition (2.5) ensures that dC

k is short enough that the quadratic model value is related

to the LP model. The descent properties of the Cauchy step are what drive the bulk of

our convergence theory; thus we ensure in Step 2b that the step actually taken, dk, shares

these descent properties. Note that the Cauchy step dC

k satisfies the conditions of Step 2b,

but the intention is to find a better step by solving a problem of the form (1.6).

Steps 3 and 4 are standard trust-region acceptance rules [4]. The ratio ρk of the actual

to the predicted reduction of φ is used as a step acceptance criterion. If this ratio is

negative, or close to zero, the step is rejected and the overall trust-region radius reduced.

Otherwise the step will be accepted and, if ρk is close to one, the radius may be enlarged.

We say that iteration k is successful if ρk ≥ ρu. It is very successful if ρk ≥ ρs.

Step 5 gives the conditions imposed on the radius for the linear model. In [1] a specific

strategy is described that tries to relate ∆LP to the expected steplength so as to promote

selection of a good active set. However in this algorithm framework we only specify the

characteristics such a strategy must have in order to guarantee global convergence. In the

case of a successful step, we impose a limit on how much ∆LP may be reduced, and allow

increase only if the full LP step was taken. If the step dk was not successful we allow for

the possibility of decreasing ∆LP as ∆k was decreased in Step 4a. 2

3 Convergence Results for a Fixed Penalty Function

In this section, we investigate the global convergence properties of Algorithm 2.1. In order

to proceed, we need to make the following assumptions on the problem and the algorithm:

P1. The functions f , g, and h in (1.1) are Lipschitz continuous and have Lipschitz con-

tinuous derivatives over a bounded convex set whose interior contains the closure of

the iterates {xk} generated by Algorithm 2.1.

2The upper bound of one on αk in (2.5) is used for simplicity. However this bound can be generalized.



8 Richard H. Byrd, Nicholas I. M. Gould, Jorge Nocedal and Richard A. Waltz

P2. The sequence of Hessian matrices {Bk} in (1.5) is bounded; thus there exists β > 0

such that |dTBkd| ≤ β‖d‖2 for all k and all d ∈ IRn.

Assumption P2 is made to simplify the analysis; see [19] for an analysis of a composite

non-smooth optimization algorithm in which Bk is computed by quasi-Newton updating.

(As pointed out in Section 1.1, both Algorithm 2.1 and the analysis in this section apply

also to the case where φ(x) = ω(F (x)), with `k and qk given by (1.10) and (1.11). In this

case assumption P1 requires Lipschitz continuity of F, F ′ and ω.)

Under assumption P1 it follows immediately that φ(x) and `k(d) are Lipschitz contin-

uous, and in particular that

|`k(d) − `k(0)| ≤ λ‖d‖
LP

(3.1)

for some Lipschitz constant λ > 0.

The goal of our analysis is to prove that Algorithm 2.1 will find a critical point of φ.

To do so, we follow Yuan [19] and define

Ψ(x, ∆) = `(x, 0) − min
‖d‖≤∆

`(x, d), (3.2)

which is the optimal decrease in the “linear” model `(x, d) for a radius of size ∆. We can

characterize criticality of φ using Ψ.

Definition 3.1 x∗ ∈ IRn is a critical point (or stationary point) of φ if Ψ(x∗, 1) = 0.

For future reference we note that, from assumption P2 and the subsequent convexity

of `(x, ·), we have in general

`(x, 0) − `(x, αd) ≥ α[`(x, 0) − `(x, d)], (3.3)

and more specifically,

φ(xk) − `k(αd) ≥ α[φ(xk) − `k(d)] (3.4)

for any α ∈ [0, 1].

We now establish a number of intermediate lemmas leading up to our main global

convergence result. Our first result provides bounds on the achievable reduction in the

linearized model for a radius of size ∆ relative to that achieved with a radius of 1. From

now on we use the following notation.

Notation. The solution dLP of

min
‖d‖

LP
≤∆

`(x, d), (3.5)

will also be denoted as d∆ to emphasize its dependence on ∆. In particular d1 denotes the

solution of (3.5) when ∆ = 1.

Lemma 3.1 Suppose that assumptions P1 and P2 hold. Then

max(∆, 1)Ψ(xk, 1) ≥ Ψ(xk, ∆) ≥ min(∆, 1)Ψ(xk, 1) (3.6)

for any scalar ∆ > 0.
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Proof. Since d∆ is a solution of (3.5),

Ψ(xk, ∆) = `(xk, 0) − `(xk, d∆).

There are two cases to consider. First consider the case ∆ ≤ 1. Since ‖d∆‖LP
≤ 1, the

definition (3.2) implies that

Ψ(xk, 1) ≥ `(xk, 0) − `(xk, d∆) = Ψ(xk, ∆),

which gives the left inequality of (3.6) in this case.

To get the right inequality, we need to show that Ψ(xk, ∆) ≥ ∆Ψ(xk, 1). By definition

of d∆ we have that ‖∆d1‖LP
≤ ∆, and so by (3.2) and (3.3),

Ψ(xk, ∆) ≥ `(xk, 0) − `(xk, ∆d1)

≥ ∆(`(xk, 0) − `(xk, d1))

= ∆Ψ(xk, 1).

This gives us (3.6) when ∆ ≤ 1. In the case ∆ ≥ 1 we need to establish

∆Ψ(xk, 1) ≥ Ψ(xk, ∆) ≥ Ψ(xk, 1),

but these inequalities follow immediately by making the above two-case argument with the

values ∆ and 1 interchanged. 2

Lemma 3.1 essentially states that Ψ(x, ·) is concave and monotonically increasing.

We shall also need the following result which states that, at a non-critical point of φ,

the trust-region bound for the linearized problem, ‖d∆‖LP
≤ ∆, is active whenever the

radius ∆ is small enough. For brevity, let Ψk(∆)
def
= Ψ(xk, ∆).

Lemma 3.2 Suppose that assumptions P1–P2 hold (and thus that there is a Lipschitz

constant λ for which (3.1) holds) and that Ψk(1) 6= 0. Then if d∆ is a solution of (3.5)

when x = xk,

‖d∆‖LP
≥ min(∆,

Ψk(1)

λ
). (3.7)

Proof. As before, let d1 denote a solution of (3.5) when x = xk and ∆ = 1. Suppose

that ‖d∆‖LP
< Ψk(1)/λ. Then (3.1) gives that

`k(d∆) ≥ `k(0) − λ‖d∆‖LP
> `k(0) − Ψk(1) = `k(d1). (3.8)

If ∆ ≥ 1 this contradicts our definition of d∆ as a solution of (3.5), so we must have

‖d∆‖LP
≥ Ψk(1)/λ and thus (3.7) in this case. If ∆ < 1 then (3.8) and the convexity of `k

imply that `k is strictly decreasing along a line from d∆ to d1 (at least initially). Therefore,

since d∆ minimizes `k, it cannot lie in the strict interior of the trust region ‖d‖
LP

≤ ∆,

and hence ‖d∆‖LP
= ∆. 2
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The next result provides a lower bound on the achievable reduction in the piecewise

quadratic model in terms of the stepsize, the trust-region radius for the linearized problem

and our criticality measure. At this point, recall that we use dLP

k to refer to the solution of

the linear subproblem (3.5) solved in Step 1 of Algorithm 2.1.

Lemma 3.3 Suppose that assumptions P1–P2 hold. Then the model decrease satisfies

φ(xk) − qk(dk) ≥ φ(xk) − qk(d
C

k) ≥ ηαkΨk(∆
LP

k ) ≥ ηαk min(∆LP

k , 1)Ψk(1).

Proof. The first inequality follows directly from the requirement in Step 2b of Algo-

rithm 2.1. To prove the second, note that inequality (3.4) and the requirement in Step 2a

give that

φ(xk) − qk(d
C

k) = φ(xk) − qk(αkd
LP

k ) ≥ η [φ(xk) − `k(αkd
LP

k )]

≥ ηαk [φ(xk) − `k(d
LP

k )] = ηαkΨk(∆
LP

k ).

The third inequality follows immediately from Lemma 3.1. 2

Next, we establish an intuitive bound on the error introduced when using our quadratic

approximation to φ.

Lemma 3.4 Suppose that assumptions P1 and P2 hold. Then

|qk(dk) − φ(xk + dk)| ≤ M‖dk‖
2

for some positive constant M .

Proof. As pointed out in Section 1.1 the function φ can be expressed as φ(x) = ω(F (x))

where F and ω are defined as in (1.8) and (1.9). It follows from assumption P1 that F has

a Lipschitz continuous derivative with constant λF, which implies that

‖F (xk + dk) − F (xk) − F ′(xk)dk‖ ≤ λF‖dk‖
2.

Since the function ω is Lipschitz continuous with some constant λω, this inequality, together

with Assumption P2, implies that

|qk(dk) − φ(xk + dk)| = |ω(F (xk) + F ′(xk)dk) + 1

2
dT

k Bkdk − ω(F (xk + dk))|

≤ λω‖F (xk + dk) − F (xk) − F ′(xk)dk‖ + 1

2
β‖dk‖

2

≤ (λωλF + 1

2
β)‖dk‖

2

= M‖dk‖
2

where M = λωλF + 1

2
β. 2

The following technical result essentially says that either the Cauchy step is on the

boundary of one of our trust regions, or it has a lower bound proportional to the optimality

criterion.
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Lemma 3.5 Suppose that assumptions P1 and P2 hold. Then at any iteration of Algo-

rithm 2.1

αk∆
LP

k ≥ ‖dC

k‖LP
≥ min

(

∆k

γ
, ∆LP

k ,
Ψk(1)

λ
, min

(

1,
1

∆LP

k

)

2(1 − η)τΨk(1)

βγ2

)

. (3.9)

Proof. The first inequality in (3.9) follows immediately since

‖dC

k‖LP
= αk‖d

LP

k ‖
LP

≤ αk∆
LP

k .

To establish the second inequality, suppose first that the decrease condition (2.2) in Step

2a of Algorithm 2.1 is immediately satisfied for αk = min(1, ∆k/‖d
LP

k ‖). Then, using (2.1)

and Lemma 3.2,

‖dC

k‖LP
= ‖αkd

LP

k ‖
LP

= min

(

∆k

‖dLP

k ‖
, 1

)

‖dLP

k ‖
LP

≥ min

(

∆k

γ
, ∆LP

k ,
Ψk(1)

λ

)

, (3.10)

which gives the first three terms in (3.9). On the other hand if αk < min(1, ∆k/‖d
LP

k ‖),

then the decrease condition (2.2) must have been violated for αk/τ , and so

φ(xk) − qk(αkd
LP

k /τ) = φ(xk) − `k(αkd
LP

k /τ) − 1

2
(αk/τ)2(dLP

k )T Bkd
LP

k

≤ η [φ(xk) − `k(αkd
LP

k /τ)] . (3.11)

Now using Assumption P2, (2.1), (3.4) and Lemma 3.1, this inequality implies that

1

2
(αk/τ)2(dLP

k )T Bkd
LP

k ≥ (1 − η) [φ(xk) − `k(αkd
LP

k /τ)]
1

2
(αk/τ)2βγ2‖dLP

k ‖2
LP

≥ (1 − η)(αk/τ)Ψk(∆
LP

k )
1

2
(αk/τ)βγ2‖dLP

k ‖
LP

∆LP

k ≥ (1 − η) min(∆LP

k , 1)Ψk(1)

αk‖d
LP

k ‖
LP

≥
2(1 − η)τ

βγ2
min

(

1,
1

∆LP

k

)

Ψk(1). (3.12)

Since αkd
LP

k = dC

k , this inequality combined with (3.10) gives the second inequality in (3.9).

2

Our next result is crucial. It provides lower bounds on both the trust-region radius ∆k

and the length of the Cauchy step at a non-critical iterate in the case where the trust-region

radius for the linearized problem stays bounded.

Lemma 3.6 Suppose Algorithm 2.1 is applied to the problem (1.2) and that assumptions

P1–P2 hold. Suppose that {∆LP

k } is bounded above, and that Ψk(1) ≥ δ > 0, ∀ k. Then

there exists a constant ∆min > 0 such that

∆k ≥ ∆min and αk∆
LP

k ≥
∆min

γ
(3.13)

for all k.
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Proof. By assumption, there exists ∆max ≥ 1 such that

∆LP

k ≤ ∆max for all k. (3.14)

This inequality, the assumption Ψk(1) ≥ δ and Lemma 3.5 imply

‖dC

k‖LP
≥ min

(

∆k

γ
, ∆LP

k , ∆crit

)

, (3.15)

where

∆crit = min

(

1

λ
,
2(1 − η)τ

βγ2∆max

)

δ. (3.16)

If the iteration is successful (ρk ≥ ρu), the rule (2.4) for choosing ∆LP

k in Step 5 of the

algorithm ensures that ∆LP

k+1 ≥ ‖dC

k‖LP
and therefore

∆LP

k+1 ≥ min

(

∆k

γ
, ∆LP

k , ∆crit

)

. (3.17)

Let us now consider the case when the iteration is unsuccessful. Using Lemma 3.3 and

equation (3.15) we have that

φ(xk) − qk(dk) ≥ φ(xk) − qk(d
C

k) ≥ ηαk min (∆LP

k , 1) δ = ηαk∆
LP

k min

(

1

∆LP

k

, 1

)

δ

≥
ηδ

∆max

αk∆
LP

k ≥
ηδ

∆max

min

(

∆k

γ
, ∆LP

k , ∆crit

)

.

(3.18)

From Lemma 3.4 and (3.18) we have that

1 − ρk ≤
|φ(xk + dk) − qk(dk)|

φ(xk) − qk(dk)
≤

M‖dk‖
2∆max

ηδ min

(

∆k

γ
, ∆LP

k , ∆crit

) . (3.19)

This implies that ‖dk‖ and (1 − ρk) are related by the inequality

‖dk‖
2 ≥

(1 − ρk)ηδ

M∆max

min

(

∆k

γ
, ∆LP

k , ∆crit

)

(3.20)

at each step. Now since the iteration is unsuccessful, ρk < ρu and 1 − ρk > 1 − ρu, which,

using (2.1) and (3.20), implies

θ2‖dk‖
2
LP

≥
θ2

γ2
‖dk‖

2 ≥ θ2 (1 − ρu)ηδ

γ2M∆max

min

(

∆k

γ
, ∆LP

k , ∆crit

)

≥ min

(

∆k

γ
, ∆LP

k , ∆crit,
(1 − ρu)ηθ2δ

γ2M∆max

)2

.
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Using this fact and the lower bound in (2.6) we have that, if the step is unsuccessful

∆LP

k+1 ≥ min

(

∆k

γ
, ∆LP

k , ∆crit,
(1 − ρu)ηθ2δ

γ2M∆max

)

. (3.21)

Since the right side of (3.21) is clearly less than or equal to the right side of (3.17), which

holds when the step is accepted, then (3.21) must hold at each iteration.

We can consider ∆k in a similar fashion. If ∆k was decreased because ρk < ρs then

1 − ρk > 1 − ρs and (3.20) implies

κ2
l

γ2
‖dk‖

2 ≥
(1 − ρs)ηκ2

l δ

γ2M∆max

min

(

∆k

γ
, ∆LP

k , ∆crit

)

≥ min

(

∆k

γ
, ∆LP

k , ∆crit,
(1 − ρs)ηκ2

l δ

γ2M∆max

)2

.

Together with (2.3) this implies

∆k+1

γ
≥ min

(

∆k

γ
, ∆LP

k , ∆crit,
(1 − ρs)ηκ2

l δ

γ2M∆max

)

. (3.22)

Since ∆k is not reduced when ρk ≥ ρs, (3.22) must then hold at each iteration.

Now we can combine the recursions (3.21) and (3.22) to yield

min

(

∆k+1

γ
, ∆LP

k+1

)

≥ min

(

∆k

γ
, ∆LP

k , ∆crit,
(1 − ρs)ηκ2

l δ

γ2M∆max

,
(1 − ρu)ηθ2δ

γ2M∆max

)

(3.23)

which holds at every iteration. Applying this recursion over the entire sequence implies

that for all k

min

(

∆k

γ
, ∆LP

k

)

≥ min

(

∆0

γ
, ∆LP

0 , ∆crit,
(1 − ρs)ηκ2

l δ

γ2M∆max

,
(1 − ρu)ηθ2δ

γ2M∆max

)

≡ ∆low,

Thus we can conclude that ∆k ≥ ∆min ≡ γ∆low for all k. It then follows from (3.15) and

the fact that ∆low ≤ ∆crit that

αk∆
LP

k ≥ ‖dC

k‖LP
≥ ∆low =

∆min

γ

for all k. 2

This immediately enables us to deduce that if the algorithm is unable to make progress,

it must be because it has reached a critical point.

Corollary 3.7 Suppose that there are only finitely number of iterations for which ρk ≥ ρu.

Then xk = x∗ for all sufficiently large k, and x∗ is a critical point of φ(x).
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Proof. Step 4 of the algorithm ensures that if there are only a finite number of (success-

ful) iterations for which ρk ≥ ρu, then xk = x∗ for all k > k0 for some k0 ≥ 0. Moreover,

Ψk(1) = Ψk0
(1) for all k ≥ k0. Furthermore, as ρk < ρu for all k ≥ k0, the update rules

for the trust regions imply that ∆k converges to zero and ∆LP

k is bounded above for all k.

But then Ψk(1) = 0 for all k ≥ k0, since otherwise Lemma 3.6 contradicts the fact that ∆k

converge to zero. It thus follows from Definition 3.1 that x∗ is a critical point of φ. 2

Finally we are able to state our main global convergence result.

Theorem 3.8 Suppose Algorithm 2.1 is applied to the problem (1.2) and that assumptions

P1–P2 hold. If the sequence {φ(xk)} is bounded below then either

Ψl(1) = 0 for some l ≥ 0

or

lim inf
k→∞

Ψk(1) = 0.

Proof. If there are only a finite number of successful iterations, the first of the stated

possibilities follows immediately from Corollary 3.7. Otherwise, there is an infinite subse-

quence K of successful iterations. This means that ρk ≥ ρu, and {φ(xk)} is bounded from

below, for all k ∈ K.

The proof now proceeds by contradiction. Assume there is a constant δ such that

Ψk(1) ≥ δ > 0, ∀ k ∈ K. We will consider separately the two cases, when the LP

trust-region radius {∆LP

k } is bounded above, and the case when {∆LP

k } is unbounded.

Case 1. If {∆LP

k } is bounded above, it follows from Lemma 3.6 that ∆k ≥ ∆min > 0.

For our infinite subsequence K of successful iterations, Lemmas 3.3 and 3.6 give

φ(xk) − φ(xk+1) ≥ ρu(φ(xk) − qk(dk))

≥ ρuηαk min(∆LP

k , 1)δ

≥ ρuηαk∆
LP

k min(1, 1/∆LP

k )δ

≥ ρuη∆minδ/(γ∆max) > 0,

for all k ∈ K, where ∆max > 1 is the upper bound for ∆LP

k . But then summing this

inequality over all k ∈ K contradicts the fact that the sequence {φ(xk)} is bounded from

below. Thus Case 1 does not occur.

Case 2. Suppose that the LP trust-region radius {∆LP

k } is unbounded. Then, since

the radius is only increased in Step 5 of Algorithm 2.1 when αk ≥ 1, there is an infinite

sequence K such that ∆LP

k > 1, αk ≥ 1 and ρk ≥ ρu, for all k ∈ K. Then from Lemma 3.3

we have

φ(xk) − φ(xk+1) ≥ ρu(φ(xk) − qk(dk))

≥ ρuηαk min(∆LP

k , 1)Ψk(1)

≥ ρuηΨk(1)

≥ ρuηδ,
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for all k ∈ K. This again contradicts the assumption that {φ(x)} is bounded from below,

and Case 2 cannot occur.

Cases 1 and 2 therefore imply that the assumption Ψk(1) ≥ δ > 0, ∀ k must be false

which proves the desired result

lim inf
k→∞

Ψk(1) = 0.

2

This result guarantees that, if φ(x) is bounded below, the criticality criterion Ψk(1) even-

tually becomes arbitrarily small. This implies that if the sequence {xk} is bounded there

exists an accumulation point of Algorithm 2.1 which is a critical point for (1.2).

4 A Penalty Method for Nonlinear Programming

We now discuss how to automatically adjust the penalty parameter σ as our algorithm

proceeds so as to encourage convergence to a critical point of (1.1). We will make use of

the following definitions.

We let

v(x) = ‖h(x)‖ + ‖g−(x)‖ (4.1)

be a measure of constraint violation, so that the penalty function (1.3) can be written as

φσ(x) = f(x) + σv(x). (4.2)

We define a (piecewise) linear model of the constraint violation by

`v(x, d) = ‖h(x) + ∇h(x)T d‖ + ‖(g(x) + ∇g(x)T d)−‖. (4.3)

We can therefore write the model (1.4) of the penalty function by

`φσ(x, d) = f(x) + ∇f(x)T d + σ`v(x, d). (4.4)

Since the penalty parameter σ will now vary, we write the measure of criticality (3.2) for

the penalty function as

Ψσ(x, ∆) = `φσ(x, 0) − min
‖d‖≤∆

`φσ(x, d). (4.5)

Definition 3.1 states that x∗ ∈ IRn is a critical point of the penalty function φσ if Ψσ(x∗, 1) =

0. Criticality of the measure of constraint violation v(x) will be measured by the function

θ(x, ∆) = `v(x, 0) − min
‖d‖≤∆

`v(x, d). (4.6)

Definition 4.1 x∗ ∈ IRn is a critical point of the infeasibility measure v(x) if θ(x∗, 1) = 0.
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It is well known [11] that the penalty function (4.2) is exact in the sense that, for

sufficiently large values of σ, strict local minimizers of the nonlinear program (1.1) that

satisfy the Mangasarian-Fromovitz constraint qualification (MFCQ) are minimizers of φσ.

We are also interested in the converse result, given that our algorithm minimizes the

penalty function.

Theorem 4.1 If x∗ is a critical point of φσ for some σ, and is feasible for (1.1), then x∗

is a KKT point of the nonlinear program (1.1). If x∗ is infeasible and is a critical point of

φσ for all sufficiently large σ then x∗ is an infeasible critical point of v(x).

Proof. At a feasible critical point x∗ of φσ, the vector d = 0 minimizes `φσ(x∗, d) , which

implies that d = 0 is an optimal feasible solution of the linear program

minimize
d

dT∇f(x∗)

subject to hi(x∗) + dT∇hi(x∗) = 0, i ∈ E

gi(x∗) + dT∇gi(x∗) ≥ 0, i ∈ I.

(4.7)

Since the constraints of (4.7) are linear, the KKT conditions for (4.7) are satisfied, and the

KKT conditions for (4.7) are identical to the KKT conditions for (1.1).

Suppose that x∗ is infeasible and assume, by way of contradiction, that θ(x∗, 1) > 0.

Then by (4.6), there exists ‖d∗‖ ≤ 1 such that `v(x∗, 0) − `v(x∗, d
∗) > 0, and therefore for

any σ large enough

−∇f(x∗)
T d∗ + σ (`v(x∗, 0) − `v(x∗, d

∗)) > 0

or

`φσ(x∗, 0) − `φσ(x∗, d
∗) > 0.

By (4.4) this implies that Ψσ(x∗, 1) > 0 for arbitrarily large σ, contradicting the assumption

that x∗ is a critical point for φσ, for all large σ. This contradiction implies that, if x∗ is

infeasible, then θ(x∗, 1) = 0. 2

4.1 Penalty Update Procedure

Our penalty parameter strategy is based on our belief that it is as important to try to

decrease the violation v(x) as it is to aim for criticality of φσ(x). Since we cannot be sure

that there is a (locally) feasible point for the constraints (1.1b)–(1.1c), we might instead

measure the quality of the current violation in terms of its criticality, θ(x, ∆). Thus we

contend it is reasonable to ask that the current value of the penalty parameter σ always

satisfies

Ψσk
(xk, 1) ≥ ξσθ(xk, 1),

for some predefined constant ξ ∈ (0, 1), and to increase the current value if this inequality

fails. Hence we cannot consider our iterate to be near a critical point for φσ(x) unless it is

near a critical point of v(x).
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The use of the criticality measure Ψσ(xk, 1) requires the solution of a linear program

with radius 1. Since the algorithm computes the quantity Ψσ(xk, ∆k) at every iteration, we

would instead prefer to use this quantity to estimate criticality, thereby avoiding the extra

computational cost of solving a second linear program. As we show below, this is possible

so long as ∆k lies within a preset interval [δmin, δmax]. If ∆k is not in this interval, we will

use Ψσ(xk, δk) to measure criticality, where δk is the closest value to ∆k in [δmin, δmax].

Based on this strategy, the set of permissible penalty parameters at an iterate xk, with

trust region radius ∆k, is defined as

Ω(xk, δk)
def
= {σ | Ψσ(xk, δk) ≥ ξσθ(xk, δk)} .

Of course, computation of the quantity θ(xk, δk) also involves the solution of an addi-

tional linear program, but once xk is near the feasible region, linearized feasibility is likely

to be attainable inside the trust region so that θ(xk, δk) = v(xk), and the stronger but

easier-to-check condition, Ψσ(xk, δk) ≥ ξσv(xk), will often hold.

We now describe an algorithm for solving the nonlinear programming problem (1.1) in

which the penalty parameter is updated at every iteration. It makes use of Algorithm 2.1

to generate steps.

Algorithm 4.1: Penalty Method for Solving (1.1)

Initial data: x1, σ0. Set the initial parameters of Algorithm 2.1 as well as ε > 0,

0 < ξ < 1 and 0 < δmin ≤ δmax.

For k = 1, 2, . . ., until a stopping test for (1.1) is satisfied, perform the following

steps.

1. Let δk = mid(δmin, ∆
LP

k , δmax).

If σk−1 ∈ Ω(xk, δk),

set σk = σk−1.

Else,

choose any σk ∈ Ω(xk, δk) for which σk ≥ σk−1 + ε.

2. Perform Steps 1–5 of Algorithm 2.1.

As was our stated intention, the penalty udpate strategy in Step 1 allows us to (re-)use

quantities computed at ∆k whenever ∆k ∈ [δmin, δmax]. It also ensures that

Ψσk
(xk, δk) ≥ ξσkθ(xk, δk) (4.8)

is satisfied at each iteration, and that if σ is increased, it is because σk−1 /∈ Ω(xk, δk); i.e.

Ψσk−1
(xk, δk) < ξσk−1θ(xk, δk). (4.9)
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It is always possible to find a point in Ω(xk, δk) for any ξ < 1, so that Step 1 of

Algorithm 4.1 is well defined. To see this note that definitions (4.1)–(4.6) imply that

Ψσ(xk, δk) = σv(xk) − min
‖d‖≤δk

(

∇f(xk)
T d + σ`v(xk, d)

)

(4.10)

≥ σv(xk) − ‖∇f(xk)‖δk − σ min
‖d‖≤δk

`v(xk, d)

= −‖∇f(xk)‖δk + σ

(

v(xk) − min
‖d‖≤δk

`v(xk, d)

)

= −‖∇f(xk)‖δk + σθ(xk, δ) (4.11)

and thus that σ ∈ Ω(xk, δk) for all

σ ≥
‖∇f(xk)‖δk

(1 − ξ)θ(xk, δk)
. (4.12)

Notice, however, that it is highly likely that this value will grow without bound if xk

approaches feasibility, so the simpler expedient of always setting σk to ensure (4.12) is not

to be recommended.

4.2 Penalty Method Analysis

We begin by recasting the inequality (4.8) in terms of Ψσ(xk, 1) instead of Ψσ(xk, δk).

To do this we recall Lemma 3.1 and note that, since the function θ(x, δ), like Ψ(x, δ), is

monotonically increasing and concave in δ, the same arguments as used in the proof of

Lemma 3.1 imply that

min(δk, 1)θ(xk, 1) ≤ θ(xk, δk) ≤ max(δk, 1)θ(xk, 1). (4.13)

This then implies the following bound.

Lemma 4.2 The values σk generated by Algorithm 4.1 satisfy

Ψσk
(xk, 1) ≥ ξ min

(

δmin,
1

δmax

)

σkθ(xk, 1). (4.14)

Proof. Using (3.6) followed by (4.8), followed by (4.13) yields:

Ψσk
(xk, 1) ≥

Ψσk
(xk, δk)

max(δk, 1)
≥

ξσkθ(xk, δk)

max(δk, 1)
≥ ξσk

min(δk, 1)

max(δk, 1)
θ(xk, 1),

which gives (4.14), since δk ∈ [δmin, δmax]. 2

We now present two convergence results for Algorithm 4.1 that rely heavily on the

convergence properties of Algorithm 2.1. We first consider the case when the penalty

parameter is updated only a finite number of times.
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Theorem 4.3 Suppose Algorithm 4.1 applied to problem (1.1) generates a bounded se-

quence of iterates and that assumptions P1 and P2 hold. If {σk} is bounded, then there

is a cluster point x∗ of the sequence {xk} which is either a KKT point of the nonlinear

program (1.1) or a critical point of v.

Proof. Since {σk} is bounded, it follows from Step 1 of Algorithm 4.1 that σk = σ is

constant for all large k. Algorithm 4.1 therefore reduces to Algorithm 2.1, i.e., to the

minimization of a single penalty function. By Theorem 3.8, if {φσk
(xk)} is bounded below,

there is a limit point x∗ of the sequence of iterates {xk} such that

Ψσ(x∗, 1) = 0. (4.15)

If x∗ is infeasible, since there is a subsequence {xl} with Ψσ(xl, 1) → 0 and since (4.14)

holds at each iteration, we must have that θ(xl, 1) → 0. Then, since θ(·, 1) is continuous,

θ(x∗, 1) = 0. Therefore x∗ is an infeasible critical point.

If x∗ is feasible, i.e. v(x∗) = 0, then it follows immediately from Theorem 4.1 that x∗

is a KKT point for the nonlinear program (1.1). 2

Our final result describes possible outcomes when the penalty parameter is unbounded.

Theorem 4.4 Suppose that Algorithm 4.1 generates a bounded sequence of iterates {xk}

and that {σk} → ∞. Then either:

(i) the sequence {xk} is not asymptotically feasible (i.e. v(xk) 6→ 0), in which case

there is an infeasible cluster point x∗ that satisfies θ(x∗, 1) = 0; or

(ii) The sequence {xk} is feasible in the sense that v(xk) → 0. In this case, either: (a)

there is a cluster point of {xk} that satisfies the KKT conditions; or (b) there is a feasible

cluster point of {xk} at which MFCQ is violated.

Proof. Consider the sequence of iterates at which the penalty parameter is increased. For

each k in this subsequence, condition (4.9) holds, and thus we have

Ψσk−1
(xk, δk) < ξσk−1θ(xk, δk).

Now (4.11) holds here, so

Ψσk−1
(xk, δk) ≥ −‖∇f(xk)‖δk + σk−1θ(xk, δk)

and thus, using (4.13),

(1 − ξ)σk−1 ≤
‖∇f(xk)‖δk

θ(xk, δk)
≤

‖∇f(xk)‖δk

θ(xk, 1) min(1, δk))
≤

‖∇f(xk)‖δmax

θ(xk, 1)
. (4.16)

But as {σk}, and consequently {σk−1}, is assumed unbounded and {∇f(xk)} is bounded,

it follows that, for that subsequence of {xk} for which σ was increased, we have θ(xk, 1) →

0.
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If lim sup v(xk) > 0, then, since the sequence {xk} is bounded and θ(xk, 1) → 0, there

is a limit point with v(x̂) > 0 and θ(x̂, 1) = 0, i.e., x̂ is an infeasible stationary point of

v(x). This implies (i) in that case.

On the other hand, if lim v(xk) = 0 then there is a cluster point x̂ with v(x̂) = 0. If x̂

satisfies MFCQ, then ∇h(x̂) has full rank and there is a direction ‖dM‖ < δmin such that

∇h(x̂)T dM = 0 = −h(x̂) and ∇g(x̂)T dM + g(x̂) > 0.

Suppose by way of contradiction that x̂ is not a KKT point. Then there is a first order

feasible descent direction ‖dF‖ < δmin such that

∇h(x̂)T dF = 0 = −h(x̂), ∇g(x̂)T dF + g(x̂) ≥ 0 and ∇f(x̂)T dF < 0.

Clearly there is a convex combination d̂ = (1 − α)dF + αdM , with α ∈ (0, 1), such that

∇h(x̂)T d̂ + h(x̂) = 0, (4.17)

∇g(x̂)T d̂ + g(x̂) > 0 and ∇f(x̂)T d̂ < 0.

Now since ∇h(x̂) has full rank, for any x sufficiently near x̂ there is a unique vector

d(x) of the form

d(x) = d̂ + ∇h(x̂)u(x) (4.18)

for some u(x) ∈ Rm , which (non-uniquely) solves

h(x) + ∇h(x)T d(x) = 0. (4.19)

To see this note that (4.18)–(4.19) imply

[

h(x) + ∇h(x)T d̂
]

+ ∇h(x)T∇h(x̂)u(x) = 0. (4.20)

Since h is smooth, this equation shows that u(x) is uniquely defined in a neighborhood of

x̂, and varies continuously with x—and so does d(x). Furthermore, by (4.17) the term in

square brackets in (4.20) can be made arbitrarily small if x is close to x̂, and hence d(x) is

arbitrarily close to d̂.

Using these facts we have that d(x) satisfies

∇g(x)T d(x) + g(x) > 0 (4.21)

∇f(x)T d(x) < 0 (4.22)

for x sufficiently near x̂.

Now note that since ‖d(x)‖ < δmin, we have by (4.3), (4.19) and (4.21) that

`v(x, d(x)) = 0. By the non-negativity of `v(x, d(x)) and the definition (4.6) this im-

plies that θ(x) = `v(x, 0) = v(x). In addition, since ∇f(x)T d(x) < 0, we have from (4.10)

that

Ψσ(x, δ) > σv(x) = σθ(x, δ)
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for any δ ≥ δmin. Therefore, for any iterate xk sufficiently near x̂, σ ∈ Ω(xk, δk) for all

σ ≥ 0. As a result, for this subsequence of iterates, σ is never updated in a neighborhood

of x̂.

This argument applies to any feasible limit point that satisfies MFCQ. Therefore it

is not possible for all such points to have a descent direction, for otherwise the penalty

parameter would be updated only a finite number of times, contradicting the assumption

that σk → ∞. In other words, we cannot have that all limit points satisfy MFCQ and are

not KKT points. This proves (ii). 2

Thus we are able to embed a relatively simple penalty-parameter update scheme within

Algorithm 2.1 and derive useful convergence results. Another possibility which could be

tried is to update the penalty parameter as needed once a globally convergent method has

approximately minimized φσ with the current (fixed) σ. Rules to achieve this are known

[4, 12], but we are concerned that this may prove to be inefficient, particularly when an

inappropriate initial σ is specified.

In the current version of the exact penalty method Slique [1], the penalty parameter

is updated by a procedure that requires σk ∈ Ω(xk, δk) at each iteration, as well as some

further conditions. Therefore Theorem 4.3 essentially holds for Slique. 3 However,

because of the additional conditions on σk, it is not clear whether a result like Theorem

4.4 can be proved for Slique.

5 Conclusions and Perspectives

In this paper we have proposed a trust-region algorithm for nonlinear optimization that

uses a combination of linear and quadratic model steps and has separate quasi-autonomous

trust-regions to control these. At least one subsequence generated by the algorithm is

shown to be globally convergent to a critical point of the problem under modest assump-

tions. Our framework for trust-region radius updates is deliberately general. This is

because we wished it to apply in the case of the current implementation of our evolving

nonlinear programming code Slique [1] as well as to cover its future evolution.

We have not considered the ultimate convergence rate of the algorithm, nor its ability

to identify the optimal active constraints in a finite number of iterations (these two aspects

are most likely closely linked [9]), although we have strong numerical evidence to suggest

that the latter does occur and that the convergence rate may thereafter be made to be

superlinear. The study of these and other issues is ongoing.
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