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1 Introduction

We consider the solution of the sparse unsymmetric system of linear equations

Az =0, A€ IR*" nonsingular, z,b¢€ IR". (1.1)

that arises in very many areas of scientific computing.

The main drawback of direct methods for solving (1.1) is that the number of
nonzero entries can strongly increase during the elimination process, and this often
makes these methods too expensive in computer storage and CPU time. Compared
to direct methods, the main weaknesses of iterative methods are that, besides
possibly having unacceptably slow convergence rates due to the poor quality of the
preconditioner, they are not robust enough to solve as wide a class of systems.
Recently, however, many authors have suggested combining the advantages of
direct methods and iterative methods by using Krylov subspace iterations combined
with incomplete factorization preconditioners. This class of methods has been
surprisingly successful for many cases of general unsymmetric matrices; see for
example, Saad (1996) and Wang, Gallivan and Bramley (1997). Here, the accuracy
and stability of the incomplete factorizations are key factors for guaranteeing the
success of the preconditioned Krylov subspace iterations.

Two well known classes of basic incomplete factorization preconditioners are
incomplete triangular factorization preconditioners and incomplete orthogonal
factorization preconditioners.

The former, commonly known as incomplete LU (or ILU) factorizations, compute
a sparse lower triangular matrix L and a sparse upper triangular matrix U by
the usual Gaussian elimination process coupled with some dropping rules so that
the error matrix £ = LU — A satisfies certain constraints, such as having zero
entries in some positions. One important special example is incomplete Cholesky
factorization. This class of incomplete factorization techniques was originally
developed for M-matrices by Meijerink and van der Vorst (1977) and then was
extended to H-matrices and block H-matrices, for which theoretical properties such
as existence, stability and accuracy can be established. For details one can refer
to Axelsson (1994, 1985), Concus, Golub and Meurant (1985), Donato and Chan
(1992), Elman(1986, 1989), Gustafsson (1978), Manteuffel (1980), Saad (1996),
and references therein. For general unsymmetric matrices, although a number of
efficient incomplete LU factorization techniques have been presented (see Axelsson
(1994) and Saad (1996)), it is more difficult to give theoretical assurances about the
feasibility and efficiency of these incomplete triangular factorization preconditioners.
There can be breakdowns in the factorization process due to zero pivots, inaccuracies
of the incomplete triangular factors due to small pivots and inefficient dropping
rules, as well as instability of the triangular solves due to the poorly conditioned
incomplete triangular factors.



The latter, normally known as incomplete QR factorizations, compute a sparse
and generally non-orthogonal matrix ) and a sparse upper triangular matrix R
by the modified Gram-Schmidt process incorporating some dropping rules. This
class of incomplete factorization techniques was initially developed for general
sparse matrices by Saad (1988). Thereafter, much attention was paid to practical
applications rather than theoretical properties since its theoretical properties such
as existence, stability and accuracy are currently too complicated for analysis. For
details, one can refer to Saad (1988,1996). Recently, for a special strategy that
only drops entries of the upper triangular matrix R, Wang et al. (1997) have
proved the existence and stability of the associated incomplete QR factorization
preconditioner. For particular sparsity patterns, this special strategy produces an
R factor identical to that produced by the incomplete Cholesky method applied to
the normal equations.

In addition to the drawbacks of breakdowns, inaccuracies and instabilities as
in the incomplete LU factorization methods, one major problem about the above
mentioned incomplete QR factorization methods is that the matrix ¢ is not in
general orthogonal, and nothing guarantees that it is even nonsingular unless we
adopt a strategy that does not drop many entries. However, this makes the resulting
incomplete factors @ and R likely to be too dense to be useful in practice (see Saad,
1988).

In fact, the main motivation for developing incomplete orthogonal factorization
preconditioners derives from the power of the complete orthogonal factorization
process. Some advantages of complete QR factorizations over complete LU
factorizations are:

(a) they will never break down and will always produce an orthogonal matrix @
and an upper triangular matrix R such that A = QR;

(b) orthogonal factorization is strongly robust and numerically stable; and

(c) the orthogonality of the matrix @ makes the solution of the original system of
linear equations (1.1) easily obtainable through solving the upper triangular
linear system with the triangular factor R.

Another useful feature is that the triangular factor R s the Cholesky factor of
the normal equations matrix. Here, the orthogonality of the factor @) is the key
point for ensuring the success of these orthogonal factorization methods. For a good
incomplete QR factorization preconditioner, we naturally expect that it will roughly
inherit the above three advantages of the complete QR factorization, or at least, it
should possess some of the following properties:

(I) @ is an orthogonal matrix and R is a sparse upper triangular matrix such that
the error matrix ¥ = QR — A is ‘small’;



(IT) @ is a sparse nonsingular matrix and R is a sparse upper triangular matrix
such that the error matrices £ = QR — A and Ey = QTQ — I are small, where
I is the identity matrix; and

(ITIT) if the original matrix A is nonsingular, then the matrix R must also be
nonsingular.

Throughout this paper, the meaning of ‘small’ can be understood in the sense
that either the entries dropped during the factorization process are small enough,
or the error matrices satisfy certain constraints such as having zero entries
in some positions. We will show, in the analyses in the next section, that
incomplete QR factorization preconditioners based on the modified Gram-Schmidt
orthogonalization process do not satisfy either property (I) or (II). However, we will
show that incomplete QR factorization preconditioners based on Givens rotations,
which we will construct and study in this paper, do satisfy property (III), and at
least one of the properties (I) and (II). That such incomplete Givens strategies can
always compute an orthogonal factor @ (orthogonal to the limits of finite precision
arithmetic) is a particular feature: one consequence is that the R factor is always
an incomplete Cholesky factor of the normal equations. For this situation, () is not
generally required and therefore need not be stored.

The rest of this paper is organized as follows: After reviewing the
Incomplete Modified Gram-Schmidt methods and their properties in Section 2,
we describe the Incomplete Givens Orthogonalization method (IGO-method) and
the Generalized Incomplete Givens Orthogonalization method (GIGO-method) and
analyse their theoretical properties in Section 3. The Threshold Incomplete Givens
Orthogonalization method (TIGO(7)-method) and the Generalized Threshold
Incomplete Givens Orthogonalization method (GTIGO(T, p)-method) are described
in Section 4. Finally, some conclusions and remarks are made in Section 5.

Throughout this paper we use the term ‘incomplete orthogonal factor’ for the
factor ) of an incomplete orthogonalization method even though such incomplete
factors are not necessarily orthogonal matrices.

2 The incomplete modified Gram-Schmidt
methods

The Classical Gram-Schmidt (CGS) method is one of the oldest methods for
computing a QR factorization

A=QR
of a given matrix A = (aj)nxn = (a1,02,...,a,), where @ = (gij)nxn =
(¢1,92,... ,¢n) is an orthogonal matrix and R = (7)nx» is an upper triangular

matrix. This method does not break down if and only if the matrix A is of full



rank and, in this case, the QR factorization is well defined. A numerically stable
alternative of the standard Gram-Schmidt process is known as the Modified Gram-

Schmidt (MGS) method.

Method 2.1: MGS-method

1. Define r11 := [|ai]|2. If 711 = 0 Stop, else ¢ := a1/r11
2. For 3 =2,... ,n Do:

3.  Define ¢ := a,

4 For:=1,...,7 —1 Do:

5 Compute 7;; := (4, ¢;)

6. Compute § := ¢ — ;¢

7. EndDo

8.  Compute 7;; :=||d]|2

9 If 7;; = 0 then Stop, else g; := §/7;;
10. EndDo

The MGS-method is quite efficient for solving the sparse unsymmetric system of
linear equations (1.1) because:

(a) it is numerically stable and the inverse of the matrix @ is given explicitly by

QT; and

(b) it can be simply implemented in a similar way to left-looking LU factorization
where, at each step, a given column is combined with previous columns and
then normalized.

To define the corresponding Incomplete Modified Gram-Schmidt (IMGS)
method, dropping strategies or nonzero patterns for the incomplete factorization
matrices () and R must be defined. This can be done in a very general way as
follows. Introduce two sets of integer pairs
and let Py and Pp be the chosen nonzero patterns for the matrices ¢) and R,
respectively. The only restriction on Pp is that Pr C Py. As for Py, we require that
Py C P, and for each row there must be at least one nonzero entry. The two sets

P, and Pp can be selected in similar ways to those defined for ILU factorizations.
For details one can refer to Saad (1988).

Method 2.2: IMGS-method
1. For y =1,...,n Do:

2. Setgq;:=aqj
3. Fori=1,...,7—1Do:

4. If (1,7) € Pgr, compute r;; := (gi, ),
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5. Else Set 7, :=0

6. Compute g; := ¢; — 3¢

7. EndDo

8. Fori=1,...,nand(3,j) ¢ Py Do:
9. Set ¢;; :=0

10.  EndDo

11.  Compute r;; := ||g;||2
12.  If r;; = 0 then Stop, else g; := g;/7;;
13. EndDo

Simple algebraic manipulation shows that this IMGS-method produces a sparse
matrix () and a sparse upper triangular matrix R satisfying A = QR + E, where
E is the error matrix whose j-th column ¢; is the column of entries that were
dropped from column g; in lines 8-10. Typically, the error matrix E' is small because
of the strategy adopted in dropping entries. One major problem with the above
decomposition is that the matrix @) is not usually orthogonal. In fact, nothing
guarantees that it is even nonsingular unless Fy is of large cardinality. For the
purposes of this discussion, we will assume that line 6 of Method 2.2 is replaced
by an ideal orthogonalization process, for example Daniel, Gragg, Kaufman and
Stewart (1976), in which g; is forced to be orthogonal to all ¢, g2, ... ,gj-1.

Theorem 2.1 (see Saad, 1988) Assume that at every step j < i — 1 of the IMGS-
method, column g, is orthogonal to ¢y, ... ,g;j_1 and let [[, , be the orthogonal
projector onto the span of the columns g¢y,...,q; 1. Then the matrix Q; =
(¢1,92,- - - ,q;) is of full rank if and only if || [[,_, €ll2 < ri. A fortiori, Q; is
of full rank if ||¢;|2 < 7.

Although this theorem provides conditions under which the constructed matrix
Q; remains of full rank at every step, it is not likely to be useful in practice because,
at every step, the vector g; must be made orthogonal to the previous vectors
q1,--.,gj—1. In addition, even if we were to obtain a reasonably simple criterion
for ensuring the nonsingularity of the matrix @, this criterion might be so severe
that the only way in which it could be satisfied is by making ¢; very small, which
means allowing more fill-in in the matrices () and R.

The case where the entries in () are not dropped, that is the case when Py = P,,
is of particular interest. Indeed, in this situation, the error matrix £ = 0 and we
have the exact relation A = QR. Of course, () is still not orthogonal and it may
be dense. However, in this case, the nonsingularity of the matrices ) and R can be
easily guaranteed.

Theorem 2.2 (see Wang et al., 1997) Let A € IR"*" be nonsingular and Py = P,.
Then the IMGS-method computes an incomplete QR factorization A = QR,
in which @ is nonsingular and R is upper triangular with positive diagonal
entries.



Wang et al. (1997) claim that an attraction of this special IMGS-method is that
it can efficiently produce an incomplete Cholesky factorization preconditioner for
the normal equations of linear least-squares problems.

3 Incomplete Givens orthogonalization methods

Another way to compute the QR factorization is to use Givens rotations. A Givens
rotation (or plane rotation) G(i,j,0) € IR"*" is equal to the identity matrix except
that

s C

ol = 5, 2 ),

where ¢ = cosf and s = sinf. The operation y = G(1, j, 0)z rotates z through 6
radians clockwise in the (7, j) plane. Algebraically,

Tk, for k # 1,7,
Yk = § cx; + sz, for k =1, 1<k <n,
—sx; + cxj, for k =,
and so, y; = 0 if
T Z;
S = J Cc =

— S —
[ 2 2 2 2
T + T} e

Givens rotations are therefore useful for introducing zeros into a vector one at a
time. Note that there is no need to compute the angle 6, since ¢ and s in the above
are all that are needed to apply the rotation.

To define an incomplete QR factorization of the matrix A = (a;;)nxn based on
Givens rotations, in addition to the nonzero patterns P, Py and Pg described in
Section 2 for the incomplete factorization matrices () and R, we need to introduce
the following sets of integer pairs:

Par ={(4,7) |aij #0, >3, 1<14,j5<n},

Pap =A{(1,7) | aij #0, i<j, 1<4,5 <n}, (3.1)
Py={(4,7) | a;; #0, 1<14,5 <n}, and '
Pp={(,7)|i1>j, 1<i,j<n}

That is P4 and P4y are the nonzero patterns of the lower and upper triangular
parts of the matrix A, respectively, P, is the nonzero pattern of the matrix A, and
Pp, and Py (defined in Section 3) are the nonzero patterns of any lower and upper
triangular matrices in IR"*", respectively. Now, for given sets of integer pairs P, and



P, satisfying P4, € P, C Pp and Pyy C P, C Py, we can define the Incomplete
Givens Orthogonalization (IGO) method.

3.1 IGO-method for nonsingular matrices

The IGO-method consists of the following three elementary processes:

For each column in turn:

(a) Annihilate, using Givens rotations, the nonzero entries located in the strictly
lower triangular part of the matrix A € IR"*" from the bottom up to the first
sub-diagonal;

(b) Update the incomplete orthogonal matrix @ € IR"*" by postmultiplying by the
transpose of the Givens rotation using some dropping rule;

(c) After steps (a) and (b) have been done for all nonzeros in the current column,
form the corresponding row of the incomplete upper triangular matrix R €
IR"*" using some dropping rule.

More precisely, this method can be described as follows:

Method 3.1: IGO-method

1. Set @ =1

2. Forj=1,...,n—1 Do:

3. Define k,.(j) := max{i | ¢ > j,a;; # 0}

4. If k,.(j) = j then cycle

5.  For i=k,(j) DownTo j+1 and a;; # 0 Do: % All nonzero subdiagonals in
column j are annihilated

e ]2 2
6. Compute ¢ :=4/aj; + aj;

7. Compute ¢ := a;;/p

8. Compute s := a;;/p

9. Set aj; == p

10. For k=j+1,...,nand a; and aj; # 0 Do: % Update matriz
11. Compute temp := —sa;i, + ca;y

12. Compute a;j, := caji, + sa;

13. Set a;p, := temp

14. EndDo

15. For k=1,... ,n Do: % Update @ and respect sparsity pattern for Q
16. Compute temp := —sqi; + cqui if (k,1) € Py

17. Compute qi; := cqu; + squi if (k, j) € Py

18. Set qii == temp if (k,7) € Py

19. EndDo



20.  EndDo
21.  Fork=j,...,nand (j,k) € Pg Do: % Respect sparsity pattern for R

22. Set 7, 1= ajy,
23. EndDo
24. EndDo

25. Set 7, = Qpn

In the actual computation, there is no need to store the matrix R = (r;;)
separately. The matrix A = (a;;) is updated successively and, at the end of the
algorithm, its upper triangular part gives the matrix R.

To analyse the numerical properties of the IGO-method, we denote the Givens
rotation defined in lines 6-8 by G(7, 7), and define matrices

EG)
G =G +1,5) Gk (j),5) = [[ G,
i=j+1

(3.2)
R, =GRi_1+E®, Ry=A
J jlvj—1+ ) 0 ’

where E](.R) is the error matrix determined by lines 21-23. Then, it is clear that

R=R, i,and for j =1,2,... ,n—1, G, are orthogonal matrices, EJ(.R) are strictly

upper triangular matrices with their bottom-right (n — j) x (n — j) blocks zero, and
R; are upper triangular matrices except for their bottom-right (n—j) x (n—j) blocks
which are nonsingular submatrices in the case that A is nonsingular. In addition, if
we denote the matrix determined by lines 15-19, by Q(¢, 7), the corresponding error
matrix by E@(i,5), and let Qo = I, then we easily see that Q = Q,, ; and it can
be computed by the following procedure:

Procedure for Generating the Incomplete Orthogonal Matrix
1. For j=1,... ,n—1 Do:
2. Set Q(k,(j) +1,7) == Q1
For i = k,.(j) — 1 DownTo j + 1 Do:
Compute Q(i,) := Q(i + 1,7)G(i, 5)T

Set Q(i,4) := Q(i,§) + EQ (i, )
EndDo
Set Q; :=Q(j +1,5)
. EndDo

el N

We assume that the original matrix A € IR"*" is nonsingular and let

1
G=G,aGua-Gi= [] G (3.3)
1

j=n—



Then, from the construction of the IGO-method and the structure of the matrices
R; and E](.R) in (3.2), we immediately know that R; is a nonsingular matrix and
its first j diagonal entries are positive. Therefore, the incomplete upper triangular
matrix R must be nonsingular. Moreover, if all F(@ (¢,7) = 0, that is, Py = P, or
the entries in the matrix @) are not dropped, then Q = G7 is an orthogonal matrix,
and therefore, is nonsingular. We state this property in the following.

Theorem 3.1 Let A € IR"*" be nonsingular, and @, R € IR"*" be the incomplete
orthogonal and upper triangular matrices, respectively, produced by the IGO-
method. Then

(i) R is sparse and nonsingular, and its diagonal entries are positive except
except possibly for the last one;

(ii) @ = G7 is orthogonal, provided Py = P,.
This follows directly from (3.2) and (3.3).

Theorem 3.2 Let the conditions of Theorem 3.1 be satisfied. Then Q, R € IR"*"
are sparse matrices and

n—1 7
(i) A= GT'R — E and R is nonsingular, where E® = Y~ (]] G]-)TE](.R);
J=1 i=1
n—1 n—1
(ii) @ = GT + E@  where E@ = 21 E](.Q)( H Gi)T,
= =j
@ KO o kG
Ej :Z E (27.7) H G(k?])7
i=75+1 k=1
n—1 k()
(iii) Q is nonsingular if [|[E@|| < 1. Furthermore, S S [|[E@ (5, 4)]| < 1
J=1i=j+1

implies [|E@]| < 1;
(iv) A= QR — E, where E = E® 4 EQR,

Proof: =~ We first verify (i). According to Theorem 3.1, R € IR"*" is nonsingular.
By using (3.2) recursively, we have

Rj = GjRj_1 + B\
= Gj(Gjo1Rj—z + E\) + B
=G;Gi_1Rj_o + GjE]('IE)l + E](R)

= GGy GiRo+ G;G_1 - GoE™ + . + G, B + B,
Letting 7 = n — 1 we get



R=GA+ Gy 1Gp o GoE® 4+ . 4+ G, B, + EW (3.4)

Because of the orthogonality of the matrices G;, j = 1,2,...,n — 1, (3.3) implies
that

A=GTR—GFE® — . —(Gh 2Gn 3+ G)TER, —(Gy 1Gn s+ G))TED,
=G'R-EW,

To verify (ii), from the Procedure for Generating the Incomplete Orthogonal
Matriz we have

Q(i,7) =Q(i + 1,5)G(i,5)" + E9(i, )
=[Q(i +2,/)G(i + 1,j)" + B9 (i + 1,/)]G(, )" + B9 (4, 5)
=Q(i +2,7)[G(,7)G(i + 1,7)]" + E9(i + 1,5)G(i,5)" + B9 (i, )
=Q(k.(j) + L, H)[G(i,§)G(i + 1,5) - -- Gk, (5), 5)]"
+ ED(k,(j), )G 5)G(E + 1,5) - Gk () — 1, 5)]"
+ ...
+ B9+ 1,/)G(i, )" + B9, j).

Letting ¢ = 5 + 1 we get

k() i1
Qi =QinG] + Y 96 ]] Gk

i=j+1 k=j+1
kr (7) kr (5)

= Qj1Gf + Y E9(,5) [] Gk, 5)G]
i=j+1 k=i

= (Qj—l + E;Q))Gfa

ko
where we have stipulated that [[ G(k,7) =1 if k; > ko. That is to say,
k=k,

(@
Qi1 =Q;G;— B,

and therefore
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Qj-1=0Q;G; — EJ(Q)
=(Qj+1Gj41 — ]—I—I)G E @

=Q;1nGinG; — EQG; — E)

:Qn—lGn—lGn—Z e G]
r,(LQ_)lGn—ZGn—?) Tt G]

Q
— Bi\G; — B
Taking 7 = 1 we have
n—1
[=QG - EYG;1G;s+ G
j=1

=QG Y E¥Gu1Gna GG

=(@-E9)G
This equality is equivalent to

Q=GT+E9.

Finally, (iii) follows directly from (ii) since G is orthogonal; and (iv) follows
directly from (i) and (ii).

From Theorems 3.1 and 3.2 we see that the matrices () and R satisfy the
property (III), and at least one of the properties (I) and (II) stated in Section 1.
In actual applications, the matrix B = @R, given by the IGO-method, is used
as a preconditioner for Krylov subspace iterations. Moreover, it follows from
Theorem 3.2(i) that if Py = P, the IGO-method produces an incomplete Cholesky
factorization preconditioner for the normal equations of the linear least-squares
problem.

3.2 Generalized IGO-method
The generalized IGO-method, designated as the GIGO-method, consists of the

following four elementary processes:

(a) Choose sparse nonzero patterns Py and Pg of the incomplete orthogonal and
upper triangular matrices () and R, respectively, and determine sparse nonzero
patterns P, and P, for which the entries of the matrix A € IR"*" need to

11



be annihilated and updated, respectively, during the incomplete orthogonal
factorization process;

For each column in turn:

(b) Annihilate all the nonzero entries of the matrix A € IR"*" in P, from the
bottom up to the first sub-diagonal by Givens rotations, and update the
entries of the matrix A € IR**" in P, or P,, correspondingly;

(c) Update the incomplete orthogonal matrix @ € IR"*" by postmultiplying
by the transpose of the Givens rotation, with the entries not in P being
dropped,;

(d) After steps (b) and (c) have been done for all nonzeros in the current
column, form the corresponding row of the incomplete upper triangular
matrix R € IR"*" using some dropping rule.

More precisely, this method can be described as follows:

Method 3.2: GIGO-method
1. Set @ =1
2. Forg=1,...,n—1 Do:

3. Define k,.(j) := max{i |7 > j,(¢,j) € A}

4. If k,.(j) = j then cycle

5.  Fori=k,.(j) DownTo j + 1, a;; # 0 and (¢,7) € B, Do:
6. Compute p := 4 /a?j + azzj

7. Compute ¢ := a;;/p

8. Compute s := a;;/p

9. Set aj; == p

10. Define k(i) ;= max{k | k> j+1,(i,k) € BbUP,}
11. For k =j,... ,k.(7) and (3,k) € P,U P, Do:

12. Compute tempy := —sa, + ca;

13. EndDo

14. Define k.(7) := max{k | k > j,(j, k) € P.}

15. Fork=j+1,...,k.(j) and (j, k) € P, Do:

16. Compute a;i, := caji + saix

17. EndDo

18. For k = j,... ,k.(7) and (i,k) € P, U P, Do:

19. Set a;, := tempy,

20. EndDo

21. For k=1,...,n Do:

22. Compute tempy, := —sqi; + cqr; if (k,1) € Py
23. Compute qi; := cqrj + sqi if (k,7) € Py

24. Set gy; == tempy, if (k,1) € Py

12



25. EndDo

26.  EndDo

27. Fork=j,...,nand (j,k) € Py Do:
28. Set 7 1= ajy

29.  EndDo

30. EndDo

31. Set 7, = ann

Similarly to the IGO-method, in the actual computation in the GIGO-method
there is no need to store the matrix R = (r;;) separately. The matrix A = (a;;) is
updated successively, and finally, its upper triangular part gives the matrix R, which
may be used as an incomplete Cholesky factorization preconditioner for the normal
equations of the linear least-squares problem. More generally, the matrix B = QR
given by the GIGO-method can be used as a preconditioner for Krylov subspace
iterations. Evidently, when P, = P and P, = Py, the GIGO-method naturally
reduces to the IGO-method.

Denote the Givens rotation determined by lines 6-8 by G(i,7); the incomplete
orthogonal matrix determined by lines 21-25 by Q(¢, j) with the corresponding error
matrix E@ (7, j); and the error matrix determined by lines 10-20 for the i-loop,

together with lines 27-29, by E](R). If we further define

kr(5) n—1
Gi= [I ¢GGj and G=]]a,
i=j+1 i=1
(i,7) € B

then, following a similar analysis as for the IGO-method, we find that the GIGO-
method has the following properties.

Theorem 3.3 Let A € [R**", and Q, R € IR"*" be the sparse incomplete orthogonal,
upper triangular matrices, respectively, produced by the GIGO-method. Then

n—1 J
(i) A=G"R— EW, where E® = Y (I] G;)"E™;

j=1 i=1
(ii) @ = GT + E@ | where

@ n—1 ©) n—1 T Q) kr(5) Q) (s kv (5) .
E©@ = ZE] (H Gl) ?Ej = Z EQ(Za]) H G(kvj)a
i=1 =i i=j+1 k=i
(i,7) € A k,j) € P

(iii) A= QR — E, where E = E® + EQR,

Theorem 3.3 shows that even if the matrix A € IR"*" is nonsingular, nothing
guarantees that the incomplete orthogonal matrix ) generated by the GIGO-
method is nonsingular unless we make the dropping strategy drop only a few
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entries. However, from the construction of the GIGO-method, we easily see that
the nonsingularity of the incomplete upper triangular matrix R is guaranteed if, for
all j, 7 = 1,2,...,n — 1, the integer sets {(¢,7) € B | j < i < k.(j),a;; # 0}
determined during the annihilating process are nonempty.

In the actual computation, the nonzero patterns P and P, in the GIGO-method
can be determined according to the nonzero structure of the matrix A € IR"*". One
practical way is to simply take P, = P41 and P, = P4y, another is suggested by
the following procedure. Note that this procedure also determines the quantities

k.(j), k.(j) and £'.(j) in the GIGO-method.

Procedure for Generating the Nonzero Patterns P and P,

1. Compute k(1) := max{i | (7,1) € Psr}

2. Set k, := k(1)

3. Compute k.(1) :=max{j | (1,7) € Pay}

4. Set k. := k.(1)

5. Set 5 :=1

6. Do while 7 <n

7. Set Bi={(i,5) | j <i< k)

8. Set P,:={(j,i) |J i<k}

9. Compute k,.(j + 1) :=max{k | (k,7+1) € Par}

10.  If k.(j+1) < k.(j) then Set k, := k,(j), Else
11.  Compute k.(j + 1) :=max{k | (j + 1,k) € Pay}
12.  If k.(j +1) < k.(j) then Set k. := k.(j), Else

13.  Setj:=j+1

14. Endwhile

15. For y =1,...,n Do

16.  Set k'.(j) := k.(j)

17. EndDo

Note that, unlike the IMGS-method, the computation of the incomplete
orthogonal matrix ¢) and the incomplete upper triangular matrix R of the IGO-
method and the GIGO-method are independent. Therefore, if we only need
an incomplete Cholesky factorization preconditioner R € IR"*" for the normal
equations of the linear least-squares problem, there is no need to compute and store
the incomplete orthogonal matrix @ € IR"*". This not only significantly reduces

the operation and storage requirements, but also greatly simplifies the programming
of both the IGO-method and the GIGO-method.
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4 Threshold incomplete Givens orthogonalization
methods

The incomplete Givens orthogonalization methods discussed in the previous sections
are blind to numerical values because entries are dropped only using structural
considerations. An alternative is to drop entries in the Givens orthogonalization
process according to their magnitudes rather than their positions, as in the threshold
ILU methods (Saad 1994, Saad 1996). In this approach, the nonzero patterns, for
example, P, P,, Py and Pp, are determined dynamically. This results in a Threshold
Incomplete Givens Orthogonalization method (TIGO(7)-method), based upon the
GIGO-method in Section 3.2, which we show below.

Method 5.1: TIGO(7)-method

1. Input the dropping tolerance 7(@) for the factor Q
2. Input the dropping tolerance 7% for the factor R
3. Set Q=1

4. For y=1,... ,n—1 Do:

5. Set Pj:={i| (i,7) ¢ Par,|ai| >7®,j+1<i<n}
6.  Define k,(j) := max{i | (¢,7) € Par UP;}

7. If k.(j) = j then cycle

8. Fori=k,.(j) DownTo j + 1 and (7,5) € P41 U P; Do:
9. Compute p := 4 /a?j + afj

10. Compute ¢ := aj; /0

11. Compute s := a;;/p

12. Set a;; 1= p

13. Set P, :={k | (i,k) ¢ Pa,|aix| > 7P j+1 <k <n}
14. Define k(i) := max{k | (i,k) € P4 U ]31}

15. Fork=j+41,... k(i) and (i,k) € P4 U P; Do:
16. Compute tempy, := —sa, + ca;;

17. EndDo

18. Set P := {k | (j,k) ¢ Pay,lax| > 7, j <k < n}
19. Define k.(j) := max{k | (j,k) € P4y U ]31}

20. For k =3,... ,k.(j) and (j,k) € P4y U P; Do:

21. Compute ajj, := ca; + sa;i

22. EndDo

23. Fork=3j+1,... k(i) and (i,k) € Py U P; Do:
24, Set a;;, := tempy,

25. EndDo

26. For k=1,...,n Do:

27. Compute temp := —sqi; + cqyi

28. Compute g := cqrj + squ
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29. If |temp| < 7@ then Set q,; := 0, Else

30. Set qi; := temp

31. If |qi;| < 7@ then Set g :== 0
32. EndDo

33. EndDo

34. For k=3j,...,n and |ai| > 7® Do
35. Set 71, 1= aji

36.  EndDo

37. EndDo

38. Set 7, : = aun

We remark that, in the above method, the drop tolerances 7(?) and 7® may
vary according to the row or the column. For example, relative drop tolerances 7%
may be obtained by multiplying the initial drop tolerance 7(®) by the current values
of |a;;| in line 5, line 18, and lines 34-36, respectively, and by the value of |a;| in
line 13. The relative drop tolerances 7(%) may be obtained by multiplying the initial
drop tolerance 7(@) by |g;| in line 29 and by |g;;| in line 31.

To further control the memory use, we need to limit the number of nonzero
entries in each row (or column) of the incomplete orthogonal and upper triangular
matrices @ and R in the TIGO(7)-method. This can be achieved by introducing
another parameter p, the largest number of nonzero entries permitted in each row
or column of the matrices () and R. The resulting method, called the Generalized
Threshold Incomplete Givens Orthogonalization method or the GTIGO(r,p)-
method, is described in the following.

Method 5.2: GTIGO(T, p)-method

1. Input the dropping tolerance 7(@) for the factor Q

2. Input the dropping tolerance 7% for the factor R

3. Input the memory-control tolerance p{@) for the factor Q
4. Input the memory-control tolerance p® for the factor R
5. Set Q =1

6. For3=1,... ,n—1 Do:

7. Set Pj:={i| (1,5) ¢ Par,|ay| >7® i +1<i<n}
8.  Define k,(j) := max{i | (¢,7) € Par UP;}

9. If k.(j) = j then cycle

10.  For i =k,(j) DownTo j + 1 and (%,5) € P4, U P; Do:
11. Compute p := ﬂ/a?j + a?j

12. Compute ¢ := aj;/p

13. Compute s := a;;/p

14. Set a;; 1= p

15. Set P, :={k | (i,k) ¢ Pa,|aix| > 7P j+1 <k <n}
16. Define k(i) := max{k | (i,k) € P4 U ]51}
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17. Fork=3j+1,... k(i) and (i,k) € P4 U P; Do:

18. Compute tempy, := —sa,i + caix

19. EndDo

20. Set P := {k | (j,k) ¢ Pay,|ai| > T(R),z <k<n}
21. Define k.(j) := max{k | (j, k) € Pay U P;}

22. For k=4j,... ,k.(j) and (j,k) € P4y U P; Do:

23. Compute a;, := caji + saix

24. EndDo

25. Keep only the p(®) largest entries in the j-th row Qjx
26. Fork=j+41,... k(i) and (i,k) € P4 U P, Do:

27. Set a;, := tempy,

28. EndDo

29. Keep only the 2p® largest entries in the i-th row a,
30. For k=1,...,n Do:

31. Compute temp := —sqi; + cqpi

32. Compute g := cqrj + squ

33. If |temp| < 7(@) then Set q; := 0, Else

34. Set qi; := temp

35. If |qi;| < 7@ then Set g;; := 0

36. EndDo

37. Keep only the p(@) largest entries in the i-th column g,
38. Keep only the p(@) largest entries in the j-th column Qxj
39. EndDo

40. For k=j,... ,n and |a;| > 7B Do

41. Set 7, 1= a;y,

42.  EndDo

43.  Keep only the p®) largest entries in the j-th row Tjx

44. EndDo

45. Set 7, 1= Gpn

The drop tolerances 7(@) and 7(® in the GTIGO(T, p)-method can be determined
according to each row or column of the incomplete orthogonal and upper triangular
matrices () and R, respectively, in a similar way to the TIGO(7)-method. Moreover,
it is possible to dynamically adjust the parameters p@ and p® during the

incomplete Givens orthogonalization process.

Following exactly the analysis in Section 3, analogous properties to the GIGO-
method can be established for both the TIGO(7)-method and the GTIGO(T, p)-

method.
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5 Conclusions

We have presented an extensive sequence of incomplete orthogonal factorization
methods for general nonsingular and unsymmetric matrices. These factorizations
are obtained from the Givens orthogonalization process by dropping fill-in according
to either position or magnitude and by limiting the number of entries according
to available storage. Theoretical analyses show that these new methods can
successfully produce a nonsingular sparse incomplete upper triangular factor and
yield either a complete orthogonal factor or at least a sparse nonsingular incomplete
orthogonal factor for any nonsingular and unsymmetric matrix. Therefore, they have
the potential to provide robust, accurate and efficient preconditioners for Krylov
subspace iterations for solving large sparse systems of linear equations, possibly
in combination with a reordering technique and/or with some pivoting strategy.
The theory presented here would equally apply with the use of such techniques.
Numerical results for a variety of practical problems will be reported in a separate
paper, so that the numerical behaviour and range of application of these new
incomplete orthogonal factorization preconditioners can be further examined.
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