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1 Introduction

Adaptive finite element methods (AFEM), based on a-posteriori error estimates, have become established proce-

dures for computing efficient and accurate approximations to the solution of partial differential equations (see, e.g.,

[35,1] and the references therein). The typical algorithm is essentially a simple four-step procedure: solve–estimate–

mark–refine. Namely, given a subdivision of the computational domain, one solves the finite element problem (which

involves the assembly of the stiffness matrix and the solution of the resulting linear system), then computes an a

posteriori error estimate; based on this estimate, a marking strategy is applied to identify for further refinement a

set of elements in the current subdivision. Invariably, it is assumed that the solution of the linear systems on each

level is exact. For large problems, however, exact solution of the linear systems may not be obtained efficiently

(using, e.g., sparse direct solvers), if at all. In such cases, a competitive, or only, alternative is provided by iterative

linear solvers (such as the conjugate gradient method) which compute approximations to the exact finite element

solution. The key issue in this context is accuracy: a highly accurate approximation of the solution to the linear

system at each level is inefficient and, most likely, unnecessary, while a poor approximation may affect the quality

of the a posteriori estimators, thereby yielding different, possibly extensive refinements; the latter, in turn, affects

the quality of the solution at the next step and of the adaptive algorithm itself.

The question of accuracy of an iterative method employed to solve a finite element system of equations has been

considered both for the case of a single problem see, e.g., [2,16,4] and for a sequence of problems in an adaptive

context, see [24]. It is now known that, in order to bring the finite element error measured in the energy norm

below a certain tolerance in an efficient way, one needs to monitor the norm of the algebraic residual dual to the

energy norm. This task is non-trivial. Furthermore, to the best of our knowledge, the integration of this approach

in an adaptive procedure has only been effected in an empirical manner, since the tolerance has been only set

empirically [24]. As such, it has not been clear how the a posteriori error estimate (step two) could be used to

advise the required accuracy of iterative linear solver.

Recent years have seen a growing interest in establishing convergence results for AFEM algoritms. The focus has

been mainly second order elliptic problems; for this class of problems results are currently available for conforming

finite element methods [17,30,8,34,32,14,31,10,7], for classical non-conforming methods [13] and for discontinuous

Galerkin methods [25,23,9]. In the light of these recent results, it is desirable to provide new stopping criteria for

iterative methods which maintain the convergence of the adaptive procedure.

The contribution of this work is two-fold. First, it is shown that, given an exact convergent adaptive strategy,

one can compute a sequence of inexact solutions which will yield a convergent adaptive algorithm as long as the

algebraic residual satisfies a certain criterion. This criterion involves both the energy-dual norm of the algebraic

residual and the a posteriori error estimate. Second, it is shown how to estimate and implement this criterion

practically in an adaptive context, yielding an automatic stopping criterion for the accuracy of iterative solutions

for the adaptive finite element algorithm, where each level is solved iteratively using the Conjugate Gradient (CG)

method.

In this work, we only consider iterative solution methods of Krylov subspace type. This class of methods has

been analysed extensively over the last three decades and convergence and applicability are largely understood.

Furthermore, specific results are available for linear systems arising from finite element discretisations; in particular,

it has been shown that convergence should be monitored in the energy norm for reasons of efficiency [2,16,4,3]. This

applies even more stringently in the case of adaptive finite element algorithms where the size of the problem grows

with each step. Moreover, one expects an adaptive, possibly hierarchical procedure, such as AFEM, to provide

certain a posteriori information or even recycling capabilities at each step which would aid the iterative method

at the next step. While this is stated in [24], we show that this is indeed the case and that efficiency can be

dramatically improved.

For the sake of simplicity of exposition we illustrate our approach on a standard symmetric second-order elliptic

problem. Some of the intermediate results presented below are inspired and influenced by the works of Karakashian

and Pascal [25], Cascon, Kreuzer, Nochetto and Siebert [14] and Stevenson [32] in the context of second order elliptic

problems. We stress, however, that generalisations of the results (in various settings) presented in this work are

expected to be possible.

The paper is organised as follows. In Section 2 we introduce the model problem and the adaptive finite element

algorithm in exact form. Section 3 contains an analysis of the inexact version of the AFEM method. In particular

we derive a sufficient criterion to ensure convergence of the inexact algorithm. Section 4 discusses the practical

implementation of this criterion which requires the evaluation of the dual norm of the algebraic residual. This can

be achieved by employing the Conjugate Gradient method for solving the linear systems. Finally, in Section 5 we

illustrate the efficiency of our approach on a range of two- and three-dimensional problems.
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2 Problem formulation

In this section we introduce notation and a description of the model problem together with an posteriori error

bound of residual type. We also include a description of an adaptive finite element algorithm together with the

corresponding convergence result.

2.1 Model problem and the finite element method

The standard Lebesgue spaces are denoted by Lp(ω), 1 ≤ p ≤ +∞, ω ⊂ Rd; when p = 2 the corresponding inner

product is denoted by 〈·, ·, 〉ω and norm ‖ · ‖ω; when ω = Ω, we shall drop the subindex for brevity, writing 〈·, ·, 〉
and ‖ · ‖, respectively. We also denote by H1

0 (ω) the standard Sobolev space of functions with zero trace on ∂ω.

Let Ω be a bounded open polyhedral domain in Rd, d = 2, 3 and let ∂Ω denote its boundary. We consider the

second order equation

−∇ · (a∇u) = f in Ω, (2.1)

where a ∈ [L∞(Ω)]d×d is a positive definite tensor and f ∈ L2(Ω). For simplicity of the presentation, we impose

homogeneous Dirichlet boundary condition u = 0 on ∂Ω, although this appears not to be an essential restriction.

We shall denote by || · ||a := ‖
√

a∇(·)‖ the, so-called, energy norm.

Let T be a conforming subdivision of Ω into disjoint simplicial elements κ ∈ T . We assume that the subdivision

T is shape-regular (see, e.g., p.124 in [15]) and that it is constructed via affine mappings Fκ, where Fκ : κ̂ → κ,

with non-singular Jacobian, where κ̂ is the reference simplex.

For a nonnegative integer r, we denote by Pr(κ̂), the set of all polynomials of total degree at most r, defined

on κ̂. We consider the finite element space

V := {V ∈ H1
0 (Ω) : V |κ ◦ Fκ ∈ Pr(κ̂), κ ∈ T }. (2.2)

By Γ we denote the union of all (d−1)-dimensional element faces associated with the subdivision T (including

the boundary). Further we decompose Γ into two disjoint subsets Γ = ∂Ω ∪ Γint, where Γint := Γ\∂Ω. We define

hκ := (µd(κ))1/d, κ ∈ T , where µd is the d-dimensional Lebesgue measure. Also, for two (generic) elements κ+, κ−

sharing a face e := ∂κ+ ∩ ∂κ− ⊂ Γint we define he := µd−1(e). We collect these quantities into the element-wise

constant function h : Ω → R, with h|κ = hκ, κ ∈ T and h|e = he, e ∈ Γ . The families of meshes constructed by

the algorithms presented in this work will be conforming and shape-regular.

We assume throughout that the diffusion tensor a is element-wise constant; this has been done in the interest

of simplicity of the exposition only. This restriction can be lifted by combining the a posteriori bounds from [14]

(where the case of variable diffusivity is presented) with the developments described below.

The finite element method reads:

find U ∈ V such that a(U, V ) = l(V ) ∀V ∈ V, (2.3)

where the bilinear form a : H1
0 (Ω)×H1

0 (Ω)→ R and the linear form l : H1
0 (Ω)→ R are given by

a(w, v) :=

Z
Ω

a∇w · ∇v dx and l(v) :=

Z
Ω

fv dx, (2.4)

respectively, for w, v ∈ H1
0 (Ω).

We note the projection property of the finite element method in the following lemma.

Lemma 1 Let u be the (weak) solution to problem (2.1) with homogeneous Dirichlet boundary conditions and

U ∈ V be the finite element solution to (2.3). Then, for any V ∈ V, we have

||u− U ||2a = ||u− V ||2a − ||V − U ||2a. (2.5)

Proof We have, respectively,

||u− U ||2a = a(u− U, u− U) = a(u− V, u− V ) + a(u− V, V − U)

= ||u− V ||2a + a(U − V, V − U) = ||u− V ||2a − ||U − V ||2a,

using Galerkin orthogonality.
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Let now {φi}1≤i≤N denote a set of basis functions for V so that

U =

NX
i=1

uiφi,

and let Aij = a(φj , φi), bk = l(φk), i, j, k = 1, · · · , N. With this notation, the linear system corresponding to

(2.3) is

Au = b, (2.6)

where A ∈ RN×N is the stiffness matrix corresponding to a set of basis functions {φi}1≤i≤N .

2.2 A posteriori error bounds of residual type

For every face e ∈ Γint, we define the jump across e of a scalar function w, defined in an open neighbourhood of e,

by

[w](x) = lim
t→0

`
w(x− tne)− w(x + tne)

”
,

for x ∈ e, where ne denotes a normal vector to e. (Note that the jump is only uniquely defined up to a sign, which

is unimportant for the discussion below.) For any subset M ⊂ T (i.e., M is a collection of elements of T ), we

define the local estimator by

ηT (U,M) :=
“ X

κ∈M

“
h2

κ‖f +∇ · (a∇U)‖2κ +
X

e∈Γint∩∂κ

he‖[a∇U · ne]‖2e
””1/2

.

We recall a standard residual-type a posteriori reliability bound of the energy-norm error (see, e.g., [35,1]).

Theorem 1 Let u ∈ H1
0 (Ω) be the solution to (2.1), with homogeneous Dirichlet boundary conditions, U ∈ V be

the finite element approximation, associated with the mesh T . Then there exists a positive constant C1, independent

of T , h, u and U , so that

||u− U ||2a ≤ C1 η2
T (U, T ). (2.7)

2.3 AFEM algorithms

We describe now briefly the adaptive finite element algorithm analyzed in [14]. Henceforth, all objects indexed by

m ∈ N refer to the object in the m-th iteration of the adaptive algorithm.

Each iteration of the algorithm comprises four steps which are summarized in the workflow below:

SOLVE→ ESTIMATE→ MARK→ REFINE (2.8)

The first step involves computing the finite element solution Ue
m to the problem:

find Ue
m ∈ Vm such that a(Ue

m, Vm) = l(Vm) ∀Vm ∈ Vm. (2.9)

(The superscript “e” in this section signifies that here we refer to the “exact” algorithm, i.e., all calculations are

performed exactly on all levels.)

In the second step, for each element κ ∈ Tm we calculate the local estimators

η2
Tm

(Ue
m, κ) := h2

κ‖f +∇ · (a∇Ue
m)‖2κ +

X
e∈Γint,m∩∂κ

he‖[a∇Ue
m · n]‖2e.

The third step identifies a subset Mm of elements of the mesh Tm which are marked for refinement, using a

Dörfler-type marking strategy (see [17]); more precisely, for a user-defined parameter 0 < θ ≤ 1 (from now on

termed the Dörfler marking parameter), we find Mm, subset of Tm, such that

η2
Tm

(Ue
m,Mm) ≥ θ η2

Tm
(Ue

m, Tm); (2.10)

the elements κ ∈Mm are called marked elements.

In the fourth step, the marked elements are refined by newest vertex bisection (see, e.g., [14] for details); if

the resulting mesh is not conforming, it is made into a conforming mesh by sufficient additional refinement (again
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by newest vertex bisection) of elements possessing hanging nodes. These elements are then added to the marked

elements Mm, thereby arriving to the new mesh Tm+1.

Summarising, the adaptive algorithm constructs a sequence of objects {Tm,Vm, Ue
m}m≥1, starting with a

(given) conforming mesh T0; the corresponding pseudo-code is given below.

Algorithm 1. AFEM algorithm

Set parameter 0 < θ ≤ 1. Set m = 0.

While convergence criterion not satisfied

1. Solve exactly (2.9) to obtain Ue
m.

2. Compute local estimators ηTm
(Ue

m, κ), κ ∈ Tm.

3. Mark elements Mm for refinement in Tm using (2.10).

4. RefineMm to obtain new mesh Tm+1. Set m← m + 1.

End

The above procedure assumes that exact integration is employed and that the solution of the corresponding

linear system in the first step is exact at each iteration of the adaptive algorithm. This may not be possible for

large problems and the next section describes an inexact version of this algorithm. We conclude this section with

the main convergence result in [14].

Theorem 2 There exist constants ξ > 0 and 0 < α < 1 such that

‖u− Ue
m+1‖2a + ξη2

Tm+1(U
e
m+1, Tm+1) ≤ α

“
‖u− Ue

m‖2a + ξη2
Tm

(Ue
m, Tm)

”
.

The above result can be extended to the inexact case, as shown next.

3 Inexact AFEM algorithms

We introduce now an inexact AFEM algorithm with the same workflow (2.8) as the exact algorithm described

above. In general, the subdivisions arising in an inexact context are different from the exact case; we will denote

the subdivisions and associated finite element spaces by T̃m and by Ṽm, respectively.

In the first step we solve inexactly (2.9) to obtain an inexact finite element solution Ũm ∈ Ṽm, which is an

approximation to the exact finite element solution Um on the space Ṽm (i.e., Um is the solution to the finite element

problem (2.3) posed on the finite element space V = Ṽm). The theory presented in this section is not dependent

on the specific nature of inexactness of Ũm, so we keep the discussion in an abstract setting.

In the remainder, we shall use the abbreviations ηm(V,M) ≡ ηT̃m
(V,M) for V ∈ Ṽm, M⊂ T̃m and ηm(V ) ≡

ηm(V, T̃m), for m = 0, 1, . . . . We shall assume that the inexact solution Ũm satisfies the following inequality:

||Ũm−1 − Um−1||2a + µ||Ũm − Um||2a ≤ νη2
m−1(Ũm−1), (3.11)

for some values µ and ν (to be made precise later).

In the second step we calculate local estimators η2
m(Ũm, κ) based on Ũm, for each element κ ∈ T̃m.

The third step uses the same Dörfler-type marking strategy as in the exact case, with Um replaced by Ũm: we

find M̃m, subset of T̃m, such that

η2
m(Ũm,M̃m) ≥ θ η2

m(Ũm). (3.12)

Finally, the marked elements are refined as in the exact case, by newest vertex bisection

The adaptive algorithm constructs a sequence of objects {T̃m, Ṽm, Ũm}m≥1, starting with a (given) conforming

mesh T0 and it is summarised as follows.

Algorithm 2. Inexact AFEM

Set parameters 0 < θ ≤ 1, µ and ν. Initialise Ũ0. Set m = 1.

While convergence criterion not satisfied

1. Solve inexactly (2.9) to obtain Ũm so that (3.11) is satisfied.

2. Compute local estimators ηT̃m
(Ũm, κ),κ ∈ T̃m.

3. Mark elements M̃m for refinement in T̃m using (2.10).

4. Refine M̃m to obtain new mesh T̃m+1. Set m← m + 1.

End
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3.1 Convergence of the inexact adaptive finite element solver

We first need the following lemmata.

Lemma 2 Let V, W ∈ V. Then, there exists C2 > 1, depending only on the polynomial degree r and the shape-

regularity of the mesh T , such that

η2(V ) ≤ (1 + γ) η2(W ) + C2(1 + γ−1)||W − V ||2a, (3.13)

for any γ > 0.

Proof Using standard inverse estimates, one can show that

‖h∇ · (a∇(W − V ))‖2 + ‖h1/2[a∇(W − V ) · n]‖2Γint ≤ C||W − V ||2a, (3.14)

for a constant C > 1, depending on r and on the shape-regularity of T . Using the triangle inequality, Young’s

inequality and the bound (3.14), we have

η(V )2 =‖h(f +∇ · (a∇(W − V + V )))‖2 + ‖h1/2[a∇(W − V + V ) · n]‖2Γint

≤(1 + γ)
`
‖h(f +∇ · (a∇W )‖2 + ‖h1/2[a∇W · n]‖2Γint

´
+ C(1 + γ−1)||W − V ||2a.

(3.15)

The following lemma is inspired from a result in [14, Corollary 4.4].

Lemma 3 For any Vm+1 ∈ Vm+1, we have

η2
m+1(Vm+1) ≤ (1− τθ)(1 + δ)η2

m(Ũm) + (1 + δ−1)C2||V − Ũm||2a, (3.16)

where θ ∈ (0, 1) is the Dörfler marking parameter, and τ = 1− 2−1/d.

Proof Using standard inverse estimates, one can show that

‖hm+1∇ · (a∇(Vm+1 − Ũm))‖2 + ‖h1/2
m+1[a∇(Vm+1 − Ũm) · n]‖2Γint,m+1 ≤ C||Vm+1 − Ũm||2a, (3.17)

for C as in (3.17), with hm and Γint,m denoting the mesh-size function and the union of interior faces on the mesh

T̃m, m = 0, 1, . . . , respectively. Using the triangle inequality, Young’s inequality and the bound (3.14), we have

η2
m+1(Vm+1) =‖hm+1(f +∇ · (a∇Vm+1))‖2 + ‖h1/2

m+1[a∇Vm+1 · n]‖2Γint,m+1

≤(1 + δ)
`
‖hm+1(f +∇ · (a∇Ũm)‖2 + ‖h1/2

m+1[a∇Ũm · n]‖2Γint,m+1

´
+ (1 + δ−1)C||Vm+1 − Ũm||2a

=(1 + δ)η2
m+1(Vm+1) + (1 + δ−1)C||Vm+1 − Ũm||2a,

(3.18)

for any δ > 0.

An element κ ∈ M̃m is bisected into elements

Rκ := {κ′ ∈ T̃m+1 : κ′ ⊂ κ},

due to the refinement strategy of the adaptive algorithm. Observing that, for all κ′ ∈ Rκ, we have hκ′ ≤ 2−1/dhκ,

we deduce

η2
m+1(Ũm) = η2

m(Ũm, T̃m \ M̃m) + η2
m+1(Ũm, {Rκ : κ ∈ M̃m})

≤ η2
m(Ũm, T̃m \ M̃m) + 2−1/dη2

m(Ũm,M̃m),
(3.19)

since [a∇Ũm · n] = 0 almost everywhere on Γint,m+1 \ Γint,m. Combining (3.18) with (3.19), the result readily

follows by making use of the marking strategy (2.10).

We are now in the position to prove a contraction property for the error of the inexact adaptive algorithm.
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Theorem 3 Let u and Ũm, m ≥ 1 as above, so that

||Ũm − Um||2a + µ||Ũm+1 − Um+1||2a ≤ νη2
m(Ũm), (3.20)

with

µ :=
1 + ξC2(1 + γ−1)

εξ
`
1 + 2C1C2)

, ν :=
β

ε
`
1 + 2C1C2)

, (3.21)

where 0 < ε < 1, ξ :=
`
C2(1 + γ)(1 + δ−1)

´−1
, and β, γ, δ and ε are chosen small enough, so that (1 − τθ)(1 +

γ)(1 + δ) + 2εC1 + β < 1. Then, there exist a constant 0 < α < 1, depending only on the shape regularity of T̃1 and

on the marking parameter θ, such that

||u− Ũm+1||2a + ξη2
m+1(Ũm+1) ≤ α

`
||u− Ũm||2a + ξη2

m(Ũm)
´
. (3.22)

Proof The projection property of the finite element method (2.5) for the (exact) finite element solution Um with

V = Ũm ∈ Ṽm, for all m ≥ 1, reads

||u− Ũm||2a = ||u− Um||2a + ||Ũm − Um||2a. (3.23)

Also, (2.5) for Um+1 with V = Ũm (noting that Ũm ∈ Ṽm+1, as the adaptive algorithm involves only refinement

of elements), for all m ≥ 1, yielding

||u− Um+1||2a = ||u− Ũm||2a − ||Ũm − Um+1||2a. (3.24)

Combining (3.23) (for m + 1) with (3.24), we deduce

||u− Ũm+1||2a = ||u− Ũm||2a − ||Ũm − Um+1||2a + ||Ũm+1 − Um+1||2a. (3.25)

Focusing on estimating the term η2
m+1(Ũm+1), we combine (3.13) (with V = Ũm+1 and W = Um+1), with (3.16)

(with Vm+1 = Um+1), to arrive to:

η2
m+1(Ũm+1) ≤(1− τθ)(1 + γ)(1 + δ)η2

m(Ũm) + C2(1 + γ)(1 + δ−1)||Ũm − Um+1||2a
+ C2(1 + γ−1)||Ũm+1 − Um+1||2a.

(3.26)

Setting ξ =
`
C2(1 + γ)(1 + δ−1)

´−1
, (3.25) and (3.26) imply

||u− Ũm+1||2a + ξη2
m+1(Ũm+1) ≤||u− Ũm||2a +

`
1 + ξC2(1 + γ−1)

´
||Ũm+1 − Um+1||2a

+ ξ(1− τθ)(1 + γ)(1 + δ)η2
m(Ũm).

(3.27)

To estimate further the first term on the right-hand side of (3.27), we use (3.23), working as follows:

||u− Ũm||2a =(1− εξ)||u− Ũm||2a + εξ||u− Um||2a + εξ||Ũm − Um||2a
≤(1− εξ)||u− Ũm||2a + εξC1η2

m(Um) + εξ||Ũm − Um||2a
≤(1− εξ)||u− Ũm||2a + 2εξC1η2

m(Ũm) + εξ
`
1 + 2C1C2

´
||Ũm − Um||2a,

(3.28)

for any 0 < ε < 1, using Theorem 1 and (3.13) (with V = Um, W = Ũm and γ = 1). Applying (3.28) on (3.27), we

arrive to
||u− Ũm+1||2a + ξη2

m+1(Ũm+1) ≤(1− εξ)||u− Ũm||2a + εξ
`
1 + 2C1C2

´
||Ũm − Um||2a

+ ξ
`
(1− τθ)(1 + γ)(1 + δ) + 2εC1

´
η2
m(Ũm)

+
`
1 + ξC2(1 + γ−1)

´
||Ũm+1 − Um+1||2a.

(3.29)

From hypothesis, we have

εξ
`
1 + 2C1C2

´
||Ũm − Um||2a +

`
1 + ξC2(1 + γ−1)

´
||Ũm+1 − Um+1||2a ≤ βξη2

m(Ũm), (3.30)

for some β > 0, we get

||u− Ũm+1||2a + ξη2
m+1(Ũm+1) ≤ (1− ε)||u− Ũm||2a + ξ

`
(1− τθ)(1 + γ)(1 + δ) + 2εC1 + β

´
η2
m(Ũm). (3.31)

Choosing β, γ, δ and ε small enough, so that (1− τθ)(1 + γ)(1 + δ) + 2εC1 + β < 1, the result follows choosing

α := max
˘
1− εξ, (1− τθ)(1 + γ)(1 + δ) + 2εC1 + β

¯
.

Criterion (3.21) involves algebraic errors alone; as such, it represents essentially an adaptive stopping criterion

for an iterative method. However, its implementation is non-trivial since it involves the exact solution Um. In the

next section we show how (3.21) can be implemented efficiently for the Conjugate Gradient method.
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4 Stopping criteria for the Conjugate Gradient method

We now turn to the practical implementation of criterion (3.21). Our choice of solver is the Conjugate Gradient

(CG) method, due to its convenient properties (see below). At each step m we need to solve iteratively a linear

system of the form (2.6)

Amum = bm. (4.32)

The matrices Am have size Nm × Nm with Nm an increasing sequence. We denote by uk
m ∈ RNm the k-th CG

iterate at step m of the adaptive algorithm and by Uk
m the corresponding function in Ṽm. We denote the residual

by rk
m := bm−Amuk

m and note that the energy norm of the error can be expressed as a dual norm of the residual:

‖Um − Uk
m‖a = ‖um − uk

m‖Am
= ‖rk

m‖A−1
m

,

where 〈x, y〉A := xT Ay, x, y ∈ RN , A ∈ RN×N , denotes the standard inner product weighted by A in RN , with the

corresponding norm ‖x‖A :=
p
〈x, x〉A. A candidate for Ũm is Uk

m for any k for which criterion (3.21) is satisfied.

Our aim is to find an automatic way of choosing k so that the overall solution process is efficient.

It is well-known that the Conjugate Gradient method minimises the energy norm of the error, namely

uk
m = arg min

u∈Kk(r0
m,Am)

‖um − u‖Am
,

where Kk(r0
m, Am) :=

n
r0
m, Amr0

m, · · · , Ak−1
m r0

m

o
is the Krylov subspace of dimension k. Thus, the energy norm

of the error decreases monotonically and criterion (3.21) will be satisfied for all Uk
m with k > k∗ for some k∗. This

makes CG an attractive choice for enforcing criterion (3.21) efficiently. In addition, there are various established

numerical techniques that provide bounds or estimates for the energy norm of the error at each step. As such, the

method is both optimal and practical. We note that these properties do not hold in general and for non-symmetric

problems the best choice of iterative method remains undecided.

We review below some of the existing bounds and estimates for the energy norm of the error. We also discuss

the practical implementation of the only existing guaranteed upper bound for the CG error. Finally, we derive

adaptive stopping criteria for the CG method.

4.1 Error bounds for the Conjugate Gradient method

The CG method is included below for the generic problem

Au = b.

Algorithm 3. Conjugate Gradient Algorithm

Set u0 := 0;p0 := r0 := b; σ0 := ‖r0‖2;
For j = 0, 1, . . . until convergence do

vj = Apj ; γj = σj/(rj · vj);

uj+1 = uj + γjp
j ; rj+1 = rj − γju

j ; σj+1 = ‖rj+1‖2;
χj+1 = σj+1/σj ; pj+1 = rj+1 + χj+1p

j ;

End

The above algorithm constructs implicitly a Lanczos tridiagonalisation which we write in the form

V T
k AVk = Tk,

where Vk is an orthogonal matrix and Tk is a symmetric and positive tridiagonal matrix with entries computable

from the CG coefficients. The explicit form of Tk ∈ Rk×k is given below

Tk =

0BBBBBB@
α1 β1 0

β1 α2 β2

. . .
. . .

. . .

αk−1 βk−1

0 βk−1 αk

1CCCCCCA .
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where for j = 1, . . . , k,

αj =
1

γj−1
+

χj−1

γj−2
, βj =

√
χj˛̨

γj−1

˛̨ ,
with γ−1 = 1, χ0 = 0.

Several authors have proposed rules that compute error bounds for the Conjugate Gradient method [5,6,11,12,

20,21,27–29,33]. Some of these rules compute estimate of the error in Euclidean norm and others compute estimates

related to the energy norm. We review below some of the existing results; we also introduce new estimates suitable

to the adaptive finite element context.

4.1.1 The Hestenes and Stiefel estimate

In their historical paper, Hestenes and Stiefel [22] proposed a method for the estimate of the error energy norm that

use the values computed during the Conjugate Gradient method. Strakovs and Tichý, [33], studied the relations

between the estimates proposed in [22,20,21,27–29] and they proved that the Hestenes-Stiefel estimate [22] is

numerically stable. The method uses the fact that the error can be written as a linear combinatinon of residual

norms:

‖u− uk‖2A =

NX
k+1

γj‖rj‖2.

Under the assumption that e
(k+d)
A << e

(k)
A , where the integer d denotes a suitable delay, the Hestenes and Stiefel

estimate is given by the formula

‖u− uk‖2A ≈
k+dX

j=k+1

γj‖rj‖2. (4.33)

In [20] d = 10 is indicated as a successful compromise, and numerical experiments support this conclusion ([20,2]).

In Section 5, we will indicate that the cheaper choice d = 5 can be reliable if the solution u of (2.1) is reasonably

regular; in general, one can expect d to be required to be larger for ill-conditioned problems.

4.1.2 The Golub and Meurant bounds

The A-norm of the error at each CG step can be written in the following way, using the orthogonality rT
k uk = 0,

‖u− uk‖2A = ‖rk‖2A−1 = bT A−1b− bT uk. (4.34)

Thus, the main difficulty in evaluating the above quantity is in the evaluation of the first term on the right. One

can write this term as an integral

F (A) = bT A−1b =

Z ∞

0

1

t
dω(t),

where the measure ω is a non-decreasing step function with jump discontinuities at the eigenvalues of A. Golub and

Meurant used this formulation to provide upper and lower bounds on the CG error, by employing Gauss-Radau and

Gauss-Lobatto quadrature rules, respectively. The latter approach can be shown to be equivalent to the Hestnes

and Stiefel estimate above.

The only guaranteed upper bound for the A-norm of the CG error uses a Gauss-Radau associated with the

measure ω and with one node prescribed at λ < λmin(A). Let

T̂k+1 =

0BBBBBB@
α1 β1 0

β1 α2 β2

. . .
. . .

. . .

αk βk

0 βk α̂k+1

1CCCCCCA .

where

α̂k+1 = λ + β2
ke

T
k (Tk − λIk)−1ek

with ek the k-th column of the k × k identity matrix. Under the assumption 0 < λ < λmin(A), the Cholesky

decomposition T̂k+1 = R̂T
k+1R̂k+1 can be shown to exist. Let now ŷk+1 be the solution of

R̂T
k+1ŷ

k+1 = ‖b‖ê1
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where ê1 denotes the first column of the identity matrix of size k + 1. Then an upper bound on the CG error is

given by [20]

‖u− uk‖A ≤
˛̨̨
ŷk+1

k+1

˛̨̨
. (4.35)

It is clear that in order to compute this bound, the lower bound λ is required. In fact, experiments show [29] that

a close lower bound on the smallest eigevalue of A yields tight upper bounds for the CG error. We consider this

issue at the end of this section.

4.1.3 Other estimates

Another estimate for the CG error was derived in [11]. The derivation employs an anti-Gauss rule to evaluate the

integral F (A). We include a brief description here. Let

T̃k =

0BBBBBBBB@

α1 β1 0

β1 α2 β2

. . .
. . .

. . .

αk−2 βk−2

βk−2 αk−1

√
2βk−1

0
√

2βk−1 αk

1CCCCCCCCA
.

Assuming T̃k is positive definite, we consider as before the Cholesky factorisation T̃k = R̃T
k R̃k and similarly we

denote by yk, ỹk the solution of the linear systems

Rkyk = ‖b‖e1, R̃T
k ỹk = ‖b‖e1,

where Tk = RT
k Rk. One can use these vectors to derive an upper bound on the error, under the additional

assumption of rapid decay of the coefficients of f(t) = 1/t in the expansion in terms of orthonormal polynomials

with respect to the inner product (g, h) :=
R∞
0 ghdω (see [11] for details). The bound reads

‖u− uk‖A ≤
h
(ỹk

k + yk
k)(ỹk

k − yk
k)

i1/2
. (4.36)

We remark here that the above expression may not exist, if T̃k is not positive definite, or if it exists, it is not

guaranteed to be an upper bound.

4.2 Adaptive stopping criteria for CG

Criterion (3.21) cannot be employed in a practical context. Instead, the following generic criterion will be considered:

E(Ũm)2 + µE(Ũm+1)
2 ≤ νη2

m(Ũm) (4.37)

where E(Ũm) denotes an estimate or bound for the error ‖Um − Ũm‖a. Note that if E(Ũm) is an upper bound,

then the result of Thm 3 holds and the inexact AFEM algorithm is guaranteed to converge. In general, estimates

will not provide this guarantee, though a tight estimate or lower bound could also ensure the contraction result of

Thm 3, possibly at a different rate. For such cases, further analysis is required.

We discuss now the only guaranteed upper bound available – the Golub and Meurant bound (4.35) for the case

where a in model problem (2.1) has minimum eigenvalue amin. As described above, this bound requires a lower

bound on the smallest eigenvalue of the system matrix. This information is not readily available and in general

expensive to compute. We introduce below two bounds and an estimate for this quantity.



10

4.2.1 Eigenvalue bounds based on Poincaré inequalities.

To find a lower bound on the smallest eigenvalue of a discrete Laplacian, one could employ the Poincaré inequality

‖v‖L2(Ω) ≤ CP |v|H1(Ω), ∀v ∈ Vm ⊂ H1
Γ (Ω),

where Γ ⊆ ∂Ω is Lipschitz continuous. The constant CP = CP (Ω) depends on the domain Ω only and can be

estimated for polygonal domains. Since

‖v‖2a ≥ amin|v|2H1(Ω)

the Poincaré inequality yields the following lower bound on Rayleigh quotients involving Am:

amin

C2
P

vT Mmv

vT v
≤ vT Amv

vT v
, ∀v ∈ RNm ,

where Mm is the mass matrix corresponding to the m level of the AFEM algorithm. We conclude that

amin

C2
P

λmin(Mm) ≤ λmin(Am)

and the task is now to find a lower bound on the smallest eigenvalue of Mm. This is easily done in a finite element

context as shown in [18], [19], [36] and we include the result here

min
κ∈Tm

λmin(Mκ) ≤ λmin(Mm), (4.38)

where Mκ is the elemental mass matrix assembled on the element κ. The resulting bound on the smallest eigenvalue

of Am is

λmin(Am) ≥ amin

C2
P

min
κ∈Tm

λmin(Mκ); (4.39)

we call this bound the global Poincaré bound. Bound (4.38) is remarkably tight for matrices assembled on quasi-

uniform or isotropic subdivisions. However, it can be fairly poor in the case of adaptive refinements. Improvements

are described in [26]. We consider below an adaptive procedure which refines the Poincaré bound (see [26] for other

possibilities).

Let M̃m be the set of triangles marked for bisection at step m and let Dm ⊇ M̃m denote the region comprising

all the refined elements. Let us further assume that following condition holds:

∂Ω 6= Dm ∩ ∂Ω 6= ∅. (4.40)

If Dm is a multiply-connected set, then we will assume that the above condition holds for each disjoint region it is

comprised of. The following result can be found in [26].

Proposition 1 Let Dm satisfy (4.40) and let Cm
P denote its Poincaré constant. Let Am, Am+1 denote the matrices

assembled on consecutive subdivisions in the inexact AFEM algorithm 2. Then

λmin(Am+1) ≥ min


λmin(Am),

amin

(Cm
P )2

min
κ∈Dm

λmin(Mκ)

ff
. (4.41)

The bound (4.41) is essentially an adaptive Poincaré lower bound for the smallest eigenvalue of the stiffness matrix.

Given its form, the above bound is updated at each step, by taking the minimum of the current lower bound and

the bound expressing the Poincare inequality on the region Dm.

Remark 1 The advantage of this approach is that the lower bound on λmin(Ãm+1) is tight since it employs a

smaller Poincaré constant, corresponding to the smaller region Dm which in addition has an isotropic subdivision.

Remark 2 If the region Dm is multiply-connected, with each subregion satisfying condition (4.40), the same ap-

proach applies, with the second term in (4.41) replaced by the set of bounds corresponding to each subregion.
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4.2.2 Estimates using the Lanczos algorithm

It is known that the underlying Lanczos tridiagonalization constructed by the CG algorithm provides also estimates

to the eigenvalues of the system matrix. In particular, there holds λmin(A) ≤ λmin(Tk) with the bound getting

tighter with growing k. This suggests the following estimate at step m + 1

λ := λm+1 := cλmin(Tm
k+1), (4.42)

with c < 1 a constant that will account for the reduction in λmin(A) with refinement but also for the poor

approximation of λmin(Am) by λmin(Tm
k+1). If corresponding to this choice of λ the Cholesky factorisation of T̂k+1

does not exist, we reduce c until the factorisation and hence (4.35) exist. Note that this is always possible.

We end this section with a remark regarding preconditioning. The implementation of the stopping criteria

presented above can be extended to the case where a preconditioning routine is employed to accelerate convergence

of the Conjugate Gradient method. Most criteria can be adapted directly to preconditioning contexts; however,

the Golub and Meurant bounds require estimates of the smallest eigenvalue of the preconditioned system, which

may not be straightfoward to obtain. Some results regarding this situation can be found in [4]. We note here that

the estimate (4.42) using the Lanczos algorithm generalises naturally in this case.

5 Numerical experiments

We investigate now the usefulness of criterion (3.21) and corresponding approximations of the form (4.37) as they

are applied to the CG method to solve some standard adaptive finite element problems. We are interested in the

following comparisons:

• ’inexact’ vs. ’exact’ meshes;

• comparison of energy errors for exact and inexact cases;

• comparison of order of convergence for exact and inexact cases;

• comparison with Euclidean stopping criteria;

• comparions between bounds and estimators of the CG error.

We used both the exact and inexact versions of the AFEM algorithm with 10 iterations and various starting meshes.

We used for illustration purposes the ideal criterion (3.21); we also employed a number of practical approximations

to the ideal criterion of the form (4.37) corresponding to various bounds or estimators for the CG error. We

summarize these below.

1. DNR: the ideal bound (3.21) using the exact dual norm of the residual;

2. GM0: the ideal Golub-Meurant upper bound (4.35) using the exact λmin(Am);

3. GM1: the Golub-Meurant upper bound (4.35) with adaptive Poincaré bound (4.39) for λmin(Am);

4. GM2: the Golub-Meurant upper bound (4.35) with global Poincaré bound (4.41) for λmin(Am);

5. GM3: the Golub-Meurant criterion (4.35) with the estimator (4.42) for λmin(Am) with c = 1/2;

6. HS: the Hestenes-Stiefel estimator (4.33) with a delay of d = 5 steps.

7. AG: the anti-Gauss estimator (4.36);

8. ER(|log tol|): the standard Euclidean residual with various stopping tolerances tol.

We note that only the first two criteria are of theoretical interest and are not available generally in a practical

context. The following two criteria are the only guaranteed upper bounds for the CG error and thus the only bounds

for which the convergence result of Thm 3 applies. Criteria 5-7 are estimators, while the criterion based on the

Euclidean residual is also an empirical estimator. In order to compare in a fair and explicit fashion the performance

of the CG algorithm equipped with the above stopping criteria we chose to transform the computational cost on

each level into units corresponding to matrix-vector products on the last level. Since each CG iteration has a cost

proportional to the number of nonzeros in the system matrix, the formula employed (and the tabulated variable)

is

mv := matvecs(m) =

mX
k=1

nnz(Ak)

nnz(Am)
· its(k), (5.43)

where nnz(Ak) denotes the number of nonzero elements of Ak and its(k) represents the number of CG iterations

on level k.

Finally, another important ingredient in our iterative solver is the starting guess. In all cases this choice was

provided by the solution obtained at the previous refinement level interpolated onto the current (refined) level.
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Fig. 5.1 Solution and adaptive meshes for test problem 1

5.1 Experiments in two dimensions

5.1.1 Test Problem 1

We solved problem (2.1) on an L-shaped domain with the right-hand side chosen so that the analytic solution is

u = r2/3 sin 2θ
3 . The AFEM algorithms were implemented with a Dörfler marking parameter θ = 0.75. The solution

and typical meshes are shown in Figure 5.1. The results are displayed in Table 5.1. For each N0 we give the final

size of the problem Nm (where in fact m = 10), the energy norm of the exact error corresponding to various

approximations Ũm and the number of matvecs (5.43) over the 10 AFEM iterations.

We notice first that the difference between exact and inexact meshes is negligible while the error level is similar

in all cases. We also see that the ideal stopping criterion DNR achieves roughly the same level of accuracy with a

very low number of matvecs. The ideal bound GM0 appears to exhibit the same behaviour with a few more matvecs

and consequently a more accurate approximation. The practical bounds generally require more matvecs for the

same level of accuracy. The guaranteed upper bounds GM1 and GM2 are the most accurate (excepting the ER

N0 = 29 N0 = 83 N0 = 262

method Nm ‖u − Ũm‖a mv Nm ‖u − Ũm‖a mv Nm ‖u − Ũm‖a mv

exact 1,140 0.025028 – 1,764 0.020155 – 4,208 0.013033 –

DNR 1,125 0.025144 44 1,765 0.020158 55 4,191 0.013053 76

GM0 1,137 0.025039 52 1,810 0.020057 61 4,179 0.013066 83

GM1 1,134 0.025010 91 1,776 0.020124 115 4,206 0.013033 163

GM2 1,140 0.025028 116 1,776 0.020124 147 4,208 0.013033 232

GM3 1,132 0.025054 41 1,775 0.020157 59 4,179 0.013061 66

HS 1,134 0.025061 36 1,792 0.020169 34 4,194 0.013207 39

AG 1,132 0.025036 49 1,807 0.020051 57 4,190 0.013066 75

ER(6) 1,140 0.025028 159 1,764 0.020155 207 4,208 0.013033 320

ER(8) 1,140 0.025028 198 1,764 0.020155 282 4,208 0.013033 436

ER(10) 1,140 0.025028 226 1,764 0.020155 338 4,208 0.013033 518

Table 5.1 Performance of stopping criteria: matvecs (mv) for Test Problem 1 (m = 10).
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Fig. 5.2 Convergence of inexact AFEM: CG with various stopping criteria.

bounds) and also require the largest number of matvecs among the computable bounds. The adaptive bound GM1

is indeed an improvement over GM2 at essentially no cost. Among the estimators, GM3 and the anti-Gauss (AG)

criterion provided competitive choices. The Hestenes-Stiefel estimator appears to loose accuracy which indicates

that the delay needs to be increased with the mesh size.

The results of Table 5.1 are also displayed in Figure 5.2. The first plot shows the energy norm of the error

corresponding to CG iterates produced by the above stopping criteria throughout the adaptive process. We see that

wasteful criteria such as ER exhibit long plateaux, spending a lot of iterations to achieve an insignificant reduction

in the energy norm of the error. At the same time, in Figure 5.2(b) we see that the convergence rates of all the

inexact algorithms remain virtually unchanged from the exact case, which for this test problem is O(N
−1/2
m ).

N0 = 29 N0 = 83 N0 = 262

method Nm ‖u − Ũm‖a mv Nm ‖u − Ũm‖a mv Nm ‖u − Ũm‖a mv

exact 66,115 0.0030648 – 101,292 0.0024657 – 235,574 0.0016016 –

DNR 65,910 0.0030697 176 101,334 0.0024670 206 234,934 0.0016040 287

GM1 66,080 0.0030656 280 101,432 0.0024650 338 235,531 0.0016018 394

GM2 66,081 0.0030655 890 101,444 0.0024646 1,099 235,574 0.0016016 1,319

GM3 66,028 0.0030708 118 101,821 0.0024689 112 235,622 0.0016053 177

HS 66,433 0.0036571 42 102,381 0.0032227 35 237,132 0.0026592 90

AG 66,042 0.0030796 118 101,403 0.0024764 143 234,893 0.0016137 201

ER(6) 66,114 0.0030648 1,041 101,292 0.0024657 1,262 235,574 0.0016016 1,840

ER(8) 66,115 0.0030648 1,390 101,292 0.0024657 1,709 235,574 0.0016016 2,563

ER(10) 66,115 0.0030648 1,796 101,292 0.0024657 2,077 235,574 0.0016016 3,124

Table 5.2 Performance of stopping criteria: matvecs (mv) for Test Problem 1 (m = 20).

The same problem was solved with 20 AFEM iterations, starting from the same three initial meshes. The results

are shown in Table 5.2. The performance of the ideal estimator GM0 is not included. In this case also, the resulting

meshes exhibit relatively small differences, with the level of error achieved similar to the exact case. There is one

exception: estimator HS is very poor for large problems; this is due to the fact that this estimator is a lower bound

which is known to be tight after a suitable delay and in our case, this delay is insufficient (d = 5). The guaranteed

bounds GM1, GM2 provide again the most accurate approximations; they may appear expensive compared to the

performance of the other estimators, but are certainly an improvement over the standard Euclidean criteria. In

particular, the performance of GM1 is improving relative to GM2 and to the standard Euclidean criteria. Finally,
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Fig. 5.3 Solutions and adaptive meshes (m = 10) for test problem 2

the estimators GM3 and AG provide convenient alternatives which are cheap and, for many practical applications,

sufficiently accurate.

5.1.2 Test Problem 2

We solved again problem (2.1) posed on Ω = (−1, 1)× (−1, 1) and with the choice of diffusion coefficient

a =
1

ε

„
1 ε− 1

ε− 1 1

«
,

with 0 < ε ≤ 1 and eigenvalues {1, 2/ε− 1} so that amin = 1. The right-hand side was chosen so that the exact

solution is

u(x, y) = tanh

„
0.1

r4 + 10−4

«
, r2 =

1

ε

“
x2 − 2(ε− 1)xy + y2

”
.

The solution corresponding to ε = 1 and ε = 1/2 and the corresponding meshes are displayed in Figure 5.3.

The results are displayed in Table 5.3 for ε ∈ {1, 1/2, 1/5}. We first note that bound GM1 is not applicable

here since (4.40) does not hold, as evident from the mesh plots in Figure 5.3. The performance of GM2, the only

guaranteed bound, is an improvement over, but essentially of the order of the Euclidean criteria. The estimator

HS with a delay d = 5 remains poor, while the estimator AG performs poorly for ε = 1/5. Estimator GM3 remains

consistent, with the best performance overall.

5.2 Experiments in three dimensions

5.2.1 Test Problem 3

For our final test, we solved problem (2.1) with a = 1 in Ω = (−1, 1)3 and the forcing function chosen so that the

exact solution is u = e−10r2
. We used the same Dörfler parameter θ = 0.75 and started the adaptive algorithm
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ε = 1 ε = 1/2 ε = 1/5

method Nm ‖u − Ũm‖a mv Nm ‖u − Ũm‖a mv Nm ‖u − Ũm‖a mv

exact 328,355 0.00929582 – 264,033 0.02334634 – 274,668 0.05653274 –

DNR 325,613 0.00933259 327 263,115 0.02341392 429 274,712 0.05653893 640

GM1 – – – – – – – – –

GM2 328,334 0.00929578 824 264,075 0.02334562 1,141 274,657 0.05653038 1,160

GM3 329,618 0.01087563 84 263,421 0.02349577 280 274,581 0.05657660 712

HS 324,894 0.01665924 13 263,759 0.04047418 53 274,306 0.09741096 49

AG 325,327 0.00967695 18 263,801 0.02342935 119 237,654 1.5098438 15

ER(6) 328,077 0.00929576 1,100 264,033 0.02334676 1,218 239,128 0.06003255 1,190

ER(8) 328,355 0.00929582 1,172 264,033 0.02334676 1,264 274,666 0.05652907 1,201

ER(10) 328,355 0.00929582 1,209 264,033 0.02334676 1,276 274,667 0.05652919 1,205

Table 5.3 Performance of stopping criteria: matvecs (mv) for Test Problem 2 (m = 20, N0 = 17).

Fig. 5.4 Adaptive meshing for test problem 3

from a range of initial regular meshes of tetrahedra and ran the procedure for m = 10 iterations. The refinement

is concentrated near the origin, as illustrated in Figure 5.4, where the solution exhibits a sharp exponential decay.

The results are displayed in Table 5.4 and are similar to those obtained for the previous 2D experiment. As

was the case for Test Problem 2, the bound GM1 does not apply. Likewise, the criterion AG turns out not to be

defined for any level and this is indicated by a “∗”. The bound GM2 is cheaper than, but of the same order as, the

ER criteria, while criteria GM3 and HS appear to yield consistently good quality approximations. In particular,

criterion GM3 appears to yield marginally better solutions, though at a higher cost than criterion HS.

6 Concluding remarks

This work was motivated by the need to solve intractable large-scale problems arising in the context of adaptivity.

For such problems, iterative methods are mandatory; however, classical stopping criteria, such as the Euclidean

norm of the residual are known to be wasteful in practice. Our focus was on establishing how accurate approxima-

tions need to be in an adaptive context. Thus, we considered inexact versions of adaptive finite element algorithms

which are known to be convergent. We showed that convergence holds provided the approximations replacing the

exact solution satisfy a certain bound involving the energy norm of only algebraic errors on both current and

previous level. This result yields stopping criteria for iterative methods such as the Conjugate Gradient method.

Consequently, we looked at versions of the CG method endowed with various stopping criteria arising from the

analysis. We found that Golub-Meurant type bounds are guaranteed to yield useful and at times efficient results.

We introduced and employed adaptive Poincaré inequalities which allow for better estimation of the energy norm
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N0 = 142 N0 = 779 N0 = 5, 191

method Nm ‖u − Ũm‖a mv Nm ‖u − Ũm‖a mv Nm ‖u − Ũm‖a mv

exact 19,579 0.08967018 – 131,250 0.047497978 – † † –

DNR 19,543 0.09042983 121 131,984 0.047802189 291 † † †
GM1 – – – – – – – – –

GM2 19,574 0.08966619 169 131,276 0.047490362 407 951,011 0.024697507 988

GM3 19,597 0.08969471 140 131,331 0.047486755 344 950,833 0.024700263 873

HS 19,528 0.09013577 126 132,443 0.049701492 275 956,033 0.027038043 670

AG ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
ER(6) 19,587 0.08967714 237 131,246 0.047497979 465 951,239 0.024692998 958

ER(8) 19,579 0.08967018 332 131,250 0.047497978 650 950,954 0.024697519 1,505

ER(10) 19,579 0.08967018 412 131,250 0.047497978 840 950,932 0.02469783 2,001

Table 5.4 Performance of stopping criteria: matvecs (mv) for Test Problem 3 (m = 10) for various N0.
Legend: †: out of memory; −: does not apply; ∗: does not exist.

of the algebraic errors. Other estimates, such as the Hestenes and Stiefel criterion or Lanczos approximations can

also be competitive.
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