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ABSTRACT
We consider here the linear least squares problem miny∈Rn ‖Ay−b‖2 where b ∈ R

m and A ∈ R
m×n

is a matrix of full column rank n and we denote x its solution. We assume that both A and b can
be perturbed and that these perturbations are measured using Frobenius norms. In this paper,
we are concerned with the condition number of a linear function of x (LT x where L ∈ R

n×k) for
which we provide an exact formula. This quantity requires the computation of the singular values
and the right singular vectors of the matrix A, which can be very expensive in practice. This is
why we also propose a statistical method that estimates this condition number by using the exact
condition numbers in random orthogonal directions. Provided the triangular R factor of A from
AT A = RT R is available, this statistical approach enables the computation of a condition estimate
in O(n2). We also address the question of the numerical reliability of this statistical estimate. In
the case where the perturbation of A is measured using the spectral norm, although we do not
have a close formula for the condition number, we provide sharp estimates.
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1 Introduction

Perturbation theory has been applied to many fundamental problems of linear algebra such as linear sys-
tems, linear least squares, or eigenvalue problems (Björck 1996, Eldén 1980, Higham 2002, Stewart and
Sun 1991). In this paper we consider the problem of calculating the quantity LT x, where x is the solution
of the linear least squares problem (LLSP) minx∈Rn ‖Ax− b‖2 where b ∈ R

m and A ∈ R
m×n is a matrix of

full column rank n. This estimation is a fundamental problem of parameter estimation in the framework
of the Gauss-Markov Model (Rao and Mitra 1971, p. 137). More precisely, we focus here on the evalua-
tion of the sensitivity of LT x to small perturbations of the matrix A and/or the right-hand side b, where
L ∈ R

n×k and x is the solution of the LLSP.
The interest for this question stems for instance from parameter estimation where the parameters of the
model can often be divided into 2 parts : the variables of physical significance and a set of ancillary vari-
ables involved in the models. For example, this situation occurs in the determination of positions using
the GPS system, where the 3-D coordinates are the quantities of interest but the statistical model involves
other parameters such as clock drift and GPS ambiguities (Kaplan 1996) that are generally estimated
during the solution process. It is then crucial to ensure that the solution components of interest can be
computed with satisfactory accuracy. The main goal of this paper is to formalize this problem in terms
of a condition number and to describe practical methods to compute or estimate this quantity. Note that
as far as the sensitivity of a subset of the solution components is concerned, the matrix L is a projection
whose columns consist of vectors of the canonical basis of R

n.

The condition number of a map g : R
m 7→ R

n at x0 measures the sensitivity of g(x0) to perturbations
of x0. More precisely, suppose that the data space R

m and the solution space R
n are equipped respectively

with the norms ‖.‖D and ‖.‖S , the condition number K(x0) is defined by

K(x0) = lim
δ→0

sup
0<‖x0−x‖D≤δ

‖g(x0) − g(x)‖S
‖x0 − x‖D

, (1)

whereas the relative condition number is defined by K(rel)(x0) = K(x0)‖x0‖D/‖g(x0)‖S . This definition
shows that K(x0) measures an asymptotic sensitivity and that this quantity depends on the chosen norms
for the data and solution spaces. If g is a Fréchet-differentiable (F-differentiable) function at x0, then
K(x0) is the norm of the F-derivative |||g′(x0)|||) (see (Geurts 1982)), where |||.||| is the operator norm
induced by the choice of the norms on the data and solution spaces.

For the full rank LLSP, we have g(A, b) = (AT A)−1AT b. If we consider the product norm ‖(A, b)‖F =
√

‖A‖2
F + ‖b‖2

2 for the data space and ‖x‖2 for the solution space, then Gratton (1996) gives an explicit

formula for the relative condition number K(rel)(A, b):

K(rel)(A, b) =
∥

∥A†∥
∥

2

(

∥

∥A†∥
∥

2

2
‖r‖2

2 + ‖x‖2
2 + 1

)
1
2 ‖(A, b)‖F

‖x‖2

where A† denotes the pseudo inverse of A, r = b−Ax is the residual vector and ‖.‖F and ‖.‖2 are respectively
the Frobenius and Euclidean norms. But does the value of K(rel)(A, b) give us useful information about
the sensitivity of LT x ? Can it in some cases overestimate the error in components or on the contrary be
too optimistic ?
Let us consider the following example.

A =

















1 1 ε2

ε 0 ε2

0 ε ε2

ε2 ε2 2

















, x =











ε

ε

1
ε











and b =

















3ε

ε2 + ε

ε2 + ε

2ε3 + 2
ε

















,

x is here the exact solution of the LLSP minx∈R3 ‖Ax − b‖2. If we take ε = 10−8 then we have x =
(10−8, 10−8, 108)T and the solution computed in Matlab using a machine precision 2.22 · 10−16 is x̃ =
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(1.5 · 10−8, 1.5 · 10−8, 108)T . The LLSP condition number is K(rel)(A, b) = 2.4 · 108 and the relative errors
on the components of x are

|x1 − x̃1|
|x1|

=
|x2 − x̃2|

|x2|
= 0.5 and

|x3 − x̃3|
|x3|

= 0.

Then, if L =











1 0

0 1

0 0











, we expect a large value for the condition number of LT x because there is a 50%

relative error on x1 and x2. If now L = (0, 0, 1)T , then we expect that the condition number of LT x would
be close to 1 because x̃3 = x3. For these two values of L, the LLSP condition number is far from giving a
good idea of the sensitivity of LT x. Note in this case that the perturbations are due to roundoff errors.
Let us now consider a simple example in the framework of parameter estimation where in addition to
roundoff errors, random errors are involved. Let b = {bi}i=1,··· ,10 be a series of observed values depending
on data s = {si} where si = 10 + i, i = 1, · · · , 10. We determine a 3-degree polynomial that approximates
b in the least squares sense, and we suppose that the following relationship holds

b = x1 + x2
1

s
+ x3

1

s2
+ x4

1

s3
with x1 = x2 = x3 = x4 = 1.

This corresponds to the LLSP minx∈R4 ‖Ax − b‖2 where A is the Vandermonde matrix defined by Aij =
1

s
j−1
i

. We assume that the perturbation on each bi is 10−8 multiplied by a normally distributed random

number. Let x̃ and ỹ be the computed solutions corresponding to two perturbed right-hand sides. Then
we obtain the following relative errors on each component:

|x̃1 − ỹ1|
|x̃1|

= 2 · 10−7,
|x̃2 − ỹ2|

|x̃2|
= 6 · 10−6,

|x̃3 − ỹ3|
|x̃3|

= 6 · 10−5, and
|x̃4 − ỹ4|

|x̃4|
= 10−4.

We have K(rel)(A, b) = 3.1 · 105. Regarding the disparity between the sensitivity of each component, we
need a quantity that evaluates more precisely the sensitivity of each solution component of the LLSP.
The idea of analyzing the accuracy of some solution components in linear algebra is by no means new.
For linear systems Ax = b, A ∈ R

n and for LLSP, Chandrasekaran and Ipsen (1995) define so called
componentwise condition numbers that correspond to amplification factors of the relative errors in solution
components due to perturbations of data A or b and explains how to estimate them. In our formalism,
these quantities are upper bounds of the condition number of LT x where L is a column of the identity
matrix. We also emphasise that the term ”componentwise” refers here to the solution components and
must be distinguished from the metric used for matrices and for which Wei, Xu, Qiao and Diao (2003)
provide a condition number for generalized inversion and linear least squares.
For LLSP, Kenney, Laub and Reese (1998) provide a statistical estimate for componentwise condition
numbers due to either relative or structured perturbations. In the case of linear systems, Cao and Petzold
(2003) propose a statistical approach, based on the work of Kenney and Laub (1994), that enables to
compute the condition number of LT x in O(n2).
Our approach differs from the previous studies in the following aspects:

1. we are interested in the condition of LT x where L is a general matrix and not only a canonical vector
of R

n,
2. we are looking for a condition number based on the Fréchet-derivative, and not only for an upper

bound of this quantity.

We present in this paper three ways to obtain information on the condition of LT x. The first one uses
an explicit formula based on the singular value decomposition of A. The second is at the same time an
upper bound of this condition number and a sharp estimate of it. The third method supplies a statistical
estimate. The choice between these three methods will depend on the size of the problem (computational
cost) and on the accuracy desired for this quantity.

This paper is organized as follows. In Section 2, we define the notion of a partial condition number
and provide a closed formula for it in the general case where L ∈ R

n×k and in the particular case when
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L ∈ R
n. Then in Section 3 we establish bounds of the partial condition number in Frobenius as well as

in spectral norm, and these bounds can be considered as sharp estimates of it. In Section 4 we describe a
statistical method that estimates the partial condition number. In Section 5 we present numerical results
in order to compare the statistical estimate and the exact condition number on sample matrices A and p.
In Section 6 we give a summary comparing the three ways to compute the condition of LT x as well as a
numerical illustration. Finally some concluding remarks are given in Section 7.
Throughout this paper we will use the following notations. We use the Frobenius norm ‖.‖F and the
spectral norm ‖.‖2 on matrices and the usual Euclidean ‖.‖2 on vectors. I is the identity matrix and ei is
the i-th canonical vector. We also denote by Im(A) the space spanned by the columns of A and by Ker(A)
the null space of A.

2 The partial condition number of an LLSP

Let L be a n × k matrix, with k ≤ n. We consider the function

g : R
m×n × R

m −→ R
k

A, b 7−→ g(A, b) = LT x(A, b) = LT (AT A)−1AT b.
(2)

Since A has full rank n, g is continuously F-differentiable in a neighborhood of (A, b) and we denote by
g′ its F-derivative. Let α and β be two positive real numbers. In the present paper we will consider the
euclidean norm for the solution space R

k. For the data space R
m×n × R

m, we will use the product norm
defined by

‖(A, b)‖F or 2 =

√

α2‖A‖2
F or 2 + β2 ‖b‖2

2, α, β > 0.

This norm is very flexible since it allows to monitor the perturbations on A and b. For instance, large
values of α (resp. β ) enable to obtain condition number problems where mainly b (resp. A) are perturbed.
A more general weighted Frobenius norm ‖(AT, βb)‖F, where T is a positive diagonal matrix is sometimes
chosen. This is for instance the case where Wei, Diao and Qiao (2004) give an explicit expression for the
condition number of rank deficient linear least squares using this norm.
According to Geurts (1982), the absolute condition number of g at the point (A, b) is given by:

κg,F or 2(A, b) = ‖g′(A, b)‖ = max
(∆A,∆b)

‖g′(A, b).(∆A, ∆b)‖2

‖(∆A, ∆b)‖F or 2
,

and then the relative condition number of g at (A, b) is expressed by

κ
(rel)
g,F or 2(A, b) =

κg,F or 2(A, b) ‖(A, b)‖F or 2

‖g(A, b)‖2

.

Since L ∈ R
n×k, k ≤ n, we call the condition number related to LT x(A, b) a partial condition number of

the LLSP with respect to the linear operator L. The partial condition number is given by the following
theorem.

Theorem 1. Let A = UΣV T be the thin singular value decomposition of A (Golub and van Loan 1996)
with Σ = diag(σi) and σ1 ≥ σ2 · · · ≥ σn > 0. The absolute condition number of g(A, b) = LT x(A, b) is
given by

κg,F (A, b) =
∥

∥SV T L
∥

∥

2

where S ∈ R
n×n is the diagonal matrix with diagonal elements Sii = σi

−1
√

σi
−2‖r‖2

2+‖x‖2
2

α2 + 1
β2 .

Proof. Let ∆A ∈ R
m×n and ∆b ∈ R

m. Using the chain rules of composition of derivatives, we get

g′(A, b).(∆A, ∆b) = LT (AT A)−1∆AT (b − A(AT A)−1AT b) − LT (AT A)−1AT ∆A(AT A)−1AT b + LT A†∆b

i.e
g′(A, b).(∆A, ∆b) = LT (AT A)−1∆AT r − LT A†∆Ax + LT A†∆b. (3)



4

We write ∆A = ∆A1 + ∆A2 by defining ∆A1 = AA†∆A (projection of ∆A on Im(A)) and ∆A2 =
(I − AA†)∆A (projection of ∆A on Im(A)⊥). Since r ∈ Im(A)⊥ and A†∆A2 = 0, we obtain

g′(A, b).(∆A, ∆b) = LT (AT A)−1∆AT
2 r − LT A†∆A1x + LT A†∆b. (4)

We now prove that κg,F (A, b) ≤
∥

∥SV T L
∥

∥

2
. Let ui and vi be the i-th column of respectively U and V .

From A† = V Σ−1UT , we get AA† = UUT =
∑n

i=1 uiu
T
i and since

∑n

i=1 viv
T
i = I , we have ∆A1 =

∑n
i=1 uiu

T
i ∆A and ∆A2 = (I − AA†)∆A

∑n
i=1 viv

T
i . Moreover, still using the thin SVD of A and A†, it

follows that
(AT A)−1vi =

vi

σ2
i

and A†ui = vΣ−1ei. (5)

Thus (4) becomes

g′(A, b).(∆A, ∆b) =

n
∑

i=1

LT vi[v
T
i ∆AT (I − AA†)

r

σ2
i

− uT
i ∆A

x

σi

+ uT
i

∆b

σi

]

= LT

n
∑

i=1

viyi,

where we set yi = vT
i ∆AT (I − AA†) r

σ2
i

− uT
i ∆A x

σi
+ uT

i
∆b
σi

∈ R.

Thus if Y = (y1, y2, · · · , yn)T , we get ‖g′(A, b).(∆A, ∆b)‖2 =
∥

∥LT V Y
∥

∥

2
and then

‖g′(A, b).(∆A, ∆b)‖2 =
∥

∥LT V SS−1Y
∥

∥

2
≤
∥

∥SV T L
∥

∥

2

∥

∥S−1Y
∥

∥

2
.

We denote by wi =
vT

i ∆AT (I−AA†)r

Siiσ
2
i

− uT
i ∆Ax

Siiσi
+

uT
i ∆b

Siiσi
the i-th component of S−1Y . Then we have

|wi| ≤ α
∥

∥vT
i ∆AT (I − AA†)T

∥

∥

2

‖r‖2

αSiiσ2
i

+ α
∥

∥uT
i ∆A

∥

∥

2

‖x‖2

αSiiσi

+
β|uT

i ∆b|
βSiiσi

≤ (
‖r‖2

2

α2S2
iiσ

4
i

+
‖x‖2

2

α2S2
iiσ

2
i

+
1

β2S2
iiσ

2
i

)
1
2 (α2

∥

∥(I − AA†)∆Avi

∥

∥

2

2
+ α2

∥

∥uT
i ∆A

∥

∥

2

2
+ β2|uT

i ∆b|2) 1
2

=
Sii

Sii

(α2
∥

∥(I − AA†)∆Avi

∥

∥

2

2
+ α2

∥

∥uT
i ∆A

∥

∥

2

2
+ β2|uT

i ∆b|2) 1
2 .

Hence

∥

∥S−1Y
∥

∥

2

2
≤

n
∑

i=1

α2
∥

∥(I − AA†)∆Avi

∥

∥

2

2
+ α2

∥

∥uT
i ∆A

∥

∥

2

2
+ β2|uT

i ∆b|2

= α2
∥

∥(I − AA†)∆AV
∥

∥

2

F
+ α2

∥

∥UT ∆A
∥

∥

2

F
+ β2

∥

∥UT ∆b
∥

∥

2

2

= α2
∥

∥(I − AA†)∆A
∥

∥

2

F
+ α2

∥

∥UT ∆A
∥

∥

2

F
+ β2

∥

∥UT ∆b
∥

∥

2

2
.

Since
∥

∥UT ∆A
∥

∥

F
=
∥

∥UUT ∆A
∥

∥

F
=
∥

∥AA†∆A
∥

∥

F
and

∥

∥UT ∆b
∥

∥

2
=
∥

∥UUT ∆b
∥

∥

2
≤ ‖∆b‖2, we get

∥

∥S−1Y
∥

∥

2

2
≤ α2 ‖∆A1‖2

F + α2 ‖∆A2‖2
F + β2 ‖∆b‖2

2 .

From ‖∆A‖2
F = ‖∆A1‖2

F + ‖∆A2‖2
F , we get

∥

∥S−1Y
∥

∥

2

2
≤ ‖(∆A, ∆b)‖2

F and thus

‖g′(A, b).(∆A, ∆b)‖2 ≤
∥

∥SV T L
∥

∥

2
‖(∆A, ∆b)‖F .

So we have shown that
∥

∥SV T L
∥

∥

2
is an upper bound for κg,F (A, b).

We now prove that this upper bound can be reached, that is, that
∥

∥SV T L
∥

∥

2
=

‖g′(A,b).(∆A,∆b)‖
2

‖(∆A,∆b)‖F

holds

for some (∆A, ∆b) ∈ R
m×n × R

m.
Let (∆A, ∆b) be expressed as

(∆A, ∆b) = (∆A2 + ∆A1, ∆b) = (

n
∑

i=1

αi

α

r

‖r‖2

vT
i +

n
∑

i=1

βi

α
ui

xT

‖x‖2

,

n
∑

i=1

γi

β
ui).
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Then it follows from (4) and (5) that

g′(A, b).(∆A, ∆b) = LT (AT A)−1
n
∑

i=1

αi

α
‖r‖2 vT

i − LT A†
n
∑

i=1

βi

α
ui ‖x‖2 + LT A†

n
∑

i=1

γi

β
ui

= LT

n
∑

i=1

αi

ασ2
i

vi ‖r‖2 − LT

n
∑

i=1

βi

ασi

vi ‖x‖2 + LT

n
∑

i=1

γi

βσi

ui

=

n
∑

i=1

LT vi(
αi

ασ2
i

‖r‖2 −
βi

ασi

‖x‖2 +
βγi

σi

).

Thus by denoting ξi = [LT vi
‖r‖2

ασ2
i

,−LT vi
‖x‖2

ασi
, LT vi

βσi
] ∈ R

1×3 and Γ = [ξ1, . . . , ξn] ∈ R
1×3n, and X =

(α1, β1, γ1, · · · , αn, βn, γn)T ∈ R
3n×1 we get

g′(A, b).(∆A, ∆b) = ΓX. (6)

Since ui
T r = 0, we have trace(∆AT

1 ∆A2) = 0, and ‖∆A‖2
F = ‖∆A1‖2

F + ‖∆A2‖2
F . Then, using the fact

that

‖(∆A, ∆b)‖2
F =

n
∑

i=1

α2
i +

n
∑

i=1

β2
i +

n
∑

i=1

γ2
i = ‖X‖2

2 ,

Equation (6) yields
‖g′(A, b).(∆A, ∆b)‖2

‖(α∆A, β∆b)‖F

=
‖ΓX‖2

‖X‖2

.

We know that ‖Γ‖2 = maxX
‖ΓX‖2

‖X‖2
is reached for some X = (α1, β1, γ1, · · · , αn, βn, γn)T . Then for the

(∆A, ∆b) corresponding to this X , we have
‖g′(A,b).(∆A,∆b)‖

2

‖(∆A,∆b)‖
F

= ‖Γ‖2.

Since in addition Γ = [LT v1[
‖r‖2

ασ2
1
,−‖x‖2

ασ1
, 1

βσ1
], · · · , LT vn[

‖r‖2

ασ2
n

,−‖x‖2

ασn
, 1

βσn
]], we get

ΓΓT = LT v1(
‖r‖2

2

α2σ4
1

+
‖x‖2

2

α2σ2
1

+
1

β2σ2
1

)vT
1 L + · · · + LT vn(

‖r‖2
2

α2σ4
n

+
‖x‖2

2

α2σ2
n

+
1

β2σ2
n

)vT
n L

= LT v1S
2
11v

T
1 L + · · · + LT vnS2

nnvT
n L

= (LT V S)(SV T L).

Hence

‖Γ‖2 =
√

‖ΓΓT ‖2 =
∥

∥SV T L
∥

∥

2

and α1, β1, γ1, · · · , αn, βn, γn are such that
‖g′(A,b).(∆A,∆b)‖

2

‖(α∆A,β∆b)‖
F

=
∥

∥SV T L
∥

∥

2
.

Thus
∥

∥SV T L
∥

∥

2
≤ κg,F (A, b), which concludes the proof.

Let lj be the j-th column of L, j = 1, · · · , k. From

SV T L =











S11v1
T

...

Snnvn
T











(l1, · · · , lk) =











S11v1
T l1 · · · S11v1

T lk
...

...

Snnvn
T l1 · · · Snnvn

T lk











,

it follows that
∥

∥SV T L
∥

∥

2
is large when there exists at least one large Sii and a lj such that vi

T lj 6= 0.

In particular, the condition number of LT x(A, b) is large when A has small singular values and L has
components in the corresponding right singular vectors or when ‖r‖2 is large.
Let us study the particular case where L is a vector i.e when g is a scalar derived function.
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Corollary 1. In the particular case when L is a vector (L ∈ R
n), the absolute condition number of

g(A, b) = LT x(A, b) is given by

κg,F (A, b) = (
∥

∥LT (AT A)−1
∥

∥

2

2

‖r‖2
2

α2
+
∥

∥LT A†∥
∥

2

2
(
‖x‖2

2

α2
+

1

β2
))

1
2

Proof. By replacing (AT A)−1 = V Σ−2V T and A† = V Σ−1UT in the expression of K = (
∥

∥LT (AT A)−1
∥

∥

2

2
‖r‖2

2+
∥

∥LT A†∥
∥

2

2
(‖x‖2

2 + 1))
1
2 we get

K2 =
∥

∥LT V Σ−2V T
∥

∥

2

2

‖r‖2
2

α2
+
∥

∥LT V Σ−1UT
∥

∥

2

2
(
‖x‖2

2

α2
+

1

β2
)

=
∥

∥LT V Σ−2
∥

∥

2

2

‖r‖2
2

α2
+
∥

∥LT V Σ−1
∥

∥

2

2
(
‖x‖2

2

α2
+

1

β2
)

=
∥

∥Σ−2V T L
∥

∥

2

2

‖r‖2
2

α2
+
∥

∥Σ−1V T L
∥

∥

2

2
(
‖x‖2

2

α2
+

1

β2
).

By writing (z1, · · · , zn)T the vector V T L ∈ R
n we have

K2 =

n
∑

i=1

z2
i

σ4
i

‖r‖2
2

α2
+

n
∑

i=1

z2
i

σ2
i

(
‖x‖2

2

α2
+

1

β2
)

=
n
∑

i=1

z2
i

σ2
i

(σ−2
i

‖r‖2
2 + ‖x‖2

2

α2
+

1

β2
)

=

n
∑

i=1

S2
iiz

2
i

=
∥

∥SV T L
∥

∥

2

2
,

and Theorem 1 gives the result.

Remark 1. In the general case where L is an n × k matrix, the computation of κg,F (A, b) via the exact
formula given in Theorem 1 requires the computation of the singular values and the right singular vectors
of A, which might be expensive in practice since its involves 2mn2 operations if we use a R-SVD algorithm
and if m � n (see Golub and van Loan, 1996, p. 254). If the LLSP is solved using a direct method, the
R factor of the QR decomposition of A (or equivalently in exact arithmetic, the Cholesky factor of AT A)
might be available. Since the right singular vectors of A are also those of R, the condition number can be
computed in about 12n3 flops using the Golub-Reinsch SVDmethod (Golub and van Loan, 1996, p. 254).
Using R is even more interesting when L ∈ R

n, since from

∥

∥LT A+
∥

∥

2
=
∥

∥R−T L
∥

∥

2
and

∥

∥LT (AT A)−1
∥

∥

2
=
∥

∥R−1(R−T L)
∥

∥

2
, (7)

it follows that the computation of κg,F (A, b) can be done by solving two successive n-by-n triangular
systems which involves about 2n2 flops.

3 Sharp estimate of the partial condition number in Frobenius

and spectral norms

In many cases, obtaining a lower and/or an upper bound of κg,F (A, b) is satisfactory when these bounds are
tight enough and significantly cheaper to compute than the exact formula. Moreover, many applications
use conditions numbers expressed in spectral norm. We give in the following Theorem sharp bounds for
the partial condition numbers in the Frobenius and spectral norms.
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Theorem 2. The absolute condition numbers of g(A, b) = LT x(A, b) in the Frobenius and spectral norms
can be respectively bounded as follows

f(A, b)√
3

≤ κg,F (A, b) ≤ f(A, b)

f(A, b)√
3

≤ κg,2(A, b) ≤
√

2f(A, b)

where

f(A, b) =

(

∥

∥LT (AT A)−1
∥

∥

2

2

‖r‖2
2

α2
+
∥

∥LT A†∥
∥

2

2
(
‖x‖2

2

α2
+

1

β2
)

)
1
2

.

Proof. Let vn and wn be the right singular vectors corresponding to the largest singular values of respec-
tively LT (AT A)−1 and LT A†. Let (∆A, ∆b) be expressed as

(∆A, ∆b) = (a1
r

‖r‖2

vT
n + a2wm

xT

‖x‖2

, a3wm).

By replacing this value of (∆A, ∆b) in (3) we get

g′(A, b).(∆A, ∆b) = a1

∥

∥LT (AT A)−1
∥

∥

2
‖r‖2 − a2

∥

∥LT A†∥
∥

2
‖x‖2

+ a2L
T (AT A)−1 x

‖x‖2

wT
mr − a1L

T A† r

‖r‖2

vT
n x + a3

∥

∥LT A†∥
∥

2
.

Since r ∈ Im(A)⊥ we have A†r = 0. Moreover we have wm ∈ Ker(LT A†)⊥ and thus wm ∈ Im(A+T L)
and can be written wm = A+T Lδ. Then wT

mr = δT LT A†r = 0. It follows that

g′(A, b).(∆A, ∆b) = a1

∥

∥LT (AT A)−1
∥

∥

2
‖r‖2 − a2

∥

∥LT A†∥
∥

2
‖x‖2 + a3

∥

∥LT A†∥
∥

2

and

‖g′(A, b).(∆A, ∆b)‖2 =

∥

∥

∥

∥

∥

∥

∥

∥

∥

[
∥

∥LT (AT A)−1
∥

∥

2
‖r‖2

α
,−
∥

∥LT A†∥
∥

2
‖x‖2

α
,

∥

∥LT A†∥
∥

2

β

]











αa1

αa2

βa3











∥

∥

∥

∥

∥

∥

∥

∥

∥

2

.

On the other hand, we have ‖(∆A, ∆b)‖F or 2 =
√

α2‖∆A‖2
F or 2 + β2 ‖∆b‖2

2. From the well-known in-

equality ∀(c, d) ∈ R
2
+, c+d√

2
≤

√
c2 + d2 ≤ c + d and since ‖∆A‖F or 2 ≤ |a1| + |a2|, we get

‖(∆A, ∆b)‖F or 2 ≤ α‖∆A‖F or 2 + β ‖∆b‖2

≤ α|a1| + α|a2| + β|a3|

≤
√

3
√

α2a2
1 + α2a2

2 + β2a2
3.

Then

‖g′(A, b).(∆A, ∆b)‖2

‖(∆A, ∆b)‖F or 2
≥ 1√

3

∥

∥

∥

∥

∥

∥

∥

∥

∥

[

‖LT (AT A)−1‖
2
‖r‖2

α
,−‖LT A†‖

2
‖x‖2

α
,
‖LT A†‖

2

β

]











αa1

αa2

βa3











∥

∥

∥

∥

∥

∥

∥

∥

∥

2
√

α2a2
1 + α2a2

2 + β2a2
3

.

Let us denote by R(a1, a2, a3) the right-hand side of the above inequality. We know that there exists
(a1, a2, a3) that maximizes R(a1, a2, a3) and this maximum is equal to

∥

∥

∥

∥

∥

[
∥

∥LT (AT A)−1
∥

∥

2
‖r‖2

α
,−
∥

∥LT A†∥
∥

2
‖x‖2

α
,

∥

∥LT A†∥
∥

2

β

]∥

∥

∥

∥

∥

2
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i.e f(A, b). Thus κg,F or 2(A, b) ≥ 1√
2
f(A, b) .

Let us now establish the upper bound for κg,F (A, b). From (4) we get

‖g′(A, b).(∆A, ∆b)‖2 ≤
∥

∥LT (AT A)−1
∥

∥

2
‖∆A2‖2 ‖r‖2 +

∥

∥LT A†∥
∥

2
‖∆A1‖2 ‖x‖2 +

∥

∥LT A†∥
∥

2
‖∆b‖2

= Y X,

where

Y =

(
∥

∥LT (AT A)−1
∥

∥

2
‖r‖2

α
,

∥

∥LT A†∥
∥

2
‖x‖2

α
,

∥

∥LT A†∥
∥

2

β

)

and
X = (α ‖∆A2‖2 , α ‖∆A1‖2 , β ‖∆b‖2)

T .

Thus ‖g′(A, b).(∆A, ∆b)‖2 ≤ ‖Y ‖2 ‖X‖2, with

‖X‖2
2 = α2 ‖∆A1‖2

2 + α2 ‖∆A2‖2
2 + β2 ‖∆b‖2 ≤ α2 ‖∆A1‖2

F + α2 ‖∆A2‖2
F + β2 ‖∆b‖2 .

Then, since ‖∆A‖2
F = ‖∆A1‖2

F + ‖∆A2‖2
F , we have ‖X‖2 ≤ ‖(∆A, ∆b)‖ and it implies that κg,F (A, b) ≤

‖Y ‖2 i.e κg,F (A, b) ≤ f(A, b).
For the upper bound for κg,2(A, b), we get from (3) that

‖g′(A, b).(∆A, ∆b)‖2 ≤ (
∥

∥LT (AT A)−1
∥

∥

2
‖r‖2 +

∥

∥LT A†∥
∥

2
‖x‖2) ‖∆A‖2 +

∥

∥LT A†∥
∥

2
‖∆b‖2

= Y ′X ′,

where Y ′ =

(

‖LT (AT A)−1‖
2
‖r‖2+‖LT A†‖

2
‖x‖2

α
,
‖LT A†‖

2

β

)

and X ′ = (α ‖∆A‖2 , β ‖∆b‖2)
T . Since ‖X ′‖2 =

‖(∆A, ∆b)‖2 we have κg,F (A, b) ≤ ‖Y ′‖2 and from ‖Y ′‖2 ≤
√

2 ‖Y ‖2 and obtain κg,2(A, b) ≤
√

2f(A, b)
which concludes the proof.

Theorem 2 shows that f(A, b) can be considered as a very sharp estimate of the partial condition
number expressed either in Frobenius or spectral norm. Indeed, it lies within a factor

√
3 of κg,F (A, b) or

κg,2(A, b). Moreover (7) shows that if the R factor of A is available, f(A, b) can be computed by solving
two n-by-n triangular systems with k right-hand sides and thus the computational cost is 2kn2.

Remark 2. We can check on the following example that κg,F (A, b) is not equal to f(A, b). Let us consider

A =











2 0

0 1

0 0











, L =





3 0

0 1



 and b =











2/
√

2

1/
√

2

1











.

We have
x = (1/

√
2, 1/

√
2)T and ‖x‖2 = ‖r‖2 = 1,

and we get

κg,F (A, b) =

√
45

4
< f(A, b) =

√
13

2
.

Remark 3. Using the definition of the condition number and of the product norms ‖(A, b)‖F or 2 =
√

α2‖A‖2
F or 2 + β2 ‖b‖2

2, tight estimates for the partial condition number for perturbations of A only

(resp. b only) can be obtained by taking α > 0 and β = +∞ (resp. β > 0 and α = +∞) in Theorem 2.
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4 Statistical estimation of the partial condition number

Let z1, z2, · · · , zq be q orthonormal vectors uniformly and randomly selected in the unit sphere Sk−1 in k
dimensions (q ≤ k) and let us denote gi(A, b) = (Lzi)

T x(A, b). Since Lzi ∈ R
n, the absolute condition

number of gi can be computed via the exact formula given in Corollary 1 i.e

κgi,F (A, b) =

(

∥

∥(Lzi)
T (AT A)−1

∥

∥

2

2

‖r‖2
2

α2
+
∥

∥(Lzi)
T A†∥

∥

2

2

(

‖x‖2
2

α2
+

1

β2

))
1
2

. (8)

We define the random variable φ(q) by

φ(q) = (
k

q

q
∑

i=1

κgi,F (A, b)2)
1
2 .

Let the operator E(.) denote the expected value. The following proposition shows that the root mean
squared of φ(q), defined by R(φ(q)) =

√

E(φ(q)2) can be considered as an estimate for the condition
number of g(A, b) = LT x(A, b).

Proposition 1. The absolute condition number can be bounded as follows:

R(φ(q))√
k

≤ κg,F (A, b) ≤ R(φ(q)). (9)

Proof. Let vec be the operator that stacks the column of a matrix into a long vector and M be the

k-by-m(n + 1) matrix such that vec(g′(A, b).(∆A, ∆b)) = M





vec(α∆A)

vec(β∆b)



 . Then we have:

κg,F (A, b) = max
(∆A,∆b)

‖g′(A, b).(∆A, ∆b)‖2

‖(∆A, ∆b)‖F

= max
(∆A,∆b)

‖vec(g′(A, b).(∆A, ∆b))‖2
∥

∥

∥

∥

∥

∥





vec(α∆A)

vec(β∆b)





∥

∥

∥

∥

∥

∥

2

= max
z∈Rm(n+1),z 6=0

‖M z‖2

‖z‖2

= ‖M‖2 =
∥

∥MT
∥

∥

2
.

Gudmundsson, Kenney and Laub (1995) prove that k
q

∥

∥MT Z
∥

∥

2

F
as an estimator of the Frobenius norm

of the m(n + 1)-by-k matrix MT where Z = [z1, z2, · · · , zq] is a k-by-q random matrix with orthonormal

columns and show that E( k
q

∥

∥MT Z
∥

∥

2

F
) =

∥

∥MT
∥

∥

2

F
. From

∥

∥MT Z
∥

∥

2

F
=

∥

∥ZT M
∥

∥

2

F

=

∥

∥

∥

∥

∥

∥

∥

∥

∥











zT
1 M

...

zT
q M











∥

∥

∥

∥

∥

∥

∥

∥

∥

2

F

we get, since zT
i M is a vector,

∥

∥MT Z
∥

∥

2

F
=

q
∑

i=1

∥

∥zT
i M

∥

∥

2

2

=

q
∑

i=1

‖g′i(A, b)‖2.
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Eventually we obtain

‖M‖2
F = E(

k

q

q
∑

i=1

κgi,F (A, b)2) = E(φ(q)2).

Moreover MT ∈ R
m(n+1)×k and Equation 9 follows from the well-known inequality

∥

∥MT
∥

∥

F√
k

≤
∥

∥MT
∥

∥

2
≤
∥

∥MT
∥

∥

F
.

Then we will consider φ(q)
‖(A,b)‖F

‖LT x̃‖2
as an estimator of κ

(rel)
g,F (A, b).

The root mean squared of φ(q) is an upper bound of κg(A, b), and estimates κg,F (A, b) within a factor√
k. Proposition 1 leads to computing the condition number of each gi(A, b), i = 1, · · · , q. From Remark 1,

it follows that the computational cost of each κgi,F (A, b) is 2n2 (if the R factor of the QR decompsition of
A is available). Hence, for a given sample of vectors zi, i = 1, . . . , q, computing φ(q) requires about 2qn2

flops.
However, Proposition 1 is mostly of theoretical interest, since it relies on the computation of the root mean
squared of a random variable, without providing a practical method to obtain it. The next proposition, by
the use of the small sample estimate theory developed by Gudmundsson et al. (1995) answers this question
by showing that the evaluation of φ(q) using only one sample of q vectors z1, z2, · · · , zq in the unit sphere
may provide an acceptable estimate.

Proposition 2. Using the conjecture by Gudmundsson et al. (1995, p. 781), we have the following result:
if α > 10, then

Pr

(

φ(q)

α
√

k
≤ κg,F (A, b) ≤ αφ(q)

)

≥ 1 − α−q .

This probability approaches 1 very fast as q increases For α = 11 and q = 3 the probability for φ(q) to
estimate κg,F (A, b) within a factor 11

√
k is 99.9%.

Proof. We define as in the proof of Proposition 1 the matrix M as the matrix related to the vec operation
representing the linear operator g(A, b). From (Gudmundsson et al. 1995, p. 781 and 783) we get

Pr

(‖M‖F

α
≤ φ(q) ≤ α ‖M‖F

)

≥ 1 − α−m, (10)

then the result follows from inequality
‖MT‖

F√
k

≤
∥

∥MT
∥

∥

2
≤
∥

∥MT
∥

∥

F
.

We see from this proposition that it may not be necessary to estimate the root mean squared of φ(q)
using sophisticated algorithms. Indeed only one sample of φ(q) obtained for q = 3 provides an estimate of
κg,F (A, b) within a factor α

√
k.

Remark 4. If k = 1 then Z = 1 and the problem is reduced to computing κg1(A, b) In this case, φ(1) is
exactly the partial condition number of LT x(A, b).

Remark 5. Concerning the computation of the statistical estimate in the presence of roundoff-errors, the
numerical reliability of the statistical estimate relies on an accurate computation of the κgi,F (A, b) for a
given zi. Let A be a 17-by-13 Vandermonde matrix, b a random vector and L ∈ R

n the right singular
vector vn

Using the Mathematica software performing computations in exact arithmetic, we obtained κ
(rel)
g,F (A, b) ≈

5 · 108. If the triangular factor R form AT A = RT R is obtained by the QR decomposition of A, we get

κ
(rel)
g,F (A, b) ≈ 5 · 108. If R is computed via a classical Cholesky factorization, we get κg,F (A, b)(rel) ≈ 1010.

Corollary 1 and Remark 1 show that the computation of κg,F (A, b)(rel) involves linear systems of the kind
AT Ax = d, which differs from the usual normal equation in their right-hand side. Our observation that
for this kind of ill-conditioned systems, a QR factorization is more accurate than a Cholesky factorization
is in agreement with the results of Frayssé, Gratton and Toumazou (2000).
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5 Numerical experiments

All experiments were performed in Matlab 6.5 using a machine precision 2.22 · 10−16.

5.1 Examples

For the examples of Section 1, we compute the partial condition number using the formula given in
Theorem 1.
In the first example we have

A =

















1 1 ε2

ε 0 ε2

0 ε ε2

ε2 ε2 2

















and we assume that only A is perturbed. If we consider the values for L that are











1 0

0 1

0 0











and L =

(0, 0, 1)T then we obtain partial condition numbers κ
(rel)
g,F (A) that are respectively 1024 and 1.22, as expected

since there is 50% relative error on x1 and x2 and there is no error on x3.
In the second example where A is the 10− by− 4 Vandermonde matrix defined by Aij = 1

(10+i)j−1 and

only b is perturbed, the partial condition numbers κ
(rel)
g,F (b) with respect to each component x1, x2, x3, x4

are respectively 4.5 ·102, 2 ·104, 3 ·105, 1.4 ·106 which is consistent with the error variation given in Section 1
for each component.

5.2 Average behaviour of the statistical estimate

We compare here the statistical estimate described in the previous section to the partial condition number
obtained via the exact formula given in Theorem 1. We suppose that only A is perturbed and then

the partial condition number can be expressed as κ
(rel)
g,F (A). We use the method described by Paige and

Saunders (1982) in order to construct test problems [A, x, r, b] = P (m, n, nr, l) with

A = Y





D

0



ZT ∈ R
m×n, Y = I − 2yyT , Z = I − 2zzT ,

where y ∈ R
m and z ∈ R

n are random unit vectors and D = n−ldiag(nl, (n − 1)l, · · · , 1).

x = (1, 22, · · · , n2)T is given and r = Y





0

c



 ∈ R
m is computed with c ∈ R

m−n random vector of norm

nr. The right-hand side is b = Y





DZx

c



. By construction, the condition number of A and D is nl.

In our experiments, we consider the matrices

A =





A1 E′

E A2



 and L =





I

0



 ,

where A1 ∈ R
m1×n1 , A2 ∈ R

m2×n2 , L ∈ R
n×n1 , m1 + m2 = m, n1 + n2 = n, and E and E′ contain the

same element ep which defines the coupling between A1 and A2.
A1 and A2 are randomly generated using respectively P (m1, n1, nr1 , l1) and P (m2, n2, nr2 , l2).
For each sample matrix, we compute in Matlab:
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1. the partial condition number κ
(rel)
g,F (A) using the exact formula given in Theorem 1 and based on the

singular value decomposition of A,
2. the statistical estimate φ(3) using three random orthogonal vectors and computing each κgi,F (A, b),

i = 1, 2, 3 with the R factor of the QR decomposition of A.

These data are then compared by computing the ratio γ = φ(3)

κ
(rel)
g,F

(A)
.

Table 1 contains the mean γ and the standard deviation s of γ obtained on 1000 random matrices with
m1 = 12, n1 = 10, m2 = 17, n2 = 13 by varying the condition numbers n1

l1 and n2
l2 of respectively A1

and A2 and the coupling coefficient ep. The residual norms are set to nr1 = nr2 = 1. In all cases, γ is

close to 1 and s is about 0.3. The statistical estimate φ(3) lies within a factor 1.22 of κ
(rel)
g,F (A) which is

very accurate in condition number estimation. We notice that in two cases, φ(3) is lower than 1. This
is possible because Proposition 1 shows that E(φ(3)2) is an upper bound of κg,F (A)2 but not necessarily
φ(3)2.

condition ep = 10−5 ep = 1 ep = 105

l1 l2 γ s γ s γ s

1 1 1.22 2.28 · 10−1 1.15 2.99 · 10−1 1.07 3.60 · 10−1

1 8 1.02 3.19 · 10−1 1.22 3.05 · 10−1 1.21 3.35 · 10−1

8 1 9 · 10−1 3 · 10−1 1.13 3 · 10−1 1.06 3.45 · 10−1

8 8 9.23 · 10−1 2.89 · 10−1 1.22 2.95 · 10−1 1.18 3.33 · 10−1

Table 1: Ratio between statistical and exact condition number of LT x.

6 Estimates vs exact formula

We assume that the R factor of the QR decomposition of A is known. We gather in Table 2 the results
obtained in this paper in terms of accuracy and flops counts for the estimation of the partial condition
number for the LLSP. Table 3 shows the actual estimates and flops counts in the particular situation where

κg,F (A, b) flops accuracy

exact formula 12n3 exact

n � m

sharp estimate f(A, b) 2kn2 f(A,b)√
2

≤ κg,F (A, b) ≤ f(A, b)

k � n

stat. estimate φ(q) 2qn2 φ(q)

α
√

k
≤ κg,F (A, b) ≤ αφ(q)

q � k Pr ≥ 1 − α−q for α > 10

Table 2: Comparison between exact formula and estimates for κg,F (A, b)

m = 1500, n = 1000, k = 50,

A1 =





2 0

0 1



 , L1 =





3 0

0 1



 ,
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A =











A1 0

0 In−2

0 0











and b =
1√
2
(2, 1, · · · , 1)T , L =











L1 0

0 Ik−2

0 0











.

We see here that the statistical estimates may provide information on the condition number using a very
small amount of floating point operations compared to the two other methods.

κ
(rel)
g,F (A, b) f(A, b)

‖(A,b)‖
F

‖LT x̃‖2
φ(q)

‖(A,b)‖
F

‖LT x̃‖2

2.09 · 102 2.18 · 102 11.44 · 102

12 Gflops 100 Mflops 6 Mflops

Table 3: Flops and accuracy : exact formula vs estimates

7 Conclusion

We have shown the relevance of the partial condition number shown for test cases from parameter estima-
tion. This partial condition number evaluates the sensitivity of LT x where x is the solution of a (LLSP)
when A and/or b are perturbed. It can be computed via a close formula, a sharp estimate or a statistical
estimate. The quantity to compute depends on the size of the LLSP (computational cost) and on the
needed accuracy.
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