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ABSTRACT

Mixed-hybrid finite element discretization of the Darcy’s law and the continuity equation
that describe the potential fluid flow problem in porous media leads to symmetric indefinite
linear systems with a particular block structure. In this paper we consider an approach
for a solution of such systems based on the computation of a null-space basis of the whole
or of a part of the left lower off-diagonal block in the system matrix and on the subsequent
iterative solution of a projected system. A fundamental cycle null-space basis of the whole
off-diagonal block is constructed using the spanning tree of an associated graph. It is
shown that such basis may be theoretically rather ill-conditioned while the orthogonal
null-space basis of its certain sub-block can be easily constructed. In the former case, the
resulting projected system is symmetric positive definite and so the conjugate gradient
method can be applied. The projected system in the latter case remains indefinite and the
minimal residual method (or the smoothed conjugate gradient method) should be used.
The theoretical rate of convergence for both algorithms is discussed and their efficiency is

compared in numerical experiments.
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1 Introduction

The steady-state equation for the potential fluid flow in porous media combines Darcy’s law for

the velocity u with the continuity equation
Au=-Vp, V-.-u=g, (1.1)

where p is a piezometric potential (fluid pressure), A is a symmetric and uniformly positive
definite second rank tensor of hydraulic permeability of the medium and ¢ represents density of
potential sources in the medium. Consider a bounded connected domain © in R? with Dirichlet

and Neumann boundary conditions
p=pp on ONp, u-n=uy on Iy, (1.2)

where 09 = 0Qp U 0Qy are such that 0Qp # 0, 00p N NN = 0 and n is the outward normal
vector defined (almost everywhere) on the boundary 9€2. Further assume that €2 is divided into
a collection of subdomains such that every subdomain is a trilateral prism with vertical faces and
general nonparallel bases (see, e.g., Kaasschieter and Huijben, 1992, Maryska, Rozloznik and
Tuma, 1995 or Maryska, Rozloznik and Ttuma, 1996). We consider a uniform regular mesh with
the discretization parameter h and the low order Raviart-Thomas finite element approximation
(for details we refer to Kaasschieter and Huijben, 1992, Maryska et al., 1995). Using of a such

discretization technique leads to a solution of a symmetric indefinite system of linear algebraic

u q1
((Bi*)T (BC)) v o) -
A q3

equations in the form

where u = (u1,...,useng)’, P = (D1, PNE) s A = (AL, ..., A\nrenne)? are unknowns; NE
denotes the number of elements, NIF' is the number of interior inter-element faces, NNC denotes
the number of faces with prescribed Neumann boundary condition and NDC' denotes the number
of faces with Dirichlet boundary condition (NDC' # 0). Note that for the total number of faces
it follows 5 x NE = 2NIF + NDC + NNC'. Further we assume some enumeration of elements in
the mesh so that the global position of every face and its corresponding entries in the matrices
is given by the position of the element in the enumeration and by its local position on the
element. The matrix block A € R>*NES*NE js symmetric positive definite and from the analysis
in (Maryska et al. 1996) it follows that its spectrum lies in the interval

C1 C2

a(4) C [E’E]’

(1.4)

where ¢; and ¢y are positive constants independent of the discretization parameter h. The off-
diagonal block B € R>*NN ig the face-element incidence matrix (with weights equal to —1)

and therefore it is, up to the normalization coefficients /5, an orthogonal matrix. The matrix



block C has the form C = (C; Cy) € R¥»*NENF+NNC “where the matrix block C; represents the
discrete continuity equation for the fluid velocity across interior inter-element faces and where
(5 stands for fullfilment of the Neumann boundary conditions (for details we refer to Maryska
et al., 1995, Maryska et al., 1996). Both matrix blocks C; and C5 are orthogonal (the block C;
is orthogonal up to the normalization coefficients 1/2), and also the block C itself is, up to the
normalization coefficients corresponding to the columns of Cp, orthogonal. The normalization
coefficients do not play an important role here and eventually may be circumvented by a proper
scaling of their columns and corresponding rows in the system matrix (1.3) or later in (1.6)).
The condition number of the whole off-diagonal matrix block (B C) (the ratio between the
largest and the smallest singular values) is, however, dependent on the mesh size h (Maryska

et al. 1996) and for its singular values we have
sv(B C) C [cgh, ca]; (1.5)

here c3 and c4 are again positive constants independent of the discretization parameter h
(Maryska et al. 1996). If we consider the symmetric diagonal scaling of the whole indefinite

system (1.3) in the form

A (BO) hi/2 A (BO)\ (K2
((B C)T > = < h—l/Z) ((B C)T ) ( h_1/2>, (16)

then the inclusion set for the spectrum of the positive definite matrix block A becomes inde-
pendent of the parameter h with 0(A) C [c1,c2] , while the off-diagonal matrix block (B C)
remains untouched with the bound (1.5) which is now the only part of the system matrix (1.6)
dependent on the mesh size h. We note here again, that its sub-blocks B and C are matrices
with orthogonal set of columns. In addition to this, when the conditioning of the matrix A
itself is rather significant, prescaling of the matrix with its diagonal may lead to substantial
improvements.

Linear systems similar to (1.6) have attracted recently a lot of attention, in a number of
applications e.g. Navier-Stokes problems (Silvester and Wathen 1993), magnetostatic problems
(Perugia, Simoncini and Arioli 1999), quadratic and nonlinear programming (Arioli, 2000,
Luksan and Vléek, 1998) or porous media problems (Kaasschieter and Huijben, 1992, Berga-
maschi, Mantica and Saleri, 1994). Several approaches for a solution of such systems have
been considered. They range from the Uzawa-type iterative methods (Elman and Golub 1994),
nonstationary conjugate gradient-type methods like the MINRES method (Paige and Saunders
1975) applied to the whole indefinite system (see e.g. Silvester and Wathen, 1993 or Maryska et
al., 1996) or the conjugate gradient method applied to the Schur complement systems (Kaass-
chieter and Huijben, 1992, Maryska, Rozloznik and Tuma, 2000). An approach based on the
null-space method (using the sparse QR decomposition) combined with the iterative solver was

presented in (Arioli 20005). Another techniques are the multigrid approach (Elman, 1996, Wag-



ner, Kinzelbach and Wittum, 1997) or the direct solution based on the Bunch-Parlett or the
LDL”factorization (Duff, Gould, Reid, Scott and Turner, 1991, T{ima, n.d.).

In this paper we consider an approach based on the computation of a null space basis of
some off-diagonal block in the system matrix (1.6) and on subsequent iterative solution of the
remaining part of a system projected onto the constructed null-space. We consider first the
whole off-diagonal block (B C)T. Fundamental cycle null-space basis is constructed using a
spanning tree of a directed incidence graph related to the block (B C)T. Resulting projected
system is then symmetric positive definite and conjugate gradient or smoothed conjugate gra-
dient method (minimal residual method) can be applied. Unfortunately, as we will show later,
the constructed null-space basis may be potentionally ill-conditioned and, therefore, the conver-
gence rate of an iterative solver applied to the projected systems may be rather slow for large

number of elements in the mesh. We want to take advantage of the structure of the submatrix

(4 7). w

which is permutable in a block diagonal form where each of the N E diagonal blocks is of order
6 and has the structure of an augmented system. Therefore, we consider the approach based
on a null-space basis of the block C?. Since the matrix block C is orthogonal, one can very
easily construct a null-space basis of CT, which is moreover orthogonal as well. The projected
system is now symmetric indefinite, and it is equivalent to the system obtained approximating
the problem (1.1) with the boundary conditions (1.2) by the Raviart-Thomas mixed finite
element method (Brezzi and Fortin 1992). For this symmetric indefinite problem, instead of
pure conjugate gradient method its smoothed variant or, in other words, the minimal residual
method is used. Its rate of convergence is estimated and linear asymptotic dependence on the
mesh size h is shown. Thus such approach is asymptotically as efficient as other approaches
like the Schur complement reduction (Kaasschieter and Huijben, 1992, Maryska et al., 2000)
or the solution using some indefinite iterative solver on the whole system (1.3) (Silvester and
Wathen, 1993, Maryska et al., 1996). In addition, for nonlinear schemes taking into account the
transport of chemicals and/or saturation one usually has to solve a sequence of problems with
the same topology, which is reflected only in the off-diagonal matrix blocks B and C. This may
be in favor for the dual variable methods in general, because the null space of (B C) (or the
null space of CT) can be computed once at the starting and used for projecting the gradient of
the nonlinear function.

The outline of this paper is as follows. In Section 2 we focus on the approach based on
the computation of a null-space basis of the whole block (B C)T. We study the structural
and spectral properties of a fundamental cycle null-space basis and based on these results,
the theoretical convergence rate of the conjugate gradient method applied to the resulting
projected system is estimated. In Section 3 we describe an approach based on a null-space basis

of the block CT and analyze the spectrum of a resulting indefinite matrix projected onto the



orthogonal null-space basis. Section 4 describes some numerical experiments which compares
these two approaches. In Section 5 we give some conclusions and point out directions for the

future research.

2 Approach based on a null-space basis of the matrix block
(B O)F

The dual variable method (Hall 1985) for computing the unknowns u, p and A in the system
(1.3) is given in the following Algorithm.

Algorithm 2.1 The dual variable method for a solution of the system (1.3) - an approach based
on a null-space of (B C)T.
Step 1. Compute a null space basis Z of the matriz (B C)! so that (B C)1'Z = 0.
Step 2. Find some solution u of the underdetermined system (B C)Tu; = (g3 ,q3)7.
Step 3. Compute (iteratively) us from the projected system ZTAZuy = Z7(q1 — Auy).
Step 4. Set u = u1 + Zuo.

Step 5. Find the unknown vectors p and A such that (B C) (i) =q — Au.

2.1 Step1

The most critical component of Algorithm 2.1 is Step 1. There exist several approaches how to
compute a null space basis Z. Some of them are tightly coupled with particular applications. An
extensive overview of null space basis algorithms based on standard dense matrix decompositions
is given in (Heath, Plemmons and Ward 1984). A possible way to compute a null space basis
of an equilibrium matrix in structural optimization is based on looking for a set of cycles in
a suitably defined graph, see e.g. (Henderson and Maunder 1969), (Pothen 1989). The cycle
null space basis can be found efficiently using various techniques (see, e.g., Plemmons and
White, 1990, Deo, Prabhu and Krishnamoorthy, 1982, Cassell, de C. Henderson and Kaveh,
1974, Kaveh, 1984). Special attention should be paid to the approach used for solving two-
dimensional problems in computational fluid dynamics (see Amit, Hall and Porsching, 1981,
Hall, 1985 and Burkardt, Hall and Porsching, 1986). These techniques use network algorithms
to find a suitable cycle null space basis for a discrete divergence matrix which comes from
certain finite difference discretizations.

First we briefly recall the basic terminology used in the following text. In our description
we will use a slightly generalized concept of a graph by allowing more edges between a pair of
vertices. This generalization is commonly called a multigraph, but since all the standard tools
for graphs which we use can be trivially extended to multigraphs we will not emphasize this

difference later.



Definition 2.1 Let G = (V, E) be a connected directed graph with |V| vertices and |E| edges
such that |[E|—|V|+1 > 0. Then the vertez-edege incidence matriz of the graph is |V | x|E| matriz
with a row associated to each vertex and and a column associated to each edge. The column
associated with edge (i,7) has only two nonzero entries, a "1“ entry in the row associated to

verter 1 and a ”-1“ entry in the row associated with vertex j.

We start with a definition of a cycle null space basis of a graph.

Definition 2.2 Let G = (V,E) be a connected directed graph such that |E| — |V]|+1 > 0.
Then the columns of the cycle basis are given by a set of |E|—|V|+ 1 linearly independent edge
incidence vectors that correspond to some cycles in the graph G. These incidence vectors have
the i-th component equal to +1 if e; is an edge in the cycle and the orientations of the cycle
and e; agree, equal to —1 if e; is an edge in the cycle and the orientations disagree, and equal

to 0 if e; is not an edge in the cycle.

Since the cycle basis is formally defined for a graph we will not distinguish between the basis
of the graph and the basis formed from the columns of its incidence matrix. The concept of

fundamental cycle basis is based on the notion of a spanning tree defined as follows.

Definition 2.3 A spanning tree of a connected directed graph G = (V, E) is a connected sub-
graph of G with |V| vertices and |V | —1 edges.

Note that in the previous definition we did not consider the fact that the edges are oriented. In

the following we define the fundamental cycle basis.

Definition 2.4 A cycle basis is fundamental if it is obtained from a spanning tree T of the
graph in such a way that each cycle in the basis has exactly one non-tree edge e and its other

edges lie on the unique path in T connecting the vertices of the edge e.

The following lemma introduces a graph which will be used for enumeration of the cycle null

space basis vectors in our application.

Lemma 2.1 Denote by S the matriz obtained from (B C)T' by removing the rows corresponding
to Neumann boundary conditions, removing the columns corresponding to faces with Neumann
boundary conditions and adding a row which has ones in all the positions corresponding to
faces with Dirichlet boundary condition. Then S is an incidence matriz of some directed graph
Gs = (Vs, Eg).

Proof. The columns and rows of the matrix (B C)T can be reordered to an upper block
triangular form with the unit diagonal block formed from the rows corresponding to Neumann
boundary conditions and the columns corresponding to faces with Neumann boundary condi-
tions. This means that the components of null space vectors corresponding to faces with Neu-

mann boundary conditions must be zero. Therefore we do not need to consider their columns
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Figure 1: An ezample of an off-diagonal block (B C)T for a simple test problem

and rows in the matrix (B C)T. Denote by S the resulting matrix and let s be the row vector

with components corresponding to faces with Dirichlet boundary condition equal to one and

S
) . It is clear that S is an incidence

remaining components equal to zero. Then define § = ( T
s

matrix (with the column sum equal to zero) of some directed graph which we denote from now
by Gs. O

An example of an off-diagonal block (B C)T and the corresponding matrix S is shown in
Figure 1 and Figure 2, respectively. Figure 3 depicts the corresponding graph Gg.

If we find a fundamental cycle basis to the graph of the incidence matrix S we can easily
extend it to the null space basis of (B C)T. We border Zg with rows of zero in correspondence
of the columns in (B C)7 relative to the edges of the Neumann boundary conditions. Therefore,
we can pay our attention to the matrix S only. For easier reference we will formulate it as a

proposition.

Proposition 2.1 Let Zg be a null space basis of S. Then the null space basis Z of (B C)T can

be obtained from Zg by adding zero rows to positions of faces with Neumann boundary condition.

For large and sparse problems it is important to keep sparsity of the null space basis as
much as possible. The problem to find the sparsest null-space basis for a given matrix is NP-
hard (Garey and Johnson, 1979, Coleman and Pothen, 1986). The sparsest null-space basis,
however, may not be the most efficient way when solving our problem. Namely, it may be rather
ill-conditioned. Therefore, an effort was devoted to computation of orthogonal null-space bases
(see Arioli, 20006). On the other hand, the sparse QR-decomposition may lead to rather dense
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Figure 3: The graph Gg corresponding to the matriz S from Figure 2. Orientation of edges is
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and in practice infeasible factors. In this section we attempt to find a compromise between
these two extremal cases. In particular, we would like to compute a relatively sparse null-space
basis and, at the same time, to keep it sufficiently linearly independent.

We specify now more precisely how our fundamental cycle null space basis is constructed.
The cycles in Gg here are determined using some spanning tree. By its choice one can influ-
ence the conditioning of the basis in a substantial way. We assume that the spanning tree is
constructed using the Algorithm 2.2. In its description we use the technique of partitioning the
graph nodes into n node sets (Lg, L1, ..., L,—1) which are called level sets. Starting with some
initial node, which forms the initial level set Ly, the level set Lj is defined recursively as the set
of all unmarked neighbouring nodes of all the nodes of a previous level set Ly_1. This technique
is intensively used, e.g., for graph partitioning or in heuristics to find graph pseudoperipheral
vertices (see Gibbs, Jr. and Stockmeyer, 1976, Saad, 1996).

Algorithm 2.2 Algorithm to construct the spanning tree T = (Vg,Er) of the graph Gs =
(Vs, Es).

Step 1. Find a level set partitioning (Lo, L1,...,L,—1) of Gs starting from an arbitrary node
z € Vs.

Step 2. For all components of subgraphs induced by a level set partitioning construct an arbitrary
spanning tree. Add all these edges of every spanning tree into Er.

Step 3. Connect the set of edges E into a spanning tree of the whole graph Gg.

This construction guarantees that there are no cycles in the graph Gg which would use
nodes from more than two levels of the partitioning. The whole process of construction is
schematically depicted in Figure 4. The situation after Step 2 in Algorithm 2.2 is illustrated on
the left-hand side and the spanning tree of Gg after Step 3 is depicted on the right-hand side.
The edges of the spanning tree are denoted by double lines.

In the following we study the conditioning of the null-space basis constructed using the
spanning tree from Algorithm 2.2. We give bounds on extremal singular values of the matrix Zg.
In particular, we are interested in their asymptotic behavior with respect to the discretization

parameter h under uniformly regular refinement of the mesh.



L, Ly Lg Ly Ly Ly L3 Ly

Figure 4: Graph with level sets and spanning tree edges after Steps 2 and 3 of Algorithm 2.2

Theorem 2.2 Let Zg be a matriz with fundamental cycle null-space basis vectors induced by
the spanning tree from Algorithm 2.2. Let 0maz(Zs) > 02(Zg) > ... > omin(Zs) > 0 be the

singular values of Zg. Then there exist a constant cs such that ope(Zs) < csh™2.

Proof. In a uniform mesh the ratio between the internal and the external diameters of
any element is independent of A and both diameters are of order O(h). Then, the number of
elements in each direction is independent of the direction. Algorithm 2.2 computes a “Shortest
Path Spanning Tree” for the graph Gg where each arc has length 1. Therefore, the value of
a level set is also the value of the minimum distance of any of its node from the root. Such a
distance is equal to the number of elements in the mesh that we cross going from a node in the
level set to a node corresponding to a boundary elements directly connected to root. Because
of the uniformity of the mesh this number is in the worst case of order O(h~!). The nodes in
a level set map into a wavefront in the mesh, therefore, the number of nodes in a level set is
in the worst case of order O(h~2). Since Zg is a cycle null-space basis, its Frobenius norm is
determined by the count of its nonzero entries. Each column of Zg corresponds to an arc which
is not in the tree and the number of non zeros in the column is the length of the shortest cycle
formed using the nodes on the tree and the arc. Because the max distance of a node in the tree
from the root is of order O(h~!) the maximum length of the cycle is O(h~!). The total number
of arcs out of tree is O(h~3). Then, the number of nonzeros in Zg is of order O(h~*). Hence

there exists a positive constant c5 such that 0,,4:(Zs) = || Zs|| < ||Zs||F < esh™2. O

Theorem 2.3 Let 01(Zs) > 092(Zs) > ... > omin(Zs) > 0 be the singular values of the matriz
Zs given by the fundamental cycle null-space basis vectors Zg. Then opin(Zs) > 1.



Proof. From the Courant-Fischer theorem we have

. | Zsz|| .
- (Zc) = > VA .
omin(Zs) = min | max S 2 min || Zsal

Because S is the incidence matrix of the graph Gg, there exist P; and P, permutation matrices

(Murthy 1992) such that
T
Ly
PSP, = :
Lo

with L1 non singular lower triangular matrix. Then

—L7TLT
Zg = ).

Since the matrix Zg has a unit submatrix embedded, it always satisfies ||Zgz|| > ||z||. ;From
this observation we obtain the desired result. O

The approach which we adopted is based on the concept of the fundamental cycle null space
basis Z for which one could simply bound the smallest singular value of Z from below but then
some growth in the norm of the matrix Z with the bound in Theorem 2.2 should be expected.
Another approach which uses cycles of small lengths for the basis can fall into a different trap.
While the norm of Z can be simply bounded by a constant times a maximum degree in the
graph Gg, it is not easy to give a reasonable lower bound for the minimum singular value of Z in
the case of general domain. Nevertheless, we do not exclude that such ill-conditioned null-space

basis vectors may appear frequently in practical computations.

2.2 Step 2

The construction of a particular solution u; in Step 2 of Algorithm 2.1 is considerably simpler
than the construction of the null space basis (cf. Hall, 1985). Compute the uniquely determined
components of the particular solution corresponding to the faces with the Neumann boundary
conditions. Denote by F the matrix obtained from (B C)T after elimination of these components
and after removal of all columns corresponding to faces with a Dirichlet boundary condition.
Construct a spanning tree Tr of its incidence graph Gr rooted in a vertex which corresponds to
some element with a Dirichlet boundary condition. Then remove all non-tree columns (columns
corresponding to non-tree edges) from F. The resulting matrix F' is then the incidence matrix
of Tp. Therefore, the rows and columns of ' can be reordered into upper Hessenberg form such
that the row corresponding to the root will be numbered first. Adding a linearly independent
Dirichlet column related to the root we get a nonsingular upper triangular system. By solving
this system and setting all the other non-tree and Dirichlet components to zero we get the

desired particular solution u.

10



2.3 Step 3

For a solution of the projected system in Step 3 one may use the iterative conjugate gradient
(Hestenes and Stiefel 1952) or the minimal residual method (Stiefel 1955). The theoretical rate
of convergence has been throughly studied and the bounds for their error and/or residual norm
has been given (see e.g. Hestenes and Stiefel, 1952, Saad, 1996). Here we consider the conju-
gate gradient method smoothed by the minimal residual smoothing, which is mathematically
equivalent to the minimal residual method (Greenbaum 1997). If we apply this method to the
symmetric and positive definite projected system, the residual norm of the n-th approximate

solution uf can be bounded as follows

1— [ k(
12" (q1 — A(ur + Zu3))|| < 2 ( Y ) 127 (g1 — Alur + Zw)))[|l.  (2.8)
14+ 1/\/x(Z

The bound (2.8) indicates that its rate depends strongly on the spectrum of the projected matrix

ZT AZ. Using the bounds on the singular values of the null-space basis matrix Z constructed in
Step 1 and using the bound for the eigenvalues of the positive definite matrix block A (1.4) with
scaling (1.6) then we can obtain the following simple result on the eigenvalues of the matrix
ZTAZ.

Lemma 2.4 Let Zg be the fundamental null-space basis matriz induced by the spanning tree
from Algorithm 2.2 and let Z be the null-space basis matriz of the block (B C)! obtained from
Zs by adding zero rows corresponding to faces with Neumann boundary condition. Then for the
eigenvalues of the matriz ZT AZ we have

2
h4]

Proof. The statement of lemma follows from (1.4) and (1.6), from results given in the

(ZTAZ) C [61,62 (2.9)

subsection Step 1 and from the inequality
c1(Zx, Zz) < (ZTAZz,x) < cy(Zz, Z1),

which gives the relation between the spectrum of Z7 AZ and the singular values of Z. [

Considering the bound (2.8) and Lemma 2.4 we have

1 o\ M
12" (@1 = Al + Zup))l| _, 1-SVah
127 (@~ AGw + Za)| =\ 1+ L fane

(2.10)

For the asymptotic convergence factor then it follows from (2.10) that there exist a positive

constant cg independent of the discretization such that

1/n
(1127 (@1 — Aur + Zub))| 2 4
1 <1-—cgh”+ O(h*). 2.11
e (HZT(ql “Awrzg)]) ST .

11



2.4 Step 5

The vector (p?', AT)T in Step 5 of Algorithm 2.1 can be found as follows. Consider the spanning
tree Tr of the matrix F' and the upper triangular system constructed in Step 2 (see Subsection
2.2). The unknowns p and A are then a solution of the system with a nonsingular lower triangular
matrix obtained by transposing the matrix from Step 2. The components of the unknown vector
A corresponding to Neumann boundary conditions are determined accordingly from remaining
rows of (B C). The right hand-side vector is given as ¢ — Au substituting for the vector u

computed in Step 4.

3 Approach based on a null-space basis of the matrix block CT

Since the off-diagonal matrix block C' has orthogonal columns it is much easier to construct a
null-space basis for the block C7 rather than for the whole block (B C)?. In contrast to the
previous approach, this basis can be chosen orthogonal and thus the condition number of the
basis matrix is not dependent on the discretization parameter. Although we are splitting the
potentially ill-conditioned matrix block (B C) into two matrix blocks with orthogonal columns,
the spectrum of the remaining part of the indefinite system is dependent on the discretization
parameter. Consequently, the rate of convergence of the minimal residual method applied to
the projected system can be bounded in terms of the mesh size and it depends linearly on the

uniform mesh refinement. The algorithm is given as follows.

Algorithm 3.1 The dual variable method for a solution of the system (1.8) - approach based
on a null-space of CT.

Step 1. Determine the null space basis Z of the matriz block CT such that CTZ = 0.

Step 2. Find some solution ui of the underdetermined system CTuq = gs.

Step 3. Compute iteratively us and p from the projected system

ZTAZ Z"B\ (u2\ _ [ Z"(q1 — Aw)
BTz p) go—BTuy |~
Step 4. Set u = uy + Zus.
Step 5. Find the unknown X such that C\ = ¢u — Au — Bp.

3.1 Step1

The matrix block C has orthogonal columns and it has the form C = (C; Cy) € R3*VENIF+NNC
where the block C; has two nonzeros per column, corresponding to the interior inter-element
faces between neighbouring elements in the mesh. The block C9 is just the face-Neumann

boundary condition incidence matrix. Therefore it is easy to construct the null-space matrix
Z such that CTZ = 0. The resulting matrix Z = (Z; Zy) € R¥>*NENF+NIX can be chosen

12
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Figure 5: Null-space basis of the off-diagonal block C* from our example in Figure 1

€ RO*NENIE il have two nonzeros per column (1 and

in the following way. The block Z;
-1) exactly on the same position as in the corresponding block Ci; the block Z, is the face-
Dirichlet boundary condition incidence matrix. It is obvious that such matrix Z has orthogonal
set of columns with Z7Z = diag(2,...,2,1,...,1) (which can be also orthonormalized). The

null-space basis matrix Z for our example is given in Figure 5.

3.2 Step 2

The matrix block C' has one entry per row, so the system CTu; = g3 can be immediately
solved by permuting its rows and columns to an upper trapezoidal form. In other words, we get
immediately the unknowns that correspond to faces with the Neumann condition, and setting
one of the two unknowns that stand for the interior inter-element faces, we can recompute the

other. The remaining unknowns corresponding to Dirichlet faces are then set to zero.
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Figure 6: Structural pattern of the projected matriz (3.12) from our simple problem

3.3 Step 3

The projected system from Step 3 is symmetric but indefinite. Nevertheless, since the null-
space basis matrix Z is chosen orthogonal, may be this approach very efficient. The projected
system can be written as a result of an orthogonal projection applied to the remaining part of

the indefinite system matrix in (1.6) in the form

ZTAz Z"B\ (Z" A B Z 319
i N G [ P [ G B

The structural pattern of the resulting system for our example is depicted on Figure 6. The
projected system (3.12) is still rather sparse, so its iterative solution may be a reasonable
option. Moreover, the expression given by (3.12) shows that we can implement the matrix-
vector product quite efficiently in parallel. The product Zv is equivalent to a permutation
of the vector v, and the product Z”w, because the rows of the matrix Z* are structurally

orthogonal, can be implemented in parallel. Furthermore, the matrix

(o)

can be symetrically permuted in a block diagonal form with diagonal blocks of size 6. Here we
consider the conjugate gradient method smoothed by the minimal residual smoothing (Green-
baum 1997). It is well known that the rate of convergence of symmetric iterative methods
depends strongly on the eigenvalue distribution of the system matrix (Saad, 1996, Greenbaum,
1997). In the following we analyze the spectrum of the matrix in the projected system (3.12).
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Lemma 3.1 Let Z be the null-space basis of the off-diagonal block CT constructed in Step
1 of Algorithm 3.1. Then for the spectrum of the projected matriz block ZTAZ it follows
o(ZTAZ) C [e1,2¢a).

Proof. The proof of the lemma, is similar to the proof of Lemma 2.4 provided that ZTZ =
diag(2,...,2,1,...,1). 0

Lemma 3.2 Let Z be the null-space basis of the off-diagonal block CT constructed in Step 1 of
Algorithm 8.1. Then there exist positive constants c; and cg such that for the singular values
of the matriz block Z* B it follows sv(ZT B) C [crh, cs).

Proof. Define the graph Gp = (Vp,Eg) as follows. Let Vg = {0,1,...,NE}. Let (4,7)
be an edge in Ep whenever elements ¢ and j are connected by an interior inter-element face.
Furthermore, let there is an edge (0,7) € Ep for each Dirichlet boundary condition defined on
some element ¢. Note that there can be more edges between the node 0 and some node i # 0.
Moreover, introduce the mapping d : Vg — IR such that dy = 0 and >,y d*(i) = 1 and the
induced mapping wy : Ep — IR satisfying the formula wy(e) = |d(j) — d(7)| for e = (i, 7) € Ep.

Consider a tree T' = (Vg, Er) rooted in the node 0 such that |Er| = |Vg| — 1. Let k be its
arbitrary node. Using the Schwarz inequality we get

EE <R Y ud), (3.13)
e€P(0,k)
where P(0,%) is an unique path between the nodes 0 and k in 7" (where we do not take into
account the orientation of the edges) and £(k) is its length. Summing the inequalities in (3.13)
for all k € Vp we get

1< D UR) Y wile) <lmag Y wile) < Lmgy > wile), (3.14)
keVp e€P(0,k) e€EET ecEp
where /4,4, is the length of the path of maximum length from the node 0 to some node i € Vp.
This implies that

> wile) > bz (3.15)

ecEp

Consider now the matrix ZTB € RNMF+NPONE  Tts rows correspond to Dirichlet boundary
conditions and interior inter-element faces. There is only one nonzero in the rows corresponding
to Dirichlet boundary conditions (either +1 or —1) placed in the column of the element where

this condition is imposed. In the rows which correspond to the interior faces, there are exactly

two nonzeros, equal to +1 and —1, respectively. Consider a vector d = (dg, ds, - ..,dyg)? such
that d(0) = 0. Clearly, from the definition of Gp we have
> wile) =] (Zz"B)d|I?, (3.16)

ecEp
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Figure 7: Null-space basis of the off-diagonal block Z*B from our exzample in Figure 1

where d = (dy,...,dyg)T. Consequently, using the Courant-Fischer theorem and (3.15) we have
omin(ZTB) = min || (ZTB)d||> ¢k, (3.17)
lldll2=1

The uniformly regular mesh refinement provides that £,.; = O(NE~'/3) = O(h). Therefore,
there is a positive constant c¢; such that

Omin(ZT B) > crh. (3.18)

Since || ZTB ||<|| Z ||| B ||< v/2V/5, the singular values of ZT' B are bounded by a positive
constant cg = v/10 and this completes the proof. O

Lemma 3.3 Let Z be the null-space basis of the off-diagonal block C constructed in Step 1 of
Algorithm 3.1. Then for the spectrum of the projected matriz (3.12) it follows

ZTAZ ZTB 1 c2
(207 TP o - VA1 - 00t e+ /4
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Proof. The proof of the lemma follows from (Rusten and Winther 1992), Lemma 2.1 and
from the the statements of Lemma 3.1 and Lemma 3.2. O

It is well-known that applying the minimal residual method to the projected system (3.12)
the relative residual norm of the n-th approximate solutions u4% and p”, n = 0,1,... can be
bounded (see also Greenbaum, 1997, pag. 54, Wathen, Fischer and Silvester, 1997, pag. 234)

as follows
Cot ) orr ) )] ey ™
g2 — BTuy B'Z ( bch) (3.19)
ZT (g1 — Auy) ZTAzZ Z7Z'B be ’ '
() (o 7P ()] e

where a = 1/2(y/c? +4c2 — ¢1), b = /ca, ¢ = ¢; and d = c3 + (/% + 2. ;From (3.19) we

obtain the bound for the asymptotic convergence factor in the form

() - G N

- BT | \ BYz

n_)oo Zg? q A’lil) ZTAZ ZTB < 1 — C9 h + O(h2)
Catom)- (o 77) G

Clearly, the bounds for the rate of convergence of the minimal residual method applied to the

indefinite projected system depend linearly on the discretization parameter h. Moreover, since
we have used, in fact, the assumption on the symmetric spectrum for the projected matrix,
this bound may be an overestimate of the actual rate of convergence of the unpreconditioned
minimal residual method (Wathen et al. 1997). The preconditioning of the projected matrix

(3.12) can be incorporated as well and many other approaches are possible.

3.4 Step 5

Since the matrix block C' has orthogonal set of columns, the unknown vector A\ is given
as A = D7'CT (g — Au — Bp) which is easy to solve due to the fact that D = CTC =
diag(2,...,2,1,...,1) is diagonal matrix.

4 Numerical experiments

In this section we give the results from numerical experiments. Two sets of matrices have been
considered.

The first set corresponds to a model potential fluid flow problem in a rectangular domain
with homogeneous Neumann on the top and bottom and Dirichlet conditions prescribed on the
rest of the boundary. The tensor of hydraulic permeability is constant in the whole domain.

Uniform prismatic discretization with the varying mesh size h was used. In Table 1, we give

17



Table 1:  Model potential fluid flow problem on a rectangular domain with a constant tensor
of hydraulic permeability. The quantity NE denotes the number of elements, NIF stands for
the number of interior inter-element faces, NDC and NNC' denotes the number of Dirichlet
and Neumann boundary conditions, respectively. The dimension of the null-space of (B C)T is
given as NZ1 = 4 x NE — NIF — NNC and the dimension of the null-space of CT is given as
NZ2 =5 NE — NIF — NNC.

Discretization parameters Dimension of null-spaces

h NE NIF | NDC' | NNC | NZ1 NZ2
1/5 250 525 100 100 375 625
1/10 | 2000 4600 400 | 400 3000 5000
1/15 | 6750 15975 | 900 | 900 | 10125 16875
1/20 | 16000 | 38400 | 1600 | 1600 | 24000 40000
1/25 | 31250 | 75625 | 2500 | 2500 | 46875 78125
1/30 | 54000 | 131400 | 3600 | 3600 | 81000 135000
1/35 | 87750 | 209475 | 4900 | 4900 | 138625 226375
1/40 | 128000 | 313600 | 6400 | 6400 | 192000 320000

the values of discretization parameters NE = 2/h3, NIF, NNC and NDC for different values
of h. The dimension of the resulting indefinite system matrix (1.3) can be computed as N =
6 * NE + NIF + NNC' and the number of columns of the off-diagonal block (B C) is given by
NBC' = NE + NIF + NNC. In Table 1 we report the dimension NZ1 of the null-space of the
whole block (B C)T and the dimension NZ2 of the null-space of the block CT for all values of
mesh size h.

Table 2 reports the inclusion sets of the spectrum of matrix blocks A and (B C) as well
as of the whole symmetric indefinite matrix from (1.3). The extremal singular values of the
block (B C) (squared roots of the extremal eigenvalues of the matrix (B C)T(B C)) and the
extremal positive and negative eigenvalues of the whole indefinite matrix were approximated by
the eigenvalues of the symmetric tridiagonal matrix obtained from 2000 steps of the symmetric
Lanczos algorithm (Golub and van Loan 1996). The eigenvalue computation of the resulting
tridiagonal matrix was done using the LAPACK double precision subroutine DSYEV (Anderson,
Bai, Bischof, Demmel, Dongarra, Croz, Greenbaum, Hammarling, McKenney, Ostrouchov and
Sorensen 1992). The extremal eigenvalues of the diagonal matrix block A were computed
directly by the LAPACK symmetric eigenvalue solver element by element. It is clear from
Table 2 that the computed eigenvalues of the block A are in a good agreement with the result
(1.4) and after scaling (1.6) the spectrum of the diagonal block A becomes independent of h.

Similarly the computed extremal singular values of (B C) sound well with (1.5).
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Table 2:  Model potential fluid flow problem on a rectangular domain with a constant tensor of
hydraulic permeability. Spectral properties of the matriz blocks and the whole indefinite system
for different values of mesh size h. The extremal eigenvalues and singular values were approz-
imated using the symmetric Lanczos process and subsequent computation of the eigenvalues of

resulting tridiagonal form.

spectrum of matrix blocks whole indefinite system

h spectrum of A | s.v. of (B C) negative part positive part
1/5 | [0.16e-2, 0.1e-1] | [0.181e0, 2.63] | [-2.63 , -0.180e0] | [0.166e-2, 2.63]
1/10 | [0.33-2, 0.2e-1] | [0.927e-1, 2.64] | [-2.64, -0.898e-1] | [0.335¢-2, 2.64]
1/15 | [0.50e-2, 0.3¢-1] | [0.622¢-1, 2.64] | [-2.64, -0.35de-1] | [0.509¢-2, 2.65]
1/20 | [0.66-2, 0.4e-1] | [0.467e-1, 2.64] | [-2.64, -0.413¢-1] | [0.679-2, 2.65]
1/25 | [0.83¢-2, 0.5¢-1] | [0.374e-1, 2.65] | [-2.64, -0.311e-1] | [0.861e-2, 2.65]
1/30 | [0.99e-2, 0.6e-1] | [0.312e-1, 2.65] | [-2.64, -0.241e-1] | [0.104e-1, 2.65]
1/35 | [0.11e-1, 0.7e-1] | [0.268e-1, 2.65] | [-2.64, -0.190e-1] | [0.120e-1, 2.65]
1/40 | [0.13e-1, 0.8e-1] | [0.234e-1, 2.65] | [-2.64, -0.152¢-1] | [0.136e-1, 2.65]

Approaches based on the computation of the null-space basis of the whole off-diagonal
block (B C)7' are discussed first. In Table 3, we compare the memory requirement (denoted as
NNZ(Z1)) and the computational cost of constructing the null-space basis and iteration counts
for the (smoothed) conjugate gradient method applied to the projected positive definite system
in Algorithm 2.1, Step 3. For computation of the null space basis Z (such that (B C)T'Z = 0)
we use the sparse QR factorization (for details see Arioli, 20005) and the fundamental cycle null
space basis. Sparse QR decomposition was computed with the code MA49 from the Harwell
Subroutine Library (HSL 2000). Fundamental cycle null space basis is based on the shortest
path spanning tree of Gg, SDS algorithm from (Deo et al. 1982). In Table 3 we further give the
number of nonzero elements (denoted as NNZ(QR)) necessary for storing the orthogonal and
upper triangular factors of (B C), the ratio NNZ(R)/NNZ(QR), and the time of computation
in seconds (in brackets). All experiments were performed on the SGI Origin 200 with processor
R10000. The results from Table 3 indicate that the use of sparse QR factorization becomes
prohibitive for last two values of h and the ratio NNZ(R)/NNZ(QR) tends to approach the
value 1/2 with the decrease of h. It is also clear that although the number of nonzeros in the
fundamental cycle null-space basis NNZ(Z1) is significantly less than the number of nonzeros

in the factors QQ and R. This is even more profound for the computation time. In the iterative
frnl — 108

Troll —
was used as the stopping criterion. Only unpreconditioned case is considered in this case. In

part the initial approximation of uo was set to zero, the relative residual norm

the case of the QR approach we included the number of iterations and timing in seconds for
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Table 3:

of hydraulic permeability. Memory requirements of the approaches using the null-space basis of

Model potential fluid flow problem on a rectangular domain with a constant tensor

the whole block (B C)T, iteration counts and timings (in brackets) of the conjugate gradient
method applied to the projected positive definite system.

memory requirements iteration counts
h QR approach | fund. cycles | QR approach | fund. cycles

NNZ(QR) NNZ(Z1) QR/SN UN

1/5 28360/0.26 3360 22/20 71
(3e-2) (7e-3) (0.17/0.44) (0.08)

1/10 | 410466/0.30 47120 22/21 163
(0.97) (0.07) (1.87/4.23) (1.57)

1/15 | 1979203/0.34 226780 22/21 252
(9.73) (0.30) (8.48/17.1) (19.9)

1/20 | 7120947/0.39 697840 22/21 346
(59.6) (0.93) (25.0/48.6) (75.9)

1/25 | 18105131/0.42 1675800 22/21 438
(237) (2.21) (57.2/107) (222)

1/30 | 40837823/0.44 3436160 21/21 523
(980) (4.60) (110/214) (510)

1/35 — 6314420 — 596
(8.64) (1009)

1/40 — 10706080 — 670
(14.8) (1900)

two possible approaches using either both factors Q and R (denoted in Table 3 as QR, see
also Arioli, 2000b6) or solution via seminormal equations (SN) (for details we refer to Perugia
et al., 1999) which uses only the upper triangular factor R from the QR factorization. The
latter then necessarily leads to approximately double cost of matrix-vector multiplications in
the iterative solver. For the case of fundamental cycle basis we report the number of iterations
and timings when the matrix Z7 A Z is unpreconditioned and kept in factorized form (UN). We
have noticed that simple preconditioning strategies like Jacobi (note that the system matrix
was initially scaled) or IC (using explicit matrix assembling) do not help to improve the results.
It is clear from iteration counts in Table 3 that number of iterations remains in the case of the
QR factorization independent of the mesh size h while the number iterations in the approach
based on the fundamental cycle basis increases more than linearly with A, which leads to higher

timings also in the iterative part of the process.
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In Table 4 we compare the approaches based on the null-space basis of the off-diagonal block
CT. The iteration counts and times of the preconditioned conjugate gradient method applied
to the projected indefinite system in Algorithm 3.1, Step 3 are discussed for positive definite
block diagonal preconditioner (IP) and indefinite (constraint) preconditioner (IQ), where the
inverses of corresponding matrices are approximated by the incomplete Cholesky decomposition
IC(0) (see e.g. numerical experiments in (Perugia et al. 1999) and references therein). For
comparison we give also results for the preconditioner based on the approximate factorization
of the indefinite system (NS) developed originally by Nash and Sofer (Nash and Sofer 1996,
pag. 52, formula (3.2)). It is clear from Table 4 that the computed results are in a good
agreement with the theoretical result (3.19) developed in previous section. Indeed, the number
of iterations required for reducing the relative residual norm to 10~% increases linearly with the
decrease of h. The results with the IQ and IP preconditioners are reasonably good, better than
the results for the NS preconditioner which has, on the other hand, more potential for parallel
implementation. We note that the stopping criterion and the level 108 used throughout the
paper leads usually to much higher accuracy of the approximate solution than that required in
practice in a finite element method framework. For a thorough discussion we refer to (Arioli
2000a).

Iterative solution of the projected indefinite system (Algorithm 3.1, Step 3) is compared with
the approach based on the sparse QR of the off-diagonal block BTZ. We report the memory
requirement, the ratio NNZ(R)/NNZ(QR) and the timings for the computation of the factors
together with the number of nonzeros in the null-space basis Z (denoted as NNZ(Z2) here).
We note that since the latter is equal to 2 x NIF + NDC the time for the construction of Z is
negligible and it is not included in Table 4. Similarly to Table 3 in Table 4 we also included
iteration counts and time for the iterative part of the QR approach that uses either both Q and
R factors (QR) or only the factor R (SN).

The first set of matrices was obtained from a discretization of a model potential fluid flow
problem with a constant tensor of permeability in a rectangular domain. Theoretical analysis
and numerical experiments for the first set clearly indicate that the conditioning of the positive
definite block A does not affect dramatically the behavior of the conjugate gradient method
used in the iterative part of the whole solution process. In addition, the linear dependence (or
independence in the case of the QR approach) in the iteration counts of the conjugate gradient
method on mesh size does not represent a serious difficulty in terms of the computational
complexity, especially due to the fact that in the three-dimensional case even large values of
mesh size (h < 1/40) lead to a rather large problems, so further decrease of h would lead
to practically infeasible system anyway. The second set of matrices comes from a real-world
application of undeground water flow modelling in the area of Strdz pod Ralskem in northern
Bohemia. Realistic values of hydraulic permeability lead to the positive definite diagonal block

A with the condition number which may become a dominating factor for the behavior of the
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Table 4:  Model potential fluid flow problem on a rectangular domain with a constant tensor of
hydraulic permeability. Number of nonzeros of the projected matriz onto the null-space basis Z
of the block CT (see Algorithm 3.1, Step 3), iteration counts and timings of the preconditioned
conjugate gradient method applied to the orthogonally projected indefinite system compared to
the memory requirements and iteration counts for the solution of the same system based on the
sparse QR decomposition of its off-diagonal block ZT B.

pure iteration sparse QR
h NNZ(Z2) IP/IQ/NS NNZ(QR) QR/SN
1/5 14375 62/35/55 20834/0.20 18/14
(0.05/0.03/0.10) (0.02) (0.09/0.09)
1/10 | 123000 103/64/108 356267/0.28 19/16
(0.68/0.48/1.60) (0.35) (1.11/0.89)
1/15 | 424125 144/93/160 1840670/0.34 21/15
(5.17/3.79/13.6) (3.14) (6.09/4.63)
1/20 | 1016000 186/118/212 6322468/0.38 21/15
(20.2/14.2/49.6) (17.97) (18.3/14.94)
1/25 | 1996875 225/145/265 16661544/0.42 23/15
(50.8/37.4/122) (86.6) (47.0/27.8)
1/30 | 3465000 260/174/311 40669978/0.44 22/15
(111/84.2/268) (584) (96.7/85.5)
1/35 | 5518625 295/204/362 — —
(224/173/520)
1/40 | 8256000 331/230/412
(383/295/941)
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Table 5: Realistic problems from undeground water flow modelling in Strdz pod Ralskem. The
name of problem, the number of elements NE and the dimension of the whole indefinite system
N = 6% NE + NIF + NNC. The spectral properties of the matriz blocks A and (B C) for all
matrices. The extremal eigenvalues and singular values were approzimated using the symmetric

Lanczos process and subsequent computation of the eigenvalues of the resulting tridiagonal form

discretization parameters spectrum of matrix blocks
name NE N spectrum of A | s.v. of (B C)
klsan | 14700 126980 [0.21e-4,0.802] | [0.26e-1,2.64]
olesnik0 | 24300 210060 [0.74e-4,0.91e3] | [0.20e-1,2.64]
dpretok | 36300 313940 [0.77e-3,0.12e5] | [0.17e-1,2.64]
turon | 50700 438620 [0.19¢-4,0.96€2] | [0.14e-1,2.64]

iterative solver applied onto a projected system. This is illustrated in the following experiments.
In Table 5 we give a description of the problems together with the inclusion sets for the extremal
eigenvalues of A and extremal singular values of (B C) computed as for the model problem in
Table 2.

Similarly as before, in Tables 6 and 7 we report the same quantities for the second set of
matrices. It follows from Table 6 that also here the memory requirements and the times for
computing the (sparse) QR decomposition are substantially larger than in the case of construc-
tion of the fundamental cycle null-space basis. For realistic examples, however, the iteration
counts and timings for the conjugate gradient method applied on the system with Z7 AZ (UN)
dramatically increase and for last two examples exceed 9999 iterations. The iteration counts
and timings for both QR approaches (QR and SN), on the other hand, remain comparable to
the results in Table 3. Iterations counts and timings for the positive definite block-diagonal
preconditioner (IP) and indefinite (constraint) preconditioner (IQ) in Table 7 are comparable
to results in Table 4 and show that this approach is very efficient even for realistic problems.
The Nash-Sofer preconditioning is, however, substantially worse for problems with the domi-
nant tensor of hydraulic permeability. The QR approach applied to projected indefinite system
seems to be an useful approach. Nevertheless, it may fail in some cases.

5 Conclusions

In this paper we have compared the computation efficiency of several dual methods for the so-
lution of augmented linear systems coming from the mixed-hybrid finite element approximation
of the potential fluid flow problem in porous media. We have discussed the approach based

on the computation of a null-space basis either of the whole off-diagonal block (B C)7 or its
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Table 6: Realistic problems from undeground water flow modelling in Strdz pod Ralskem. Mem-
ory requirements of the approaches using the null-space basis of the whole block (B C), iteration

counts and timings of conjugate gradient method applied to the projected positive definite system.

memory requirements iteration counts
Name QR approach | fund. cycles | QR approach | fund. cycles
NNZ(QR) NNZ(Z1) QR/SN UN
klsan | 3674914/0.35 983640 44/44 2635
(38.1) (0.95) (34.4/78.4) (703)
olesnik0 | 6626296/0.35 2057880 58/58 4544
(102) (2.03) (79.1/181) (2397)
dpretok | 10453556/0.42 3719320 37/37 >9999
(224) (3.73) (78.6/187) (—)
turon | 15398104/0.41 6095960 36/36 >9999
(434) (6.62) (116/265) (—)

Table 7:  Realistic problems from undeground water flow modelling in StrdZ pod Ralskem.
Number of nonzeros of the projected matriz onto the null-space basis Z of the block CT (see
Algorithm 3.1, Step 8), iteration counts and timings of preconditioned conjugate gradient method
applied to the orthogonally projected indefinite system compared to the memory requirements and
iteration counts for the solution of the same system based on the sparse QR decomposition of

its off-diagonal block Z' B.

pure iteration sparse QR
Name | NNZ(Z2) IP/IQ/NS NNZ(QR) QR/SN
klsan 862820 184/76/3156 3284826/0.33 93/93
(17.1/7.86/629) (5.80) (51.1/59.1)
olesnik(0 | 1426140 287/103/5582 6007628/0.34 > 9999
(44.9/18.4/1846) (13.7) (—)
dpretok | 2130260 112/51/1705 9495418/0.34 23/23
(26.3/14.1/865) (26.1) (35.6/42.3)
turon 2975180 155/80/442 14426491/0.35 26/26
(56.0/32.7/325) (49.6) (59.0/72.1)
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orthogonal part C?7. We have shown that although the sparse QR decomposition of the off-
diagonal block is prohibitive for large problems in terms of memory requirements for storing the
factors, its iterative part is very efficient (although the cost of iteration is rather high) and not
dependent on the mesh size. On the other hand, the construction of the fundamental cycle null
space basis is very fast, but the iteration counts are much worse. In addition, since the basis
is non-orthogonal the number of iterations in the iterative part is no longer independent of the
mesh size and in the case of more difficult tensors of hydraulic permeability may become very
large. The cost of iteration is, however, due to higher sparsity of the basis lower than for the
QR approach. Good preconditioning of the projected matrix Z7 AZ may be of help especially
for realistic examples and in general it is an open question. For examples with moderate values
of hydraulic permeability it seems useful to keep the projected matrix in factorized form.

The approach based on the null space of the off-diagonal block C”" seems to be more efficient
both in terms of the memory requirements and computational cost. The null-space basis of CT
can be explicitely given and the construction of the resulting projected (mixed) system is cheap.
Again, the sparse QR decompostition of ZT B (if it is not prohibitive) leads to lower iteration
counts and times in the iterative part. Numerical experiments on all examples indicate that the
pure iterative solution of the projected and still indefinite system is a very promising approach
especially together with some efficient preconditioning technique like the indefinite (constraint)
or block-diagonal positive definite preconditioner. Moreover, following the discussion of Section
3.3, we can take advantage of (3.12) for an efficient parallel implementation of the matrix by

vector product.
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